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Abstract In this paper, poly (2-hydroxyethyl methacrylate) (pHEMA) and poly
(2-hydroxyethyl methacrylate)-starch (pHEMA-S) composites were prepared from
2-hydroxyethyl methacrylate and different ratio starch. The pHEMA-S showed high
thermal stability and biodegradability. The biodegradability of pHEMA-S com-
posites was in the range of 14-22 % for 4 weeks depending on the starch ratio of
pHEMA-S. Then, L-ASNase was immobilized onto pHEMA-S composites. The
immobilized L-ASNase was investigated with optimum temperature, pH and kinetic
parameters. Immobilization improved the pH stability and thermal stability of the
enzyme. The K, values were 1.58 and 0.56 mM for free and immobilized enzyme,
respectively.

Keywords L-asparaginase - pHEMA - pHEMA-starch composites -
Immobilization

Introduction

L-asparaginase (L-asparagine amidohydrolase, EC 3.5.1.1; L-ASNase) is used as a
therapeutic agent for many types of cancer including children’s leukemia [1-3].
L-ASNase has a molecular weight of 138—140 kDa, which comprises of four same
subunits with one active center each and catalyzes the hydrolysis of L-asparagine to
produce L-aspartic acid and ammonia [4]. Bacteria, algae, plants, fungi, ferments
and actinomycetes have been used in the production of L-ASNase for the last
35 years [5, 6]. The most important bacteria sources of commercial use featuring
L-ASNase are Escherichia coli (E. coli) and Erwinia caratovira [7].
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L-ASNase is an indispensable chemotherapeutic drug in the treatment of acute
lymphoblastic leukemia (ALL) disease, especially [8]. Although, normal cells do
not need to L-asparagine in the blood to grow, L-asparagine is an essential amino
acid for cancer cells. Thus, scavenging of L-asparagine by L-ASNase in the blood
slows the growth of cancer cells and leads to death. L-ASNase has been extensively
used as chemotherapeutic agent in the treatment of acute and chronic lymphoblastic
leukemia, Hodgkin’s disease, acute myelocytic leukemia, acute myelomonocytic
leukemia, lymphosarcoma, reticulosarcoma and melanosarcoma [9]. However, this
enzyme causes a variety of side effects such as fever, skin rashes and even can lead
to life-threatening allergic reactions [10]. Due to decrease in the immunological
effects caused by this enzyme, extending its action time and increase drug effect in
blood, native L-ASNase is generally immobilized physically or chemically on
various biocompatible polymers. It has been reported that the immobilized enzyme
did not only reduce the immunity and toxicity but also greatly improved the
resistance against proteolysis [4]. Natural and synthetic polymers such as albumin
[11], dextran [12], chitin [13], CM-cellulose [9], polyethylene glycol (PEG) [14],
polyvinyl alcohol (PVA) [15] are usually used for enzyme immobilization. The PEG
which is the most widely used carrier, is linear, non-toxic and non-immunogenic
[16]. Studies have shown that immobilized L-ASNase compared to native
L-asparaginase has a longer half-life in blood as well as faces with less of an
immune response. Due to formation of neutralizing antibodies, the half-life of
circulating L-ASNase can be shortened to 2.5 h [17]. The half-life of L-ASNase in
the blood has been prolonged more than 5 days via immobilization. The basic
hypothesis in the L-ASNase immobilization on biocompatible polymers as physical
or chemical is to create an increase in half-life and stability of this enzyme in the
blood against immune response [18].

As early as 1960, poly (2-hydroxyethylmethacrylate) (pHEMA) hydrogels had
been successfully applied as biomedical materials in plastic surgery, ophthalmol-
ogy, and drug delivery [19, 20]. The pHEMA has been preferred as a scaffold
material because of excellent mechanical properties and high hydrophilicity [21].
Application of pHEMA as a drug immobilization matrix has been limited due to its
low biodegradability [22-24]. In our work, pHEMA-starch composites as an
enzyme immobilization matrix were synthesized to improve the biodegradability.
We hypothesized that pHEMA-starch composite as model matrix can provide more
advantages both of biocompatibility and biodegradability in comparison with pure
pHEMA polymers.

