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Abstract The present work deals with the formation of solid polymer electrolytes

(SPE) from carboxy methylcellulose (CMC) and doped with ammonium carbonate

((NH4)2CO3). The CMC–(NH4)2CO3 SPE was characterized with electrical impe-

dance spectroscopy (EIS) and transference number measurement (TNM) to under-

stand its electrical and conduction mechanism. Fourier transform infrared (FTIR)

were conducted to correlate the complexation of the SPE with conductivity and

conduction mechanism. Complexation appears to occur mainly in CMC carboxyl

group (C=O). The highest ionic conductivity obtained is 7.71 9 10-6 Scm-1 for

samples incorporated with 7 wt% of (NH4)2CO3. Lowest activation energy, Ea

achieved is 0.21 eV corresponds to the highest conductivity sample. Ionic con-

ductivity measurement at elevated temperature follows Arrhenius model. Dielectric

study of the sample shows dependence to temperature, but not to the frequency.

CMC–(NH4)2CO3 SPE sample with the highest conductivity has transference

number, tþ of 0.98 proving of its conduction is predominantly cation. Quantum

mechanical tunneling (QMT) was the best model to explain the conduction mech-

anism of the highest conductivity sample.
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Introduction

Electrolytes are a chemical medium which transfer electrically charged ion between

the anode and cathode through the charge–discharge process to conduct electricity

[1]. For a long time, electrochemical devices were powered up using liquid

electrolytes (LE) due to its high ionic conductivity. However, the problem persists

with LE such as leakage, poor electrochemical stability and corrosion reactions with

electrode [2]. The probability of electronic conduction also contributes to its

drawbacks. These shortcomings of LE make it less suitable for electrochemical

devices. New forms of electrolytes are needed to tackle the problems and

subsequently become the new power sources for electrochemical devices [3].

Solid polymer electrolytes (SPE) have emerged as the best candidate to replace

LE. Electrolyte in solid form behaves much like a liquid conductor [4]. The

pioneering work on conducting polymer electrolytes was discovered by Wright in

1973 who use poly(ethylene) oxide (PEO) complexes with potassium thiocyanates

and sodium iodide. There are several advantages SPE have that make it superior to

LE such as good electrode–electrolyte contact, good mechanical properties, ease of

handling, also improved safety hazards (no-leakage) [5, 6]. This discovery has

spurred extensive studies in the field of material science and electrochemistry.

Several types of conducting polymer electrolytes have been developed and

investigated for, such as Polymethyl methacrylate (PMMA) [7], polyacrylonitrile

(PAN) [8] and polyvinyl chloride (PVC) [9]. However, these types conducting

polymer electrolytes are synthesized from synthetic materials derived from

petroleum source which are facing exhaustion and this material is quite expensive

[10].

Recently, natural or biodegradable materials have attracted much attention

globally. The effects of global pollution and environment crises have forced

consumers to demand safer, cheaper and environmentally friendly technology.

Therefore, developments of SPE have turned its attention towards organic sources

[11]. Organic material is normally regarded as an insulator, however, with certain

tweaks to its structure, organic material can become semi-conductor material.

Starch, Chitosan, cellulose and carrageenan are several organic sources have been

developed as polymer electrolytes [12–14] carboxy methyl cellulose (CMC) a

derivative of cellulose is an abundant natural product which has a white- to cream-

coloured, tasteless, odourless and free-flowing powder [15, 16]. CMC (Fig. 1) is

amphiphilic since it contains a hydrophobic polysaccharide backbone and many

hydrophilic carboxyl groups (–CH2–COONa). This characteristic allows for

hydrogen bond to form easily. Due to its biodegradable properties and good film

forming abilities, CMC is chosen as the polymer host [17, 18].

The aim of the present work is to develop a new SPE based on natural sources

which is CMC as the host and doped with ammonium carbonate ((NH4)2CO3) as the

ionic dopant since ammonium salt is reported as a good proton sources for polymer

system [19, 20]. The samples were prepared by solution casting technique and

characterize for its complexation using Fourier transform Infrared (FTIR). The ionic

conductivity, dielectric properties and AC conductivity were characterized using
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electrical impedance spectroscopy (EIS) to understand the behaviour and the

conduction mechanism of the electrolyte system while Transference number

measurement (TNM) were used to confirm the conduction species of current

systems.

