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Abstract. I present a theoretical discussion of the uncer-
tainties related to the QCD analysis of the proton structure
function F2(x,Q

2) at small x. The role played by the ‘un-
physical’ gluon density is pointed out. It is shown how the
study of more observables can reduce the theoretical uncer-
tainty and, in particular, an alternative method of analysis,
based on the introduction of physical anomalous dimensions,
is suggested.

1 Introduction

One of the main outcome of the physics programme carried
out at HERA is the observed striking rise of the proton struc-
ture function F2(x,Q

2) [1] at small values of the Bjorken
variable x (2 · 10−5 < x < 10−2) and high values of the
momentum transfer Q2 (Q2∼> 2 GeV2).
The HERA data on F2 represent the first experimental

observation of a cross section increasing faster than logarith-
mically with the energy (see, for instance, [2]). This high-
energy behaviour in the hard-scattering regime is expected if
the underlying dynamics is driven by self-interacting mass-
less vector bosons, the gluons. Thus, the steep rise of F2
certainly confirms one of the basic prediction of perturba-
tive QCD [3].
However, the main reason why the HERA data have at-

tracted much theoretical attention goes beyond this point.
The issue, indeed, is whether the striking rise of F2 at
small x calls forth a theoretical interpretation in terms
of non-conventional QCD dynamics. In this context, non-
conventional QCD stands for any approach (based either on
the original BFKL equation [4] or on k⊥-factorization [5–
10]) in which the small-x behaviour of F2(x,Q

2) is studied
by resumming logarithmic corrections of the type (αS lnx)

n

to all orders in the strong coupling αS . By contrast, no small-
x resummation is performed within the conventional QCD
(or DGLAP [3, 11]) approach: the parton densities of the
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proton at a fixed input scale Q20 are evolved in Q2 accord-
ing to the Altarelli-Parisi equation evaluated in fixed-order
perturbation theory.

The theoretical motivation for the non-conventional ap-
proach based on resummation is clear. Since multiple gluon
radiation in the final state produces perturbative contribu-
tions of the type (αS lnx)

n, as soon as x is sufficiently small
(i.e. αS ln 1/x ∼ 1), the fixed-order expansion in αS must
become inadequate to describe the QCD dynamics. Thus, in
principle, the non-conventional approach is certainly more
accurate at asymptotically-small values of x. The question
is whether, in practice, in the HERA kinematic region we
are already approaching this asymptotic regime.

In my opinion it is quite difficult to answer this ques-
tion in the context of the QCD analysis of the sole F2. In-
deed, the small-x rise of F2 can be obtained as the result
of two combined effects: the increase of perturbative scal-
ing violation in the small-x region and the intrinsic non-
perturbative steepness of the gluon density. These pertur-
bative and non-perturbative components are mixed up not
only on the phenomenological side but, more importantly,
on theoretical basis. Since the QCD description of a single
observable, namely F2, requires the introduction of two non-
perturbative inputs, quark and gluon densities, the distinc-
tion between perturbative and non-perturbative components
is strongly dependent on their own definition rather than on
the underlying dynamics.

A better understanding of QCD physics at small x can be
achieved by considering more observables and thus (over-
)constraining the definition of the parton densities. In partic-
ular, by simply using two hadronic observables one can for-
mulate the dynamics of scaling violation enterely in terms of
perturbative quantities that play the role of physical anoma-
lous dimensions. These anomalous dimensions are unam-
biguously computable in QCD perturbation theory and thus
they theoretically appear as golden quantities for comparing
the conventional and non-conventional approaches.

The outline of the paper is as follows. In Sect. 2, I briefly
review the theoretical and phenomenological status of the
QCD analysis of F2(x,Q

2). In particular, I qualitatively dis-
cuss the theoretical uncertainties relative to different per-
turbative approaches and to the small-x behaviour of the
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gluon density. In Sect. 3, I introduce the physical anoma-
lous dimensions that control the Q2 evolution of F2(x,Q

2)
and of the longitudinal structure function FL(x,Q

2). The
main features of these anomalous dimensions are discussed
in Sect. 3.1, while in Sect. 3.2, I present their explicit
expressions in resummed perturbation theory at small x.
Additional observations on the relationship between phys-
ical anomalous dimensions and parton model are consid-
ered in Sect. 4. Section 5 deals with physical anomalous
dimensions for heavy-flavour structure functions. In partic-
ular, it points out the kinematical features of the physical
anomalous dimensions for observables that depend on sev-
eral large-momentum scales. Some general comments are
left to Sect. 6.

