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Abstract Polymer electrolyte (PE) composed of poly(vinylidene fluoride-co-hexaflu-

oropropylene) P(VdF-co-HFP) and triethylsulfonium bis(trifluoromethylsulfonyl)imide

(SEt3TFSI) ionic liquid (IL) had been evaluated in lithium ion battery for the first time in

order to improve its performance and cycle life. X-ray diffraction analysis (XRD) reveals

that incorporation of the IL (20 and 25 wt%) into the polymer matrix results in the

change of state of the material from semi-crystalline to amorphous nature. Thermo-

gravimetric and differential thermal analysis (TG/DTA) of the PE sample with 25 wt%

of the IL shows high thermal stability. The nature of functional groups present in the PE

was investigated by Raman spectrum. Surface morphological characteristics indicate that

increase in the loading of the IL into the polymer matrix leads to maximum number of

pores with good interconnected network. Polymer/IL electrolyte (wt. ratio of 75:25)

having a maximum ionic conductivity of 6.93 9 10-5 S/cm at 303 K with an activation

energy of 0.23 eV shows excellent electrochemical potential stability of 4.4 V vs Li, as

revealed by cyclic voltammetry (CV). Charge–discharge characteristics of the coin cell

containing the above optimized ratio of PE with LiFePO4 cathode and Li anode shows a

discharge capacity of 133 mAh/g, which is stable up to ten cycles.
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Introduction

Employment of polymer electrolytes in lithium ion battery has been widely

investigated as an alternative to liquid combustible systems for their particular

properties such as high mechanical stability, non-inflammability and non-leakage

[1–5] and their usage avoids the evolution of gaseous materials during solvent

decomposition. Further, Li ion battery can be made very compact, lightweight and

highly reliable with the incorporation of thin film electrolytes. It is important to note

that lithium ion polymer batteries had been proposed since early 1980s as being a

potential solution to the safety issues. On the other hand, these polymer electrolyte

materials have very poor ionic conductivities at room temperature (i.e.\10-5 S/

cm), resulting in the limitations on their viability by significantly lowering the

amount of current that can be drawn from a battery. In order to improve their room

temperature ionic conductivity, alternative approaches have been developed by the

incorporation of liquid plasticizers or low molecular weight polymers [6, 7], black

copolymers [8], high conductivity inorganic nanofillers [9] and room temperature

ionic liquids (RTILs) [10–12]. Among these, RTILs offer a promising approach for

overcoming these drawbacks, which can act both as solvent and electrolyte, into the

polymer electrolytes.

The RTILs have recently been considered as alternative electrolytes to carbonate

based systems because they possess high oxidation potential, non-flammability, a

low vapor pressure, good thermal stability, low toxicity and affordable boiling

points [13–15]. Additionally, ionic liquids play dual character as electrolyte salts

and organic liquids and are eco friendly in nature [16]. The absence of volatility is

one of the most important benefits of ionic liquids, offering less toxicity, when

compared to low boiling solvents. Hence, these salts are indeed extraordinary safety

assets and the replacement of the conventional, flammable and volatile organic

solvents by ionic liquid based electrolytes may greatly reduce the risk of thermal

runaways. Imidazolium [17–20], piperidinium [21–24] and pyrrolidinium cation

[25–28] based ILs are highly conducting and used as electrolytes for Li ion battery.

However, problems associated with these ILs are their instability at low voltages

and intercalation into the graphite anode resulting in exfoliation as well as rapid

capacity fade. Moreover, pyrrolidinium cation based ILs are poor solvents for
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lithium and show limited lithium conductivity values. Hence, a different strategy

has been adopted by the incorporation of IL into polymer matrix, thereby enhancing

their ionic conductivity and electrochemical stability and this can meet performance

standards of a battery electrolyte with good capacity and cycle life. Among the

different polymers employed so far, fluorinated polymer namely PVDF-co-HFP

[poly(vinylidene fluoride-co-hexafluoropropylene)] has been widely employed as an

excellent polymer matrix, on account of their good thermal and oxidative stability.