Methodology

Sample preparation

2 g of CMC (acquired from Across Organics Co.) was stirred in distilled water until

homogeneous. Different amount of (NH4)2CO3 acquired from Sigma Aldrich (see

Table 1) was then added into the CMC solution. The mixture solution was then

stirred continuously until (NH4)2CO3 is completely dissolved. Then, the CMC–

(NH4)2CO3 mixture was cast into petri dishes for drying process at room

temperature (303 K). Final dried film was put inside a desiccator to further

eliminate water presence in the film for another week. The CMC–(NH4)2CO3 film

was cut into suitable sizes for characterization.

Fig. 1 Chemical structure of
CMC

Table 1 The CMC–(NH4)2CO3 composition with its ionic conductivity, activation energy and regres-

sion values

Sample CMC

(g)

(NH4)2CO3

(g)

Thickness

(cm)

Ionic conductivity,

r (Scm-1)

Activation

energy, Ea (eV)

Regression

value, R2

0 wt% 2 0.00 0.017 9.33E-09 0.23 0.99

1 wt% 2 0.02 0.011 1.89E-07 0.27 0.99

3 wt% 2 0.06 0.010 1.42E-06 0.24 0.94

5 wt% 2 0.11 0.012 1.79E-06 0.22 0.97

7 wt% 2 0.15 0.014 7.71E-06 0.21 0.94

9 wt% 2 0.20 0.013 3.51E-06 0.24 0.94

11 wt% 2 0.25 0.011 2.28E-06 0.31 0.94
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Fourier transform infrared spectroscopy (FTIR)

Thermo Nicolet 380 Fourier Transform Infrared (FTIR) spectroscopies equipped

with an attenuated total reflection (ATR) accessory with germanium crystal were

used for complexation study. The sample was placed on germanium crystal and

infrared light was passed through the sample within the frequency ranging from

4000 to 675 cm-1 at spectral resolution of 4 cm-1. The data were then processed by

a computer to form the spectrum bands.

Electrical impedance spectroscopy (EIS)

The electrical impedance spectroscopy (EIS) HIOKI 3532-50 LCR Hi-Tester

interfaced to a computer with a frequency of 50 Hz–1 MHz was used to investigate

the ionic conductivity of SPE films. The films were cut into a suitable size and

placed between the stainless steel blocking electrodes of the sample holder. The

software controlling the LCR tester calculates the real and imaginary impedance

and plot a graph of negative imaginary impedance (-Zi) versus real impedance (Zr)

to determine the bulk resistance (Rb) value which can be found from the intersection

of the plot at real impedance axis for conductivity calculation. The equation for

conductivity, r is given by:

r ¼ t

RbA
ð1Þ

where t is the film thickness and A is the contact area of electrode-electrolytes.

Dielectric constant er is defined as

er xð Þ ¼ Zi

xCoðZ2
r þ Z2

i Þ
ð2Þ

where Co ¼ eo A/t (eo is permittivity of free space), x ¼ 2pf (f is frequency), zi is

imaginary impedance and zr is real impedance.

Jonscher’s Power Law (UPL) can be used to analyze the AC conductivity

phenomenon [21].

r xð Þ ¼ rdc þ Axs ð3Þ

rac ¼ Axs ð4Þ

where r (x) is the sum of AC and DC conductivity where rdc is frequency inde-

pendent component. A is temperature dependent parameter and s is the power law

exponent with a range from 0\ s\ 1. And the AC conductivity can be obtained

from dielectric loss, ei at every frequency [22].

rac ¼ eoeix ð5Þ

Taking Eqs. 4 and 5 and applied logarithm rule, it gives
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lnei ¼
lnA

eo þ S� 1ð Þ lnxÞ ð6Þ

where:

ei xð Þ ¼ Zr

xCoðZ2
r þ Z2

i Þ
ð7Þ

Transference number measurement (TNM)

To confirm the type of ionic species in the SPE system, transference number

measurements were done to correlate the diffusion phenomenon to the conductivity

behaviour of the SPE system. Current polarization techniques were employed to

measure the ionic transference number using the circuit built as shown in Fig. 2. A

fixed DC 1.5 V was supplied into the circuit and the current values were monitored

as a function of time. The equation below was used to calculate ionic transference,

tþ value:

tþ ¼ Ication

Io
ð8Þ

Ication ¼ Io � Iss ð9Þ

where Io = initial current, Iss = steady-state current.

