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Abstract High boiling point solvent additive, employed during the solution pro-

cessing of active layer fabrications, impact the efficiency of bulk heterojunction

polymer solar cells (PSC) by influencing the morphological of the active layer. The

photovoltaic performances of the PSCs based on the donor of poly{4,8-bis[(2-

ethylhexyl)oxy]benzo[1,2-b:4,5-b0]-dithiophene-2,6-diyl-alt-3-fluoro-2-[(2 ethyl-

hexyl)carbonyl] thieno[3,4-b]thiophene-4,6-diy (PTB7) and the acceptor of [6, 6]-

phenyl-C71-butyric-acidmethyl-ester (PC71BM) was optimized using 5 vol% high-

boiling-point solvent additive of 2-Bromonaphthalene (BN). The optimized air-

processed PSC based on PTB7:PC71BM (1:1.5 w/w) with 5 vol% BN exhibited a

power conversion efficiency of 7.01% with open-circuit voltage (Voc) of 0.731 V,

short-circuit current density (Jsc) of 13.79 mA cm-2, and fill factor (FF) of 69.46%.

The effects of the additive on photovoltaic performances were illustrated with

atomic force microscopy and transmission electron microscope measurements. Our

results indicate that the improved efficiency is due to the optimized PTB7/PC71BM

interpenetrating network and the enhanced absorption of the active layer using the

BN as solvent additive.
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Introduction

Nowadays, polymer solar cells (PSCs) have been widely studied by promising

research groups due to their effective advantages such as light weight, low cost, high

flexibility and simple fabrication processes [1–9]. Thanks to the development of

new low bandgap donor polymers and better control of the nanoscale morphology of

the interpenetrating electron donor–acceptor networks, great progress has been

made in this field, and the power conversion efficiencies (PCEs) of solution-

processed PSCs have reached 10–11% [10–13]. Various processing techniques have

been developed to optimize the morphology of the bulk heterojunction (BHJ)

material and to improve the PCE, including thermal annealing [14, 15], solvent

annealing [16, 17], solvent vapor [18–20] and spontaneous interdiffusion of bilayer

heterojunction [21, 22]. In addition, the use of additives has been recently

demonstrated as an easy and efficient approach to modify and control the

morphology of the active layer [23–25]. This technique is particularly interesting as

it is compatible with extensive polymer systems and does not require extra

processing steps. The addition of a small volume percent of solvent additive is able

to significantly improve the PSCs performances in several polymeric systems by

altering the morphological length scales of the donor and acceptor phases. A

selective solubility to fullerene and a higher boiling point than the host solvent have

been identified as two criteria for effective processing additive. The solvent

additives effectively dissolve the [6]-phenyl-C61-butyric acid methyl ester (PCBM)

aggregate and promote the formation of smaller acceptor domains within the active

layer [26–30]. High-boiling-point solvent additives, which employed during the

solution processing of active-layer components, impact the efficiency of BHJ

organic solar cells by influencing the morphological features of the multicomponent

thin film [31–41]. The work carried out by Liang et al. showed that poly{4,8-bis[(2-

ethylhexyl)oxy]benzo[1,2-b:4,5-b0]-dithiophene-2,6-diyl-alt-3-fluoro-2-[(2 ethyl-

hexyl)carbonyl] thieno[3,4-b]thiophene-4,6-diy (PTB7): [6]-phenyl-C71-butyric

acid methyl ester (PC71BM) (1:1.5) films prepared from dichlorobenzene (DCB)

and 1,8-diiodoctane (DIO) (97%:3% in volume) increased the PCE from 6.22 to

7.18% comparison with the devices without DIO [42]. Guo et al. reported a PCE

increment from 4.12 to 7.40% when 1-chloronaphthalene (CN) was used as the

solvent additive based on poly(3-hexylthiophene) (P3HT): indene-C70 bisadduct

(IC70BA) (1:1.5) films [43]. They observed the changes in the film morphology

when additives were added in solvent. In this paper, a high boiling point solvent

additive of 2-Bromonaphthalene (BN) was used to optimize the BHJ morphology

and improved the device performances. As solvent additive, we used BN, which has

a higher boiling-point (281 �C) than that of chlorobenzene (CB) (131.7 �C) [44].
The mixed CB/BN solvent may have a suitable volatilization speed for further PTB7

self-organization during solution-to-film transition stage. We have comprehensively

studied the effects of various contents solvent additives BN on the BHJ PSCs based

on PTB7:PC71BM. Upon adding 5 vol% BN to the BHJ active layer, a PCE as high

as 7.01% with a short-circuit current density (Jsc) of 13.79 mA cm-2, fill factor (FF)

of 69.46% and open-circuit voltage (Voc) of 0.731 V is achieved. The techniques of
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atomic force microscopy (AFM) and transmission electron microscope (TEM) have

been applied to study the influence of BN on the morphology of the PTB7:PC71BM

blend. The results indicate that the optimum phase separation in BHJ film balances

the charge transport between electron and hole and reduces bimolecular recombi-

nation, leading to an increase in PCE of the devices.