2 The proton structure function F2 and the gluon
density

The master equations for the perturbative-QCD study of the
proton structure function at small x are as follows

F2(x,Q
2) = 〈e2f 〉f̃S(x,Q2) + . . . + O (1/Q2) , (1)

dF2(x,Q
2)

d lnQ2
= 〈e2f 〉

∫ 1

x

dz
[
PSS(αS(Q

2), z) f̃S
(
x/z,Q2

)
+ PSg(αS(Q

2), z) f̃g
(
x/z,Q2

)]
+ . . . + O (1/Q2) , (2)

df̃g(x,Q
2)

d lnQ2
=

∫ 1

x

dz
[
Pgq(αS(Q

2), z) f̃S
(
x/z,Q2

)
+ Pgg(αS(Q

2), z) f̃g
(
x/z,Q2

)]
, (3)

where ef is the electric charge of each quark with flavour

f, 〈e2f 〉 = (
∑Nf

f=1 e
2
f )/Nf and Nf is the number of active

flavours. In (1–3) I am using the same notation as in [10].
Thus, the singlet density f̃S and the gluon density f̃g are
related to the usual quark (antiquark) and gluon densities
fqf (fq̄f ) and fg by the following relations

f̃S(x,Q
2) = x

∑
f

[
fqf (x,Q

2) + fq̄f (x,Q
2)
]
,

f̃g(x,Q
2) = xfg(x,Q

2) , (4)

and the quark splitting function PSS and PSg are given in
terms of the customary Altarelli-Parisi splitting functions
Pab as follows

PSg(αS , x) = 2NfPqig(αS , x) ,

PSS(αS , x) =
∑
j

[Pqiqj (αS , x) + Pqiq̄j (αS , x)] . (5)

The dots and the term O (1/Q2) on the right-hand side of
(1, 2) respectively denote the flavour non-singlet compo-
nent and higher-twist contributions. The contribution of the
non-singlet component to (1, 2) is quantitatively negligible
at small-x and it will be neglected throughout the paper.
However, its inclusion is formally straightforward (see, for
instance, (5.3-5.5) in [10]).
The basis for (1–3) is provided by the factorization the-

orem of mass singularities [12]. According to this theorem

the (perturbatively calculable) splitting functions Pab(αS , x)
and the (phenomenological) parton densities f̃a(x,Q2) are
not separately physical observables. Only proper combina-
tions (convolutions) of them (for instance, the right-hand
sides of (1, 2)) are related to measurable quantities. There-
fore one has some freedom (ambiguity) in defining split-
ting functions and parton densities. This freedom is called
factorization-scheme dependence and follows from the fact
that hadron scattering cross-sections cannot be computed
within a purely perturbative framework. The factorization
theorem states that at high momentum transfer Q, the pertur-
batively non-calculable component of all the cross sections
is factorizable in few universal (process independent) parton
distributions. These parton distributions can be defined using
experimental information on an equal number of hadronic
observables at a certain scale. Having that done, the high-Q2

behaviour of all the hadronic cross sections can be unam-
biguously (modulo power suppressed corrections) computed
by using perturbation theory.
Equations (1) and (2) refer to the so-called DIS factoriza-

tion scheme1[13]. In this scheme, (1) actually represents the
definition of the singlet-quark density f̃S . The true dynami-
cal information is instead contained in the scaling violations
of F2 as described by (2) and by the analogous evolution
equation (3) for the gluon density.
The Altarelli-Parisi splitting functions entering into (2,

3) are computable in QCD perturbation theory as a power
series expansion in αS :

Pab(αS , x) =
∞∑
n=1

(αS

2π

)n

P (n−1)ab (x) , (6)

and the coefficients P (n−1)ab (x) in this series can be calculated
(at least, in principle) to any order n in αS .
Conceptually, the content of the QCD analysis of F2

according to the master equations written above is the fol-
lowing. One first computes the splitting functions in (6) to a
given perturbative accuracy. Then, by using the experimen-
tal information on F2 and dF2/d lnQ

2, from (2, 3) one can
determine the quark and gluon densities as functions of x
and Q2. Finally, (3) enters as self-consistency check of the
QCD evolution equations.
In practice, the QCD analysis proceeds as follows. One

assigns a certain parametrization for the parton densities at
a given input scale Q20. Then, inserting this parametrization
into (1–3), one can fit the input parameters to the experi-
mental data.
It is worth emphasizing a point that is independent of the

actual procedure used in the QCD analysis. Whilst the F2
data uniquely determine the (DIS scheme) quark density, the
measurement of dF2/d lnQ

2 does not give access directly

to the determination of the gluon density f̃g , but rather to

that of the product (convolution) PSg ⊗ f̃g . Since PSg is
evaluated in a certain theoretical framework (that is, at a
given perturbative order or in resummed perturbation theory,
in a certain factorization scheme and so forth), the ensuing
f̃g turns out to be ‘theory-dependent’.

