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Abstract Polypropylene (PP) was blended with ethylene–propylene–diene ter-

polymer (EPDM) and calcium carbonate nanoparticles (nano-CaCO3), where all the

components were in different initial mixing states, i.e., all in solid (solid blending

composite), nano-CaCO3 and EPDM first forming solid master batch, then being

mixed with solid PP (master batch blend composite) and all in melt (melt blending

composite). The phase morphology, especially the distribution of nano-CaCO3, and

mechanical properties of the resultant composites and their dependence on the

initial mixing states of the components were studied systematically. Morphological

observation revealed that essentially different from the respectively dispersed

morphology of nano-CaCO3 particles and EPDM phase in the PP matrix in the solid

blending composite, abundant well-dispersed nano-CaCO3 particles concentrating

around EPDM phase in the melt blending composite. Due to the cavitation initiated

by the debonding and the fibrillation present at interface as a result of well-dispersed

nano-CaCO3 particles, its impact strength was pronouncedly enhanced, increasing

280 % compared to PP/EPDM composite. Our work paves the way to obtain high-

performance PP composites.
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Introduction

Toughening of polypropylene (PP) has attracted much attention because PP exhibits

very low impact toughness, especially at lower temperatures, which restricts its

extensive applications [1–4]. Many methods have been developed to toughen PP,

including copolymerizing propylene with other olefin monomers [5], blending PP

with rubber or thermoplastic elastomer [6], compounding PP with organic or

inorganic fillers (e.g., nanoparticles) [7, 8], introduction of b-nucleating agents

[9, 10] and even submicrometer voids [11]. Except for the very limited reports on

the simultaneous improvement of toughness and stiffness [11–14], the toughness of

the modified PP can be enhanced effectively [5–10], but the stiffness dramatically

drops dramatically drops compared to the pristine polymer.

The mechanical properties of the modified PP strongly depends on the

morphologies, such as the crystal structures, the distribution of the dispersed phase

or fillers, etc. For example, it has been well established that oriented crystals (i.e.,

shish-kebabs) can notably reinforce PP [15, 16], while b-form crystals of PP can

greatly increase its toughness [9, 10, 17, 18]. For elastomer toughening PP systems,

small particles take effect by shear yielding, whereas large particles are more

effective when multiple crazing dominates by means of energy absorption [19].

Though many reports focused on the relationship between the phase morphology

and mechanical properties of filled PP blends [20–23], it is still unclear. Yang et al.

[24] has discovered that the filler-network structure, wherein a large amount of SiO2

particles around ethylene–propylene–diene terpolymer (EPDM) particles and

pervading over the PP matrix, could bring a simultaneous enhancement of

toughness and modulus of PP. Ma and co-workers [25] have shown that both the

segregated dispersion state and core–shell structure, in which ethylene–octene

copolymer (POE) acted as the shell part encapsulating calcium carbonate

nanoparticles (nano-CaCO3), in the PP/POE/CaCO3 ternary composites could

significantly increase the notched impact toughness, in comparison with PP/POE

blend or neat PP; meanwhile, the stiffness and tensile strength were almost

unchanged or slightly enhanced. In contrast, many study reported that nanofillers do

not considerably improve the tensile mechanical properties of filled blends like the

elongation and stress at break. Moreover, the impact properties of the filled blends

are often reduced [26–29].

To achieve the balanced combination of mechanical properties, controlling the

phase morphology of the filled PP blends, and the distribution and dispersion of the

fillers, is feasible. It is well known that the final phase morphology of ternary

blend is determined not only by the thermodynamic factors (e.g., interfacial tension

[24, 30]), but also by the kinetic factors (e.g., shear stress and processing sequence).

Up to now, the influence of kinetic factor on the phase morphology and properties

for the filled PP blends has been researched extensively [31, 32], but few attention

has been paid to the effect of the initial mixing state of the compositions.

