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Abstract. It is shown that the hadron production in high
energy pp and pp̄ collisions, calculated by assuming that
particles originate in hadron gas fireballs at thermal and par-
tial chemical equilibrium, agrees very well with the data. The
temperature of the hadron gas fireballs, determined by fitting
hadron abundances, does not seem to depend on the centre
of mass energy, having a nearly constant value of about
170 MeV. This value is in agreement with that obtained in
e+e−collisions and supports a universal hadronization mech-
anism in all kinds of reactions consisting in a parton-hadron
transition at critical values of temperature and pressure.

1 Introduction

The thermodynamic approach to hadron production in
hadronic collisions was originally introduced by Hagedorn
[1] about thirty years ago. The most important phenomeno-
logical indication of thermal multihadron production in high
energy reactions was found in the universal slope of the

transverse mass (i.e. mT =
√
p2
T + m2) spectra [2], where

transverse means orthogonal to the beam line. This kind of
signature of a hadron gas formation is nowadays extensively
used in heavy ions reactions, although it has been realized
that transverse collective motion of the hadron gas may sig-
nificantly distort the basic thermal mT -spectrum [3], thus
complicating the extraction of the temperature. A much bet-
ter probe of the existence of locally thermalized sources in
hadronic collisions is the overall production rate of individ-
ual hadron species which, being a Lorentz-invariant quan-
tity, is not affected by local collective motions of the hadron
gas. However, the analysis of hadron production rates with
the thermodynamical ansatz implies that inter-species chem-
ical equilibrium is attained, which is a much tighter require-
ment than that of thermal-kinetic intra-species equilibrium
assumed in the analysis of mT spectra [4]. Chemical equi-
librium thus usually implies also thermal kinetic equilibrium.
For this reason we focus our attention in this paper on the

� supported in part by BMBF, DFG, and GSI

analysis of hadron abundances and the question of chemi-
cal equilibrium, leaving the analysis of mT -spectra (with its
possible complications due to collective dynamical effects)
to a separate publication.

The smallness of the collision systems studied here re-
quires appropriate theoretical tools: in order to properly
compare theoretical predicted multiplicities to experimental
ones, the use of statistical mechanics in its canonical form is
mandatory, that means exact quantum numbers conservation
is required, unlike in the grand-canonical formalism [5]. It
will be shown indeed that particle average particle multi-
plicities in small systems are heavily affected by conserva-
tion laws well beyond what the use of chemical potentials
predicts (this was previously observed in a similar canoni-
cal thermodynamic analysis of pp̄ annihilation at rest [6]).
However, in the high multiplicity (or large volume) limit the
grand-canonical formalism recovers its validity. This paper
generalizes the thermodynamical model introduced in [7] for
e+e−collisions by releasing some assumptions which were
made there; calculations are performed with a larger symme-
try group (actually by also taking into account the conser-
vation of the electric charge). Moreover, formulae of global
correlations between different particles species are provided,
and a comparison with data is made in this regard as well.

2 The model

In [7, 8] a thermodynamical model of hadron production
in e+e−collisions was developed on the basis of the fol-
lowing assumption: the hadronic jets observed in the final
state of a e+e− → qq̄ event must be identified with hadron
gas phases having a collective motion. This identification is
valid at the decoupling time, when hadrons stop interact-
ing after their formation and (possibly) a short expansion
(freeze-out). Throughout this paper we will refer to such
hadron gas phases with a collective motion as fireballs, fol-
lowing [1, 2]. Since most events in a e+e− → qq̄ reaction are
two-jet events, it was assumed that two fireballs are formed
and that their internal properties, namely quantum numbers,
are related to those of the corresponding primary quarks.
In the so-called correlated jet scheme correlations between
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the quantum numbers of the two fireballs were allowed be-
yond the simple correspondance between the fireball and the
parent quark quantum numbers. This scheme turned out to
be in better agreement with the data than a correlation-free
scheme [7].

The more complicated structure of a hadronic colli-
sion does not allow a straightforward extension of this
model. If the assumption of hadron gas fireballs is main-
tained, the possibility of an arbitrary number of fireballs
with an arbitrary configuration of quantum numbers should
be taken into account [9]. To be specific, let us define a vec-
tor Q = (Q,N, S,C,B) with integer components equal to
the electric charge, baryon number, strangeness, charm and
beauty respectively. We assume that the final state of a pp
or a pp̄ interaction consists of a set of N fireballs, each with
its own four-vector βi = ui/Ti, where Ti is the tempera-
ture and ui = (γi,βiγi) is the four-velocity [10], quantum
numbers Q0

i and volume in the rest frame Vi. The quantum
vectors Q0

i must fulfill the overall conservation constraint∑N
i=1Q

0
i = Q0 where Q0 is the vector of the initial quan-

tum numbers, that is Q0 = (2, 2, 0, 0, 0) in a pp collision and
Q0 = (0, 0, 0, 0, 0) in a pp̄ collision.

The invariant partition function of a single fireball is, by
definition:

Zi(Q0
i ) =

∑
states

e−βi·PiδQi,Q0
i
, (1)

where Pi is its total four-momentum. The factor δQi,Q0
i

is

the usual Kronecker tensor, which forces the sum to be per-
formed only over the fireball states whose quantum numbers
Qi are equal to the particular set Q0

i . It is worth emphasiz-
ing that this partition function corresponds to the canonical
ensemble of statistical mechanics since only the states fulfill-
ing a fixed chemical requirement, as expressed by the factor
δQi,Q0

i
, are involved in the sum (1).

By using the integral representation of δQi,Q0
i
:

δQi,Q0
i

=
1

(2π)5

∫ 2π

0

∫ 2π

0

∫ 2π

0

∫ 2π

0

∫ 2π

0

d5φ e i (Q0
i−Qi)·φ , (2)

Equation (1) becomes:

Zi(Q0
i ) =

∑
states

1

(2π)5

∫ 2π

0

. . .

∫ 2π

0

d5φ e−βi·Pie i (Q0
i−Qi)·φ. (3)

This equation could also have been derived from the gen-
eral expression of partition function of systems with internal
symmetry [11, 12] by requiring a U(1)5 symmetry group,
each U(1) corresponding to a conserved quantum number;
that was the procedure taken in [7].

The sum over states in (3) can be worked out quite
straightforwardly for a hadron gas of NB boson species
and NF fermion species. A state is specified by a set of
occupation numbers {nj,k} for each phase space cell k
and for each particle species j. Since Pi =

∑
j,k pknj,k

and Qi =
∑

j,k qjnj,k, where qj = (Qj , Nj , Sj , Cj , Bj) is

the quantum numbers vector associated to the jth particle
species, the partition function (3) reads, after summing over
states:

Zi(Q0
i ) =

1

(2π)5

∫
d5φ e iQ0

i·φ

× exp[

NB∑
j=1

∑
k

log (1 − e−βi·pk−iqj ·φ)−1

+

NF∑
j=1

∑
k

log (1 + e−β·pk−iqj ·φ)] . (4)

The last expression of the partition function is manifestly
Lorentz-invariant because the sum over phase space is a
Lorentz-invariant operation which can be performed in any
frame. The most suitable one is the fireball rest frame, where
the four-vector βi reduces to:

βi = (
1

Ti
, 0, 0, 0) (5)

Ti being the temperature of the fireball. Moreover, the sum
over phase space cells in (4) can be turned into an integration
over momentum space going to the continuum limit:

∑
k

−→ (2Jj + 1)
V

(2π)3

∫
d3p , (6)

where V is the fireball volume and Jj the spin of the jth

hadron. As in previous studies on e+e−collisions [7] and
heavy ions collisions [13], we supplement the ordinary sta-
tistical mechanics formalism with a strangeness suppression
factor γs accounting for a partial strangeness phase space
saturation1; actually the Boltzmann factor e−β·pk of any
hadron species containing s strange valence quarks or anti-
quarks is multiplied by γs

s . With the transformation (6) and
choosing the fireball rest frame to perform the integration,
the sum over phase space in (4) becomes:∑
k

log (1 ± γsj
s e−βi·pk−iqj ·φ)±1 −→

(2Jj + 1)Vi

(2π)3

∫
d3p log (1 ± γsj

s e
−
√

p2+m2
j
/Ti−iqj ·φ)±1

≡ Vi Fj(Ti, γs,φ) , (7)

where the upper sign is for fermions, the lower for bosons
and Vi is the fireball volume in its rest frame; the function
Fj(Ti, γs,φ) is a shorthand notation of the momentum inte-
gral in (7). Hence, the partition function (4) can be written:

Zi(Q0
i ) =

1

(2π)5

∫
d5φ e iQ0

i·φ exp [Vi

∑
j

Fj(Ti, γs,φ)]. (8)

The mean number 〈nj〉i of the jth particle species in the

ith fireball can be derived from Z(Q0
i ) by multiplying the

Boltzmann factor exp (−
√
p2 + m2

j/T ), in the function Fj

in (8) by a fictitious fugacity λj and taking the derivative of

logZi(Q0
i , λj) with respect to λj at λj = 1:

〈nj〉i =
∂

∂λj
logZi(Q0

i , λj)
∣∣∣
λj=1

. (9)

1 Possible charm and beauty suppression parameters γc and γb are un-
observable, see also Appendix C
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The partition function Zi(Qi, λj) supplemented with the λj

factor is still a Lorentz-invariant quantity and so is the mean
number 〈nj〉i. From a more physical point of view, this
means that the average multiplicity of any hadron does not
depend on fireball collective motion, unlike its mean number
in a particular momentum state.