1 Equation (3) does not involve (at least, directly) any physical observ-
able. Thus, it takes the same form in any scheme. Of course, the gluon
splitting functions Pgq and Pgg have to be consistently computed in the
corresponding factorization scheme
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2.1 Fixed-order perturbation theory

Only the first two terms P (0)ab (x), P
(1)
ab (x) of the perturbative

expansion (6) of the splitting functions are exactly known
(i.e. known for any values of x) [14]. In the conventional
approach these leading order (LO) and next-to-leading or-
der (NLO) terms are used as theoretical inputs for the QCD
analysis of F2. It turns out that the HERA data can be suc-
cesfully described [15–19] by parton densities having the
following small-x behaviour

f̃S(x,Q
2
0) � x−λS , f̃g(x,Q

2
0) � x−λg (7)

with λS ∼ λg = 0.2÷ 0.3 at the input scale Q20 ∼ 4 GeV2.
Up to the second order in αS , the quark splitting func-

tions PSS , PSg in (2) are essentially flat at small x, whilst the
gluon splitting functions are steeper and behave as follows2

Pgg(αS , x) � CA

CF
Pgq(αS , x) � ᾱS

x
, (8)

where CA = Nc, CF = (N 2
c − 1)/(2Nc), Nc = 3 is the

number of colours and I have defined ᾱS ≡ CAαS/π. Thus,
the phenomenological success of the NLO QCD approach
tells us that the rise of F2 at small x is due to the DGLAP
evolution in the gluon channel (i.e. it is due to (3)) combined
with a steep behaviour (∼ x−0.2 ) of the input densities at
Q20 ∼ 4 GeV2.

2.2 Resummed perturbation theory

The basis for the non-conventional QCD approach is pro-
vided by the BFKL equation [4]. Starting from it, a for-
malism that is able to combine consistently small-x resum-
mation with the QCD factorization theorem has been set
up in the last few years. This formalism, known as k⊥-
factorization or high-energy factorization, was first discussed
to leading-order accuracy in [5–8] and then was extended
to higher-orders in [9, 10]. In the high-energy factoriza-
tion approach, one ends up with the usual QCD evolution
equations (namely, (1–3) in the case of the proton struc-
ture function F2) but the splitting functions Pab(αS , x) in
(6) (and, in general, the process-dependent coefficient func-
tions: see Sects. 3–5) are no longer evaluated in fixed-
order perturbation theory. They are indeed supplemented
with the all-order resummation of the leading ( 1xα

n
S ln

n−1 x),
next-to-leading ( 1xα

n
S ln

n−2 x) and, possibly, subdominant
( 1xα

n
S ln

m x, m < n − 2) contributions at small x. Note,
also, that this resummation can be performed by having full
control of the factorization-scheme dependence of splitting
(and coefficient) functions and parton densities [8, 10, 20].
The present theoretical status of small-x resummation is

the following3. The leading-logarithmic (LL) contributions
to the gluon splitting functions Pgg(αS , x), Pgq(αS , x) are
known [4, 8, 21]. Their resummation leads to a very steep
(power-like) asymptotic behaviour:

2 The scheme dependence of the splitting functions appears only starting
from two-loop order. In particular, in two-loop order this dependence is
pretty mild at small x
3 I refer to Sects. 3 and 5 for the resummation in the process-dependent

coefficient functions

Pgg(αS , x)|asym. � CA

CF
Pgq(αS , x)|asym. ∼ ᾱS x−(1+λL) , (9)

where the power 1 + λL = 1 + 4ᾱS ln 2 � 1 + 2.65αS is
the so-called intercept of the perturbative QCD pomeron.
The complete next-to-leading logarithmic (NLL) contribu-
tions to the gluon splitting functions are not yet known and
calculations are in progress [22–24]. In particular, the con-
tributions proportional to Nf in Pgg have been evaluated
recently [24]. Owing to the gluon dominance at high en-
ergy, the quark splitting functions PSg(αS , x), PSS(αS , x)
do not contain LL contributions. However, the NLL terms
are completely known [9, 10] to all orders in perturbation
theory.