Moreover, it has good mechanical stability and film formation ability and

concomitant low surface energy, due to presence of fluorine network, justifying it

is choice for IL-based polymer electrolyte (PE). Recently, Hwang et al. have

reviewed the employment of PVDF-co-HFP PE matrices incorporated with different

imidazolium cations based ILs on their synthetic pathways, ion sources, IL contents

and proton conductivities [29]. The mechanical and dimensionally stable solid

electrolyte containing ionic liquid has comparable conductivity and electrochemical

stability with that of liquid electrolytes [30–32]. Literature studies clearly reveal that

most of the research work involving ILs incorporated into PVDF–HFP matrix are

restricted to nitrogen based structures and recent investigations demonstrate that

sulfur and phosphorous based systems have showed superior electrochemical

stability and conductivity values, when compared to latter [33, 34]. In particular,

sulfonium based ionic liquids received great attention owing to their low viscosity,

high conductivity and electrochemical stability [35, 36]. Zhang et al. [31] reported

that the ethyl based sulfonium ionic liquid possessed higher conductivity, when

compared to methyl and butyl alkyl groups. Further, the nature of the anion

influences the viscosity of the ionic liquid. For example, TFSI anion exhibits high

charge delocalization within the S–N–S backbone, resulting in low viscosity

[37, 38]. Moreover, ionic liquid containing TFSI anion is highly hydrophobic in

nature and has low moisture sensitive and exhibits high thermal stability, molar

conductivity and electrochemical stability with low viscosity, and much safer than

the conventional organic electrolytes [39, 40].

In the present work, PE containing PVdF-co-HFP incorporated with triethylsul-

fonium bis(trifluoromethylsulfonyl) imide (SEt3TFSI) ionic liquid, which has not

been reported previously for Li battery application, has been tried as the electrolyte

for improving its performance. The physico-chemical properties and electrochem-

ical characteristics of the thin film are presented. The optimal ratio of PVDF-co-

HFP and ILs are carefully investigated which facilitates the improvement of the

interphase stability between the electrolyte and anode material.

Experimental

Preparation of IL incorporated polymer electrolyte (PE)

All the electrolytes have been prepared using the solution casting technique. PVdF-

co-HFP and ionic liquid SEt3TFSI were purchased from Aldrich USA. Tetrahy-

drofuran (THF) and N-methyl 2 pyrrolidone (NMP) was purchased from SRL India

and used without further purification. Required quantity of polymer was dried under
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vacuum (1 9 10-3 Torr) at 100 �C for 10 h in order to remove the moisture. It was

completely dissolved in THF and calculated amount of ionic liquid was mixed with

the polymer solution, which was stirred continuously in order to obtain

homogeneity. The homogeneous solution was casted onto flat bottom petri plates.

Then the solution was dried to form film at 30 �C in the vacuum oven for overnight.

Further, the films were dried at 60 �C under vacuum for 5 h in order to get

the flexible freestanding film. Table 1 shows the different wt% of IL incorporated

PE.

Characterizations of thin film PE

The film was characterized for its crystal structure by X-ray diffraction analysis

using the PANalytical X’Pert PRO powder X-ray Diffractometer using Cu-Ka
radiation as source and operated at 40 kV. Laser Raman spectra were done with

STR 500 Laser Raman spectrometer, SEKI, Japan. Thermo-gravimetric analysis of

the gel electrolyte was performed using STA 409 PL Luxx at a heat rate of 10 K/

min within the temperature range from room temperature to 900 �C under nitrogen

atmosphere. The surface morphology of the electrolytes was characterized by SEM

Model JEOL-JSM-6500F scanning electron microscope at an accelerating voltage

of 5 and 15 kV after sputtering platinum over the samples and AFM with Agilent

Technology Inc., (A100SGS).