In our previous paper [33, 34], we have found that, the lateral injection extrusion

method can efficiently hinder the migration of the nano-CaCO3 particles from

EPDM phase to PP matrix, so that more nano-CaCO3 particles are retained in

EPDM phase or at the interface between EPDM phase and PP matrix, in comparison
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with other extrusion methods like direct extrusion and two-step extrusion. In other

words, lateral injection extrusion method gives rise to a special morphology in

ternary composite, where the nano-CaCO3 particles preferentially exist in EPDM

phase or at the interface between EPDM phase and PP matrix. It occurs to us what

effect such a special morphology will endow in the ternary composites, especially

the mechanical properties? In this paper, we report our efforts to reveal the influence

of the initial mixing state of the compositions, including solid, master and melt, on

the distribution of CaCO3 and mechanical properties for PP/EPDM/nano-CaCO3

composite. Furthermore, the relationship between the microstructure and toughness

of PP/EPDM/nano-CaCO3 composite was further investigated, on the basis of the

deformation mechanism during impact process.

Experimental section

Materials

Polypropylene (PP, T30S) was purchased from Lanzhou Petrochemical Company,

Ltd, China. It has a melt flow rate (MFR) of 2.6 g/10 min according to ASTM

D1238.79, and a density of 0.91 g/cm3 according to ASTM D1505-68. Ethylene–

propylene–diene terpolymer (EPDM) (Nordel 4725p) was purchased from Dupont

Dow Elastomers L.L.C., USA. It contains 70 % ethylene, 25 % propylene and

4.9 % ENB (ethylidene norbornene), with the Mw of 135,000 g/mol. Nano-CaCO3

particles (10–40 nm particle size) were obtained from Huaxin Nanomaterial Co.

Ltd, China. The nano-CaCO3 particles were treated by stearic acid by the

manufacturer.

Sample preparation

The blend of PP/EPDM (80 w/20 w) with various content of nano-CaCO3 (0, 4,

6 phr) were prepared. According to the mixing states of the components, the

blending process for the PP/EPDM/CaCO3 blend was distinguished into solid

blending, master batch blending and melt blending as shown in Scheme 1. Solid

blending was mixed all three solid materials together at the beginning of extruding.

In master batch blending, nano-CaCO3 particles were firstly dispersed in EPDM

using a mild blending method [35], then the product considered as master batch was

further blended with solid PP in twin-screw extruder. The melt blending was

completed via the innovative lateral injection extrusion, in which the melted master

batch mentioned above in a single screw extruder blended with melted PP in twin-

screw extruder via injecting into the twin-screw extruder from a lateral port at the

melting section of the twin-screw extruder (Scheme 1). The processing temperature

profiles in the twin-screw extruder were 170–200 �C from the hopper to die.

The extrudates were dried and then compression molded in a hot press (XLB,

Qingdao No. 3 Rubber Machine Company) at 10 MPa and 200 �C for 5 min, in

order to obtain standard tensile and Izod impact bars.
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Scanning electron microscopy (SEM)

The extruded samples were cryogenically fractured in liquid nitrogen perpendicular to

the flow direction. Then EPDM phase was preferentially etched in dimethylbenzene

and the etched samples were carefully washed several times using fresh dimethyl-

benzene and then with acetone. The samples were dried in air at room temperature for

24 h and then coated with a thin layer of gold. Finally, the morphology was observed

by a JSM-5900LV SEM at an accelerating voltage of 20 kV.

Transmission electron microscopy (TEM)

The morphologies of the ternary composites were characterized by transmission

electron microscopy (TEM). Ultrathin sections for TEM (FEI-Tecnai G2F20, USA)

were cut using a cryo-ultramicrotome equipped (Leica-EM FC6, German) with a

diamond knife. Samples were cooled below the glass transition of the polymer

during cutting, and a speed of 1 mm/s was used to cut 50- to 100-nm-thick sections.

Sections were then collected on 400-mesh copper grids, followed by staining with

osmium tetroxide (OsO4) to enhance contrast between the PP phase and EPDM

phase. TEM was performed on a Philips CM 200 operating at 200 kV and images

were recorded using a CCD camera.