Fig. 2 Transference measurement circuit
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Results and discussion

Complexation analysis

Complexation between the host (CMC) and ionic dopant ((NH4)2CO3) in the CMC–

(NH4)2CO3 SPE system was conformed using an IR spectrometer. The complex-

ation can be correlated to the IR spectra changes such as band shifting, the

emergence or disappearance of the IR spectrum band. Figure 3 shows the spectral

band for CMC–(NH4)2CO3 SPE in the range of 1200–1800 cm-1. From previous

work done by Samsudin and Kamarudin, the complexation between ammonium

salts and CMC took place in band range of 1040–1600 cm-1 [10, 23]. In the present

work, several spectra band peaks can be seen in those ranges. The peak at

1591 cm-1 comes from C=O of carboxyl (COO-) stretching of CMC [10, 20, 23].

The peak at 1417 and 1322 cm-1 belong to the C–H2 scissoring and O–H bending,

respectively [24, 25].

From Fig. 3, addition of (NH4)2CO3 lead to some changes in the IR spectrum

band. The C=O peak appears to weaken as more (NH4)2CO3 were added into the

system suggesting that complexation has occurred. New hump also appears at

1635 cm-1 when added with 7 wt% of (NH4)2CO3. Further increase of (NH4)2CO3

Fig. 3 FTIR spectra of CMC–
(NH4)2CO3 SPE at wavenumber
1200–1800 cm-1
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shows that the humps disappear probably due to ions aggregation. It is believed that

the complexation occurs at C=O peak are due to the presence of lone pair electron

which would attract free ions. The new peak observed are associated to H?

originating from (NH4)2CO3 [23]. The conduction species in polymer-ammonium

salt system are due to proton (H?) from the ammonium groups as proven by Hema

et al. and Samsudin et al. [10, 26]. The migration of H? is apparent because in

ammonium ions (NH4
?), all hydrogen atoms are bound differently where one will

be strongly bonded and another one loosely bonded while the rest are identically

bonded. The loosely bound H? can dissociate with ease and move from one site to

another. Two ammonium groups are present in ammonium carbonate salts thus it is

suggested that either ammonium group will provide the proton needed. The

proposed movement of protons is shown in Fig. 4.

Conductivity analysis

The ionic conductivity of CMC–(NH4)2CO3 SPE system at ambient temperature is

tabulated in Table 1. It can be observed that the ionic conductivity value increases

with addition of ionic dopant. The value increase from 9.33 9 10-9 Scm-1 for pure

CMC samples (0 wt% ((NH4)2CO3) to optimum ionic conductivity value of

7.71 9 10-6 Scm-1 for samples incorporated with 7 wt% of (NH4)2CO3. This

demonstrated that (NH4)2CO3 has integrated well into the SPE system to provide

Fig. 4 Interaction between
(NH4)2CO3 with CMC through
NH4 group
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conducting species which in this case protons (H?), therefore, resulting in increased

of conductivity. From literature [16, 20, 23], CMC based SPE is amorphous in

nature. Thus, it is expected that the current system is also amorphous. The

amorphous nature will lower the energy barrier for ion movement compared to

crystalline solid. The amorphous nature coupled with low bonding strength (H-

bonding) allow H? to move easily when subjected to electric field. Beyond 7 wt%,

the ionic conductivity of CMC–(NH4)2CO3 SPE system dropped rapidly. This

observed behaviour is believed due to the ions re-associate back forming neutral

aggregates [27]. Additionally the dipole interaction between protons in the SPE

increases at higher ionic dopant concentration which in turn reduces ionic mobility

and thus the conductivity [28] (Table 1).

