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Abstract Wound healing is a dynamic, interactive process involving soluble

mediators, blood cells, and ECM (Extra Cellular Matrix). Significant changes in

ECM degradation may lead to delayed wound healing. Matrix metalloproteinase

(MMPs) are a family of endopeptidases that function in the remodeling of ECM

proteins, wherein over-expression of these MMPs is capable of degrading ECM and

biologically active proteins at the wound sites. Regulations of these MMPs at the

wound sites hasten the wound healing. The aim of this study is to release the product

which inhibits MMPs and as well as to reduce the bacterial load on the wound site in

a controlled manner. Siderophore, organic ion chelator was isolated from Pseu-

domonas aeruginosa strain S1 and purified through various chromatographic

techniques, used as for dual purpose in this study. The design and development of

wound dressing through a carrier system, such as microspheres, are indeed a novel

approach to promote healing. The design in this study includes preparation of

microspheres using gelatin and siderophore (S-GM). The morphological charac-

teristics of the prepared microspheres were found to be rigid, highly porous, and

their mean diameter of five siderophore-loaded microspheres formulations was

between 7.0 ± 0.52 and 25.3 ± 0. 31 lm. The drug release of the prepared samples

was fast, and entrapment efficiency was about 93% at 24 h in Batch 3. Gelatin-

modified microspheres were found to be non-toxic and a good biocompatible pro-

duct which was assessed using NIH 3T3 fibroblast cell lines. The overall study
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suggests that S-GM microspheres could be used as a potent tool for MMP inhibitor

for wound healing applications.

Keywords Siderophore � Microsphere � Wound healing � Biocompatibility

Introduction

Wound dressing is a sterile pad applied to a wound to promote healing and also to

prevent further harm. A wound dressing is designed to be in direct contact with the

wound to accelerate the healing faster. An ideal wound dressing is one, which

induces host cells to regenerate, prevent infection regulate MMPs, and providing an

optimal environment for healing to take place quickly [1]. Wound dressing may be

broadly classified into the conventional dressings and modern dressings. The

conventional dressings form a natural barrier to the migrating epidermal cells,

forcing them to move beneath the drying dead tissues, thus prolonging the healing

time and loss of healthy tissue. Use of these types of dressings can result in

dehydration followed by de-vitalization and necrosis. The coagulum which forms

after these dressing eventually dries up to form a difficult scar, which is hard to

remove and cause trauma when removed. Moreover, an occlusive dressing may

possess a clinical benefit in the treatment of wounds, but also provide the favourable

environment for microbes to proliferate at the wound sites [2, 3].

To accelerate wound healing, MMPs at the wound sites are targeted. MMPs are a

family of enzymes that function in the remodeling of the ECM proteins and also

play a crucial role in healing of chronic wounds [4]. They are essential for various

normal physiological processes and also an ECM pathological process. Over-

expression of these MMPs is capable of degrading and biologically active proteins

at the wound sites [5]. Hence, it is necessary to down-regulate MMPs at the wound

sites. The ultimate goal is to release a product which inhibits MMPs as well as

reduce the bacterial load on the wound site in a controlled manner, without altering

or modifying the pharmaceutical agent for a sustained period. Controlled release of

drugs is handled today due to its several potential advantages [6]. First, drug release

can be modified to the needs of specific applications. Second, controlled release

system provides protection of drugs, especially proteins and finally, controlled

release systems can increase patient compliance. There are various approaches in

delivering therapeutic substances to the target site in a sustained, controlled release

fashion [7]. One such approach is using microspheres as a carrier of drugs.

Microspheres are basically defined as a free flowing powder consisting of proteins

or synthetic polymers having a particle size ranging from 1 to 1000 lm [8].

Basically, natural polymers were concentrated in preparation of microspheres and

one such approach is the use of gelatin. Gelatin is a natural polymer obtained by

alkaline or acidic pre-treatment and thermal denaturation of collagen, the most

widespread protein in the body. Gelatin does not express antigenicity in

physiological conditions, and it is completely reabsorbable in vivo conditions.

The physicochemical properties of the gelatin were suitably modulated, and it is

much cheaper and easier to obtain in concentrate solutions [9]. It is biodegradable,
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biocompatible, and non-immunogenic, which makes it suitable for biomedical

applications, such as sealant for a vascular prosthesis [10], and in drug delivery as

hard and soft capsules, hydrogels [11] or microspheres [12], and in a wide variety of

wound dressings [13]. These features of gelatin provide enormous scope to utilize it

as an effective carrier material, and hence, preparation microspheres were focused.