The overall average multiplicity of the jth hadron, for
a set of N fireballs in a certain quantum configuration
{Q0

1, . . . ,Q0
N} is the sum of all mean numbers of that hadron

in each fireball:

〈nj〉 =

N∑
i=1

∂

∂λj
logZi(Q0

i , λj)
∣∣∣
λj=1

=
∂

∂λj
log

N∏
i=1

Zi(Q0
i , λj)

∣∣∣
λj=1

. (10)

In general, as the quantum number configurations may fluc-
tuate, hadron production should be further averaged over
all possible fireballs configurations Q0

1, . . . ,Q0
N fulfilling

the constraint
∑N

i=1Q0
i = Q0. To this end, suitable weights

w(Q0
1, . . . ,Q0

N ), representing the probability of configura-
tion {Q0

1, . . . ,Q0
N} to occur for a set of N fireballs, must

be introduced. Basic features of those weights are:

w(Q0
1, . . . ,Q0

N ) = 0 if

N∑
i=1

Q0
i /= Q0 ,

∑
Q0

1
,...,Q0

N

w(Q0
1, . . . ,Q0

N ) = 1 . (11)

For the overall average multiplicity of hadron j we get:

〈〈nj〉〉 =

=
∑

Q0
1
,...,Q0

N

w(Q0
1, . . . ,Q0

N )
∂

∂λj
log

N∏
i=1

Zi(Q0
i , λj)

∣∣∣
λj=1

. (12)

There are infinitely many possible choices of the weights
w(Q0

1, . . . ,Q0
N ), all of them equally legitimate. However,

one of them is the most pertinent from the statistical me-
chanics point of view, namely:

w(Q0
1, . . . ,Q0

N ) =
δΣiQ0

i
,Q0

∏N
i=1 Zi(Q0

i )∑
Q0

1
,...,Q0

N
δΣiQ0

i
,Q0

∏N
i=1 Zi(Q0

i )
. (13)

It can be shown indeed that this choice corresponds to the
minimal deviation from statistical equilibrium of the system
as a whole. In fact, putting weights (13) in (12), one obtains:

〈〈nj〉〉 =
∂

∂λj
log

∑
Q0

1
,...,Q0

N

δΣiQ0
i
,Q0

N∏
i=1

Zi(Q0
i , λj)

∣∣∣
λj=1

. (14)

This means that the average multiplicity of any hadron can
be derived from the following function of Q0:

Z(Q0) =
∑

Q0
1
,...,Q0

N

δΣiQ0
i
,Q0

N∏
i=1

Zi(Q0
i ) , (15)

with the same recipe given for a single fireball in (9). By
using expression (1) for the partition functions Zi(Q0

i ), (15)
becomes:

Z(Q0) =
∑

Q0
1
,...,Q0

N

δΣiQ0
i
,Q0

N∏
i=1

∑
statesi

e−βi·PiδQ0
i
,Qi

. (16)

Since∑
Q0

1
,...,Q0

N

δΣiQ0
i
,Q0 δQ0

i
,Qi

= δΣiQi,Q0 , (17)

the function (16) can be written as

Z(Q0) =
∑

states1

. . .
∑

statesN

e−β1·P1 . . . e−βN ·PN δΣiQi,Q0 . (18)

This expression demonstrates that Z(Q0) may be properly
called the global partition function of a system split into N
subsystems which are in mutual chemical equilibrium but
not in mutual thermal and mechanical equilibrium. Indeed
it is a Lorentz-invariant quantity and, in case of complete
equilibrium, i.e. β1 = β2 = . . . = βN ≡ β, it would reduce
to:

Z(Q0) =
∑

states1

. . .
∑

statesN

e−β·(P1+...·PN )δΣiQi,Q0

=
∑
states

e−β·P δQ,Q0 , (19)

which is the basic definition of the partition function.
To summarize, the choice of weights (13) allows the

construction of a system which is out of equilibrium only
by virtue of its subdivision into several parts having different
temperatures and velocities. Another very important conse-
quence of that choice is the following: if we assume that the
freeze-out temperature of the various fireballs is constant,
that is T1 = . . . = TN ≡ T , and that the strangeness sup-
pression factor γs is constant too, then the global partition
function (18) has the following expression:

Z(Q0) =
1

(2π)5

∫
d5φ e iQ0·φ exp [(ΣiVi)

∑
j

Fj(T, γs,φ)].

(20)

Here the Vi’s are the fireball volumes in their own rest
frames; a proof of (20) [8] is given in Appendix A. Equa-
tion (20) demonstrates that the global partition function has
the same functional form (3), (4), (8) as the partition func-
tion of a single fireball, once the volume Vi is replaced by

the global volume V ≡ ∑N
i=1 Vi. Note that the global vol-

ume absorbs any dependence of the global partition function
(20) on the number of fireballs N . Thus, possible variations
of the number N and the size Vi of fireballs on an event
by event basis can be turned into fluctuations of the global
volume. In the remainder of this Section and in Sects. 3, 4
we will ignore these fluctuations; in Sect. 5 it will be shown
that they do not affect any of the following results on the
average hadron multiplicities.
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Fig. 1. Behaviour of the global partition function Z as a function of electric
charge, baryon number and strangeness, keeping all remaining quantum
numbers set to zero, for T = 170 MeV, V = 20 fm3 and γs = 0.5

The average multiplicity of the jth hadron can be de-
termined with the formulae (14)–(15), by using expression
(20) for the function Z(Q0):

〈〈nj〉〉 =
1

(2π)5

∫
d5φ e iQ0·φ exp[V

∑
j

Fj(T, γs,φ)]

× (2Jj + 1)V

(2π)3

∫
d3p

γ
−sj
s exp (

√
p2 + m2

j/T + iqj · φ) ± 1
,

(21)

where the upper sign is for fermions and the lower for
bosons. This formula can be written in a more compact form
as a series:

〈〈nj〉〉 =

∞∑
n=1

(∓1)n+1 γnsj
s zj(n)

Z(Q0 − nqj)

Z(Q0)
, (22)

where the functions zj(n) are defined as:

zj(n)≡ (2Jj + 1)
V

(2π)3

∫
d3p exp (−n

√
p2 + m2

j/T )

= (2Jj + 1)
V T

2π2n
m2

j K2(
nmj

T
) . (23)

K2 is the McDonald function of order 2. Equation (22) is
the final expression for the average multiplicity of hadrons
at freeze-out. Accordingly, the production rate of a hadron
species depends only on its spin, mass, quantum numbers
and strange quark content.

The chemical factors Z(Q0 − nqj)/Z(Q0) in (22) are
a typical feature of the canonical approach due to the re-
quirement of exact conservation of the initial set of quan-
tum numbers. These factors suppress or enhance produc-
tion of particles according to the vicinity of their quan-
tum numbers to the initial Q0 vector. The behaviour of
Z(Q) as a function of electric charge, baryon number and
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Fig. 2. Behaviour of the non-strange baryon chemical factor
Z(0, 1, 0, 0, 0)/Z(0, 0, 0, 0, 0) as a function of volume for different val-
ues of the temperature and a fixed value γs = 0.5 for the strangeness
suppression parameter

strangeness for suitable T , V and γs values is shown in
Fig. 1; for instance, it is evident that the baryon chemi-
cal factors Z(0, N, 0, 0, 0)/Z(0, 0, 0, 0, 0) connected with an
initially neutral system play a major role in determining
the baryon multiplicities. The ultimate physical reason of
“charged” particle (qj /= 0) suppression with respect to “neu-

tral” ones (qj = 0), in a completely neutral system (Q0 = 0),
is the necessity, once a “charged” particle is created, of a
simultaneous creation of an anti-charged particle in order to
fulfill the conservation laws. In a finite system this pair cre-
ation mechanism is the more unlikely the more massive is
the lightest particle needed to compensate the first particle’s
quantum numbers. For instance, once a baryon is created,
at least one anti-nucleon must be generated, which is rather
unlikely since its mass is much greater than the temperature
and the total energy is finite. On the other hand, if a non-
strange charged meson is generated, just a pion is needed
to balance the total electric charge; its creation is clearly a
less unlikely event with respect to the creation of a baryon
as the energy to be spent is lower. This argument illustrates
why the dependence of Z(Q) on the electric charge is much
milder that on baryon number and strangeness (see Fig. 1).
In view of that, the dependence of Z(Q) on electric charge
was neglected in the previous study on hadron production in
e+e−collisions [7]. These chemical suppression effects are
not accountable in a grand-canonical framework; in fact, in
a completely neutral system, all chemical potentials should
be set to zero and consequently “charged” particles do not
undergo any suppression with respect to “neutral” ones. A
compact analytic expression for the function Z(Q) does not
exist. However, an approximation of Z(Q) valid for large
global volumes (see Appendix B) exists in which chemi-
cal factors reduce to a product of a chemical-potential-like
factor and an additional multivariate gaussian factor having
no correspondence in the grand-canonical framework. The
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gaussian factor tends to 1 for V → ∞ proving the equiva-
lence between canonical and grand-canonical approaches for
large systems.