In this study, biodegradable pHEMA-starch composites were synthesized by
emulsion polymerization using 2-hydroxyethyl methacrylate (HEMA) and different
ratios of starch. The pHEMA-starch composites were characterized by Fourier
transform infrared (FT-IR), thermal techniques (TGA, DSC, DTA), dynamic contact
angle, SEM and energy-dispersive X-ray analysis. L-ASNase was immobilized onto
pHEMA-starch composites. Then, activity and immobilization of L-ASNase on
pHEMA-starch composites were investigated with optimum temperature and pH,
kinetic parameters and storage stability.
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Materials and methods
Materials

L-ASNase (from E. coli), L-asparagine, bovine serum albumin (BSA), sodium
dodecyl sulfate were obtained from the Sigma-Aldrich Chemical Company (St.
Louis, USA) and used as received. 2-Hydroxyethyl methacrylate (HEMA),
phosphate-buffer solution (PBS) and acetone were obtained from Aldrich
(Switzerland) and stored at 4 °C until used. Starch and tris base were purchased
from Merck AG (Darmstadt, Germany). Trichloroacetic acid (TCA), potassium
persulfate (KPS), Nessler’s reagent was purchased Riedel-deHaen AG (Seelze,
Germany). All other chemicals of analytical grade were used as received.

Experimental

Infrared spectra of the pHEMA-starch composites were recorded on a Mattson 1000
model Fourier transform infrared (FT-IR) spectrometer by dispersing the sample in
KBr pellets. These pellets were analyzed for transmittance in the range of
4000-400 cm™"'. The thermal stability of pHEMA-starch composites was deter-
mined by a thermogravimetric analyzer (TGA-50, Shimadzu) with a heating rate of
10 K min~" in dry air. The sample weight was 10 mg. The differential thermal
analysis (DTA) curves of PHEMA-starch composites were investigated using
differential thermal analysis (Shimadzu DTA-50) with a heating rate of 10 K min ™"
in dry air. The sample weight was 5 mg. The glass transition temperature (Tg) of
pHEMA-starch composites was determined by differential scanning calorimeter
(Shimadzu DSC-60).

Surface structure, porosity type and morphology of the prepared pHEMA-starch
composites were observed by scanning electron microscopy (SEM). The SEM
images were acquired on LEO Evo-40 VPX scanning electron microscope in the
secondary electron imaging mode. Emission current was 10 pA, accelerating
voltage was 2 kV, and the working distance was 3 mm for the analysis. Carbon tape
(Spectro tabs, 12 mm O.D.) attached to the aluminum specimen stubs was used for
the sample preparation; pressured air was applied to remove the loosely attached
particles. Chemical composition analysis by EDX was performed with an EDX;
Ronteck Xflash detector analyzer is associated to a scanning electron microscope
(SEM, Leo-Evo 40xVP). Incident electron beam energies from 3 to 30 keV have
been utilized. In all cases, the beam was at normal incidence to the sample surface
and the measurement time was 100 s. All the EDX spectra were corrected using the
ZAF correction, which takes into account the influence of the matrix material on the
obtained spectra.

Water contact angles were measured with an SEO Phoenix 300. The activity of
free and immobilized enzyme was determined spectrophotometrically using
Shimadzu UV-Visible 1601 at 480 nm.
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Synthesis of pHEMA

The pHEMA was synthesized by emulsion polymerization method of 2-hydrox-
yethylmethacrylate monomer [25]. 2-Hydroxyethylmethacrylate (HEMA, 10 mL)
and surfactant sodium dodecyl sulfate (SDS, 0.04 g) were added into 100-mL Schlenk
flask and stirred for 30 min with a magnetic stirrer. An aqueous solution of potassium
persulfate (KPS, 0.5 g) was subsequently added to the medium. Then, the mixture was
heated to 80 °C in a water bath with a magnetic stirrer. The polymerization was
maintained for 3—4 h at 80-90 °C. After cooling the mixture at room temperature, the
pHEMA hydrogel was obtained and the polymer was gathered by filtration, washed
several times with acetone/water (90:10, v/v) to remove any unreacted monomer and
dried in a vacuum oven (yield was about 90 %).

