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Abstract As material chemists and engineers aim to improve the properties of

macromolecules for advanced biomedical applications, considerable attention has

been paid to new classes of biomimetic polymers such as polypeptoids. Peptoid

polymers can be synthesized from a wide variety of chemically diverse building

blocks to create a broad family of functionally diverse materials. These materials

have been shown to have a wide variety of biological activities and promising

attributes. The ability to mimic nature’s self-organization has become important in

the area of biomaterials science. In this short colloquy, we provide an overview of

the chemistry of peptoid/peptoid polymers including several applications. The

discovery of few remarkable peptoids/polypeptoids of biological interest outlined

over the past few decades will be discussed.
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Introduction

Today, to improve naturally occurring biomaterials, material chemists have been

developing efficient methods to study biomimetic polymers [1, 2]. Advance

materials must be developed to achieve the potential applications in the field of

biomaterials science [3, 4]. One class of biomimetic polymer of particular interest is

called peptoids, or N-substituted glycines [5] which have found many biomedical
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applications. Peptoids can be synthesized very efficiently by solid-phase synthesis,

and combinatorial libraries were readily produced and screened to afford a novel set

of active scaffolds in the early 1990s [6–8] as a modular approach to the discovery

of novel drugs [9]. A desirable feature of these biomimetic heteropolymers is that

they can be synthesized with defined monomer sequences that resist proteolysis

[10–13]. Peptoids have also been shown to have antibacterial properties and clinical

promise relative to those of natural peptides [14–17].

Peptoids are polymers of N-substituted glycines and are structural isomers of

natural peptides. The side chains are attached to the a-carbon instead of the

backbone of amide nitrogen (Fig. 1). They are prepared by the solid-phase

submonomer method from primary amines, and their synthesis has been fully

automated using simple adaptation of commercial peptide synthesizers [18, 19].

Recent reviews on peptoids highlight the scope and applications of highly

customizable peptidomimetic macromolecules with many cited references [20–22].

The pioneering works of Bartlett and co-workers in 1992 reported the development

of a combinatorial array of N-substituted glycine oligomers by peptidomimetic

protocols. So, one can easily notice the booming progress in the development of

monomeric scaffolds and this contributed to the exponential development of

protected achiral N-substituted glycine monomers.

Background

Peptoid synthesis

The regioisomerization of peptides essentially affords a new class of peptidomimet-

ics, called peptoids [6]. Peptoids are achiral, since the side chains are appended to

the amide nitrogen rather than a-carbon. Peptoids of the defined sequence are

prepared by the solid-phase ‘‘sub-monomer’’ method, in which bromoacetic acid

and N,N0-diisopropylcarbodiimide (DIC) were employed to accomplish the

acylation step, followed by nucleophilic displacement of bromine with a primary

Fig. 1 Chemical structure
comparison of peptide and
peptoid
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amine. Consequently, quite diverse polypeptoid sequences can be developed by

means of typical primary amines in successful iteration of the displacement reaction

step. Rink amide resins are often employed, resulting in the release of peptoid as a

C-terminal amide. The final cleavage step is accomplished using trifluoroacetic acid

(TFA)-mediated special cocktails [23].

Synthetic strategies for peptoid construction

The technical interest in the developed solid-phase submonomer method by

Zuckermann et al. has been significant with automated combinatorial synthetic

procedure [7], in which chemically diverse peptoid libraries can be constructed

effectively by iterative bromoacetylation and amination reactions. The search for

alternative strategies is beneficial to reduce the reaction time and competent yields.