The global partition function (18) has to be further modi-
fied in pp̄ collisions owing to a major effect in such reactions,
the leading baryon effect [14]. Indeed, the sum (18) includes
states with vanishing net absolute value of baryon number,
whereas in pp̄ collisions at least one baryon-antibaryon pair
is always observed. Hence, the simplest way to account for
the leading baryon effect is to exclude those states from the
sum. Thus, if |N | =

∑
i |Ni| denotes the absolute value of

the baryon number of the system, the global partition func-
tion (18) should be turned into:

Z =
∑

states1

. . .
∑

statesN

e−β1·P1 . . . e−βN ·PN δΣiQi,Q0

−
∑

states1

. . .
∑

statesN

e−β1·P1 . . . e−βN ·PN δΣiQi,Q0δ|N |,0 . (24)

The first term, that we define as Z1(Q0), is equal to the
function Z(Q0) in (18), (20), while the second term is the
sum over all states having vanishing net absolute value of
baryon number. The absolute value of baryon number can
be treated as a new independent quantum number so that
the processing of the partition function described in (1)–(3)
can be repeated for the second term in (24) with a U(1)6

symmetry group. Accordingly, this term can be naturally
denoted by Z2(Q0, 0), so that (24) reads:

Z = Z1(Q0) − Z2(Q0, 0) . (25)

By using the integral representation of δ|N |,0

δ|N |,0 =
1

2π

∫ 2π

0

dψ e i |N |·ψ (26)

in the second term of (24), one gets:

Z2(Q0, 0) =
1

(2π)6

∫
d5φ e iQ0·φ exp[V

∑
j

Fj(T, γs,φ)]

×
∫

dψ exp[
∑
j

(2Jj + 1)V

(2π)3

∫
d3p log (1 + γsj

s e
−
√

p2+m2
j
/T−iqj ·φ− i ψ

)] ,

(27)

where the first sum over j runs over all mesons and the sec-
ond over all baryons. The average multiplicity of any hadron
species can be derived from the global partition function (25)
with the usual prescription:

〈〈nj〉〉 =
∂

∂λj
logZ(λj)

∣∣∣
λj=1

. (28)

3 Fit procedure and data set

The model described so far has three free parameters: the
temperature T , the global volume V and the strangeness sup-
pression parameter γs. They will be determined by a fit to the

available data on hadron inclusive production at each centre
of mass energy. Equation (22) yields the mean number of
hadrons emerging directly from the thermal source at freeze-
out, the so-called primary hadrons [7, 15], as a function of
the three free parameters. After freeze-out, primary hadrons
trigger a decay chain process which must be properly taken
into account in a comparison between model predictions and
experimental data, as the latter generally embodies both pri-
mary hadrons and hadrons generated by heavier particles
decays. Therefore, in order to calculate overall average mul-
tiplicities to be compared with experimental data, the pri-
mary yield of each hadron species, determined according to
(22) (or (28) for pp̄ collisions) is added to the contribution
stemming from the decay of heavier hadrons, which is cal-
culated by using experimentally known decay modes and
branching ratios [16, 17].

The calculation of the average multiplicity of primaries
according to (22) involves several rather complicated five-
dimensional integrals which have been calculated numeri-
cally after some useful approximations, described in the fol-
lowing. Since the temperature is expected to be below 200
MeV, the primary production rate of all hadrons, except pi-
ons, is very well approximated by the first term of the series
(22):

〈〈nj〉〉 � γsj
s zj

Z(Q0 − qj)

Z(Q0)
, (29)

where we have put zj ≡ zj(1). This approximation corre-
sponds to the Boltzmann limit of Fermi and Bose statistics.
Actually, for a temperature of 170 MeV, the primary pro-
duction rate of K+, the lightest hadron after pions, differs at
most (i.e. without the strangeness suppression parameter and
the chemical factors which further reduce the contribution
of neglected terms) by 1.5% from that calculated with (29),
well within usual experimental uncertainties. Corresponding
Boltzmannian approximations can be made in the function
Z(Q), namely

log (1 ± e
−
√

p2+m2
j
/T−iqj ·φ)±1 � e

−
√

p2+m2
j
/T−iqj ·φ , (30)

which turns (20) (for a generic Q) into:

Z(Q) � 1

(2π)5

∫
d5φ e iQ·φ exp [

∑
j

zjγ
sj
s e−iqj ·φ

+

3∑
j=1

V

(2π)3

∫
d3p log (1 − e

−
√

p2+m2
j
/T−iqj ·φ)−1] , (31)

where the first sum runs over all hadrons except pions and
the second over pions.

As a further consequence of the expected temperature
value, the z functions of all charmed and bottomed hadrons
are very small: with T = 170 MeV and a primary production
rate of K mesons of the order of one, as the data states, the
z function of the lightest charmed hadron, D0, turns out to
be ≈ 10−4; chemical factors produce a further suppression
of a factor ≈ 10−4. Therefore, thermal production of heavy
flavoured hadrons can be neglected, as well as their z func-
tions in the exponentiated sum in (31), so that the integration
over the variables φ4 and φ5 can be performed:
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Z(Q, C,B) � 1

(2π)3

∫
d3φ e iQ·φ exp [

∑
j

zjγ
sj
s e−iqj ·φ

−
3∑

j=1

V

(2π)3

∫
d3p log (1 − e

−
√

p2+m2
j
/T−iqj ·φ)] δC,0δB,0

≡ ζ(Q) δC,0δB,0 . (32)

Q and qj are now three-dimensional vectors consisting of
electric charge, baryon number, and strangeness; the five-
dimensional integrals have been reduced to three-dimen-
sional ones.

Apart from the hadronization contribution, which is ex-
pected to be negligible in this model, production of heavy
flavoured hadrons in hadronic collisions mainly proceeds
from hard perturbative QCD processes of cc̄ and bb̄ pairs
creation. The fact that promptly generated heavy quarks do
not reannihilate into light quarks indicates a strong devia-
tion from statistical equilibrium of charm and beauty, much
stronger than the strangeness suppression linked with γs.
Nevertheless, it has been found in e+e−collisions [7] that the
relative abundances of charmed and bottomed hadrons are in
agreement with those predicted by the statistical equilibrium
assumption, confirming its full validity for light quarks and
quantum numbers associated to them. The additional source
of heavy flavoured hadrons arising from perturbative pro-
cesses can be accounted for by modifying the partition func-
tion (31). In particular, the presence of one heavy flavoured
hadron and one anti-flavoured hadron should be demanded
in a fraction of events f = σ(pp(p̄) → cc̄)/σ(pp(p̄)) (or
f = σ(pp(p̄) → bb̄)/σ(pp(p̄))) where σ(pp(p̄)) is meant to
be the total inelastic or non-single-diffractive cross section.
Accordingly, the partition function to be used in events with
a perturbative cc̄ pair, is, by analogy with (24)–(25) and the
leading baryon effect:

Z =
∑

states1

. . .
∑

statesN

e−β1·P1 . . . e−βN ·PN δΣiQi,Q0

−
∑

states1

. . .
∑

statesN

e−β1·P1 . . . e−βN ·PN δΣiQi,Q0δ|C|,0

≡ Z1(Q0) − Z2(Q0, 0) , (33)

where |C| is the absolute value of charm. The primary yield
of charmed hadrons, calculated according to (28) and parti-
tion function (33), is derived in Appendix C.

A significant production rate of heavy flavoured hadrons
might affect light hadrons abundances through decay feed-
down, so it is important to know how large the fraction f
is. Available data on charm cross-sections [18] indicate a
fraction f ≈ 10−2 ÷ 10−3 at centre of mass energies <
30 GeV and, consequently, much lower values for bottom
quark production. Therefore, the perturbative production of
heavy quarks can be neglected as long as one deals with light
flavoured hadron production at

√
s < 30 GeV. We assume

that it may be neglected at any centre of mass energy; this
point will be discussed in more detail in the next section.

All light flavoured hadrons and resonances with a mass
< 1.7 GeV have been included among the primary generated
hadron species; the effect of this cut-off on obtained results
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will be discussed in the next section. The mass of resonances
with Γ > 1 MeV has been distributed according to a rela-
tivistic Breit-Wigner function within ±2Γ from the central
value. The γs strangeness suppression factor has also been
applied to neutral mesons such as φ, ω, etc. according to the
their strange valence quark content; mixing angles quoted in
[16] have been used. Once the average multiplicities of the
primary hadrons have been calculated as a function of the
three parameters T , V and γs, the decay chain is performed
until π, μ, K±, K0, Λ, Ξ , Σ±, Ω− or stable particles are
reached, in order to match the average multiplicity definition
in pp and pp̄ collisions experiments. It is worth mentioning
that, unlike pp and pp̄ , all e+e−colliders experiments also
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Table 1. Values of fitted parameters in pp and pp̄ collisions. The normalization parameter V T 3 is better suited than V in the fit because
is less correlated to the temperature. The additional errors within brackets have been estimated by excluding some data points and
repeating the fit. Also quoted is the correlation parameter between T and V T 3

Centre of mass energy (GeV) T (MeV) V T 3 γs χ2/dof ρ(T, V T 3)

pp collisions

19.4 ÷ 19.6 190.8 ± 27.4 5.79 ± 3.05 0.463 ± 0.037 6.38/4 -0.999
23.8 194.4 ± 17.3 6.34 ± 2.49 0.460 ± 0.067 2.43/2 -0.936
26.0 159.0 ± 9.5 13.36 ± 2.66 0.570 ± 0.030 1.86/2 -0.993
27.4 ÷ 27.6 169.0 ± 2.1 (±3.4) 11.04 ± 0.69 (±1.4) 0.510 ± 0.011 (±0.025) 136.4/27 -0.972

pp̄ collisions

200 175.4 ± 14.8 24.26 ± 7.89 0.537 ± 0.066 0.698/2 -0.989
546 181.7 ± 17.7 28.5 ± 10.4 0.557 ± 0.052 3.80/1 -0.993
900 170.2 ± 11.8 43.2 ± 11.8 0.578 ± 0.063 1.79/2 -0.982

include the decay products of K0
s, Λ, Ξ , Σ± and Ω− in their

multiplicity definition.
Finally, the overall yield is compared with experimental

measurements, and the χ2:

χ2 =
∑
i

(theoi − expei)
2/error2

i (34)

is minimized.
As far as the data set is concerned, we used all avail-

able measurements of hadron multiplicities in non-single-
diffractive pp̄ and inelastic pp collisions down to a centre of
mass energy of about 19 GeV (see Tables 2 and 3), fulfilling
the following quality requirements:

1. the data is the result of an actual experimental measure-
ment and not a derivation based on isospin symmetry
arguments; indeed, this model predicts slight violations
of isospin symmetry due to mass differences;

2. the multiplicity definition is unambiguous, that means it
is clear what decay products are included in the quoted
numbers; actually, all referenced papers take the multi-
plicity definition previously mentioned;

3. the data is the result of an extrapolation of a spectrum
measured over a large kinematical region.