Having developed a resummed perturbative expansion to
the same (modulo the still unknown NLL terms in the gluon
sector) degree of theoretical accuracy as the fixed-order per-
turbative expansion, one can set up a fully consistent non-
conventional QCD approach [10]. This is accomplished [25,
26] by adding leading and next-to-leading logs to one- and
two-loop contributions (after subtracting the resummed log-
arithmic terms, in order to avoid double counting) in the
splitting functions P ab(αS , x), thus obtaining a perturbative
framework that is everywhere at least as good as the fixed-
order expansion, and much better as x becomes small.
After the first numerical analyses [27] within the k⊥-

factorization framework, phenomenological studies based on
resummed perturbation theory have been performed during
the last year [25, 26, 28]. They have shown that, likewise the
conventional QCD analysis, the non-conventional approach
can accomodate the parton densities to provide a description
of the HERA data on F2.
The naı̈ve explanation for that could be that the inclusion

of the resummed logarithmic corrections produces a small
effect in the Altarelli-Parisi splitting functions. Actually, this
is not the case.

Indeed, it is true that the resummation of the leading
terms 1

xα
n
S ln

n−1 x in the gluon splitting functions has a
moderate impact on the scaling violations of F2 in the kine-
matical range presently investigated at HERA. The situa-
tion is however different in the quark channel, that is, in
the evolution equation (2). The measured large value of
dF2(x,Q

2)/d lnQ2 at small x calls for a quite steep prod-
uct (convolution) PSg⊗ f̃g . In the conventional (fixed-order)
perturbative analysis this condition can be fulfilled only by
choosing a quite steep input distribution f̃g . After resum-

mation of the next-to-leading terms 1
xα

n
S ln

n−2 x, the quark
splitting functions PSg(αS , x) and PSS(αS , x) are much
steeper than the corresponding splitting functions evaluated
in two-loop order4. Thus, the non-conventional approach can
succeed in describing the small-x rise of F2 by using parton
densities that at the input scale Q20 are less steep than those
needed in the fixed-order approach.

From this result one may conclude that the conventional
and non-conventional approaches are phenomenologically
equivalent: the HERA data on F2 at sufficiently high Q2

cannot distinguish steep input densities from steep dynami-
cal evolution.

4 I refer to [29] for a more detailed discussion on the small-x behaviour
of the resummed splitting functions
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The conclusion is instead different from a theoretical
viewpoint. Since the resummation of the NLL contributions
leads to a large effect on F2, there is no justification for trun-
cating the QCD perturbative expansion at NLO: the fixed-
order expansion approach is thus theoretically disfavoured.
The only caveat against such a firm conclusion is that the
NLL terms in the gluon sector are still unknown: they may
lead to a large and opposite effect with respect to those in
the quark channel.
At the same time, since the known NLL contributions

produce large corrections on F2, one can expect that sublead-
ing terms may still have a sizeable effect. Thus, at present,
perturbative QCD predictions for the small-x behaviour of
F2 suffer from substantial theoretical uncertainties [25]. A
better understanding of subleading contributions is necessary
to reduce these uncertainties [25, 30].
The QCD analysis of the sole proton structure function

F2, moreover, is affected by an even larger indeterminacy re-
lated to the difficulty in disentangling perturbative and non-
perturbative effects. In order to clarify this point, let me
briefly consider the issue of the factorization-scheme depen-
dence [20, 29, 31].

2.3 Factorization-scheme dependence

As discussed in the first part of this Section, the parton den-
sities are not physical observables and, in particular, they
are not calculable in perturbation theory. In the perturbative
framework they are defined apart from an overall pertur-
bative function. Thus, starting from the DIS factorization
scheme considered so far, one can introduce a new factor-
ization scheme of DIS type5 (i.e. a scheme in which the
physical identification of the quark density with the proton
structure function as in (1) remains valid) by defining a new
gluon density f̃ (new)g as follows [29]

f̃ (new)g (x,Q2) = f̃g(x,Q
2) +

∫ 1

x

dz

z

×
[
u(αS(Q

2), z) f̃g(x/z,Q
2)

+
CF

CA
v(αS(Q

2), z) f̃S(x/z,Q
2)

]
. (10)