This has led to the development of microwave-assisted solid-phase synthesis of

peptoids [24–26]. Current synthetic approaches allow for the facile insertion of

pendant groups exhibiting various chemical moieties. By the chemical functionality

of the side chain moieties, it is quite possible to design peptoid heteropolymers,

possessing structural diversity with unique chemical features. Constrained cyclic

peptoids are also conformationally designed by efficient submonomer methodology

and followed by cyclization in the solution phase [27]. Classic synthesis of cyclic

peptoids relies on the simple strategic adaptation of combinatorial chemistry by

high-throughput screening of linear peptoids [28]. Alternatively, peptoids are

synthesized from solution-phase technique with limited sequential control of \10

residues [29] and, conversely, N-carboxyanhydride (NCA) is a more convenient

precursor for peptoids. In this case, high degrees of polymerization can be achieved

by ring opening polymerization with low sequence precision control [30–33].

Combinatorial peptoid array has been developed by the photolithographic technique

using photolabile synthons for protein binding agents and this anticipated the

protein ligand discovery [34]. Surprisingly, biosynthetic protocol involving the

synthesis of peptoid–peptide hybrids with linear and cyclic scaffolds was

programmed by mRNA and practically reported recently [35].

Customized biomedical applications of peptoids

Bioactive peptoids were discovered by rational design using molecular modeling

and developed by either individually or in parallel focused libraries. Peptoids with

defined structures seem to possess superior activities and new applications have

emerged. The synthesis of hybrid cyclic peptoids has been emphasized in terms of

molecular recognition, drug delivery and catalysis. However, solid-state assembly

of free and metal coordination provide competing inter-annular hydrogen bond

interactions, leading either to a T-shape or to a tubular arrangement of the peptoid

macrocycles, and Hirshfeld surfaces and fingerprint plots were generated [36]. The

choice of side chain functionalities plays a vital role in the construction of attractive

supramolecular architectures. Also, it decides the diverse solid-state properties and

conformational flexibility of cyclic a-peptoids [37]. The inter- and intramolecular
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cyclization of N-(2-aminoethyl)glycine monomers, comprising N-alkyl and N-acyl

substituents, affords stable 6- and 12-membered cyclic products. These libraries can

be effectively used as potential candidates in enhancing the autophagic degradation

of cargo in a live cell model [28, 38]. N-substituted-b-aminopropionic acid

oligomers or b-peptoids were initially reported by Hamper et al. [39] by solid-phase

methodology. Further, this was preceded by Roy et al. [40] to achieve b-peptoid

macrocycles with multimeric ligation of bioactive ligands. Their effective

functionalization was achieved by click chemistry synthetic route. Recent advances

have begun to address the issue of cyclization methodology to attain macrocyclic

peptoids. This has led to the suggestion that head-to-tail macrocyclization and ring

closing metathesis approaches were effective for assembling the cyclic peptoids

[41, 42]. Based on their relationship with side chain chemistries, Huang et al.

suggested that oligomeric peptoids bearing a cationic nature with hydrophobic side

chains showed potent antimicrobial activities against Gram-negative Escherichia

coli (E. coli), Gram-positive Staphylococcus aureus (S. aureus) and Bacillus subtilis

(B. subtilis). Peptoid sequences after head-to-tail macrocyclization mode interest-

ingly showed enhanced antibacterial activity with increasing hydrophobic domains.

A minimum inhibitory concentration (MIC) value of cyclic decapeptide

gramicidin S (CGS) for B. subtilis is 2 and 15.6 lg mL-1 for E. coli and S. aureus

(see Fig. 2 for chemical structures and Table 1 for MIC values). Moderate activity

with MIC \100 lgmL-1 was depicted by L3, L8 and C3. Effective activity was

perceived by C8, cyclic peptoid decamer, with MIC values of 0.5 lgmL-1 for B.

subtilis, and 7.8 lg mL-1 for E. coli and S. aureus, whereas the linear version of

gramicidin S (LGS) showed 7.8 lg mL-1 for B. subtilis and 125 lg mL-1 E. coli

and S. aureus [43]. The MIC values are remarkably better than oxazoline-based

oligomers (pseudo peptides) and quaternary ammonium/phosphonium polymers

[44, 45]. The inherent structural tendency, cellular permeability [46] and multiple

binding sites of cyclic peptoids are extremely useful and can be employed for the

Fig. 2 Structures of selected linear and cyclic peptides and peptoid sequences [43]
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metal–organic framework (MOF) structures to develop biomimetic materials and

three-dimensional solid-state supramolecular assemblies.