Dynamic mechanical analysis (DMA)

The dynamic mechanical analysis was carried out with a TA Q800 DMA. All the

samples were measured in a stretching mode over the temperature range of -80 to

150 �C at a heating rate of 5 �C/min and at a frequency of 10 Hz. The samples were

cut from the compression-molded specimen and the dimension was 35 mm 9

10 mm 9 4.2 mm.

Scheme 1 Processing of the melt blending via the lateral injection extrusion for PP/EPDM/nano-CaCO3

composites
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Mechanical testing

The tensile modulus was performed at 23 �C according to ASTM D-638 at a cross-

head speed of 5 mm min-1. The notched impact test was carried out at 23 ± 2 �C

in an UJ-40 impact tester according to ASTM D256 on the standard sized

rectangular bars having a 45� V-notch (depth of 2 mm). A minimum of five

specimens were tested and the average result was reported.

Two-dimensional wide-angle X-ray diffraction (2D-WAXD)

To characterize the crystalline structure in the width direction, two-dimensional

wide-angle X-ray diffraction (2D-WAXD) was used. We started with a 10.0-mm

wide and 4.0-mm-thick dumbbell tensile bar and machined away all of the

tensile bar except for a 1.0-mm-thick piece (the 10.0 mm width remains

unchanged) in the middle of the thickness, as shown in Scheme 2. The position

of the sample obtained is located in the middle of the bar. The direction normal

to MD–TD (the molding direction–transverse direction) plane was defined as

ND. The X-ray beam with 1.0 mm width was perpendicular to the MD–TD

plane, focusing on the core layer of the specimen. The measurements were

carried on the synchrotron light source (wavelength k = 0.14809 nm) with the

MarCCD as the detector at National Synchrotron Radiation Laboratory, Hefei,

China. The scattered intensities were registered in the range of scattering angles

2h from 11� to 22.5�.

Scheme 2 Schematic diagram of the positions of the samples for WAXS measurement: MD the molding
direction (i.e., flow direction), TD the transverse direction, ND the direction normal to the MD–TD plane
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Results and discussion

Phase morphology

On the basis of the theories of interfacial tension and entropy penalty [24], CaCO3

particles are predicted to be selectively distributed in the PP phase in the PP/EPDM

blend, and this prediction is confirmed by TEM and SEM observations [32]. The

distribution of nano-CaCO3 varying with the initial mixing states is observed by the

SEM photographs of the PP/EPDM/CaCO3 composite shown in Fig. 1. Apparently,

PP is served as the continuous phase, while the spherical domains and the bright

smaller particles belong to EPDM phase and nano-CaCO3 particles, respectively. It

is seen that nano-CaCO3 particles and EPDM particles are separately distributed in

the PP matrix in the solid blending composites, where smooth no nanoparticles are

observed at the interface between PP and EPDM (Fig. 1a), similar to PP/EPDM

blend (Fig. 1d). Besides, in the solid blending composite there are large aggregates

of CaCO3 particles in PP phase, resembling PP/CaCO3 composite (Fig. 1e). In the

process of producing master batch composite, nano-CaCO3 particles are blended

with EPDM first, so that nano-CaCO3 particles were well dispersed in EPDM phase.

Compared to the solid blending composite, fewer nano-CaCO3 particles are

dispersed in PP phase, while more CaCO3 particles exist at the interface between PP

and EPDM in the master batch composite, as shown in Fig. 1b. Interestingly,

abundant CaCO3 particles are concentrated at the interface between EPDM and

matrix phase or around EPDM dispersed phase in the melt blending composites in

Fig. 1c. It is worth noting that the morphology of PP/EPDM/nano-CaCO3

composites with 4 phr nano-CaCO3 is similar and not shown here.