Electrochemical studies

Two stainless electrodes (2 cm 9 2 cm) were used for conductivity measurement,

where the electrolyte was sandwiched between the parallel blocking electrodes. The

impedance spectra were measured in the frequency and the temperature ranges from

1 Hz to 500 kHz and 303 to 353 K, respectively, using a computer-controlled micro

Autolab III Potentiostat/Galvanostat. The evaluated ohmic resistance value was

converted into conductivity. The electrochemical studies were carried out using

Autolab electrochemical workstation (GPES, PGSTAT 302 N) and the charge/

discharge life cycle was carried out using WonAtech (WBCS3000S) automatic

charge/discharge testing system. For linear voltammetric studies, a CR-2032 coin

cell was fabricated with Li metal as counter as well as reference electrodes and

Table 1 Ionic conductivity values of the PE (PE-IL1 to PE-IL5) in the temperature range of 303–353 K

Sample PVdF-co-

HFP (wt%)

SEt3TFSI

(wt%)

Conductivity 910-5 S/cm Ea

values

(eV)303 K 313 K 323 K 333 K 343 K 353 K

PE-IL1 95 5 0.005 0.009 0.023 0.037 0.155 0.345 0.40

PE-IL2 90 10 0.010 0.019 0.055 0.176 0.276 0.668 0.37

PE-IL3 85 15 0.732 1.110 1.779 2.833 3.123 4.365 0.29

PE-IL4 80 20 3.371 5.743 6.877 7.556 9.825 13.87 0.25

PE-IL5 75 25 6.938 7.362 9.578 14.57 24.33 45.35 0.23
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stainless steel as working with the IL-incorporated PE. The coin cell for the

electrochemical characterization had been assembled with the electrode composed

of 80:10:10(LiFePO4: PVdF: Super p carbon). The slurry was made using NMP and

was coated on alumina foil. After coating, the electrodes were dried at 80 �C for

about 6 h. The mass of the active substance was nearly 1 mg.

Results and discussion

X-ray diffraction (XRD)

The crystalline peak properties of IL incorporated PVDF-co-HFP were character-

ized by XRD. Figure 1 shows the XRD diffraction pattern of the prepared polymer

electrolyte (PE) samples containing different wt% of IL such as 5, 10, 15, 20, 25,

denoted as PE-IL1, PE-IL2, PE-IL3, PE-IL4 and PE-IL5. The pure PVdF-co-HFP is

a semi-crystalline polymer and there are two broad peaks at 20.4� and 39.4�
corresponding to its crystalline planes [41]. With the incorporation of IL into the

polymer matrix, the peak intensity of both the peaks decreases (sample IL1). Further

addition of IL makes the peak weak and wide (PE-IL2 and PE-IL3). For both PE-

IL4 and PE-IL5 samples, the high-intensity region peak disappears and the peak

noted at a 2h value of 20.4 becomes low, which reveals that the high amount of

Fig. 1 X-ray diffraction patterns of pure P(VdF-co-HFP), PE-IL1—PVdF-co-
HFP(95 %) ? SEt3TFSI(5 %), PE-IL2—PVdF-co-HFP(90 %) ? SEt3TFSI(10 %), PE-IL3—PVdF-co-
HFP(85 %) ? SEt3TFSI(15 %), PE-IL4—PVdF-co-HFP(80 %) ? SEt3TFSI(20 %), PE-IL5—PVdF-co-
HFP(75 %) ? SEt3TFSI(25 %)
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ionic liquid plasticizers the electrolyte and produces more amorphous phase in the

polymer network [42, 43].

Raman spectroscopy

Raman spectroscopy is particularly appropriate to characterize PE and the bond

present in the spectrum corresponds to vibrational frequency of the molecules.