Some referenced papers about pp collisions quote cross sec-
tions instead of average multiplicities. In some cases (e.g.
[19]) both of them are quoted for some particles, which
makes it possible to obtain the average multiplicity of par-
ticles for which only the cross section is given. Otherwise,
total inelastic pp cross sections have been extracted from
other papers.

Whenever several measurements at the same centre of
mass energy have been available, averages have been calcu-
lated according to a weighting procedure described in [20]
prescribing rescaling of errors to take into account a poste-
riori correlations and disagreements of experimental results.

Since the decay chain is an essential step of the fitting
procedure, calculated theoretical multiplicities are affected
by experimental uncertainties on masses, widths and branch-
ing ratios of all involved hadron species. In order to estimate
the effect of these uncertainties on the results of the fit, a
two-step procedure for the fit itself has been adopted: firstly,
the fit has been performed with a χ2 including only exper-
imental errors and a set of parameters T0, V0, γs0 has been
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obtained. Then, the various masses, widths and branching
ratios have been varied in turn by their errors, as quoted in
[16], and new theoretical multiplicities calculated, keeping
the parameters T0, V0, γs0 fixed. The differences between old
and new theoretical multiplicity values have been considered
as additional systematic errors to be added in quadrature to
experimental errors. Finally, the fit has been repeated with
a χ2 including overall errors so as to obtain final values for
model parameters and for theoretical multiplicities. Among
the mass, width and branching ratio uncertainties, only those
producing significant variations of final hadron yields (actu-
ally more than 130) have been considered.

4 Results and checks

The fitted values of the parameters T , V , γs at various centre
of mass energy points are quoted in Table 1 while the fitted
values of average multiplicities are quoted in Table 2, 3
along with measured average multiplicities and the estimated
primary fraction. The fit quality is very good at almost all
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Table 2. Measured average multiplicities compared with fitted theoretical values in pp collisions. The first quoted
error beside measured values is the experimental error, the number within brackets is the error due to uncertainty on
masses, widths and branching ratios of the various hadrons. Also quoted are the theoretical estimates of the fraction
of primaries

Particles Measurement Calculated Primary fraction References

√
s = 19.4 ÷ 19.7GeV

Neg. charged 2.85 ± 0.040 (±0.063) 2.798 [21],[22]
Charged 7.69 ± 0.070 (±0.13) 7.620 [21],[22]

π0 3.34 ± 0.24 (±0.11) 3.404 0.173 [23]a

K0
s 0.174 ± 0.013 (±0.002) 0.160 0.325 - 0.369b [23],[21]

ρ0 0.33 ± 0.06 (±0.025) 0.448 0.568 [24]
Λ 0.0977 ± 0.0097 (±0.0056) 0.110 0.243 [23],[21]
Λ̄ 0.0136 ± 0.0041 (±0.0007) 0.0135 0.238 [23],[21]

√
s = 23.8 GeV

π0 3.42 ± 0.62 (±0.12) 3.908 0.166 [25]c

K0
s 0.22 ± 0.025 (±0.003) 0.198 0.319 - 0.362b [27]

K∗++K∗− 0.137 ± 0.043 (±0.002) 0.165 0.658 - 0.492d [27]c

Λ 0.11 ± 0.02 (±0.007) 0.126 0.238 [27]
Λ̄ 0.021 ± 0.004 (±0.001) 0.0202 0.233 [27]

√
s = 26.0 GeV

Neg. charged 3.53 ± 0.05 (±0.094) 3.545 [28]
Charged 9.06 ± 0.09 (±0.18) 9.087 [28]

K0
s 0.26 ± 0.01 (±0.005) 0.256 0.507 - 0.559b [29]

Λ 0.12 ± 0.02 (±0.009) 0.147 0.295 [29]
Λ̄ 0.013 ± 0.004 (±0.0007) 0.0120 0.292 [29]

√
s = 27.4 ÷ 27.6 GeV

π+ 4.10 ± 0.11 (±0.15) 4.147 0.293 [19]

π0 3.87 ± 0.12 (±0.16) 4.197 0.258 [19]
π− 3.34 ± 0.08 (±0.12) 3.269 0.223 [19]
K+ 0.331 ± 0.016 (±0.007) 0.302 0.484 [19]
K− 0.224 ± 0.011 (±0.004) 0.182 0.380 [19]

K0
s 0.232 ± 0.011 (±0.004) 0.232 0.446 - 0.495b [30]

η 0.30 ± 0.02 (±0.054) 0.366 0.453 [19]

ρ0 0.385 ± 0.018 (±0.038) 0.543 0.628 [19]
ρ+ 0.552 ± 0.083 (±0.046) 0.601 0.657 [19]
ρ− 0.355 ± 0.058 (±0.033) 0.421 0.569 [19]
ω 0.390 ± 0.024 (±0.002) 0.443 0.665 [19]
K∗+ 0.132 ± 0.016 (±0.002) 0.111 0.742 [19]
K∗− 0.088 ± 0.012 (±0.001) 0.0617 0.628 [19]

K∗0 0.119 ± 0.021 (±0.002) 0.0927 0.679 [19]

K̄∗0 0.0903 ± 0.016 (±0.001) 0.0708 0.687 [19]
φ 0.019 ± 0.0018 (±0.) 0.0262 1.00 [19]
f2(1270) 0.092 ± 0.012 (±0.002) 0.0684 0.845 [19]
p 1.20 ± 0.097 (±0.022) 1.060 0.337 [19]
p̄ 0.063 ± 0.002 (±0.001) 0.0610 0.283 [19]
Λ 0.125 ± 0.008 (±0.008) 0.136 0.276 [30]
Λ̄ 0.020 ± 0.004 (±0.0008) 0.0147 0.273 [30]
Σ+ 0.048 ± 0.015 (±0.004) 0.0423 0.688 [19]e

Σ− 0.0128 ± 0.0061 (±0.0032) 0.0310 0.592 [19]e

Δ++ 0.218 ± 0.0031 (±0.013) 0.250 0.758 [19]

Δ0 0.141 ± 0.0098 (±0.0089) 0.212 0.714 [19]
Δ̄++ 0.013 ± 0.0049 (±0.00049) 0.0111 0.548 [19]

Δ̄0 0.0336 ± 0.008 (±0.0006) 0.0165 0.697 [19]
Σ∗+ 0.020 ± 0.0025 (±0.0011) 0.0230 1.00 [19]
Σ∗− 0.010 ± 0.0018 (±0.0007) 0.0139 1.00 [19]
Λ(1520) 0.017 ± 0.0031 (±0.0005) 0.00996 1.00 [19]

a - The π0 multiplicity is defined in this paper as half the photon multiplicity; therefore, the experimental value

has been fitted to half the number of photons coming not only from π0 but also from η, ω and Σ0 decays.

b - Primary fraction of K0 and K̄0 respectively
c - This paper quotes only the cross section. The multiplicity has been obtained by using the total inelastic cross
section of 32.21 mb at

√
s = 23.5 GeV quoted in [26]

d - Primary fraction of K∗+ and K∗− respectively
e - Cross-reference to [31]
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Table 3. Measured average multiplicities compared with fitted theoretical values in pp̄ collisions.
The first quoted error beside measured values is the experimental error, the number within brackets
is the error due to the uncertainty on masses, widths and branching ratios of the various hadrons.
Also quoted are the theoretical estimates of the fraction of primaries

Particle Measurement Calculated Primary fraction References

√
s = 200 GeV

Charged 21.4 ± 0.4 (±0.72) 21.27 [32]a

K0
s 0.75 ± 0.09 (±0.009) 0.783 0.467 [32]

n 0.75 ± 0.1 (±0.05) 0.794 0.291 [32]b

Λ 0.23 ± 0.06 (±0.008) 0.194 0.263 [32]
Ξ− 0.015 ± 0.015 (±0.0002) 0.0123 0.579 [32]

√
s =546 GeV

Charged 29.4 ± 0.3 (±0.96) 29.25 [32]a

K0
s 1.12 ± 0.08 (±0.012) 1.139 0.441 [32]

Λ 0.265 ± 0.055 (±0.001) 0.302 0.252 [32]
Ξ− 0.05 ± 0.015 (±0) 0.0228 0.567 [32]

√
s =900 GeV

Charged 35.6 ± 0.9 (±1.2) 35.15 [32]a

K0
s 1.37 ± 0.13 (±0.02) 1.437 0.497 [32]

n 1.0 ± 0.2 (±0.09) 1.188 0.301 [32]b

Λ 0.38 ± 0.08 (±0.01) 0.323 0.269 [32]
Ξ− 0.035 ± 0.02 (±0) 0.0258 0.585 [32]

a - The charged track average multiplicity value quoted in this reference has been increased
by one as leading particles, assumed to be one charged-neutral nucleon-antinucleon
pair per event, were excluded.
b - The neutron average multiplicity quoted in this reference has been increased
by 0.5 as leading particles, assumed to be one charged-neutral nucleon-antinucleon
pair per event, were excluded.

centre of mass energies as demonstrated by the low values
of χ2’s and by the Figs. 2–6. Owing to the relatively large
value of χ2 at

√
s = 27.4 GeV, variations of fitted parameters

larger than fit errors must be expected when repeating the
fit excluding data points with the largest deviations from the
theoretical values. Therefore, the fit at

√
s = 27.4 GeV pp

collisions has been repeated excluding in turn (Δ0, ρ0, φ) and
(K−, pions), respectively, from the data set; the maximum
difference between the new and old fit parameters has been
considered as an additional systematic error and is quoted
in Table 1 within brackets.