The diverse morphologies of the PP/EPDM/nano-CaCO3 composites are

attributed to the initial mixing state and migration of CaCO3 particles between

the two polymer components. In the solid blending composite, CaCO3 particles and

polymer pellets were compounded together. PP pellets were melted first, then the

CaCO3 particles were directly dispersed in the melt PP without migration;

meanwhile, the breaking up of EPDM droplets and the aggregating of CaCO3

particles occurred independently, thus large CaCO3 aggregates were formed in the

PP matrix. The sketch of the CaCO3 distribution in the PP/EPDM/nano-CaCO3

composite with the solid blending is shown in Fig. 2a. When EPDM/CaCO3 were

both present in master batch, CaCO3 particles were well dispersed in EPDM phase

firstly. The migration of CaCO3 from EPDM dispersed phase to PP matrix occurred

spontaneously in the later extrusion. The migration could be divided into two stages.

At first, CaCO3 particles migrated from EPDM phase to interface between two

polymers due to the breaking of EPDM droplets caused by shear during the

extrusion processing, and subsequently moved from the interface to matrix. It

implied that CaCO3 particles would reside at the interface for a certain period of

time because the EPDM molecules absorbed on the CaCO3 surface must desorb

progressively to be replaced by the PP chains, which prevented the coalescence of

EPDM droplets and the aggregation of CaCO3 particles. Therefore, well-dispersed

CaCO3 particles in the PP matrix were certainly formed as shown in Fig. 2b. During

the melt blending, CaCO3 particles were also first well dispersed in EPDM phase,
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and then the EPDM/nano-CaCO3 compounds melt was injected to the PP melt,

where the migration of nano-CaCO3 particles from the higher melt viscosity phase

(EPDM) to the lower melt viscosity phase (PP) occurred, which is believed to be

Fig. 1 The SEM photographs of PP/EPDM/nano-CaCO3 (80/20/6) composites with different initial
mixing states: a solid blending 980,000, b master batch blending 980,000, c melt blending 980,000, and
PP/EPDM 80/20, 920,000 (d), PP/CaCO3 80/6, 940,000 (e) as a comparison
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caused by the minimization of the dissipative energy [30]. When the EPDM melt

was just injected from lateral port to mix with the PP phase, the elastomer presented

instantaneous local high concentration which reduced the opportunity for collision

of CaCO3 particles and PP chains. With further mixing, the local concentration of

EPDM droplets became thin, then the locally continuous EPDM droplets broke up

to form the dispersed particles after further strong shear. Furthermore, there was

lack of time for the complete migration of CaCO3 particles from EPDM phase to the

PP phase. Therefore, considerable CaCO3 particles were reserved in/around the

EPDM phase, which is roughly depicted in Fig. 2c.

The microstructure of the melt blending composite was further characterized in

different magnification by TEM, as shown in Fig. 3. The light color region

represented PP matrix, and the gray domains and the dark particles were EPDM

dispersed phase and nano-CaCO3 particles, respectively. Clearly well-dispersed

CaCO3 particles concentrated around EPDM dispersed phase, and at the interface

between EPDM and PP phase in the melt blending composites. This special

morphology would bring some special properties to the melt blending composites,

which may be different from the composites in other initial mixing states.

Mechanical properties

Figure 4a displays the Young’s modulus of PP/EPDM/CaCO3 composites in

different initial mixing states. A slight enhancement in the Young’s modulus was

observed after the addition of CaCO3, whereas a significant drop in the Young’s

modulus was generally expected after mixing with EPDM, compared to pure PP.

For the solid blending composite and master batch blending composite, the

introduction of CaCO3 in the small concentration (4 phr) does not significantly alter

the stiffness of PP/EPDM blend, while a slight reduction was observed in blends

with the higher CaCO3 concentration (6 phr). The slight reduction in stiffness was

also observed in many other studies [13, 36]. The impact strength of PP was greatly

improved by blending with 20 wt% EPDM and was limitedly enhanced by only

adding nano-CaCO3. However, the impact strength of the ternary composites has

been gradually improved by the incorporation of nano-CaCO3 into PP/EPDM blend.