Peptoids with more hydrophilicity display the best cell permeability. In addition,

peptoids with hydrophobic moieties, usually aromatics, cannot differentiate between

the binding domains of different proteins [47]. Kodadek and co-workers compre-

hensively performed the peptoid cellular permeability criterion. By employing the

split-pool method, a library of more than 350 peptoids and a-peptide tetramers was

prepared and analyzed to generate structure–property relationships and their relative

cell permeability. From the observations, the average cell permeability of the

peptoids was twice that of the a-peptides [86]. As shown by the extensive research

on the construction of a variety of peptoids, peptoid nucleic acid precursors bearing

adenine, guanine and thymine units to nitrogen by flexible ethylene bridge was

achieved by the Mitsunobu reaction. The deprotection of these amino acids affords

protected dipeptoids [73]. In the recent past, Park and Kwon explored the

pharmacokinetic properties of new combinatorial series of linear and cyclic peptoid

analogs. Also, they showed the biological activities by blocking the interaction

between apolipoprotein E and amyloid-b and proposed these therapeutic peptoid

series for the treatment of Alzheimer’s disease [48]. Incorporation of a zinc binding

region into the peptoid two-helix bundle was implemented by Zuckermann and

colleagues in the early 2008 [49]. Stabilizing characteristics of native protein

structures by zinc showed catalytic enzyme cofactor activities, which influenced the

choice of zinc-binding motifs. These developed peptoids would only be capable of

binding with the zinc, when suitably folded into the helix bundle structure. The

thiols and imidazole groups were incorporated into the helical segments of the

aforementioned peptoid, expecting the zinc to stabilize the folded state of the two-

helix bundles by holding the helical segments in close proximity. The authors

analyzed the ability of peptoids to bind with the zinc and the structure alterations in

the presence of zinc [50].

Peptoids with heterocyclic pendants show their possible applications in catalysis

and materials science. Primary amines derived from imidazole, pyridine and other

heterocyclic synthons in the preparation of novel peptoids were gracefully

illustrated by the SPOT technique. The SPOT concept was performed on the

cellulose membrane strips [51–53]. These heteroaromatic groups that are incorpo-

rated act as multidentate ligands in the peptoid chain. These ligands enable their use

Table 1 Antimicrobial

activities of linear and cyclic

peptoids [43]

a Prefixes Ac and C refer to

N-acetylated linear and cyclic

sequences, respectively
b Minimum inhibitory

concentrations against B.

subtilis, E. coli and S. aureus

Code Peptoid sequencea MIC (lg mL-1)b

B. subtilis E. coli S. aureus

L3 Ac(NapNdp)3 1 15.6 15.6

L8 Ac(NapNpm)5 15.6 31.3 62.5

LGS Ac(VOLDFP)2 7.8 125 125

C3 C(NapNdp)3 1 15.6 7.8

C8 C(NapNpm)5 0.5 7.8 7.8

CGS C(VOLDFP)2 2 15.6 15.6
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in metal coordination and are popularly known as metallopeptoids [54]. Maria and

Galia [55] suggested that the insertion of the chiral hydrophilic ‘‘(S)-(1)-1-methoxy-

2-propylamine’’ group within the peptoid sequences offers water solubility. These

water-soluble functional peptoids [56] emphasize their applications in sensors and

catalysis. Inevitably, motivation of the significant antiproliferative active peptoids

without heteroaromatic side groups showed active cytotoxic efficacy against human

neoplastic cell lines [57]. Recently, a compelling approach has been put forward for

the stability of nanoparticles under biological assembly conditions using small

peptoids [58]. These small peptoids were projected on the development of

fluorescent pH sensors. [59].