The fitted temperatures are compatible with a constant
value at freeze-out independently of collision energy and
kind of reaction (see Fig. 7). On the other hand, γs exhibits
a very slow rise from 20 to 900 GeV (see Fig. 8); its value
of � 0.5 over the whole explored centre of mass energy
range proves that complete strangeness equilibrium is not
attained. Moreover, the temperature value � 170 MeV is in
good agreement with that found in e+e−collisions [7, 33]
and in heavy ions collisions [34]. On the other hand, the
global volume does increase as a function of centre of mass
energy as it is proportional, for nearly constant T and γs, to
overall multiplicity which indeed increases with energy. Its
values range from 6.4 fm3 at

√
s = 19.4 GeV pp collisions,

at a temperature of 191 MeV, up to 67 fm3 at
√
s = 900 GeV

pp̄ collisions at a temperature of 170 MeV. However, since
volume values are strongly correlated to those of temperature
in the fit, errors turn out to be quite large and fit convergence

is slowed down; that is the reason why we actually fitted the
product V T 3 instead of V alone.

Once T , V and γs are determined by fitting average
multiplicities of some hadron species, their values can be
used to predict average multiplicities of any other species,
at a given centre of mass energy.

Since the dependence of the chemical factors on the
global volume V is quite mild in the region of interest (see
Fig. 2), the hadron density mainly depends on the temper-
ature and γs (cf. (22), (29)). Therefore, constant values of
temperature and γs imply a nearly constant hadron density at
freeze-out, which turns out to be ≈ 0.4÷0.5 hadrons/fm3, as
shown in Fig. 10, corresponding to a mean distance between
hadrons of approximately ≈ 1.6÷1.7 fm. Unfortunately, due
to its dramatic dependence on the temperature, all density
values, except that at

√
s = 27.4 GeV, are affected by large

errors, and thus a definite claim of a constant freeze-out
density cannot be made. The same statement is true for the
pressure, also shown in Fig. 10, whose definition is given in
Appendix D.

The physical significance of the results found so far de-
pends on their stability as a function of the various approxi-
mations and assumptions which have been introduced. First,
the temperature and γs values are low enough to justify the
use of the Boltzmann limits (29), (30) for all hadrons except
pions, as explained in Sect. 3. As far as the effect of a cut-
off in the hadronic mass spectrum goes, the most relevant
test proving that our results so far do not depend on it is the
stability of the number of primary hadrons against changes
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Fig. 7. Residual distributions of hadron multiplicity fits for pp̄ collisions at√
s = 200, 546 and 900 GeV

of the cut-off mass. The fit procedure intrinsically attempts
to reproduce fixed experimental multiplicities; if the number
of primary hadrons does not change significantly by repeat-
ing the fit with a slightly lower cut-off, the production of
heavier hadrons excluded by the cut-off must be negligible,
in particular with regard to its decay contributions to light
hadron yields. In this spirit all fits have been repeated mov-
ing the mass cut-off value from 1.7 down to 1.3 GeV in
steps of 0.1 GeV, checking the stability of the amount of
primary hadrons as well as of the fit parameters. It is worth
remarking that the number of hadronic states with a mass
between 1.7 and 1.6 GeV is 238 out of 535 overall, so that
their exclusion is really a severe test for the reliability of the
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Fig. 8. Freeze-out temperature values found by fitting hadron abundances
in pp, pp̄ and e+e−collisions [33] as a function of centre of mass energy;
they are consistent with a constant value over an energy range of about two
orders of magnitude. The error bars within horizontal ticks at

√
s = 27.4

GeV pp collisions and at
√
s = 91.2 GeV e+e−collisions are the fit errors;

the overall error bars are the sum in quadrature of the fit error and the
systematic error related to data set variation (see text)

final results. Figure 11 shows the model parameters and the
primary hadrons in pp̄ collisions at

√
s = 900 GeV; above a

cut-off of 1.5 GeV the number of primary hadrons settles at
an asymptotically stable value, whilst the fitted values for T ,
V , γs do not show any particular dependence on the cut-off.
Therefore, we conclude that the chosen value of 1.7 GeV
ensures that the obtained results are meaningful.

As mentioned in Sect. 3, the perturbative production of
heavy quarks has been neglected. This is legitimate in low
energy pp collisions, where it has been actually measured
[18], but not necessarily in

√
s = O (100) GeV pp̄ collisions,

where no measurement exists and one has to rely on theoret-
ical estimates. In general, the latter predict very low b quark
cross sections, but a possibly not negligible c quark produc-
tion. We used the calculations of [35] according to which the
fraction f of non-single-diffractive events in which cc̄ pairs
are produced (see Sect. 3) rises as a function centre of mass
energy. We repeated the fit for pp̄ collisions at

√
s = 900,

where the fraction f is expected to be the largest, by using
the upper estimate of a cross section σ(pp(p̄) → cc̄) � 12
mb, corresponding to f � 0.3, in order to maximize the ef-
fect of charm production. The partition function to be used
in such events is that in (33) with a further modification
according to (24) to take into account the leading baryon
effect. The model parameters fitted with f = 0.3 are quoted
in Table 4; their variation with respect to f = 0 is within fit
errors, implying that extra charm production does not affect
them significantly.

5 Fluctuations and correlations

In the description of the model and the comparison of its
predictions with experimental data, we tacitly assumed that
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Table 4. Fit results for pp̄ collisions at
√
s = 900 GeV with fc = 0.3

compared with those without perturbative charm production

Parameter fc = 0.3 fc = 0

Temperature(MeV) 163.8 ± 10.9 170.2 ± 11.8
V T 3 46.0 ± 12.1 43.2 ± 11.8
γs 0.571 ± 0.070 0.578 ± 0.063

χ2/dof 3.09/2 1.79/2
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Fig. 11. Dependence of fitted parameters and primary average multiplicities
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s = 900 GeV

the parameters T , V and γs do not fluctuate on an event by
event basis. If freeze-out occurs at a fixed hadronic density
in all events, as argued in Sect. 4, then it is a reasonable
ansatz that T and γs do not undergo any fluctuation since
the density mainly depends on those two variables. However,
there could still be volume fluctuations due to event by event
variations of the number and size of the fireballs from which
the primary hadrons emerge.

We will now show that, as far as the average hadron
multiplicities are concerned, possible fluctuations of V can
be reabsorbed in a redefinition of volume provided that they
are not too large. To this end, let us define ρ(V ) as the
probability density of picking a volume between V and V +
dV in a single event. The primary average multiplicity of
the jth hadron is then:

〈〈nj〉〉 =

∫
dV ρ(V )

∞∑
n=1

(∓1)n+1 γnsj
s zj(n)

Z(Q0 − nqj)

Z(Q0)
.

(35)

If the volume V fluctuates over a region where the depen-
dence of chemical factors on it is mild (i.e. for large vol-
umes, see Fig. 2), they can be taken out of the integral in
(35) and evaluated at the mean volume V . In this case, the
integrand depends on the volume only through the functions
zj(n) whose dependence on V is linear (see (23)) and which
can be re-expressed as

zj(n)(V, T, γs) = V ξj(n)(T, γs) . (36)

Then, from (35),

〈〈nj〉〉 �
∞∑
n=1

(∓1)n+1 γnsj
s ξj(n)(T, γs)

Z(Q0 − nqj)

Z(Q0)
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×
∫

dV ρ(V )V . (37)

The integral on the right-hand side is the mean volume V .
Thus:

〈〈nj〉〉 �
∞∑
n=1

(∓1)n+1 γnsj
s zj(n)(V , T, γs)

Z(Q0 − nqj)

Z(Q0)
.

(38)

It turns out that the relative hadron abundances do not de-
pend on the volume fluctuations since the mean volume V
appearing in the above equation (replacing the volume V in
(23)) is the same for all species: all results obtained in Sect. 4
are unaffected. On the other hand, if the volume fluctuates
over a region where the dependence of chemical factors on
it is stronger (i.e. in the region of small volumes, see Fig. 2)
one can show that the leading term of average multiplicities
is still given by (38) and that further corrections are of the

order of D2/V
2
, where D is the dispersion of the distribu-

tion ρ(V ) (see Appendix E). Therefore, if D � V , as it is
reasonably to be expected, also in this case the calculation of
average multiplicities by using a single mean global volume
would be a very good approximation.

We emphasized in the Introduction that the average
hadron multiplicities are a very useful tool to study hadroni-
zation because of their independence from collective dynam-
ical effects. More generally, since the number of particles is a
Lorentz-invariant quantity, this property is shared by the en-
tire multiplicity distribution of any hadron species. However,
the shape of the multiplicity distribution, unlike its mean
value, is affected by volume fluctuations since it is actually
the superposition, weighted with ρ(V ), of many multiplic-
ity distributions, each of them associated with a particular
volume V , having different mean values and moments. In a
previous study [15] it has been shown that the charged par-
ticle multiplicity distribution in e+e−collisions at

√
s = 91.2

GeV, calculated with a fixed volume, provides a fairly good
approximation of the experimental data, and that remaining
discrepancies between the prediction and the data can be
explained by assuming a superposition of multiplicity dis-
tributions with different volumes. This superposition effect
(also called shoulder effect) has been further investigated in
[36].

Apart from the mean value, which is the first-order mo-
ment, the next lowest order moments of multiplicity distribu-
tion are related to global correlations between particle pairs.
Let us first derive them for a fixed volume V : let ni

j,k be the

number of hadrons j in the kth phase space cell for the ith

fireball; then, the overall number of hadron j is
∑

i,k n
i
j,k.