The ionic conductivity behaviour for CMC–(NH4)2CO3 SPE system at elevated

temperature (303–333 K) is shown in Fig. 5. Temperature study was carried out to

analyze the ionic conduction mechanism of the natural SPE system. The plot shows

that the ionic conductivity of all samples increased with increasing temperature

confirming Arrhenius behaviour where regression values close to unity (R2 & 1).

The increased conductivity can be related to free-volume theory and segmental

motion of the polymer [29, 30]. The polymer chain will vibrate in small segments as

it receives energy from heat. This, in turn, creates bigger free volume enough for

mobile protons to migrate through inter-chain and intra-chain movements hence the

increased conductivity. This behaviour at elevated temperature is almost similar to

ionic crystals [31]. The temperature relation with conductivity can be related by the

following Arrhenius equation,

r ¼ roexpðEa=kTÞ ð10Þ

where ro is the pre-exponential factor, Ea is the activation energy, k is the Boltz-

mann constant and T is the absolute temperature [in Kelvin (K)]. The Ea is calcu-

lated from a linear fit of the temperature dependence plot and listed in Table 1. It is

-8.50

-8.00

-7.50

-7.00

-6.50

-6.00

-5.50

-5.00

-4.50

-4.00

-3.50

2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40

L
og

  

1000/T

0wt.% 1wt.% 3wt.%
5wt.% 7wt.% 9wt.%
11wt.%

Fig. 5 The ionic conductivity behaviour of CMC–(NH4)2CO3 SPE system at elevated temperature
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noted that for the CMC–(NH4)2CO3 SPE system, the sample with the highest ionic

conductivity has the lowest activation energy, Ea (0.21 eV). Lower Ea indicates that

the H? will need less energy to be released from hydrogen bond that binds it at one

coordinating site (C=O) to migrate to another coordinating site thus creating

vacancies [19]. The vacancies created will then be filled by other H?. The ionic

conduction process occurs from the whole process of vacancies forming and filling.

Figure 6 presented the (a) number of mobile ions g, (b) ionic mobility l and

(c) diffusion coefficient D of selected CMC–(NH4)2CO3 SPE system at various

temperatures. The value was calculated using Rice and Roth method [32]. The number

of mobile ions, g increased as (NH4)2CO3 content increases. This indicates that

(NH4)2CO3 has successfully dissociated creating more mobile ions during the doping

process resulting in increase ionic conductivity. However, at higher (NH4)2CO3 the

conductivity decrease while g increases. This behaviour is believed due to the

overcrowding of mobile ions which causes the pathway for ions migration to congest

causing the mobility (l) and diffusion coefficient (D) to decrease which in turn

decrease the ionic conductivity value (see Fig. 6a–c). The number of mobile ions, g
also increase with increasing temperature implies that ammonium salts dissociate

more ions when heat are supplied resulting to increased ionic conductivity. The

mobility (l) and diffusion coefficient (D) also increase with temperature confirming

that segmental motion and free-volume theory affected the ionic conductivity value.

Dielectric analysis

At low frequency region, the dielectric constant values of all samples (Fig. 7) are of

the highest value indicating that electrode polarization and space charge effects

have occurred [33]. In the low frequency region, the mobile ions are able to follow

along the electric field direction before being trapped at the electrode–electrolyte

interface to form hetero charge layers [34]. According to Majid and Arof [36], this

implies that the mobile ions tend to accumulate at low frequencies giving it enough

time for the charges to build up at the interface before the applied field changes

direction, hence giving a higher value of er.
At higher frequency region, the electric field orientation, acting on the medium

occurs so fast that there is no time for ion diffusion throughout the medium

following the direction of the electric field. As a result, the polarization due to the

charge accumulation decreases and so does the er values. Dielectric value would

later drop and become saturated with increasing frequency as observed in Fig. 7

[34–37]. For sample 9 and 11 wt%, the dielectric value appears to decrease. The

decreased in dielectric value are due to the decreased number of H? from ions

aggregation as mentioned in earlier sections. The ions aggregation also reduces the

mobility of ions by blocking the migration pathway. Khiar et al. stated that the er
increases at higher temperatures are due to the higher charge carrier density [33].