For the three initial mixing states of the components, the melt blending composites

endows the highest impact strength for both contents of nano-CaCO3 (4 and 6 phr),

i.e., 24.96 and 21.97 kJ/m2 for 4 and 6 phr, respectively, which is remarkably

Fig. 2 Sketch of the distribution of nano-CaCO3 and EPDM in PP with different initial mixing states:
a solid blending, b master batch blending, c melt blending
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improved by 280 and 234 %, compared to PP/EPDM blend. The impact strength of

the composites in master batch significantly surpasses that of the solid blending

composites by 55.8 and 80.7 % for 4 and 6 phr nano-CaCO3. Herein, it can be

concluded that the melt blending composite with 4 phr nano-CaCO3 achieved the

simultaneous improvement of the stiffness and impact toughness, compared to

PP/EPDM blend (Table 1).

Dynamic mechanical analysis

Figure 5 presents tand for PP/EPDM/nano-CaCO3 composites with various content

of nano-CaCO3. Two tand peaks corresponding to the glass transition temperatures

(Tg) of PP and EPDM can be observed. The glass transition temperatures and the

peak intensity of the blend are listed in Table 2. It is noted that the heating rate of

5 �C/min used here is faster than that in other studies [37, 38], which leads to higher

glass transition temperatures of PP and EPDM [39].

Fig. 3 TEM photographs showing the phase morphology appearing in the PP/EPDM/nano-CaCO3

(80/20/6) composite for melt blending: a 910,000, b 980,000

Fig. 4 The tensile modulus (a) and the impact strength (b) of PP/EPDM/nano-CaCO3 blends in different
initial mixing states of the compositions
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The Tg of EPDM in PP/EPDM (80/20) blend (-18.32 �C) decreases for almost

3 �C compared with that of pure EPDM (-15 �C) (Fig. 5c). However, all the

ternary composites with nano-CaCO3 promote the Tg of EPDM, which signifies the

influence of stiff nano-CaCO3. Among the ternary composites with 4 or 6 phr nano-

CaCO3 varies with the initial mixing states, the melt blending composites exhibit

the highest Tg of EPDM and the solid blending composites possess the lowest. The

Tg of EPDM in the solid blending composites with both contents is almost constant,

-18 �C, indicating that nano-CaCO3 particles are rarely dispersed in EPDM phase

[23, 40]. The further improved Tg of EPDM in the master batch blending

composites implies nano-CaCO3 particles are mainly present in the EPDM phase. In

Table 1 Different initial mixing states of the components for PP/EPDM/CaCO3 blend

Blending process Components

PP EPDM CaCO3

Solid blending Solid Solid Solid

Master batch blending Solid Master batch and solid

Melt blending Melt Master batch and melt

Fig. 5 Loss factor of PP/EPDM/nano-CaCO3 composites with various content of nano-CaCO3: a 80/20/4,
b 80/20/6, and of EPDM (c) as a comparison
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comparison to other composites, a greater shift of Tg of EPDM to a higher

temperature is observed for the melt blending composites, because more nano-

CaCO3 particles restraining the mobility of EPDM chains are almost dispersed in

EPDM phase or at the interphase between EPDM and PP phase [24]. These results

are in accordance with the aforementioned SEM observation. Li et al. [37] presented

similar results for the high-density polyethylene (HDPE)/scrap rubber powder

(SRP)/POE composite, where the encapsulation of the filler by elastomer led to a

higher Tg of elastomer than the separately dispersed type.

The Tg peaks of PP in the PP/EPDM/nano-CaCO3 composite in solid blending

are nearly the same as that in the PP/EPDM blend. While The Tg of PP for the other

two composites increase by about 3 �C on blending with 4 phr nano-CaCO3, but

basically remains unchanged on blending with 6 phr nano-CaCO3.