According to the partition function (18), the probability of
picking a set of occupation numbers {ni

j,k}, i.e. a state of
the system, is

P ({ni
j,k}) =

1

Z
exp(−

∑
j,k,i

βi · ni
j,kpk) δQ,Q0 . (39)

The average number of pairs, whose first member belongs
to species j and the second to species l, is then:

〈〈njnl〉〉 =
∑
states

(
∑
i,k

ni
j,k) (

∑
i,k

ni
l,k)P ({ni

j,k}) (40)

if j /= l, and

〈〈nj(nj − 1)

2
〉〉 =

=
1

2

∑
states

(
∑
i,k

ni
j,k) (

∑
i,k

ni
j,k − 1)P ({ni

j,k}) (41)

if j = l. In both cases the average number of pairs can
be obtained from the partition function by multiplying all
Boltzmann factors exp (−βi · ni

j,kpk) by fictitious fugacities
λj’s, one for each species, and taking the derivative with
respect to λj , λl at λ = 1:

〈〈njnl − 1

2
δjl(n

2
j + nj)〉〉 = (1 − 1

2
δjl)

∂2 logZ

∂λj∂λl

∣∣∣
λ=1

. (42)

Since the partition function is Lorentz-invariant and so are
the parameters λj , the average number of pairs does not
depend, as expected, on the collective fireball dynamics.

In general, one can show that the average number of n-
tuples of K particle species, with n1 particles of species j1,
n2 particles of species j2, . . ., nK particles of species jK , is

1

n1! . . . nK!

∂n logZ

∂λn1

1 . . . ∂λnK

K

. (43)

This expression proves that logZ(λ1, . . . , λK) is propor-
tional to the generating function of the multi-species multi-
plicity distributions.

The two-particle global correlation can be defined as the
ratio between the actual average number of pairs and the
one that would have been obtained if their production was
independent. Thus, if j /= l:

ρjl =
〈〈njnl〉〉

〈〈nj〉〉〈〈nl〉〉 . (44)

As far as identical particles are concerned, if they were inde-
pendently produced their multiplicity distribution would be
Poissonian and therefore the average number of pairs would
be 〈〈nj〉〉2/2, so:

ρjj =
〈〈n2

j − nj〉〉
〈〈nj〉〉2

. (45)

The calculation of the average number of pairs according to
(42) and the partition function (20) yields:

〈〈njnl − 1

2
δjl(n

2
j + nj)〉〉 = (1 − 1

2
δjl)

×
∞∑
m=1

∞∑
n=1

(∓1)n+m γnsj+msl
s (zj(n)zl(m) ∓ δjlzj(n+m))

Z(Q0 − nqj −mql)
Z(Q0)

, (46)

where the upper sign is for fermions and the lower for
bosons. Whereas the term zj(n)zl(m) is present for all par-
ticles, the term δjlzj(n+m) is non-zero only for identical
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particles; it is a further contribution to correlated particle
production due to quantum statistics, the so called Bose-
Einstein correlations and Fermi-Dirac anticorrelations. If
j /= l it turns out that, comparing (46) with (22), 〈〈njnl〉〉 /=
〈〈nl〉〉〈〈nl〉〉 (and there is indeed correlated production), unless
Z(Q0 − nqj − mql) = Z(Q0 − nqj)Z(Q0 − mql)/Z(Q0);
this is the case if the function Z(Q) is an exponential of
Q, which occurs only in the grand-canonical regime (see
also Appendix B). Thus, in the canonical thermodynamical
approach, correlated production of particles belonging to dif-
ferent species is definitely an effect of conservation laws in
a finite system. As long as different species are concerned,
owing to the temperature values found in the present anal-
ysis the contribution to the average number of pairs from
terms other than n = 1 and m = 1 in series (46) is negligible
for all hadrons but pions. Therefore:

〈〈njnl〉〉 � γsj
s γsl

s zjzl
Z(Q0 − qj − ql)

Z(Q0)
, (47)

which corresponds to the Boltzmann limit, as discussed in
Sect. 3. On the other hand, for all identical particles but
pions we have:

〈〈nj(nj − 1)

2
〉〉 � 1

2
γ2sj
s (z2

j ∓ zj(2))
Z(Q0 − 2qj)

Z(Q0)
. (48)

In principle, the term zj(2) stemming from quantum statistics

may not be negligible compared to z2
j even for high mass

hadrons, since the ratio

zj(2)

z2
j

=
1

2zj

K2(2mj/T )

K2(mj/T )
(49)

may be of the order of 1 if, due to a very small volume,
zj � 1 is able to compensate the small ratio of McDonald
functions. In the present analysis the largest value for the
ratio (49) for heavy hadrons (i.e. excluding pions) which
occurs is 0.096 for K+K+ production in pp collisions at

√
s =

19.4 GeV.
The global correlation between heavy hadron pairs turns

out to be, using (44)–(48) and (29),

ρjl � (1 ∓ δjl
zj(2)

z2
j

)
Z(Q0 − qj − ql)Z(Q0)

Z(Q0 − qj)Z(Q0 − ql) . (50)

All calculations performed in this Section refer to primary
hadrons, which are not observable in actual experiments.
Since measured correlations may be affected by the decay
chain process, the given formulae are not directly compa-
rable with experimental data. Therefore, a complete recon-
struction of the production process including both the forma-
tion and decay of the primary hadrons is necessary in order
to test the predictive power of the model in this regard.
This can be done by a Monte-Carlo procedure: by using the
model parameters fitted at each centre of mass energy point
as described in Sect. 4, a set of numbers {ni

j,k} is generated
according to the probability (39), and subsequently their de-
cays are performed according to the known decay modes and
branching ratios as quoted in the Particle Data Book [16].

A further problem in the comparison with data is the
possibility of volume fluctuations. If the volume fluctuates

from event to event, the average number of heavy hadron
pairs should be re-expressed as

〈〈njnl − 1

2
δjl(n

2
j + nj)〉〉 �

∫
dV ρ(V ) γsj+sl

s (zjzl ∓ δjl zj(2))
Z(Q0 − qj − ql)

Z(Q0)
. (51)

According to what has been stated in the beginning of this
section, if we take the chemical factors out of the integral
and write z = V ξ(T, γs), z(2) = V ξ(2)(T, γs), we are left in
(49) with both a mean volume (multiplying δjl) and a mean
squared volume which is equal to the squared mean volume
only if the dispersion D of the distribution ρ(V ) vanishes.
Taking into account volume fluctuations, the correlation ρjl
reads (taking the first term of the series in (38)):

ρjl = (
V 2

V
2
∓ δjl

zj(2)

z2
j

)
Z(Q0 − qj − ql)Z(Q0)

Z(Q0 − qj)Z(Q0 − ql)

= (1 +
D2

V
2
∓ δjl

zj(2)

z2
j

)
Z(Q0 − qj − ql)Z(Q0)

Z(Q0 − qj)Z(Q0 − ql) . (52)

The correlation between different particle species then in-

creases by a factor (1 + D2/V
2
) with respect to the non-

fluctuation case even neglecting the dependence of chemical
factors on the volume; however, if D � V̄ this a small
effect.

We compared Monte-Carlo simulated correlations with a
set of particle-particle correlations measured in pp collisions
at
√
s = 26.0 GeV [37]; the results are shown in Table 5. The

correlations have been predicted by using the model parame-
ters T , V , and γs fitted at that centre of mass energy quoted
in Table 1. We also quote the correlations at the primary
hadron level which were calculated with (47) and (48), tak-
ing into account that K0

s is a mixed particle-antiparticle state,
and, for the K0

sK0
s correlation, with the same Monte-Carlo

technique used for the final particles. The effect of Bose-
Einstein correlations in the global correlated production of
K0

sK0
s, estimated to be < 1.7% according to formulae (48),

(49) and taking mixing into account, has been neglected. The
comparison between primary and final correlations indicates
that, in general, they are slightly diluted by the decay chain
process.

Generally, the agreement between the predictions and
the data is good. In trusting this approach one is led to
the conclusion that volume fluctuations are small enough
to be hidden in the experimental errors. This fact should
be confirmed by a more detailed study of charged particle
multiplicity distributions.

6 Conclusions

A detailed analysis of hadron abundances in pp and pp̄ colli-
sions over a large range of centre of mass energies (from
20 to 900 GeV) has demonstrated a stunning ability of the
thermodynamic model to reproduce accurately all available
experimental data on hadron production in high energy col-
lisions between elementary hadrons. Key elements for the
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Table 5. Particle-particle correlations in pp collisions at
√
s = 26 GeV [37] obtained by using the total

inelastic cross section of 32.80 mb quoted in [29]. The errors within brackets next to the theoretical
predictions are due to finite Monte-Carlo statistics. The experimental values of the correlations ρ have
been estimated by dividing the average numbers of pairs by the average multiplicities quoted in [29],
measured in the same experiment. Since the correlation between these two measurements is unknown, the
relative experimental error on ρ has been assumed to be the same as on 〈〈n1n2〉〉. The small effect of
quantum statistics on the correlations of identical particles at the primary hadron level has been neglected,
as explained in the text

Particles 〈n1n2〉 measured 〈n1n2〉 calculated ρ measured ρ calculated ρ for primaries

K0
sK0

s 0.0530 ± 0.0055 0.0489(±0.0021) 1.57 ± 0.16 1.49(±0.064) 1.44(±0.11)

K0
sΛ 0.0451 ± 0.0052 0.0472(±0.0018) 1.45 ± 0.17 1.25(±0.048) 1.506

K0
sΛ̄ 0.0079 ± 0.0021 0.0041(±0.0006) 2.34 ± 0.62 1.34(±0.18) 1.296

ΛΛ̄ 0.0030 ± 0.0009 0.0036(±0.0004) 1.92 ± 0.58 2.05(±0.25) 2.820

success of this approach are the use of the canonical formal-
ism of statistical mechanics, ensuring the exact implementa-
tion of quantum number conservation, and the introduction
of a supplementary parameter γs to account for incomplete
saturation of strange particle phase space.