Here u(αS , z) and v(αS , z) are functions that can be ex-
panded as power series in αS and vanish for αS = 0. As
for their functional dependence on z, it is quite arbitrary.
The only constraints are that u(αS , z) and v(αS , z) contain
at most NLL terms of the type αS(αS ln z)

n for z → 0 and
that these NLL terms are equal in u and v.
The dynamical evolution equations (2) and (3) can be

written in terms of the new gluon density (10) and of new
Altarelli-Parisi splitting functions. The above constraints
guarantee that the new splitting functions have the same
LL behaviour as the DIS-scheme splitting functions, so that
the dominant perturbative dynamics is left unchanged.
The freedom of arbitrarily choosing the factorization

scheme is not a particular feature of small-x dynamics. The

5 More general factorization schemes, like for instance the MS scheme,
are considered in [10, 31]

transformation in (10) can be applied in the small-x as well
as in the large-x regions. In general, its effect amounts to
a redefinition of the input parton densities that is perturba-
tively under control. The effect, instead, can be quite large
in the small-x region because each power of αS can be ac-
companied by an enhancing logarithmic factor of ln 1/x.
In order to quantify the theoretical uncertainty related to

the scheme dependence, let us consider the simplest case in
which the splitting functions in (2, 3) are evaluated to LL ac-
curacy. Thus, we can perform the scheme transformation in
(10) by choosing any NLL functions u and v and, in partic-
ular, we can set u(αS , z) = v(αS , z) = AαSz

−KαS , where
A and K are constants of order unity. Assuming the ex-
treme case of flat input densities, this leads to the following
factorization-scheme uncertainty

δf̃g(x) = f̃ (new)g (x)− f̃g(x)

=
A

K
(x−KαS − 1) ∼ A

K
x−KαS . (11)

This implies that, from the QCD analysis of F2 to LL ac-
curacy, one cannot argue whether steep input densities have
a non-perturbative origin or rather mimic higher-order per-
turbative effects. Of course, using the NLL expressions for
the splitting functions one reduces the factorization-scheme
uncertainty by a factor of αS . For the case considered above
one obtains δf̃g(x) ∼ αS x−KαS that, however, still repre-
sents a substantial indeterminacy.
In order to gain more theoretical accuracy one should

compute higher perturbative orders in the Altarelli-Parisi
splitting functions. The same goal can be achieved in a sim-
pler manner by eliminating the factorization-scheme uncer-
tainty, that is, by relating the gluon density to other physical
observables.
Actually, there is one more reason for studying the small-

x behaviour of physical observables other than F2. As a
matter of fact, the large effect on F2 of the NLL contributions
in the quark channel might be, in a sense, spurious or, more
precisely, related to the use of certain factorization schemes
[20, 29].
For instance (and quite strikingly), one can choose the

functions u(αS , z) and v(αS , z) in such a way that all the
NLL terms in the quark channel are removed from the (new)
quark splitting functions PSg , PSS and absorbed into the re-
definition (10) of the gluon density [29]. The only price one
has to pay consists in the introduction of additional NLL
terms in the gluon splitting functions. It turns out that the
effect of these additional terms is quantitatively small [26].
Therefore, within this factorization scheme (called SDIS
scheme in [29]) the non-conventional approach to NLL ac-
curacy and the conventional approach to NLO are, in prac-
tice, indistinguishable (apart from the caveat on the unknown
NLL terms in the gluon channel) as for the QCD analysis
of F2. The introduction of the SDIS scheme thus provides
a more formal argument to explain the phenomenological
equivalence of the conventional and non-conventional ap-
proaches that has been pointed out in Sect. 2.2.
This equivalence may appear as due to a particular al-

gebraic trick or to fine-tuning of the factorization scheme
with no physical content. Actually, this is not necessarely
the case. The factorization-scheme dependence, rather than
an ambiguity in higher-order perturbative coefficients, has
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to be regarded more physically as a parametrization of our
ignorance in factorizing perturbative from non-perturbative
physics. At present, the proton structure function F2 (i.e. (1–
3)) provides experimental/theoretical information that is not
sufficiently accurate to disentangle perturbative from non-
perturbative dynamics at small-x.
In order to have better control on the perturbative dy-

namics, one should consider the small-x behaviour of other
physical observables. Indeed, by means of the transforma-
tion from the DIS to the SDIS schemes (almost) no trace of
small-x perturbative contributions is left in F2 and all the
resummation effects are moved to other physical quantities.
These effects can be sizeable. It may also happen that the
resummed contributions are almost universal, in the sense
that, in the kinematic regions that are experimentally ac-
cessible, they produce very similar quantitative effects in all
physical observables. In this case, these contributions can be
consistently absorbed into the non-perturbative parton den-
sities and fixed-order perturbation theory can be safely used
throughout.