Figure 2 represents such spectra for different PE samples. Pure polymer PVdF-co-

HFP shows the major Raman peak at 795 cm-1 assigned to CH2 m rocking and the

rocking mode of CF2 and CH2 at 413 cm-1 disappears in all the electrolyte samples,

as a result of the effect of addition of the SEt3TFSI [44]. Another major peak of

877 cm-1 corresponds to the combination of symmetric C–C and CCCd skeletal

bending of C(F)–C(H)–C(F) of the host polymer PVdF-co-HFP is shifted to high

frequency value of 886 cm-1 reflecting the major change in the bare polymer. A

peak at 600 cm-1 indicates the CF scissoring CCCd skeletal bending of C(H)–

C(H)–C(F) [40]. The CH2 m rocking (832 cm-1), ms symmetric stretching (1424,

2976 cm-1) and ms anti-symmetric stretching (3011) are also noted in the Raman

spectrum. The most intense band of the anion appearing at 741 cm-1 was attributed

to the CF3 bending of the SCF3 group of TFSI [45]. The SO2 band of NSO2CF3 is

out of phase anti-symmetric stretching, located at 1335 cm-1. Bands specifically

associated with TFSI- are still observed at 1125 cm-1 with ms symmetric stretching.

The peak at 1046 cm-1 has been noted as ma SNS anti-symmetric stretching

vibration of triflate anion [46].

Fig. 2 Raman spectra of pure PVdF-co-HFP, the PEs namely PE-IL1, PE-IL2, PE-IL3, PE-IL4 and PE-
IL5. The PE compositions are the same as in Fig. 1
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Surface morphologic studies using scanning electron microscope (SEM)
and atomic force microscope (AFM)

Figure 3 shows the SEM images obtained for different PE samples containing

various IL contents. The micropores noted in the SEM images are directly related to

its conductivity values. The scanning images of the PE samples differ from their

number of pores, pore size and uniform distribution of micropores. The appearance

of pores corresponds to the process associated with the evaporation of the THF

solvent during vacuum oven drying. The increased number of pores enhances the

absorption of non-volatile liquid electrolyte, leading to high conductivity of PE

[12, 47]. The sample PE-IL1 [PVDF-co-HFP:SEt3TFSI (95:5 wt%)] shows granular

shape indicating the semiconducting nature of the polymer. Further incorporation of

the IL content into the polymer results in the decrease of the pore size as well

increase of number of pores with interconnected network and increase of amorphous

nature of the PE [48]. Highly amorphous nature leads to high conductivity and large

amount of absorbed IL. From the SEM pictures, it is observed that the PE-IL5

(PVDF-co-HFP:SEt3TFSI (75:25 wt%) provides a well closed interconnected

network with maximum number of pores.

Based on the SEM analysis, surface topography of the sample PE-IL5 was

characterized by AFM and is shown in Fig. 4. From the figure, it appears that

homogeneous nature of the PE had been found to be enhanced with the addition of

IL electrolyte [49], where this can increase the contact between the electrolyte and

electrode. The topographical image shows large number of pores, which is

responsible for the ion migration.

Fig. 3 SEM images of the PEs namely PE-IL1, PE-IL2, PE-IL3, PE-IL4 and PE-IL5 with the
magnification of 1 K. The PE compositions are the same as in Fig. 1
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Conductivity studies

Impedance measurement was performed for finding out the ionic conductivity of the

polymer electrolytes starting from PE-IL1 to PE-IL5 films at different temperatures

starting from 303 to 353 K with an increment of 10 K and the spectra are shown in

Fig. 5. For both PE-IL1 and PE-IL2, the impedance spectra shows a semicircle,

which is due to the effect of bulk resistance [50]. It is noted that for the PE with low

ionic liquid content (5 and 10 wt%) follows a solid polymer electrolyte (SPE)

behavior. The increase of the ionic liquid (15 and 20 wt%) results in a depressed

semicircle with a spike. This is due to the effect of electrolyte/blocking electrode

interface. Further increase of the ionic liquid content (25 wt%) results in a complex

impedance plot with a spike. Low-frequency straight line towards the real axis is

caused by the effect of the capacitive electrode behavior. The disappearance of

Fig. 4 AFM image of PE-IL5

Fig. 5 Room temperature complex impedance plot of PEs namely PE-IL1, PE-IL2, PE-IL3, PE-IL4 and
PE-IL5. The PE compositions are the same as in Fig. 1