The remarkable agreement of the data with such a purely
statistical approach, which uses only three free parameters,
has important implications. Firstly, it indicates that hadron
production in elementary high energy collisions is domi-
nated by phase space rather than by microscopic dynam-
ics; during hadronization of the prehadronic matter formed
in the collision, the hadronic phase space is filled accord-
ing to the law of maximal entropy, with minimal additional
(i.e. dynamical) information. The only dynamics visible in
the final state is the collective motion of the hadron gas
fireballs which reflects the underlying hard parton kinemat-
ics. Secondly, the observed universality of the freeze-out
temperature independent of the collision energy and colli-
sion system suggests that hadronization cannot occur before
the parameters of prehadronic matter, like energy density or
pressure, have dropped below critical values corresponding
to a temperature of around 170 MeV in an (partially) equi-
librated hadron gas. Hadronization at larger energy densities
or pressures is inhibited by the “absence” of a hadronic phase
space: according to lattice QCD calculations, the most likely
(i.e. maximum entropy) state at higher energy densities is a
colour deconfined quark-gluon plasma in which hadrons do
not exist as stable degrees of freedom. Therefore, this anal-
ysis indicates that the value of critical transition temperature
is Tcrit � 170 MeV. This agrees with the limiting (“Hage-
dorn”) temperature [1, 2] for an equilibrated hadron gas and
with lattice QCD results [38].

The phase-space dominance in the hadronization pro-
cess can be understood by the non-perturbative nature of
the strong interaction forces in this energy density domain:
within each fireball, many different processes and channels
contribute to the formation of soft hadrons, resulting locally
in equal transition probabilities for all hadronic states in
phase space. The value of temperature reflects the hadronic
energy density or pressure at its critical value where hadron
production occurs while the only other parameter entering
the observed hadron spectra is the collective motion relative
to the observer.

The only deviation from this picture of complete phase-
space dominance in hadronization resides in the incomplete
saturation of strange particle phase space, i.e. γs � 0.5: the

final hadronic state seems to “remember” that there were
no strange quarks in the initial state, and, in spite of their
non-perturbative nature and the many possible dynamical
channels, strong interactions in the pre-hadronic stage do
not manage to wipe out completely the asymmetry between
strange quark and light quark abundances. Strangeness sup-
pression, as well as the survival of perturbatively created cc̄
and bb̄ pairs, are thus the only trace to strong interaction dy-
namics before hadronization. The systematics of the obser-
vations suggest that these non-equilibrium effects are mainly
related to quark mass thresholds. Similar analyses of hadron
abundances in nuclear collisions suggest that the strangeness
suppression disappears in larger collision systems with larger
lifetimes prior to hadron freeze-out [39]. Note that also here,
in hadronic collisions, the slight increase of γs with centre of
mass energy in hadronic collisions is connected with a sys-
tematic increase of the fitted fireball volumes at freeze-out
(see Table 1); this goes in the same direction. The increase
of freeze-out volume with rising centre of mass energy may
imply a corresponding increase of the initial (prehadronic)
energy density since the final energy density of the hadronic
state is limited by the observed constant temperature.

It has been shown that not only the average single hadron
abundances, but also the particle-particle correlations mea-
sured in pp collisions agree well with the thermal predic-
tions. It should be stressed that the requirement of exact
quantum number conservation yields major effects on both
the average hadron multiplicities and the correlations, and
that for elementary high energy collisions a thermal de-
scription in the grand-canonical framework would not have
worked so well. As noted by Hagedorn many years ago [2, 5]
and extensively discussed in Sect. 2, small fireballs volume
result in the suppression of strange relative to non-strange
hadrons even for γs = 1 (i.e. without strange phase space
suppression), when one compares the canonical with the
grand-canonical approach, due to the need to create strange
particles always in pairs. A strangeness suppression γs � 0.5
in the canonical approach, as extracted here from the pp
and pp̄ data, thus corresponds to a seemingly much stronger
suppression of γs � 0.2 within a grand-canonical approach
[39]. Vice-versa, it should be emphasized that even a con-
stant value of γs may imply a strong relative enhancement of
strange particles going from the small volumes of elementary
hadron collisions to possible large volumes in nuclear colli-
sions. The frequently discussed “strangeness enhancement”
in nuclear collisions thus really consists of two components:
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(i) the removal of the suppression (at constant γs) arising
from the need to conserve exactly strangeness in a small
collision volume, and on top of that (ii) additionally a pos-
sibly larger value of γs [4, 39]. Both of these effects are
dynamically non-trivial.
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7 Appendix

A Proof of equation (20)

We want to prove that the global partition function (18) can
be expressed by (20) if the temperatures and the strangeness
suppression factors γs of the various fireballs are constant.
Let ni

j,k be the number of the jth hadron species in the kth

phase space cell of the ith fireball. Then:

∑
i

Qi =
∑
i,j,k

ni
j,kqj

Pi =
∑
j,k

ni
j,kpk . (53)

By using (2) and putting (53) into (18) the following expres-
sion of global partition function is obtained:

Z(Q0) =
1

(2π)5

∫
d5φ e iQ0·φ

N∏
i=1

∑
statesi

exp [−
∑
j,k

βi · ni
j,kpk − ini

j,kqj · φ] . (54)

After summing over states and inserting the strangeness sup-
pression factor γs, (54) becomes:

Z(Q0) =
1

(2π)5

∫
d5φ e iQ0·φ

N∏
i=1

exp [
∑
j

∑
k

log (1 ± γsj
s e−βi·pk−iqj ·φ)±1] , (55)

where the upper sign is for fermions and the lower for
bosons.

Once the transformation (6) has been applied in (55),
one is left with phase space integrals that may be performed
in the rest frame of each fireball, in the very same way as
in (7):

Z(Q0) =
1

(2π)5

∫
d5φ e iQ0·φ

×
N∏
i=1

exp [Vi

∑
j

Fj(Ti, γsi,φ)] . (56)

If T1 = . . . = TN ≡ T and γs1 = . . . = γsN ≡ γs, then:

Z(Q0) =
1

(2π)5

∫
d5φ e iQ0·φ

× exp [(
∑
i

Vi)
∑
j

Fj(T, γs,φ)] , (57)

which is precisely (20).

B Approximation of the function Z(Q) for large systems

We look for an approximated expression of the function
Z(Q) for large values of particle multiplicity, namely for
large values of volume V . In the following calculations
heavy flavoured particles, whose multiplicities are orders
of magnitude below light flavoured ones, at temperatures
T = O (100) MeV, are completely neglected. This means
that we are dealing with a function Z(Q) as in (32) and
that vectors Q and qj are henceforth meant to be three-
dimensional with components electric charge, baryon num-
ber and strangeness respectively.

Let us define:

f (φ) ≡∑
j

2Jj + 1

(2π)3

∫
d3p log (1 ± γsj

s e
−
√

p2+m2
j
/T−iqj ·φ)±1 ,

(58)

where the upper sign is for fermions and the lower is for
bosons. By using this definition, the function ζ(Q) in (32)
can be written:

ζ(Q) =
1

(2π)3

∫
d3φ e iQ·φ exp [V f (φ)] . (59)

The logarithm in the function f (φ) in (58) can be expanded
in a series:

log (1 ± γsj
s e

√
p2+m2

j
/T

e−iqj ·φ)±1

=

∞∑
n=1

(∓1)n+1

n
γnsj
s e

−n
√

p2+m2
j
/T

e−n i qj ·φ . (60)

The sum labelled by index j in the function f (φ) obviously
runs over all particles and anti-particles species. However,
in order to develop calculations, it is advantegeous to group
particles and corresponding anti-particles terms together in
the series (60). Doing that, (58) becomes:

f (φ) =
∑

j(particles)

2Jj + 1

(2π)3

∫
d3p

×
∞∑
n=1

(∓1)n+1

n
2 γnsj

s e
−n

√
p2+m2

j
/T

cos (−nqj · φ) . (61)

Since the integrand function in (59) is periodical, the in-
tegration can be performed in the interval [−π, π] instead
of [0, 2π]. The reason of this shift in the integration inter-
val is that a considerable property of the function f (φ) is
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the presence of a maximum at φ = 0, and, consequently, a
very peaked maximum in the same point for the function
exp [V f (φ)] for large values of V . In this case, the saddle-
point approximation can be used in calculating the integral
(59). Therefore:

f (φ) �
∑

j(particles)

2Jj + 1

(2π)3

∫
d3p

×
∞∑
n=1

(∓1)n+1

n
2 γnsj

s e
−n

√
p2+m2

j
/T

[1 − (nqj · φ)2/2]

= f (0) − (qj · φ)2

×
∑

j(particles)

2Jj + 1

(2π)3

∫
d3p

γ
sj
s e

−
√

p2+m2
j
/T

(1 ± γ
sj
s e

−
√

p2+m2
j
/T

)2

. (62)

Let us define now a 3 × 3 real symmetric matrix A whose
elements are:

Ak,l =
∑

j(particles)

V (2Jj + 1)

(2π)3

×
∫

d3p
γ
sj
s e

−
√

p2+m2
j
/T

(1 ± γ
sj
s e

−
√

p2+m2
j
/T

)2

qj,lqj,k . (63)

By using this definition, (62) reads:

f (φ) � f (0) − φ · A
V
φ . (64)

Thus:

ζ(Q) � 1

(2π)3
exp [V f (0)]

∫
d3φ e iQ·φ exp [−φ · Aφ] .

(65)

If V is large enough, the integration can be extended from
[−π, π] to [−∞,∞] without affecting significantly the final
result. Hence:

ζ(Q) � 1

(2π)3
exp[V f (0)]

√
π3

detA
exp[−1

4
QA−1Q] . (66)

Now we are able to write an approximate expression of
chemical factors in (22):

Z(Q− nqj)

Z(Q)
=

exp[− 1
4
(Q− nqj)A−1(Q− nqj)]

exp[− 1
4
QA−1Q]

(67)

= exp[−n
2
QA−1qj] exp[−n2

4
qjA−1qj] .