3 Factorization-theorem invariants at small x

The theoretical motivations for studying the small-x be-
haviour of several different physical observables have been
pointed out in the previous Section. As discussed in [5, 32]
and furtherly elaborated on in [24], this study can be per-
formed by considering properly defined K-factors (ratios
of hadronic cross sections), which are factorization-scheme
independent. Analogously, one can introduce factorization-
scheme invariants that relate the scaling violations of differ-
ent structure functions. These invariants are discussed in the
rest of this paper.
Among the observables that one can consider, the lon-

gitudinal structure function FL of the proton is becom-
ing increasingly topical. On the experimental side, data on
FL(x,Q

2) at small x will be available soon from HERA.
On the theoretical side, this quantity is known to a sufficient
accuracy.
In order to make more explicit this statement about the

theoretical accuracy of FL, let me recall that, using the fac-
torization theorem of mass singularities, FL is given as fol-
lows

FL(x,Q
2) = 〈e2f 〉

∫ 1

x

dz

z

[
CS

L (αS(Q
2), z) f̃S

(
x/z,Q2

)
+ Cg

L(αS(Q
2), z) f̃g

(
x/z,Q2

)]
+ . . . + O (1/Q2) , (12)

where f̃S and f̃g are the same parton densities that enter
into (1–3) and, as in (2, 3), the dots and the term O (1/Q2)
respectively denote flavour non-singlet and higher-twist con-
tributions. In any given factorization scheme the coefficient
functions CS

L and Cg
L in (12) are computable in QCD per-

turbation theory according to the following power series ex-
pansion

Ca
L(αS , x) =

+∞∑
n=1

(αS

2π

)n

Ca (n−1)
L (x) . (13)

Both the LO and NLO coefficients Ca (0)
L (x), Ca (1)

L (x) have
been computed for any value of x [33]. Correspondingly,
in resummed perturbation theory all the NLL terms lnn−1 x
in Ca (n)

L (x) are known [10]. Owing to this theoretical in-
formation, (1–3) can be supplemented with (12) thus elimi-
nating the factorization scheme uncertainty. To this purpose
one should introduce the parton densities f̃S and f̃g ex-
tracted from (1–3) into (12). Theoretical consistency simply
requires that splitting functions and coefficient functions are
evaluated to the corresponding accuracy, that is, to NLO
in the conventional approach and including NLL terms in
resummed perturbation theory.

3.1 Physical anomalous dimensions

The unphysical role played by the parton densities within this
context is clear. Indeed, one can write down evolution equa-
tions that involve only physical observables and perturbative
quantities. Starting from (1, 12) and performing straightfor-
ward algebraic manipulations, one first express the parton
densities f̃S and f̃g as functions of F2 and FL. Then, insert-
ing the expressions derived in this manner into (2, 3), one
obtains the following dynamical equations

dF2(x,Q
2)

d lnQ2
=

∫ 1

x

dz

z

[
Γ22(αS(Q

2), z) F2
(
x/z,Q2

)
+ Γ2L(αS(Q

2), z) FL

(
x/z,Q2

)]
+ . . . + O (1/Q2) , (14)

dFL(x,Q
2)

d lnQ2
=

∫ 1

x

dz

z

[
ΓL2(αS(Q

2), z) F2
(
x/z,Q2

)
+ ΓLL(αS(Q

2), z) FL

(
x/z,Q2

)]
+ . . . + O (1/Q2) , (15)

From a formal viewpoint (14, 15) may appear equivalent
to (2, 3). However, (14, 15) relate the scaling violations of
two physical observables, namely F2 and FL, to the actual
value of the same observables. It follows that the kernels
Γij(αS(Q

2), x) (with i, j = 2, L) are physical observables
as well. Owing to the formal resemblance to the Altarelli-
Parisi splitting functions, the kernels Γij(αS(Q

2), x) can be
considered as physical splitting functions.
The main physical properties of the kernels Γij(αS(Q

2),
x) are that i) each of them is consistently computable in
QCD perturbation theory (modulo higher-twist corrections
that are suppressed by some power of 1/Q in the hard-
scattering regime) and ii) each of them is a factorization-
theorem invariant, i.e. it does not depend on both the fac-
torization scheme and the factorization scale. In other words,
from the viewpoint of perturbative QCD, each Γij(αS(Q

2), x)
is completely analogous to the celebrated ratio

Re+e− =
σ(e+e− → hadrons)

σ(e+e− → μ+μ−)
, (16)

in e+e− annihilation.
The perturbative expansions of the physical splitting

functions are the following
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ΓLL(αS , x) =
+∞∑
n=1

(αS

2π

)n

Γ (n−1)LL (x)

=
αS

2π

[
Γ (0)LL(x) +

αS

2π
Γ (1)LL(x) + . . .