Experimental

All devices were fabricated and characterized in air, without protecting environ-

ment. The PSCs were fabricated with inverted structure of ITO/ZnO/active layer/

WO3/Ag, as shown in Fig. 1a. The chemical structure of PTB7, PC71BM and

solvent additive BN is shown in Fig. 1b. The patterned indium tin oxide (ITO) glass

substrate was cleaned in detergent, water, acetone, and isopropyl alcohol under

ultrasonication for 20 min. After ultraviolet/ozone treatment for 20 min, a thin layer

(*50 nm) of ZnO ETL was prepared through spin coating at 2000 rpm from a ZnO

precursor solution [45]. Then the ZnO substrate was annealed at 200 �C for 1 h in

air. The PTB7 and PC71BM (1:1.5 w/w) were co-dissolved in the mixed solvent of

CB and BN (the content was varied from 0 to 7 vol%). The polymer concentration

was 10 mg ml-1 and the solution was stirred at 60 �C for 12 h under an atmosphere

environment. Then the active layer (*100 nm) was spin-coated on the ZnO layer

using the as-prepared solutions at 1500 rpm for 30 s in air. Finally, a 7-nm thick

WO3 layer and a 100-nm thick Ag layer were subsequently evaporated through a

shadow mask (active area 6 mm2) under the pressure of 7.0 9 10-4 Pa.

The current density–voltage (J–V) characteristics of the devices were measured

under 1 sun (AM 1.5G, 100 mW cm-2) simulator radiation. The surface

morphologies were observed by AFM (Seiko SPA-400 SPM UNIT). TEM images

were obtained using a Tecnai G2 F20, the active layer on a PEDOT:PSS substrate

was removed by dipping in DI water and then a holey carbon-coated copper grid

Fig. 1 a Architecture of inverted device: glass substrate/ITO/ZnO/PTB7:PC71BM/WO3/Ag. b Chemical
structures of PTB7, PC71BM and 2-Bromonaphthalene (BN)
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was used to hold the film, which was dried in an oven at 50 �C. The absorption

spectra of active layers were measured by spectrophotometer (Cary 5000 UV–VIS).

Results and discussion

The J–V characteristics of the PSCs prepared from adding various BN concentra-

tions (0, 1, 3, 5, and 7 vol%) in CB solvent of BHJ solution are shown in Fig. 2a and

the parameters of the devices are shown in Table 1. Without using BN, the Voc is

0.752 V, but decreased as BN concentration increased. Voc of PSCs decreased down

to 0.730 V when 7 vol% BN is used as the processing additive [46]. However, in

contrast to Voc, the FF increased from 50.77 to 69.46% and then decreased to

66.69%. The Jsc of the devices increased from 10.46 mA cm-2 (0 vol% BN) to

13.79 mA cm-2 (5 vol% BN), but decreased to 12.57 mA cm-2 when 7 vol% BN

concentration is used. Table 1 shows the series resistances (RS) and shunt

resistances (RSh) of the PSCs controlled the amount of BN. The RS decreased

from 16.3 X cm2 (0 vol% BN) to 3.5 X cm2 (5 vol%) and 7 vol% BN concentration

(4.0 X cm2). On the other hand, the RSh of the PSCs processed with BN increased

from 0 vol% BN concentration (385 X cm2) to 3 vol% BN concentration

(2633 X cm2) and 7 vol% BN concentration (749 X cm2). As the amount of BN

added to the BHJ film increased, the RS of PSCs decreased, and the RSh of PSCs

increased and became saturated. As a result, therefore, the PCE of the device

without using BN is only 3.99%, and increased to 4.55% (with BN 1 vol%), and

increased to 6.22% (with BN 3 vol%) and 7.01% (with BN 5 vol%), but decreased

to 6.18% when 7 vol% BN was used. The variation of PCE is bound up with the Voc,

Jsc, and FF of devices, as seen in Fig. 3. The value of Jsc has been cross-checked

with the integral of external quantum efficiency (EQE) spectrum and the results are

within 5% error shown in Fig. 2b. In Fig. 2b, the EQE shows similar variation to Jsc
of the PSCs with various BN concentrations. As the BN contents in the solvent were

increased, the EQE of PSCs increased, and decreased to 7 vol% contents in solvent

after reaching maximum in the BN 5 vol% condition. To analyze the optical

Fig. 2 Device performances of PTB7:PC71BM with various BN concentrations (0, 1, 3, 5, and 7 vol%):
a J–V characteristics of the PSCs under 1 sun illumination, b EQE of the PSCs
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performance of active layer, the absorption spectra of PTB7:PC71BM blend films

with various BN concentrations (0, 1, 3, 5, and 7 vol%) measured are shown in

Fig. 4. The absorption of the films with BN additive was significantly increased

compared with that of films without BN additive, as shown in Fig. 4. Both EQE and

absorption spectra of all these devices show a similar broad response covering a

spectral range from 300 to 800 nm. With BN 5 vol% additive, the EQE and

absorption spectra are lifted up [42].