By using this approximation, the average multiplicity of pri-
mary hadrons (29) in the Boltzmann limit can now be written
as:

〈〈nj〉〉 = (2Jj + 1)
V

(2π)3
γsj
s

×
∫

d3p e
−
√

p2+m2
j
/T

eQA
−1qj/2e−qjA

−1qj/4 . (68)

To summarize, in the large volume limit, chemical factors
reduce to a product of two factors: the first corresponds to
a traditional chemical potential whereas the second does not
have a corresponding grand-canonical quantity; its presence
is ultimately due to internal (i.e. quantum numbers) conser-
vation laws in a finite system. Since:

lim
V→∞

A−1 = 0 (69)

the additional suppression factor exp[−qjA−1qj/4] is neg-
ligible in the proper thermodynamic limit provided that vec-
tors qj are finite: the grand-canonical formalism is recov-
ered.

C Heavy flavoured hadrons production

As shown in Sect. 4, the average multiplicity of primary
charmed hadrons in events in which one cc̄ pair is created
owing to a hard QCD process must be calculated with the
usual (28) in which the partition function Z is (see (33)):

Z = Z1(Q0) − Z2(Q0, 0) . (70)

The function Z1 can be written in the very same fashion as
in (31):

Z1(Q0) � 1

(2π)5

∫
d5φ e iQ0·φ exp [

∑
j

zjγ
sj
s e−iqj ·φ

+

3∑
j=1

V

(2π)3

∫
d3p log (1 − e

−
√

p2+m2
j
/T−iqj ·φ)−1] , (71)

while the function Z2 can be worked out according to the
same procedure depicted for the function Z2 in (26), (27)
for the leading baryon effect:

Z2(Q0,K) =
1

(2π)6

∫
d5φeiQ0·φ

∫
dψ e i Kψ

exp [
∑
j=1

zjγ
sj
s e−iqj ·φ−i|Cj |ψ

+

3∑
j=1

V

(2π)3

∫
d3p log (1 − e

−
√

p2+m2
j
/T−iqj ·φ)−1] , (72)

where the second sum in the exponentials in both (71) and
(72) runs over the three pion states and |Cj | in (72) is the

absolute value of jth hadron’s charm.
Henceforth, we denote by Q0 and qi, qj , qk three-dimen-

sional vectors having as components electric charge, baryon
number and strangeness, while charm and beauty will be
explicitely written down. By using this notation, the average
multiplicity of a charmed hadron with Cj = 1 turns out to
be (the Boltzmann limit holds, cf. (29)):

〈〈nj〉〉 = zj
Z1(Q0 − qj ,−1, 0) − Z2(Q0 − qj ,−1, 0,−1)

Z1(Q0, 0, 0) − Z2(Q0, 0, 0, 0)
.

(73)



285

Since the z functions of heavy flavoured hadrons are � 1,
as shown in Sect. 4, a power expansion in the zj’s of all
charmed and anti-charmed hadrons can be performed from
zj = 0 in the integrands of (71) and (72), that is:

exp[
∑
j

γsj
s zje−iqj ·φ] � 1 +

∑
j

γsj
s zje−iqj ·φ

+
1

2

∑
i,j

γsi
s γsj

s zizje−i(qj+qi)·φ (74)

for (71) and

exp [
∑
j

γsj
s zje−iqj ·φ−i|Cj |ψ] � 1 +

∑
j

zje−iqj ·φ− i |Cj |ψ

+
1

2

∑
i,j

γsi
s γsj

s zizje−i(qj+qi)·φ−2i |Cj |ψ (75)

for (72). Furthermore, the z functions of the bottomed
hadrons can be neglected as they are � 1 as well and beauty
in (73) is always set to zero.

Those expansions permit carrying out integrations in the
variables ψ, φ4 and φ5 in (71) and (72). Thus:

Z1(Q0 − qj ,−1, 0) �
∑
i

γsi
s ziζ(Q0 − qj − qi) , (76)

where the sum runs over the anti-charmed hadrons as the
integration in φ4 of terms associated to charmed hadrons
yields zero. The ζ function on the right-hand side is the
same as in (32). Moreover:

Z1(Q0, 0, 0) � ζ(Q0) +
∑
i,k

γsi
s γsk

s zizkζ(Q0 − qi − qk),(77)

where the index i runs over all charmed hadrons and index
k over all anti-charmed hadrons.

Owing to the presence of the absolute value of charm
in the exponential exp[ i |Cj |ψ] (|Cj | = 1) in its integrand

function, the function Z2(Q0, C,B,K) vanishes if K ≤ 0
and yields Kth-order terms of the power expansion in zj if
K ≥ 0 (see (72)). Therefore:

Z2(Q0, 0, 0, 0) = ζ(Q0) (78)

and

Z2(Q0,−1, 0,−1) = 0 . (79)

Finally, inserting (76), (77), (78) and (79) in (73) one gets:

〈〈nj〉〉 = γsj
s zj

∑
i γ

si
s ziζ(Q0 − qj − qi)∑

i,k γ
si
s γsk

s zizkζ(Q0 − qi − qk)
, (80)

where the indices j, k label charmed hadrons and i labels
anti-charmed hadrons. From previous equation it results that
the overall number of primary charmed hadrons is 1, as it
must be if c quark production from fragmentation is negli-
gible. The average multiplicity of anti-charmed hadrons is
of course equal to charmed hadrons one. The same formula
(80) holds for the average multiplicity of bottomed hadrons
in events with a perturbatively generated bb̄ pair. If leading

baryon effect is taken into account, the formula (80) gets
more complicated, but the procedure is essentially the same.

It is clear that a possible charm or beauty suppression
parameter γc or γb, introduced by analogy with strangeness
suppression parameter γs, would not be revealed from the
study of heavy flavoured hadron production because a single
factor multiplying all zj functions would cancel from the
ratio in the right-hand side of (80).

D On the definition of pressure

In Sect. 4, we have dealt with pressure as a single well-
defined quantity for the whole system of hadron gas fire-
balls. However, since the system has local collective flows,
the definition of a single pressure is not a trivial one. We
will now show that the best (as well as the most natural)
definition is:

p = T
∂ logZ

∂V
, (81)

where Z is the global partition function (see (18)–(20)) and
V the global volume defined in Sect. 2.

If the temperatures and γs parameters of the fireballs
are the same, as we have assumed throughout, the global
partition function depends on the single fireball volumes only

through the sum
∑N

i=1 Vi, as shown in (20). Therefore we
can replace the derivative in (81) with:

p = T

N∑
i=1

Vi

V

∂ logZ

∂Vi
. (82)

In order to develop this equation, we can use the expression
(15) of the global partition function and write:

p =
T

V

N∑
i=1

Vi
∂

∂Vi
log

∑
Q0

1
,...,Q0

N

δΣjQ0
j
,Q0

N∏
j=1

Zj(Q0
j) , (83)

which is equal to:

p =
T

V

N∑
i=1

Vi

∑
Q0

1
,...,Q0

N

w(Q0
1, . . . ,Q0

N )
∂

∂Vi
log

N∏
j=1

Zj(Q0
j)

(84)

by using the weights defined in (13). It is now possible to
expand the derivative in (84):

∂

∂Vi
log

N∏
j=1

Zj(Q0
j) =

N∑
j=1

∂

∂Vi
logZj(Q0

j)

=
∂

∂Vi
logZi(Q0

i ) ; (85)

the last equality is due to the dependence of Zj(Q0
j) only on

the volume Vj .
We can now write the pressure as:
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p = T
∑

Q0
1
,...,Q0

N

w(Q0
1, . . . ,Q0

N )

N∑
i=1

Vi

V

∂

∂Vi
logZi(Q0

i ) . (86)

The expression T∂ logZi(Q0
i )/∂Vi in the above equation

is the pressure pi(Q0
i ) of the ith fireball, which is a well-

defined one, as the fireball is a system at complete ther-
mal and mechanical equilibrium by definition. Therefore the
global pressure turns out to be:

p =
∑

Q0
1
,...,Q0

N

w(Q0
1, . . . ,Q0

N )

N∑
i=1

Vi

V
pi(Q0

i ) . (87)

The last equation now makes it clear that the definition (81)
is the most natural definition of pressure for two reasons:

1. for a given event, in which a specific configuration of
fireball quantum numbers {Q0

1, . . . ,Q0
N} is created, the

global pressure is the average of the pressures of single
fireballs, weighted by their extension through the factor
Vi/V ;

2. in general, the global pressure is the average over all pos-
sible configurations of fireball quantum numbers accord-
ing to their probabilities of occurrence w(Q0

1, . . . ,Q0
N ).

E Average multiplicities and volume fluctuations

We want to calculate the leading correction to the formula
(38) for particle average multiplicities in presence of volume
fluctuations affecting chemical factors Z(Q0 − nqj)/Z(Q0).
According to (35), (36):

〈〈nj〉〉 =

∫
dV ρ(V )

∞∑
n=1

(∓1)n+1 γnsj
s V ξj(n)fj(n) ,

(88)

where fj(n) ≡ Z(Q0 − nqj)/Z(Q0). If the volume fluctua-
tions are not too large, one can expand the chemical factors
fj(n) around the mean volume V up to the first order term:

fj(n)(V ) � fj(n)(V ) + f ′j(n)(V )(V − V ) , (89)

so that:

〈〈nj〉〉 =

∞∑
n=1

(∓1)n+1 γnsj
s V ξj(n)fj(n)(V )

+ γnsj
s ξj(n)f

′
j(n)(V )

∫
dV ρ(V )V (V − V ) . (90)

The first term in the series above gives rise to the formula
(38), whilst the second term can be written as:

γnsj
s

D2

V
2
V ξj(n)V f ′j(n)(V ) =

D2

V
2
γnsj
s zj(n)(V )V f ′j(n)(V ) ,

(91)

where D is the dispersion of the distribution ρ(V ). This term

is then about a factor D2/V
2

smaller than the leading term.
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T. Sjöstrand: Comp. Phys. Comm. 28 (1983) 229
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