Microspheres received much attention for prolonged release and also targeting the

wound sites in an effective manner. An emulsification of gelatin technique provides

a safe method for mass production of microspheres [14]. Thus, it has added a new

dimension to the design of biomaterial-based delivery system.

Siderophore isolated from the microbes is encapsulated in a polymer matrix to

form microspheres. Siderophore is secondary metabolites which are secreted by

microbes under iron-deprived conditions for their viability [15]. These are iron

chelators that play a dual role by reducing the bacterial load and also inhibit MMPs

by binding to the active sites of Zn moiety at the wound sites which were proved in

our previous work [16]. In the present investigation, this siderophore was

encapsulated in a gelatin matrix to form microspheres and evaluated for a

wound-dressing material through physiochemical parameters. Apart from its basic

biochemical properties, the microspheres were assessed for its biocompatibility

through its ability to support in vitro fibroblast and keratinocytes attachment and

growth.

Materials and methods

All glassware used in this study was soaked in 5% v/v of RBS concentrate-20 and

washed with deionized water and dried. Gelatin (Bovine source), dihydroxybenzoic

acids (DBHA) a model compound of siderophore type was used as a standard. 3-(4,

5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), Calcein AM,

Dulbecco’s modified Eagle’s medium (DMEM), fetal calf serum (FCS), and

supplementary antibiotics for tissue culture were purchased from Sigma Aldrich,

India. The NIH 3T3 fibroblast and Human keratinocyte (HaCaT) cell lines were

obtained from the National Centre for Cell Science (NCCS), Pune, India. The

isolated catechol-type siderophore from Pseudomonas aeruginosa S1 (Accession

No. KM881475) was used in this study [16].

Preparation of siderophore and DBHA-loaded gelatin microspheres (S-GM
and DBHA-GM)

Siderophore-loaded gelatin microspheres were prepared by water-in-oil emulsion

method by adding 200 mg siderophore in 10 mL of 2–8 wt% concentration of

gelatin solution that was added dropwise to 50 mL of liquid paraffin pre-treated to

60 �C. The mixture was emulsified using an overhead stirrer throughout the process

of microspheres preparation. In addition, the mixture 4 wt% Sodium Tetra Meta

Phosphate (STMP) was added to the emulsion and continuous stirring was done for

an hour to allow cross-linking. After cross-linking, the oil phase of the mixture

containing siderophore-loaded gelatin microspheres (S-GM) was slowly decanted
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and the spheres were added quickly to 100 mL acetone. The obtained microspheres

were washed twice with acetone to remove the last traces of oil. Various

formulations of siderophore-loaded gelatin microspheres were prepared using the

variables, as shown in Table 1. Simultaneously, DBHA-loaded gelatin microspheres

(DBHA-GM) were also prepared and evaluated [17, 18].

Physiochemical characterization

The ultra-structural features for prepared microspheres (S-GM) were analyzed by

VEGA3SBH TESCAN series scanning electron microscope (SEM) equipped with

an electron optical system consisting of 0.5–30 kV capacity electron gun and

detector. For surface imaging, the samples were fixed and coated with fine gold

[19]. Fourier transform infrared spectroscopy (FTIR) (Perkin Elmer, USA) spectral

measurements were carried out for the determination of their functional groups.

Siderophore (S), gelatin (G), siderophore-loaded gelatin microspheres (S-GM), and

DBHA-loaded gelatin microspheres (DBHA-GM) were taken and finely grounded

with KBr individually, the pellets were subjected to hydraulic pressure of 600

dynes/m2, and spectra were scanned between 4000 and 400 cm-1 [20, 21]. The

mean particle size was measured by photon correlation spectroscopy (PCS)

(Malvern Instruments 3000SH, UK). The sample was diluted with double distilled

water to an appropriate scattering intensity. The surface charge of S-GM was

determined by measurement of zeta potential [22, 23].