1684 Polym. Bull. (2017) 74:1677–1691

123



semicircle in high content of ionic liquid is due to the decrease of ionic resistance of

the electrolyte. This causes high degree of disorder in the polymer electrolyte,

favoring high ionic transport. The semicircle in the high-frequency range is related

to the conduction process in the bulk of the complex and the linearity in the low-

frequency region is due to the effect of blocking electrode.

Conductivity values of the different contents IL incorporated polymer had been

measured from the following equation:

r ¼ l

ARb

ð1Þ

where r is the ionic conductivity, l is the thickness of the electrolyte sample, A is the

area of the prepared electrolyte, Rb is the bulk resistance. The conductivity values

for the samples from PE-IL1 to PE-IL5 at different temperatures are shown in

Table 1. From the table, it is noted that with the increase of ionic liquid content, the

conductivity of the PE increases linearly and the polymer electrolyte with 25 wt%

ionic liquid (PE-IL5) has the maximum ionic conductivity of 6.93 9 10-5 S/cm.

Further the conductivity also increases with the increase of temperature from 303 to

353 K, as revealed from the plot of log conductivity versus inverse temperature

(1000/T) for different contents of IL (Fig. 6) and this may be correlated with the

influence of internal activation of molecules [48]. The activation energy (Ea) values

were calculated from the slop of the straight line. A low activation energy

(Ea = 0.23 eV) had been obtained for the sample having maximum ionic conduc-

tivity. Decrease in the Ea value suggests more amorphous nature of the polymer

electrolyte, as shown in Table 1. A similar trend in the increase of conductivity

value with temperature is also noted for the IL incorporated polymers [29].

Fig. 6 Temperature dependent ionic conductivity plot
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Typically, the addition of polymers to liquid electrolytes containing lithium salts to

form gels results in a significant drop in the ionic conductivity [51, 52]. It is noted

that the increase in the electrolyte conductivity is due to the addition of a liquid salt

with ions possessing plasticizing nature that have only a weak interaction with the

polymer, leading to easy migration of ions. Further, the enhanced conductivity may

also be associated with large number of charge carriers for the ionic transport, where

the large size of imide anion discourages the ion pair formation [53]. Ionic transport

is caused by the diffusion of carrier ions through the free volume of polymer matrix

so that the large size of the imide disperses the carrier ions in the polymer domain at

the molecular level, inducing high conductivity.

Thermal analysis

Thermo-gravimetric and differential thermal analysis (TG/DTA) of the samples of

pure PVdF-co-HFP, Pure IL, PE-IL4 and PE-IL5, having higher conductivity then

the others, are shown in Fig. 7. Thermal analysis shows three types of response in

the temperature range between room temperature and 900 �C. At first stage, a small

weight loss around 70 �C is responsible for the evaporation of the moisture at the

time of loading of the sample. It is well known from the literature that the IL is

stable up to 240 �C. The TG graph of the polymer electrolyte confirms its stability

up to 440 �C. Significant decomposition at 240 �C represents the thermal stability of

IL with the mass change of 19 wt%. After 500 �C, a gradual decrease of weight is

observed and at 900 �C, a residual mass of 19 wt% remains due to the presence of

carbon in the polymer electrolyte. When compared to PE-IL4 electrolyte, PE-IL5

however, shows better thermal stability. The results noted in the DTA results are in

good agreement with the TG [54]. In the temperature regions of 250, 450 and

600 �C, the exothermic curve shows the decomposition of the PE. The TGA and

DTA results infer that PE containing PVdF-co-HFP:SEt3TFSI (75:25, PE-IL5)

possess high thermal stability [55] and this composition had been investigated for

further characterization related to voltammetry and charge–discharge studies.