In contrast to the amino acid derivatives and cyclic dipeptides, ‘‘N-alkyl urea

peptoids’’, as they share some structural similarities with ‘‘N-acyl glycine

oligomers’’, demonstrated the synthesis of soft materials and served as ideal

candidates for structure/property relationship studies with peptoids. Organogelators

with diverse functional N-alkyl groups afford fiber-like aggregates and can be

attained by incorporating ureidopyrimidinone (UPy) group and N-alkyl urea peptoid

oligomers into the polymeric gels [60]. The significant work of the Wu and

Mangunuru research teams pointed to the importance of peptoid hydrogels. They

revealed various protected glucosamine moieties along with aryl functional groups

in the peptoid side chains. Also, the self-assembling properties of these new classes

of tripeptoids and the in vivo stability of the peptoid–peptide molecular hydrogel

conjugates are highlighted [61, 62]. These gelators are extensively studied because

of their consolidation properties in tissue engineering and drug delivery applica-

tions. The design of specific protein binding to the terminal peptoid sequence

proved the formation of polyelectrolyte amphiphiles. These amphiphiles form self-

assembly systems and act as nano-sized carriers for lipophilic drug delivery

[63, 64].

Nacre mimetic materials are considerably more complicated to synthesize than

the synthetics [65]. They form the bio analogs within the fixed dimensions to afford

hybrid organic/inorganic composite materials in the order of nanoscale range

[66, 67]. The incorporation of calcium carbonate (CaCO3) to both the soluble

synthetic polymer films and insoluble hybrid polymeric matrices afford thin solid

films. These mineralized films have been demonstrated to be a model for explicative

studies on the concept of biomineralization [68–70]. Peptoid nanosheets are highly

stable nanoarchitectures with bilayered hybrid structures of thickness &3 nm and

lateral dimensions varying between few hundreds of micrometers [64, 71]. The use

of peptoid-based self-assembling bioinspired nanomaterials have proven to be a

reliable approach in the creation of functional and biomimetic materials. Directed

assembly process has the potential to develop free-floating two-dimensional

nanostructured material sheets [13]. These sheets are formed relatively at lower

activation energy. The compression of loop-forming peptoid domains is confined in

phases such as air–water or oil–water interphases to assemble into nanosheets

(Fig. 3). These fundamental findings gathered interest in designing antibody

mimetic peptoid nanosheets [19]. These nanosheets are an emerging class of two-

dimensional biomimetic materials with customizable properties.

3460 Polym. Bull. (2017) 74:3455–3466

123



More recently, peptoid nanosheets are mineralized with CaCO3 by plunging the

nanosheets in a prescribed concentration of calcium chloride (CaCl2) solution and

slowly diffusing carbon dioxide (CO2) into the solution to afford the mineralized

nanosheets [71]. It is absolutely vital to explore these fabricated biomimetic

materials with specific dimensions for tissue engineering applications [72]. The

hydrophilic and zwitterionic surface morphology of these two-dimensional struc-

tures make them free-floating suspensions in solution. Due to the exceptional

stability of peptoid nanosheets and their ease of surface functionalization, gold-

ornamented peptide–peptoid hybrid analogs can be designed [13, 19]. The resulting

applications range from clinical to materialistic interests by embedding bioactive

nanostructures on these flexible well-defined peptoid nanosheets.

Summary and outlook

Polypeptoids are exemplary non-natural polymers projected to mimic the functions

of natural peptides or proteins. These pseudo peptides are tuned structurally to

mimic the significant cooperative properties by altering the side chain chemistries

and building subunits. Subsequent modification of the alkyne side chain of poly(N-

propargyl glycine) can readily serve the modular platform for the production of

pseudo peptide ionic liquids and graft copolymers [74, 75]. These bioinspired

materials demonstrate a capability for folding, self-assembly and specific

biorecognition. In the course of development to get the protein-like properties with

narrow polymer molecular weight distributions, helical polymers have been

designed by introducing chirality into monomer side chains [76]. Side chain groups

with aromatic and heterocyclic moieties [77] are accountable for change in optical

activity to target ribonucleic acid (RNA) [78, 79].