Correlation of the impact strength with dynamic mechanical properties

DMA has been proved to be a useful tool in estimating the fracture toughness of

polymer and its blends [38, 41]. IB, the relaxation intensity or viscoelastic energy

dissipation of the blends, can be calculated from the peak intensity by Eq. (1):

IB ¼ IP þ IE ð1Þ

where IP and IE are the intensity of tand peak of PP and EPDM component,

respectively. Figure 6 shows IB dependency of impact strength for PP/EPDM (80/

20)/nano-CaCO3 composite with different contents of nano-CaCO3. It can be found

that the impact strength of the PP/EPDM/nano-CaCO3 composites with the same

composition is proportional to IB of the blend, suggesting that the increase of

relaxation intensity or viscoelastic energy dissipation of the composites, is

accompanied by an increase of impact strength [42]. An increase in slope with the

increasing content of nano-CaCO3 was further exhibited for the PP/EPDM/nano-

CaCO3 composites, which is related to the degree of the increase for the impact

strength.

The area under the loss peak (A) is corresponding to total energy dissipation

because of viscoelastic relaxation of both PP and EPDM. Plots of impact strength

Table 2 Glass transition temperatures and peak intensity of PP/EPDM/nano-CaCO3 composites

PP/EPDM/CaCO3 Tg (EPDM) �C Tg (PP) �C IB 9 102 A

100/0/0 26.79

0/100/0 -15

80/20/0 -18.32 25.1 10.5

80/20/4 solid blending -17.99 24.21 11.3 5.58

Master batch blending -16.88 28.72 13.3 6.08

Melt blending -14.3 28.44 15.1 7.08

80/20/6 solid blending -18.71 26.03 9.7 4.63

Master batch blending -18.32 26.42 10.4 4.79

Melt blending -17.4 26.68 11.0 5.13
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versus A for the PP/EPDM/nano-CaCO3 composites in different initial mixing states

are shown in Fig. 7. From Fig. 7, it is seen that with the increase of A, the impact

strength also increases. A linear relationship between the impact strength and A was

also observed in PP/EPDM/nano-CaCO3 composites in different initial mixing

states. This suggests that the viscoelastic energy dissipation is quite significant in

the impact facture of these composites. A larger slope was observed for PP/EPDM/

nano-CaCO3 composite with 6 phr nano-CaCO3, compared to that with 4 phr nano-

CaCO3. Actually, the larger slope means the greater extent of enhancement for the

impact strength.

Toughing mechanism

Since the molecular orientation will play a role in determining the mechanical

properties, 2D-WAXS experiments were performed to inspect the orientation.

Figure 8 shows the selected 2D-WAXS patterns of PP/EPDM/nano-CaCO3 (80/20/6)

composites in different initial mixing states in core layer parallel to the melt shear

Fig. 6 IB dependency of impact strength for PP/EPDM (80/20)/nano-CaCO3 composites with different
content of nano-CaCO3: a 4 phr, b 6 phr

Fig. 7 A dependency of impact strength for PP/EPDM (80/20)/nano-CaCO3 composites with different
content nano-CaCO3: a 4 phr, b 6 phr
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flow direction. No distinct oriented structure is evident in any ternary composite in

different initial mixing states as well as in binary blend and pure PP. The effect of

molecular orientation on the mechanical properties [43] can be ignored in the

ternary composites. In other words, the enhanced mechanical properties for melt

blending composite are not ascribed to the orientation of PP in the composites.

In order to figure out the reason for the improvement of the mechanical

properties, SEM photographs of the impact-fractured surface of PP/EPDM/nano-

CaCO3 (80/20/6) composites in different initial mixing states were investigated in

Fig. 9. A typical brittle failure surface is present in PP (Fig. 9a). Many microvoids

and a relatively flat surface are observed in PP/EPDM blend (Fig. 9b) and the solid

blending composites (Fig. 9c), without any apparent plastic deformation. However,

abundant fibril globules in a range of 3.5–20 lm can be seen in the master batch

blending composites as white circles shown in Fig. 9d. Intriguingly, many larger

fibril globules as white circles shown in Fig. 9e and abundant cavities and elongated

microfibrils around the dispersed particles, and further obvious plastic deformation

in PP matrix were displayed in the melt blending composite (Fig. 9f). As is

extensively described in the literature, cavitation is an important energy dissipating

deformation way in the rubber-toughened thermoplastic materials [41, 44, 45].

Cavities can occur either by internal cavitation or debonding [46–48].