Fig. 7 TG/DTA plot for the PEs namely PE-IL4 and PE-IL5. The PE compositions are the same as in
Fig. 1
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Electrochemical characterization

Linear sweep voltammetry

The electrochemical stability window of the PE (PE-IL5) was studied using linear

sweep voltammetry (LSV) and the voltammogram recorded at a scan rate of 5 mV/s

is shown in Fig. 8. From the figure, it can be seen that until 4.5 V vs Li, the current

flow is found to be negligible and after that it increases sharply with applied voltage,

indicating the decomposition of the PE. [56]. This shows that the PE is stable up to

the potential region of 4.4 V vs Li.

Cyclic voltammetry (CV)

The electrochemical characteristics of the coin cell containing LiFePO4 and the PE

(PE-IL5) were studied using CV. Figure 9 shows the first, second and third cycle of

the CV for the polymer electrolyte at a scan rate of 5 m/Vs within a voltage range of

2.4–4.4 V vs Li. An anodic and a cathodic peak appear at a potential of 3.55 and

3.3 V vs Li [57], respectively, indicating the strong reversible behavior of the

electrochemical system. The insert shows the magnified view of anodic peak.

Multiple scan for the three cycles shows the overlapping of the curves, which may

be associated with the reversibility [58]. Beyond 4.5 V, the anodic current rises due

to the decompositions of the polymer electrolyte and further decrease in the current

for the second and third cycle indicates the formation of solid electrolyte interface

(SEI) on the electrode surface [59]. The SEI formation prevents further reaction of

SEt3TFSI with the lithium electrode.

Fig. 8 LSV of the coin cell containing PE-IL5 and Li anode as well as Li cathode recorded at a scan rate
of 5 mV/s
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Charge–discharge profile

The charge–discharge characteristics of the coin cell containing LiFePO4 cathode

and the PE (PE-IL5) were investigated and capacity vs voltage curves recorded for

ten cycles for such cell is shown in Fig. 10. The cell gives excellent initial discharge

Fig. 9 CV of the coin cell containing PE-IL5 and Li anode as well as Li cathode recorded at a scan rate
of 5 mV/s

Fig. 10 Charge–discharge characteristics of the coin cell containing PE-IL5 and LiFePO4 as the cathode
and Li as the anode
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capacity of 133 mAh/g with the working voltage of 3.40 V. The charge–discharge

profile shows very flat voltage range of 3.39 V in the first cycle and a similar pattern

is followed for other cycles, reflecting good electrochemical properties. The

discharge capacity in the subsequent cycles slowly decreases with the increase of

cycle numbers. The capacity decrease is mainly attributed to the formation of

passive layer on the cathode material. The cell delivers good reversibility with

discharge capacity of 122 mAh/g at 10th cycle.

Conclusions

The PVdF-co-HFP containing different weight percentages of IL, SEt3TFSI had

been prepared and characterized. The XRD results confirm the appearance of

amorphous nature of the substance with the addition of IL (20 and 25 wt %) to the

polymer matrix and the PE is stable up to 450 �C, as revealed by TG/DTA analysis.

The nature of different functional groups present PE had been identified using

Raman spectroscopy. The maximum number of pores with good interconnected

network leads to high ionic conductivity, as evidenced by SEM and AFM images.

Polymer/IL electrolyte (wt. ratio of 75:25, PE-IL5) with a maximum ionic

conductivity of 6.93 9 10-5 S/cm and activation energy of 0.23 eV shows an

excellent electrochemical potential stability of 4.4 V vs Li, as revealed from LSV

and CV. A discharge capacity of 133 mAh/g was obtained for the coin cell

containing PE-IL5 electrolyte and LiFePO4 as the cathode, which is stable up to ten

cycles.
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