Synthesis of pHEMA -starch composites

HEMA and crosslinker starch with various ratios were added into 100 mL of water
containing 0.04 g of SDS and stirred for 30 min with a magnetic stirrer. An
aqueous solution of KPS (0.5 g) was subsequently added to the medium. The
solution was placed in a 100-mL flask and the solution temperature was heated in a
water bath with a magnetic stirrer heating until 80 °C. The polymerization was
maintained for 3—4 h at 80-90 °C, after which the pHEMA-starch composites
were obtained. Four different batches of composites were prepared using four
different starch concentrations (1, 3, 5 and 10 %), respectively. The particles were
denoted as pHEMA-S-1 %, pHEMA-S-3 %, pHEMA-S-5 %, and pHEMA-S-
10 %, respectively.

Biodegradation assay of pHEMA-starch composites

Biodegradation medium was prepared in 50 mM phosphate-buffer solution of pH
7.4.0.1 g of samples was weighed and each sample was placed in an individual vial
containing 10 ml PBS, and incubated at 37 °C. Three samples of each formulation
were removed from buffer after 1, 2 and 4 weeks. After washing samples with
distilled water and drying under vacuum at room temperature for 2 days, samples

were reweighed to determine the weight loss percent using the following formula:
Mo

Weight loss (%) = (mo — m—d) x 100 where m, and mq4 are the masses of hydrogel

and composites before and after biodegradation.
Immobilization of L-ASNase enzyme on pHEMA -starch composites

Pure pHEMA and composite samples (0.1 g) were put into Eppendorf tubes,
respectively. 100 IU of L-asparaginase was diluted with 0.75 mL distilled water and
the diluted solution was added into tubes. The samples were stirred for 30 min with
orbital shaker at 4 °C and then, the samples were centrifuged for 5 min at 5000 rpm.
After centrifugation, unbound L-ASPNase was removed by washing the solid with
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distilled water. Then, samples were dried in a vacuum oven at 35 °C. Determination
of enzyme activity taking 5 mg of dried sample was performed.

Determination of L-asparaginase activity

The activity analysis for both free and immobilized L-ASNase was performed
according to Mashburn and Wriston method [26]. This method is based on the
measurement of released ammonia during catalysis of L-asparagine. The reaction
mixture, consisting of 1 mL of 10 mM L-asparagine (prepared with 0.05 M Tris—
HCI pH 8.6) and 5 mg of samples, was incubated for 30 min at 37 °C then
centrifuged to separate the samples from the solution. The reaction was stopped by
the addition of 0.1 mL of 1.5 M trichloroacetic acid solution and the mixture
(0.25 ml of the samples, 0.5 ml of distilled water and 0.25 mL of Nessler’s reagent)
was kept at room temperature for 10 min. L-ASNase assays were measured using a
UV-visible spectrophotometer at 480 nm. The activity values of samples were
average values of three-repeated measurements. One unit of the L-asparaginase (IU)
is defined as that amount of enzyme capable of producing 1 pmol of ammonia per
minute at 37 °C. The ammonia concentration produced in the reaction was
determined on the basis of a standard curve.

Determination of optimum parameters for the immobilized L-ASNase

The pure polymer and composite structure corresponding immobilized enzyme
activity values are given in Table 1. Owing to its hydrophilic nature, biodegradation
and high enzyme activity, pHEMA-S-5 % composite was chosen as optimum model
matrix for immobilization. pHEMA-S-5 % composite was used for optimization of
immobilization parameters. The highest activity was expressed as 100 % and all
activity values were given in comparison to 100 %.