Swelling behavior

To determine the swelling index of both S-GM and DBHA-GM, a known amount of

the samples was added separately in PBS (pH 7.4) at room temperature. The change

in size of the particles at appropriate time intervals was determined. The swelling

ratio was measured by taking weight periodically and interpreted with dry samples

[24]. The swelling ratio was calculated by

Swelling ð%Þ ¼ w1 � w0

w0

� �
� 100 ð1Þ

where W0 and W1 are the initial and the final weights of the film, respectively.

Table 1 Various formulations of siderophore-loaded gelatin microspheres (S-GM)

Batch

Code

Siderophore

% (W/V)

Gelatin

% (W/V)

Cross-linker

% STMP

Agitation

speed (rpm)

B1 2 2 4 200

B2 2 4 4 400

B3 2 6 4 600

B4 2 8 4 800

B5 2 10 4 1000
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In vitro drug release studies and evaluation of the functionality of S-GM

The efficiency of drug release was evaluated by dissolving 5 mg of S-GM in PBS

and stirred gently for 48 h. At every 1 h, 1 mL of medium was aspirated and

simultaneously replaced with fresh medium. The aspirated medium was centrifuged

at 5000 rpm for 5 min, and the supernatant was recovered and assessed spectro-

scopically at 267 nm [25]. The percentage of drug entrapment was determined by

the following equation:

Drug entrapment ¼ Amount of drug loaded in microspheres

Initial amount ofdrug loaded
� 100: ð2Þ

The functional integrity of prepared gelatin microspheres was evaluated by

subjecting the aspirated supernatant to Arnow’s assay. The change of colour

indicates the presence of secondary metabolites siderophore [16].

In vitro enzymatic degradation

To determine the biological stability and degradation of products, a known weight

of S-GM in triplicates was taken and they were air dried at room temperature. For

the known sample, collagenase enzyme (100 units/mL) was added and incubated at

37 �C for 24 h at pH 7.4. The percentage of weight loss was calculated by simple

ratio, and the extent of biomaterial degradation was determined by weight loss of

the sample [26].

In vitro biocompatibility, cell adhesion, and proliferation studies

Research on novel product for effective wound healing would not be fulfilled

without the biocompatibility studies. The biocompatibility of siderophore was

already reported in our previous work [16], and siderophore-loaded gelatin

microspheres (S-GM) were evaluated separately in this study.

The cytotoxicity of microspheres (S-GM) was evaluated by performing MTT

assay [27] using NIH 3T3 and HaCaT cells that were seeded in 24 well plates

(5 9 104 cells/mL) containing DMEM with 10% FCS and allowed to attach and

maintained for 16 h. About 10 mg of microspheres S-GM was immersed in 1 mL of

absolute alcohol for 2 h for sterilization, and then, the alcohol is replaced with 1 mL

DMEM medium. After 24 h, 72 h, and 7th day, the culture medium was replaced

with a serum-free medium containing 10 lL of 3-(4, 5-dimethylthiazol-2-yl)-2,5-

diphenyl tetrazolium bromide (MTT) and incubated at 37 �C for 4 h in a humidified

atmosphere of 5% CO2. The medium was aspirated, and then, 500 lL/well of

dimethylsulfoxide (DMSO) was added to dissolve the formazan needles with slow

agitation for 10 min to yield a bluish purple solution. The absorbance of the

dissolved solution was measured at 570 nm using Universal Microplate Reader. The

proliferation of the cells was quantified for live cell assay at 12, 24, and 48 h. Then,

the cells are stained with Calcein AM solution (2 lM; 400 lL) and viewed at

Polym. Bull. (2017) 74:2349–2363 2353

123



fluorescence microscope (EVOS FLoid Cell Imaging Station, Thermo Fisher

Scientific, USA) [26, 27].

Statistical analysis

All quantitative data were expressed as a mean ± standard error. Statistical analysis

was performed using ANOVA (analysis of variance) and student’s test. The

observed differences were considered as statistically significant (p\ 0.05).

Results and discussion

In this present study, the prepared spherical microspheres were able to prolong the

release of siderophore by a typical emulsifying technique using gelatin as a carrier.

The results of various formulation variables were carried out to optimize the

formulation. Throughout the investigation, it was found that the prepared

microspheres would make it an ideal carrier for delivery of drugs.

Scanning electron microscopy and particle size of the S-GM

The microspheres were found to be spherical, and their mean diameters of all five

batches of S-GM microsphere formulation were between 7.0 ± 0.52 and 25.3 ± 0.