Fig. 3 Imaging of 2D crystalline sheets assembled from periodic amphiphilic peptoid polymers. In
typical conditions, 0.1 mM of (Nae–Npe)18 and (Nce–Npe)18 were mixed in Tris–HCl buffer (pH 9.0,
100 mM). a SEM images of sheets on Si substrate. b Height-mode AFM image of a sheet (Z range
20 nm) [64]
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Designing the biomimetic polymers for controlled biomineralization is a very

challenging task. One way to ease this claim is to develop a peptoid library with the

preferred functional side chain groups [72, 80]. Effective pharmacokinetic activity

and biological activities with increased resistance to enzymatic degradation is often

shown by cyclic peptoids. They possess constrained flexibility compared with the

linear ones [48]. Oligopeptoids predominantly composed of ‘‘(S)-N-(1-pheny-

lethyl)glycine’’ residues are generally water insoluble. The flexible hydrophilic

carboxy phenylethyl side chains are anticipated to provide both water solubility and

structure-inducing elements to form stable helical structures resembling polyproline

I type of helix [81, 82]. Peptide–peptoid hybrids (peptomers) with preferred active

sites and functional groups specifically activate the melanocortin 4-receptor with

improved enzymatic stability and intestinal permeability [83]. Pharmaceutically

relevant heterocyclic side chains such as pyridine, pyrazine, imidazole and

quinolone pendant moieties can be incorporated efficiently by the SPPS method-

ology, though the heterocyclic nitrogen containing side chain is present within the

peptoid [84].

Today, a variety of peptidomimetic oligomeric scaffolds are being explored to

show significant applications ranging from medicinal chemistry to materials

science. Researchers are incorporating chemically diverse pendant groups to the

peptoid sequence to study the formation of stable self-assemblies and biomimetic

folded structures. Sequence specificity has been illustrated by the insertion of

clinically bioactive complex heterocycles with variable polysaccharide mimic side

chains to afford peptoid combinatorial library for biomedically relevant studies

[83, 84]. On the contrary, the applications of peptoid nanoarchitectures have

become more prevalent. Peptoid nanosheets and nanotubes have gained great

attention recently [13, 19, 71, 87], because it has been realized that the efficacy of

these designs provides vast contributions to the biomaterials and biomedical science

[88]. Owing to their excellent biocompatibility and biofunctionality, peptoid

polymers with specific sequential order have substituted the thought of designing

biocompatible implants from the idea of biomimetics [15, 88]. As peptoids display

potent antibacterial and antifouling properties [89], these are developed according to

clinical needs [16]. To gain insight into the antibiotic properties of the peptoid

synthetics, Brauer et al. proposed a design strategy, in which 1,3-diyne-linked

peptoids were developed by reliable sequential Ugi-4CR/Glaser coupling approach

[90–93].

Polypeptoids are a highly demanding class of biorelevant polymers and have

great potential toward biomedical applications [85, 86, 88, 94]. In relation to their

peptide predecessors, they promise to be biocompatible and degradable, but yet

enzymatically resistant. Fundamental investigations illustrated that polypeptoids

undergo phase transformations in response to temperature and have thermo-

processability potential [33, 92]. These features would allow the designing of

polymer–drug conjugates and composite biomaterials. Furthermore, the functional

allyl or propargyl side-chain polypeptoids [75] allow cross-linking and surface

modifications, facilitating the design of mechanically strong materials with

biologically interacting molecules. In all these pursuits, there are many challenges

that need to be overcome and further research is required prior to the targeted design
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of biomaterials. The fundamental work described herein was driven by the

preceding practical prospective of these polymers. Undoubtedly, these develop-

ments will help both synthetic and material chemists a great deal in presenting

unexplored possible biobeneficial significance.
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