Determination of the optimal pH for the immobilized L-ASNase

To determination effect of pH on free and immobilized enzyme activity, the
activities of free and immobilized L-ASNase were determined at different pH
values. Two buffer systems, including sodium citrate buffer (0.1 M, pH 4.0-6.0),
Tris—HCI buffer (0.1 M, pH 7.0-10.0), were used for measuring the optimum pH of
enzyme activity. The highest activity was expressed as 100 % and all activity values
were given in comparison to 100 %.

Table 1 Relative enzyme

activities of immobilized Sample Relative activity (%)
PHEMA sareh conpories . PHEMA 0.1

pHEMA-S-1 % 100

pHEMA-S-3 % 97.4

pHEMA-S-5 % 92.4

pHEMA-S-10 % 93.6
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Determination of the optimal temperature for the immobilized L.-ASNase

To determine the effect of temperature on free and immobilized enzyme activity,
the activities of free and immobilized enzymes are examined by altering the reaction
temperatures involved, 25, 30, 35, 40, 45, 50, 55, and 60 °C at pH 8.6. The highest
activity was expressed as 100 % and all activity values were given in comparison to
100 %.

Calculation of K,,,, Vi,ax, and protein estimation of the immobilized
L-ASNase

K., and V.« values for both free and immobilized enzymes were calculated by
representing the enzyme activity values at different L-asparagine concentrations
(0.1-50 mM) in a Lineweaver—Burk equation. Protein concentration was estimated
with Bradford method using bovine serum albumin as a standard [27].

Storage stability of immobilized L-ASNase

To determine the storage stability of both free and immobilized enzyme, it was
incubated at 4 °C and room temperature for 15 days. Depending to time, changes in
the activity of free and immobilized enzymes (5 mg samples) were measured as
described in “Materials and methods”.

Results and discussion

Enzymatic catalysis has been pursued extensively in a wide range of important
biochemical and biotechnology processes for their unparalleled selectivity, and mild
reaction conditions [28-30]. However, enzymes are usually costly and easy to
inactivate in their free forms. Immobilization is the key to optimizing the in-service
performance of an enzyme in biotechnology processes. In recent years, considerable
efforts have been put into the studies of using polymer particles for enzyme
immobilization [31, 32]. Still, polymers are not sufficiently biocompatible for high
enzymatic activity. In particular, many polymers are also not hydrophilic for
biomedical applications in body. Thus, in this study, to improve the biodegradability,
biocompatibility and enzyme immobilization properties of the pHEMA, the starch as a
more hydrophilic natural reinforcement material, was used. The chemical structure,
thermal stability and the morphology of the prepared starch reinforcement composites
were investigated and the L-ASNase immobilization properties have been examined.

Characterization of pHEMA and pHEMA -starch composites
pHEMA-starch composites were synthesized by emulsion polymerization in the
presence of HEMA and different ratios of starch (1, 3, 5 and 10 %). The FT-IR

spectra obtained for pHEMA and pHEMA-starch composites are shown in Fig. 1.
The —OH stretching vibration band was observed at 3438 cm ™' and the asymmetric
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Fig. 1 FT-IR spectra of pure pHEMA and pHEMA-starch composites

CH, stretching was confirmed at 2960 cm™'. The ester stretching band of the
carboxyl group (C=0) was observed at 1727 cm™'; the characteristic absorption
band of C—O—C was observed at 1276 cm™'; the asymmetric stretching vibration of
C-O was observed at 1161 cm™!; the distortion vibration bands of methyl and
methylene were observed at 1454, 947 cm_l, respectively [33, 34]. The charac-
teristic absorption band of the vinyl group was not observed, which indicated that
the HEMA monomer was successfully converted to the pHEMA polymer through
the emulsion polymerization reaction. Compared to the pure pHEMA polymer,
infrared spectra of the pHEMA-starch composites are similar to pure pHEMA. This
is a typical characteristic absorption band of -OH in the starch unit, whose relative
intensity increased along with the starch amount.