31 lm. It was observed that uniform spherical microspheres were obtained in Batch

3 (B3) with 6% w/v of gelatin with 600 rpm when compared to other batches. SEM

micrograph of siderophore-loaded gelatin microspheres (S-GM) from B3 showed

smooth and spherical shapes is shown in Table 2.

The siderophore microspheres were rigid, highly porous, and non-interactive

with organic solvents, such as acetone and isopropyl alcohol. The obtained

microspheres from B3 range from 10 to 100 lm, and these microspheres are

suitable for intramuscular administration, as reported in [28]. The surface view of

the gelatin microspheres impregnated with S and DBHA was depicted in Fig. 1c and

d. This provides an evidence for the smooth surface in S-GM than the DBHA-GM.

SEM image adds further evidence for its, high porosity, structural integrity of

microspheres. Both S-GM and DBHA-GM microspheres did not lose their

morphology and shape, which can be visualized from the magnification. However,

the DBHA-GM microspheres appeared to have some roughness over the surface of

Table 2 Physiochemical properties of siderophore-loaded gelatin microspheres (S-GM)

Batch code Mean particle size (lm) Entrapment efficiency Morphology

B1 7.0 ± 0.52 74.77 ± 0.53 Spherical and smooth

B2 8.65 ± 0.27 89.45 ± 0.41 Spherical and smooth

B3 12.4 ± 0.32 93.65 ± 0.31 Spherical and smooth

B4 16.7 ± 0.52 82.76 ± 0.12 Spherical and smooth

B5 25.3 ± 0.31 76.81 ± 0.75 Irregular
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the particle. Hence, these microspheres found to be more efficient in drug delivery

and wound healing application [29–31]. The hydrodynamic diameter of the S-GM

was measured in the presence of the liquid medium. From Fig. 2a, it was observed

that the size of the microsphere was slightly decreased in the particle size due to the

hydrophilic nature of the microspheres. However, the size of the microspheres can

be correlated from SEM micrograph [22]. The zeta potential of the S-GM was given

in Fig. 2b. The zeta potential was measured in positive charge 13.9 ± 2.89 mV due

to the ionic neutralization of the positive charge with the cross-linking agent STMP

and the siderophore. Moreover, this makes the microspheres more stable during the

sustained drug release behavior of the S-GM [22, 23].

Fig. 1 SEM micrograph of the prepared (a, b) siderophore-loaded gelatin microspheres (S-GM) and (c,
d) DBHA-loaded gelatin microspheres (DBHA-GM)
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Fourier transform infrared spectra

FTIR spectra were studied to confirm the chemical functional groups of prepared

microspheres, as shown in Fig. 3. FTIR measurements of both the products

displayed the characteristic bands of amide I peak (C=O stretch) at

1600–1640 cm-1, amide II peak (N–H bends and C–H stretch) at

1500–1550 cm-1, and amide III peak (C–N stretch) at *3000 cm-1 indicating

the presence of gelatin all prepared microspheres [32, 33]. IR spectra of catecholate

siderophore showed a peak at 3453 cm-1, indicating the presence of a primary

alcohol group. A strong peak at 1080 cm-1 shows the presence of aromatic groups

in the purified compound. The FTIR results supported the fact that the siderophore

was encapsulated in the gelatin microspheres.

Fig. 2 a Particle size distribution and b zeta potential of siderophore-loaded gelatin microspheres (S-GM
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Swelling behavior

The swelling ratio of the both S-GM and DBHA-GM was exhibited in Fig. 4. The

S-GM microspheres showed increasing swelling behavior than DBHA-GM

microspheres. However, the plot of the swelling ratio with respect to time showed

that microspheres were able to swell one fold than its original size in 1 h and

remained in equilibrium for 6 h. The spheres retained their morphology throughout

the study, without any disruptions. Moreover, S-GM exhibited about 40% swelling

than the DBHA-GM, and this was attributed to the high porosity of the spheres. The

prepared microspheres observed to attain equilibrium only after 28 h [19].