]
, (17)

ΓL2(αS , x) =

+∞∑
n=1

(αS

2π

)n+1

Γ (n−1)L2 (x)

=
(αS

2π

)2 [
Γ (0)L2 (x) +

αS

2π
Γ (1)L2 (x) + . . .

]
, (18)

Γ2L(αS , x) =
+∞∑
n=1

(αS

2π

)n−1
Γ (n−1)2L (x)

=
[
Γ (0)2L (x) +

αS

2π
Γ (1)2L (x) + . . .

]
, (19)

Γ22(αS , x) =
+∞∑
n=1

(αS

2π

)n

Γ (n−1)22 (x)

=
αS

2π

[
Γ (0)22 (x) +

αS

2π
Γ (1)22 (x) + . . .

]
. (20)

Note that the expansions for the diagonal kernels ΓLL, Γ22
are completely analogous to that in (6) for the Altarelli-
Parisi splitting functions. The mismatch in the overall power
of αS between the expansions for the diagonal and non-
diagonal (ΓL2, Γ2L) kernels is due to the fact that, from
a perturbative viewpoint (or, equivalently, because of the
validity of the Callan-Gross relation, FL = 0, in the naı̈ve
parton model), the longitudinal structure function has to be
considered as a physical quantity of relative order αS with
respect to F2, i.e. FL ∼ αSF2. Taking this into account, a
conventional QCD calculation should consistently consider

the contributions Γ (0)ij (x) in (17–20) as lowest-order terms,

Γ (1)ij (x) as next-order terms and so forth.
Obviously, since the kernels Γij are physical observ-

ables, they are renormalization-group invariant quantities. It
follows that, if computed in fixed-order perturbation theory
they should exibits the customary dependence on the renor-
malization scale μ. Thus, to be more precise, in the evolu-
tion equations (14, 15) one has to perform the replacement
Γij(αS(Q

2), x) → Γij(αS(μ
2), Q2/μ2, x). Equations (17–

20) refer to the perturbative expansion of Γij for μ = Q2. In
general one obtains:

Γij

(
αS(μ

2),
Q2

μ2
, x

)

=

(
αS(μ

2)

2π

)p [
Γ (0)ij (x) +

αS(μ
2)

2π

×
(
Γ (1)ij (x)− p Γ (0)ij (x) 2πβ0 ln

Q2

μ2

)
+ ..

]
, (21)

where 12πβ0 = 11CA − 2Nf is the first coefficient of the
QCD β-function and p = 1 for ΓLL and Γ22, p = 0 for Γ2L,
p = 2 for ΓL2.
This discussion on the perturbative features of the ker-

nels Γij(αS , x) can be summarised by saying that they
are infrared and collinear safe quantities. Thus, as in the
case of the ratio Re+e− , the x-dependent perturbative co-

efficients Γ (n)ij are computable by first principles starting

from parton-level Feynman diagrams and without carry-
ing out any factorization procedure of mass singularities.
Nonetheless, since higher-order perturbative calculations for
Altarelli-Parisi splitting functions and process-dependent co-
efficient functions are already available, it is more conve-

nient to relate directly the Γ (n)ij ’s to these quantities.
To the purpose of simplifying the notation it is also useful

to introduce the N -moments. For any function g(x), I define
its N -moments gN in the usual way:

gN ≡
∫ 1

0

dx xN−1 g(x) . (22)

Thus, for instance, the evolution equations (2, 3) become:

dF2,N (Q
2)

d lnQ2
= 〈e2f 〉

[
γSS,N (αS(Q

2)) f̃S,N (Q
2)

+γSg,N (αS(Q
2)) f̃g,N (Q

2)
]

, (23)

df̃g,N (Q
2)

d lnQ2
= γgq,N (αS(Q

2)) f̃S,N (Q
2)

+γgg,N (αS(Q
2)) f̃g,N (Q

2) , (24)

where the anomalous dimensions γab,N (αS) are related to
the N +1-moments of the Altarelli-Parisi splitting functions,
that is,

γab,N (αS) ≡
∫ 1

0

dx xNPab(αS , x) = Pab,N+1(αS) . (25)

Analogously, the dynamical equations (14, 15) can be
rewritten as follows

dF2,N (Q
2)

d lnQ2
= Γ22, N (αS(Q

2)) F2, N (Q
2)

+Γ2L,N (αS(Q
2)) FL,N (Q

2) , (26)

dFL,N (Q
2)

d lnQ2
= ΓL2, N (αS(Q

2)) F2, N (Q
2)