In Fig. 10, the small cavities in gray pointed out by arrows perhaps occurred by

internal cavitation of EPDM particles, which were insufficient in our system but

dominant in PLA/EBA-GMA/EMAA-Zn blend [45] and PA6/EPM-g-MA blend

[49]. However, the large cavities prevailed, which were initiated by the debonding

of EPDM particles from PP matrix at the interface. Therefore, interfacial debonding

was considered as the predominant toughening mechanism rather than internal

cavitation of the dispersed particles followed by the matrix plastic deformation. The

formation of microfibrils may be due to the interfacial activity of nano-CaCO3

concentrating around EPDM dispersed phase as a compatibilizer for PP/EPDM

blend, which increases adhesive strength between the dispersed and the matrix

phases [27]. It has been reported that, a suitable level of interfacial strength was

needed to achieve optimal impact toughness in polymer blends [50]. Low interfacial

adhesion easily caused premature interfacial failure and hence rapid and

catastrophic crack propagation, such as the debonding of rigid inorganic filler in

Fig. 8 Selected 2D-WAXS patterns of neat PP (a) and PP/EPDM/nano-CaCO3 composites in different
initial mixing states: b solid blending, c melt blending
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the CaCO3/nylon-6 blends with negligible interfacial adhesion [51], whereas very

strong adhesion was unfavorable for debonding and also delayed the occurrence of

matrix yielding [52]. Charoensirisomboon et al. [53] and Na et al. [54] put forward

that the toughness improvement was attributed to the fibrillation of dispersed

particles in PA/PSU and PA6/PVDF blends with suitable interfacial adhesion. And

this argument is somewhat consistent with the cold drawing concept presented in the

brittle organic particles toughened ductile polymers [55, 56]. Hence, the cavitation

initiated by the debonding of EPDM particles and the fibrillation due to suitable

interfacial adhesion could dissipate energy to a large extent and result in the

toughness enhancement for the melt blending composite.

A schematic deformation process for the melt blending composite during the

impact testing is explicitly described below. Owing to the different elastic properties

and the distinguishing Poisson’s ratio from the matrix, the EPDM particles first act

as stress concentration under load, and then are separated from the matrix at their

interphase. Resulting from the nano-CaCO3 dispersed in EPDM phase and at the

interphase between EPDM phase and matrix, EPDM particles have better

compatibility with the PP matrix. Therefore, the matrix is stretched to form fibrils

and abundant large cavities are formed at the interface between PP and EPDM phase

when the separation process occurs. Substantive energy can be absorbed during the

fibrillation process. In this case, nano-CaCO3 particles play two effective roles

Fig. 9 The SEM photographs of impact-fractured surface for PP/EPDM/CaCO3 (80/20/6) composites in
different initial mixing states: a PP 95,000, b PP/EPDM 80/20, 95,000, c solid blending 95,000,
d master batch blending 92,000, e melt blending 9400 and f melt blending 920,000
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during the impact fracture process: (1) act as an active compatibilizer [27]; (2)

decrease the interparticle distance and cause the overlapping of the stress field

between EPDM and nano-CaCO3 particles [24].

Conclusion

The phase morphology and mechanical properties of the PP/EPDM/nano-CaCO3

composites with different initial mixing states of the components (solid, master

batch and melt) were investigated. The nano-CaCO3 distribution in the ternary

composites was strongly influenced by the initial mixing states, which further

affected the mechanical performance of the ternary composites. When the mixing

components were all melted at the beginning of blending (melt blending composite),

abundant well-dispersed nano-CaCO3 particles concentrating around EPDM phase

were achieved, totally different from the solid blending composite with nano-

CaCO3 particles dispersing in the PP matrix. Therefore, the melt blending

composites maintained pronouncedly improved impact strength and higher dynamic

mechanical loss, compared with the other two composites. The morphological

observation on the impact-fractured surface suggested that the significantly

enhanced impact strength for melt blending composite was predominantly ascribed

to the cavitation initiated by the debonding and the fibrillation present at interface,

rather that the orientation of PP matrix.
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