Fig. 3 FTIR spectra of the siderophore (S), dihydroxybenzoic acids (DBHA), siderophore-loaded gelatin
microspheres (S-GM) and DBHA-loaded gelatin microspheres (DBHA-GM)

Fig. 4 Swelling behavior of the prepared microspheres
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In vitro drug release studies and evaluation of the functionality of S-GM

The drug release experiments were carried out to obtain a definite dose of

therapeutic agent which is applied to the injured skin [34]. From Fig. 5, it was

observed that the release of siderophore from gelatin microspheres (S-GM) was

mild up to 3 h. Subsequently, the gelatin microspheres showed around 94 and 74%

Fig. 5 In vitro drug release behavior from the siderophore-loaded gelatin microspheres (S-GM) and
DBHA-loaded gelatin microspheres (DBHA-GM)

Fig. 6 Functional integrity of
siderophore-loaded gelatin
microspheres (S-GM)
a supernatant and b presence of
catecholate siderophore through
Arnow’s assay
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of drug release of siderophore and DBHA at the end of 48 h, respectively. The

therapeutic efficacy of a deliver system solely depends on the drug release

mechanism on the target site. Moreover, siderophore and DBHA-loaded micro-

spheres should sustain release behavior over a period of 48 h, which would be an

appropriate release to reduce the MMPs at the wound sites to hasten healing. This

would reduce the invasion of microbes and able to keep the wound environment free

from infection [35].

Although the results predict the good impregnation of siderophore encapsulation,

the functionality of the product is important. The isolated siderophore was a

catechol type, and therefore, the prepared samples were checked for Arnow’s

positive [36]. Evidence of their activity was ascertained by the presence of

siderophore on S-GM, which indicates that it is functionally active (Fig 6).

Fig. 7 In vitro enzymatic degradation of the prepared microspheres (data presented are mean ± SD,
n = 3)

Fig. 8 In vitro biocompatibility of NIH 3T3 fibroblast cell line over 1 day, 3 day, and 7 day using MTT
assay. The data are represented as the mean ± standard deviation; n = 3
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In vitro enzymatic degradation

Measurement of degradation and biostability of both, S-GM and DBHA-GM, was

obtained using collagenase (100 units/mL). It has been observed that STMP cross-

linked microspheres (S-GM and DBHA-GM) resulted in a decrease in weight loss at

69 and 63%, respectively, which indicates that the developed microspheres were

biodegradable and proved to be biologically stable material (Fig. 7). DBHA-GM

Fig. 9 In vitro biocompatibility of Human (HaCaT) keratinocytes cell line over 1 day, 3 day, and 7 day
using MTT assay. The data are represented as the mean ± standard deviation; n = 3

Fig. 10 In vitro fluorescence staining images of NIH 3T3 fibroblast cell adherence and proliferation onto
the siderophore-loaded gelatin microspheres (S-GM) in comparison with control at various time intervals
of 6, 12, 24, and 48 h. The scale bar measures in 100 lm
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exhibited with fast degradation than S-GM, which thereby decreases the biostability

and affects the drug delivery process [26, 37].

In vitro biocompatibility, cell adhesion, and proliferation studies

The in vitro biocompatibilities of prepared microspheres were evaluated using both

NIH 3T3 fibroblast and Human keratinocyte (HaCaT) cell lines. From Figs. 8 and 9,

it is evident that S-GM observed to have more than 92% cell viability. Thus, cells

were well attached over the microspheres surface which clearly indicates that the

developed microspheres were cell friendly and thus biocompatible. Figures 10 and

11 clearly depict that S-GM microsphere provided with good cell adhesion and

proliferation with uniform growth of both cells for the easy healing and better

clinical outcome. [16, 38].

Conclusions

Research investigations on the controlled release of drug on the target sites are

indeed very extensive. The present work describes the designing of siderophore-

loaded gelatin microspheres for an effective wound-care product. This was an

attempt to inhibit the MMPs by siderophore, a secondary metabolites from microbes

in a positive manner. Evidences of SEM images clearly indicate sizes of the

microspheres which would be ideal for external wound therapy. The swelling

property and the drug release study exhibited a controlled release of the drug and

maintained its equilibrium until its next level. The microspheres were proved to

possess morphological characteristics confirming the presence cell viability through

Fig. 11 Calcein AM—DAPI fluorescence staining images of the Human (HaCaT) keratinocytes cell
adherence and proliferation onto the siderophore-loaded gelatin microspheres (S-GM) in comparison with
control at various time intervals of 6, 12, 24, and 48 h. The scale bar measures in 100 lm
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in vitro studies. Moreover, it exhibits the excellent attachment and proliferation of

cells which in turn support the potential application in wound-care products.
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