To characterize the morphology of the PTB7:PC71BM composite BHJ films with

various BN contents in the solvent, we used AFM with tapping mode. For an

accurate comparison with the device characteristic, all BHJ films were prepared

under the same conditions as the PSC device preparation. Figure 5 shows the AFM

Table 1 The parameters of the BHJ solar cells prepared with various concentrations of BN additive

BN (vol%) Jsc (mA cm-2) Voc (V) FF (%) PCE (%) RS (X cm2) RSh (X cm2)

0 10.46 0.752 50.77 3.99 16.3 385

1 11.03 0.750 54.98 4.55 11.2 516

3 13.08 0.733 64.78 6.22 4.0 1077

5 13.79 0.731 69.46 7.01 3.5 2633

7 12.57 0.730 66.69 6.18 4.1 749

Fig. 3 a Voc, b Jsc, c FF and d PCE of devices with different concentrations of BN
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images of the BHJ films with various BN concentrations (0, 5 and 7 vol%) in the

solvent. The root-mean-square (RMS) of the film without BN additives (Fig. 5a) is

3.9 nm, while that of the films with using additives of BN 5 and 7 vol% is 3.0 and

3.2 nm, respectively (Fig. 5b, c). Obviously, the surface roughness of the films

becomes much smoother using the additives, and the surface of the film with BN 5

vol% additive shows the lower roughness. This indicates that the CB/BN solvent

could adjust the miscibility between PTB7 and PC71BM leading to the more

homogeneous films [11, 47].

It has been approved that AFM images alone cannot provide unambiguous

information regarding the structural properties in biphasic materials unless

additional data are obtained by other techniques. Thus, TEM was performed to

further investigate the effect of the additives on the interpenetrating networks of the

Fig. 4 Absorption spectra of
PTB7:PC71BM with various BN
concentrations (0, 1, 3, 5, and 7
vol%)

Fig. 5 AFM images of the PTB7:PC71BM blend film with various BN concentrations a 0 vol%, b 5
vol%, and c 7 vol%
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active layer. Figure 6 shows the TEM micrographs of approximately 100-nm thick

active layer films under non-solvent additive and with BN solvent additives

conditions. The micrograph of Fig. 6a shows large dimension clusters. These large

dimensions are much greater than typical organic exciton diffusion lengths of

*10 nm, no doubt blocking the diffusion of exciton. When 5 vol% BN was added,

as shown in Fig. 6b, we could observe the homogeneous distribution between PTB7

and PC71BM. In this condition, the large aggregated PC71BM could be removed

fully and the PC71BM could integrate into the PTB7 aggregates. Due to the large

difference in vapor pressure, the final film morphology was essentially determined

by the slow evaporation of BN. Its low vapor pressure, and therefore, reduced

evaporation, retards the solidification of PC71BM [48]. On the other hand, the

uniform interpenetrating networks of PTB7:PC71BM is beneficial to the exciton

diffusion. The interpenetrating networks with phase-separated domains in the active

layer apparently provide not only interfaces for charge separation of photo-

generated excitons but also percolation pathways for charge carrier transport to the

respective electrodes, which can critically affect the performance of devices

[49, 50]. However, when the BN was added to the active layer in a more than

optimized condition (7 vol%), we could observe that the BHJ film start to coarsened

again. Our results indicate that with large domains come a low interfacial area and

correspondingly small Jsc. In other words, the tuning ability of BN and thus the

morphology of the resulting film depend on the BN percentage. With an optimal BN

content, a significantly increased of PCE may be realized giving rise to an

interpenetrating network of polymer and fullerene.

Conclusions

In summary, we have investigated the morphology and device performance relation

of BHJ solar cells based on the donor of PTB7 and the acceptor of PC71BM. By

adding a suitable of BN additive (5 vol%) to the host solvent CB, the PCE was

improved from 3.99 to 7.01%. The enhancement in PCE is due to the optimized

PTB7:PC71BM interpenetrating network and the stronger absorption of the active

layer caused by the solvent additive.
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