A differential scanning calorimeter (DSC) was used to study the thermal behavior
of the pure pHEMA and pHEMA-starch composites. A thermogravimetric analyzer
(TGA) and differential thermal analyzer (DTA) were also used to determine the
thermal stability of the pure pHEMA and pHEMA-starch composites in the
20-800 °C range.

Thermal stabilities of the synthesized pHEMA and pHEMA-starch composites
were determined by thermogravimetric analysis (TGA) (Fig. 2). Two distinct mass
loss peaks can be seen in Fig. 2. The initial weight loss up to 120 °C is attributed to
the moisture retained in the sample. The decomposition temperatures of pure
pHEMA are in the range of 220400 °C. However, because the thermal stability of
the starch is low, decomposition temperatures of pHEMA-starch composites are
shifting to even lower values. Especially, approximately 10 % mass loss in
pHEMA-S-10 % composites confirms the presence of starch in the structure of
pHEMA-starch composites at between 50 and 200 °C.
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Fig. 2 TGA thermograms of pure and pHEMA containing 4 different ratios starch
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Fig. 3 DTA thermograms of pure and pHEMA containing 4 different ratios starch
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DTA schematic representations of pHEMA and pHEMA-starch composites are
given in Fig. 3. In these thermograms, a decomposition peak of pHEMA is between
230 and 450 °C. Structures containing starch shows also two main decomposition
peaks. The first peak is degradation of starch in the structure; the second peak is a
decomposition peak of the polymeric structure. With increase in level of starch, first
main peak shifts to lower temperature value. This proves that the structure of starch
has entered.

All the samples were characterized via differential scanning calorimeter (DSC)
for the glass transition temperature (Tg). As seen in Fig. 4, this curve indicated that
Tg temperature of pure pHEMA is 111 °C [35]. With the structure of the starch,
these values increase. Tg values of the starch-containing structures are 119, 125,
149 and 165 °C, respectively. Because of hydrogen bonds between pHEMA and
starch, the chains are more stocked and the value of free volume decreases. With the
decrease of the value of the free volume, Tg values are shifting to higher values.

Presence of enzyme binding

L-ASNase was immobilized into pHEMA-starch composites by physical adsorption.
For confirming the presence of L-asparaginase in composite structure, FT-IR, SEM
and EDX techniques were used. The FT-IR spectra of pHEMA, pHEMA-S-5 %
composite and pHEMA-S-5 %-L-ASNase are shown in Fig. 5. In the FT-IR
spectrum of pHEMA-S-5 %-L-ASNase, the peak at 1638 cm™' confirmed the
formation of an amide bond. The C—O stretching band that appeared at 1322 cm ™"
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A pHEMA-S-1% 19 HMeeFe e
5 -
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Fig. 4 DSC thermograms of pure and pHEMA containing 4 different ratios starch
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Fig. 5 FT-IR spectra of pure, pHEMA, pHEMA-S-5 % and pHEMA-S-5 %-L-ASNase

came from the carboxylic acid group of L-asparaginase in the structure of enzyme
containing composite. The peak in this wavenumber of pHEMA-S-5 %-L-ASNase
is sharper than the peak of the pHEMA and pHEMA-S-5 % composite because of
the peptide bond formation in enzyme structure. In addition, peaks due to the
presence of characteristic groups in the enzyme structure appear in the spectrum.
The peak at 1553 cm™" is due to the NH bending modes and the band at 1401 cm ™"
is due to the CH, group (scissoring) attached to the amide linkage.

To investigate the influence of L-ASNase incorporated into the pHEMA-starch
composites on the morphology, pHEMA-S-5 % and pHEMA-S-5 %-L-ASNase
were examined by scanning electron microscopy. Figure 6 represents the typical
SEM images of pHEMA-S-5 % and pHEMA-S-5 %-L-ASNase with high and low
magnification. It has been reported that the morphology of pHEMA-S-5 %-L-
ASNase is found to be very fragmental in shape.