The dielectric constant value of the sample with the highest conductivity at

elevated temperature is shown in Fig. 8. From the figure, the er value increased with

increasing temperature. As temperature rises, the degree of salt dissociation and re-

dissociation of ion aggregates increases resulting in the increase number of free ions
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or charge carrier density and thus the dielectric value. The free volume, area inside

the SPE as discussed before also contributed to the increased er value.

Transference number analysis

The transference number was conducted to determine the contribution of conduction

species of an electrolyte system (cationic, anionic or electronic) to the overall ionic

conductivity. If an electrolyte system is to be applied in a battery system, the ionic

transference number, t? need to be higher along with its ionic conductivity. This is

because, low transference number, t? value will lead to an increase in concentration
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gradient of ions and decrease of working current. Thus, this will eventually lead to

battery failure [38, 39]. The plot of the normalized current against time is shown in

Fig. 9. The initial total current decreases with time and achieved a steady state

current. At steady state, the ionic species are depleted (polarization). On the other

hand, the residue current flows are due to electronic movement of the electrolytes.

The transference numbers of 0.98 were achieved for the highest conductivity

sample. This proved that the conduction species are primarily cation. Table 2

summarizes the transference value with other electrolyte systems. The table indi-

cates that the transference number obtained from current works is higher compared

to other system.

Conduction modelling analysis

Universal Jonscher power laws (UPL) were used for conduction modelling analysis

as mention in the methodology section. Figure 10 shows the frequency dependence

of dielectric loss, ei at elevated temperature of the sample with the highest

conductivity. The value of exponent S can be obtained from the slope at higher
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Fig. 9 Normalized current versus time plot for CMC–(NH4)2CO3 with the highest conductivity

Table 2 Comparison of transference number of current work with another system

Electrolyte system Transference number, tþ References

PVA-PVdF-NH4SCN 0.96 Muthuvinayagam and Gopinathan [40]

PVA-NH4Br 0.96 Hema et al. [24]

PEO-LiBorate 0.79 Tao et al. [36]

MC-NH4F 0.69 Aziz et al. [26]

CMC-OA 0.76 Chai and Isa [41]

CMC–(NH4)2CO3 0.98 Present work
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frequency where, according to [19, 20] there is no or minimal space charge

polarization. The value of S with temperature was plotted in Fig. 5.

To find out how the conduction mechanisms in the system behave, one can

suggest the appropriate AC conduction model based on the behaviour of value

exponent S whether it is independent of temperature (QMT) [42] increase with

temperature (SPH) [19], decrease with temperature (CBH) [43] or is it both

temperature and frequency dependent (OLPT) [44]. From Fig. 11, there are little or

no changes to the S values and can be said to behave in QMT conduction

mechanism model. For QMT model, in this model, the polarons (in this case is made

up of the protons and their stress fields) are able to tunnel through the potential

barrier with the addition of (NH4)2CO3 in the system that exists between two

possible complexation sites [45]. Shukur et al. [46] stated that the ionic hopping

between two sites not only occurs by jumping over a barrier, but can also

accompany by QMT.
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Conclusion

The SPE system constructs from CMC and doped with (NH4)2CO3 has been

successfully prepared via solution cast techniques. The optimum conductivity for

CMC–(NH4)2CO3 system is 7.71 9 10-6 Scm-1. The temperature dependence of

the system appears to obey Arrhenius behaviour. The highest conductivity has the

lowest activation energy, Ea implying it needs lower energy for ions migrations.

Conduction process is governed not entirely by g, but also l and D. From dielectric

studies, er shows to increase with each addition of (NH4)2CO3 composition into the

SPE system. The er was found to increase at elevated temperature, but decreases at

higher frequency. The conduction species have been confirmed from H? as proved

in TNM analysis. The conduction behaviour of the system doped with 7 wt% of

(NH4)2CO3 is found to tunnel through the potential barrier following the quantum

mechanical tunneling (QMT) model where the S value is independent of

temperature. Present work shows a promising performance to be applied in an

electrochemical application such as battery, fuel cell or super-capacitor. Although

further improvement of the system is needed to increase the ionic conductivity as

current ionic conductivity value is still low.
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