EDX spectra of the pHEMA-S-5 % and pHEMA-S-5 %-L-ASNase were
collected and compared to control the content of enzyme in the polymeric matrix
(Fig. 7). The presence of N and S can be clearly seen from the EDX spectra of
pHEMA-S-5 %-L-ASNase. Thus, the EDX analysis confirmed that L-ASNase was
successfully incorporated into pHEMA-starch composites structure.

Contact angle measurements of pHEMA -starch
Using a Wilhelmy plate technique, water contact angle data of the pHEMA and

pHEMA-starch composite surfaces are reported in Table 2. We measured three
times for each samples and calculated average of three measurements. Water
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Fig. 6 SEM image of pHEMA-S-5 % and pHEMA-S-5 %-L-ASNase (a low and ¢ high magnification of
pHEMA-S-5 %, b low and d high magnification of pHEMA-S-5 %-L-ASNase)

contact angles for pHEMA in the literature described 69° [36]. As seen from the
Table 2, we found that the contact angle for pHEMA is consistent with the
literature. Depending on the levels of starch, the contact angle of composites was
changed from 68° to 38°. The increasing level of the starch generated an increase of
the hydrophilicity of composites. These results also prove that increase in the starch
ratio can be benefit for more biodegradable pHEMA.

Biodegradation of pHEMA -starch

The biodegradation of pHEMA-starch composites were compared with pure
pHEMA in a study for 1 month during interval of 1, 2 and 4 weeks. Degradation
results are shown by calculating percentage weight loss in Fig. 8. pHEMA-S
composites were observed to be biodegradable and weight loss of pHEMA-S
composites were in the range of 14-22 % for 4 weeks. Generally, the weight loss of
composites increased as parallel with starch content of pHEMA-S. Especially,
weight loss of pHEMA-S-5 % and pHEMA-S-10 % was more than the others.
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of pHEMA-S-5 % and pHEMA-S-5 %-L-ASNase)

Table 2 The contact angles for

water on samples surfaces of the Sample Contact angle

Barch composies | PHEMA .
pHEMA-S-1 % 68.82
pHEMA-S-3 % 66.47
pHEMA-S-5 % 55.86
pHEMA-S-10 % 38.10

Effect of pH on the activity of immobilized L-ASNase

Due to the denaturation, effect of changes in pH on the enzyme structure becomes
important [37]. The effect of pH on the activity of free and immobilized L-ASNase
was determined in the pH range from 4.0 to 10.0. Figure 9 reveals that the
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Fig. 8 Biodegradation of pure
pHEMA and pHEMA-starch
composites. Each value is the 30
average of triplicate experiments
with error bars indicating
STDEVs(G,,_1)
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maximum relative enzymatic activity of both free and immobilized enzyme was
optimal in pH 8.5. For L-ASNase, the optimum pH values of free and immobilized
L-ASNase are reported in the literature to be between 8.5 and 9.0 [38, 39].
Literature shows that after immobilization, the optimal range of pH value had no
evident changes in comparison with free enzyme [4, 39]. After pH 8.5, the activity
of the free enzyme falls considerably in comparison to that of the immobilized
enzyme. However, immobilized enzymes maintained significant activity, even at pH
10.0. Immobilized L-ASNase showed resistance to the alkaline changes in medium
as compared to the free enzyme. These results clearly demonstrated advantages and
importance of enzyme immobilization.

Effect of temperature on immobilized L-ASNase
The thermal stabilities of the free and the immobilized L-ASNase were carried out

by measuring the residual activity of the enzyme exposed to eight different
temperatures (25-60 °C) in Tris—HCI buffer (50 mM, pH 8.6) for 30 min (Fig. 10).
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Fig. 10 Effect of temperature 120 ~
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Table 3 Kinetic parameters of the free enzyme and immobilized enzyme

Enzyme type Substrate K., (mM) Vinax (U/mg protein)
Free enzyme L-asparagine 1.58 £ 0.10 5882 £ 250.0
Immobilized enzyme L-asparagine 0.56 £ 0.13 3610 £ 175.1

Each value is the average of triplicate experiments

The optimum temperatures of the immobilized and free L-ASNase were 50 and
45 °C, respectively. Increase in optimum temperature was caused by changing
physical and chemical properties of the immobilized enzyme. The immobilized
formation of enzyme reduces the conformational flexibility, resulting in higher
activation energy for the molecule to reorganize to a proper conformation for
substrate binding. While, the residual activity ratio of free L-ASNase was 30 % at
55 °C, this ratio was of 95 % for immobilized L-ASNase. The free L-ASNase
exactly lost activity at 60 °C. However, the residual activity of immobilized
L-ASNase was still at 51 % at 60 °C. Finally, these results indicated the advantage
of immobilization on pHEMA-S composite against high temperature.

Calculation of K, and V,,,, of immobilized L-ASNase

Reaction kinetics was analyzed for free and immobilized L-ASNase in Tris—HCl
buffer, pH 8.6, at 37 °C using different concentrations of L-asparagine. The kinetic
parameters (K, and V,.,) of the free and immobilized L-ASNase are listed in
Table 3. K,,, and V,,,,, are the affinity of the enzyme for its substrate and maximum
enzyme activity, respectively. V,.x The values of K,,, and V,,,x were found as 0.56,
1.58 mM and 3610, 5882 U/mg of protein for the immobilized and free L-ASNase,
respectively. K, value of the immobilized L-ASNase on composites decreased
approximately 2.8-fold. As parallel, V,,,x value was also observed at 1.6-fold
decrease. In general, K, value of immobilized enzyme is different from the free
enzyme due to diffusional limitations, steric effects and ionic strength [40]. In our
study, the decrease in K, value of immobilized enzyme proves that immobilized
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Fig. 11 Storage stability of free and immobilized enzyme incubated at 4 and 25 °C. Each value is the
average of triplicate experiments with error bars indicating STDEVs(c,,_1)

L-asparaginase—substrate interaction is the more suitable confirmation compared
with free L-asparaginase—substrate interaction.

Storage stability of immobilized L-ASNase

The storage stabilities of both free and immobilized L-ASNase were investigated at dry
condition at4 °C and room temperature, respectively. The results are shown in Fig. 11.
For 4 °C, the free and immobilized L-ASNase residual activities were obtained at above
80 and 60 % at the end of 15 days, respectively. The storage stability of L-asparaginase
was also determined at 25 °C. Generally, the free enzyme in solution easily lost activity
atroom temperature [41]. In 15-day storage period at 25 °C, the residual activity of the
free enzyme was completely lost after 7 days. However, immobilized L-ASNase
protected 22 % of initial activity during the 15-day period. Therefore, the immobiliza-
tion of L-asparaginase conferred extended storage life of the enzyme.

Conclusions

In the present work, L-ASNase was successfully immobilized onto biodegradable
pHEMA-starch composites matrix, which was prepared by emulsion polymerization
from 2-hydroxyethylmethacrylate and different ratios of starch in the presence of
potassium persulfate as an initiator. The pure pHEMA and pHEM A-starch composites
were characterized by Fourier transform infrared (FT-IR), thermal techniques (TGA,
DSC, DTA), dynamic contact angle, SEM and EDX analyses. L-ASNase, a
chemotherapeutic enzyme, was immobilized onto pHEMA-starch composites.
Optimum conditions for L-ASNase activity were not affected by immobilization of
L-ASNase. The optimum pH and temperature for free and immobilized enzyme were
found as 8.5 and 45-50 °C, respectively. However, immobilized L-ASNase was more
stable at high pH and temperatures. The kinetic parameters for free and immobilized
L-ASNase were also determined using the Lineweaver—Burk equation. The K,, values
were 1.58 and 0.56 mM for free and immobilized enzyme, respectively. The V.«
values were 5882 and 3610 U/mg of protein for free and immobilized enzyme,
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respectively. The pHEMA-starch composites as model matrix for enzyme immobi-
lization can provide more advantages both of biocompatibility and biodegradability in
comparison with pure pHEMA.
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