+ΓLL,N (αS(Q
2)) FL,N (Q

2) , (27)

where Γij, N (αS) are the physical anomalous dimensions, i.e.
theN -moments of the physical splitting functions Γij(αS , x).
The physical anomalous dimensions are related to γab,N

and to the longitudinal coefficient functions in (12) by the
following equations

ΓLL,N =

[
γgg,N +

CS
L,N

Cg
L,N

γSg,N +
d lnCg

L,N

d lnQ2

]
DIS

, (28)

ΓL2, N =

[
Cg

L,Nγgq,N − CS
L,Nγgg,N

+CS
L,N

(
γSS,N − CS

L,N

Cg
L,N

γSg,N

)

+CS
L,N

(
d lnCS

L,N

d lnQ2
− d lnCg

L,N

d lnQ2

)]
DIS

, (29)

Γ2L,N =

[
γSg,N

Cg
L,N

]
DIS

, (30)
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Γ22, N =

[
γSS,N − CS

L,N

Cg
L,N

γSg,N

]
DIS

, (31)

where I have used the shorthand notation Γij, N = Γij, N

(αS(Q
2)), γab,N = γab,N (αS(Q

2)), Ca
i,N = Ca

i,N (αS(Q
2)).

In (28–31) the subscript DIS on the right-hand side means
that the quantities inside the square brackets have to be eval-
uated in the DIS factorization scheme. Obviously, this does
not mean that Γij, N are scheme dependent. The only point
is that their expressions in terms of γab,N and Ca

L,N are
more cumbersome if γab,N and Ca

L,N are given in a differ-
ent factorization scheme.
Both the Altarelli-Parisi splitting functions and the lon-

gitudinal coefficient functions [33] are known up to two-
loop order. Therefore, using (28–31), one can obtain the

two lowest-order terms Γ (0)ij , Γ
(1)
ij of the physical anomalous

dimensions.

3.2 Behaviour at small x

Let me now consider the small-x behaviour of the physical
anomalous dimensions. From power-counting arguments, it
follows that the most singular terms in the perturbative co-

efficients Γ (n)ij (x) behave as Γ
(n)
ij (x) ∼ xP (n)(x) ∼ (lnx)n

or, equivalently, Γ (n)ij, N ∼ (1/N )n+1 in N -moment space6.
As in the case of the Altarelli-Parisi splitting functions, one
expects two entries in the matrix of the physical splitting
functions that contain leading logarithms. These two entries
are those more directly related to the gluon channel and,
hence, they appear in the evolution equation (15) for the

longitudinal structure function. Thus, we have Γ (n)LL(x) ∼
Γ (n)L2 (x) ∼ (lnx)n. The evolution equation (14) is instead
more related to the quark dynamics and thus the corre-
sponding anomalous dimensions contain only NLL terms,

i.e. Γ (n)2L (x) ∼ Γ (n)22 (x) ∼ (lnx)n−1.
As in the case of the fixed-order perturbative expansions,

(28–31) can be used to obtain resummed logarithmic expres-
sions at small x for the physical anomalous dimensions. The
resummation programme carried out in [5, 10] leads to ana-
lytic formulae given in terms of the LL contributions to the
gluon anomalous dimensions, that is,

γgg,N (αS) = γN (αS) + O
(
αS(αS/N )

n
)
. (32)

Here, γN (αS) is the BFKL anomalous dimension [4, 21]
and is obtained by solving the implicit equation

1 =
ᾱS

N
χ (γN (αS)) , (33)

where the characteristic function χ(γ) is expressed in terms
of the Euler ψ-function as follows

χ(γ) = 2ψ(1)− ψ(γ)− ψ(1− γ) . (34)

Having recalled these results, I am now in a position of pre-
senting all-order resummed formulae for the physical anoma-
lous dimensions, starting from the leading components ΓLL

and ΓL2.

6 Note that logarithmic contributions of the type lnn−1 x in x-space
correspond to multiple poles (1/N )n in N -space

Since quark splitting functions and longitudinal coeffi-
cient functions are subleading at small x, (28) and (32) im-
mediately gives

ΓLL,N (αS) = γN (αS) + O
(
αS(αS/N )

k
)

. (35)

Note also that, using the known next-to-leading results for
γSg and Ca

L, as soon as the next-to-leading contributions to
γgg will be evaluated, one can provide the full NLL correc-
tions to ΓLL [24].
Incidentally, (35) clearly shows that the BFKL anoma-

lous dimensions γN (αS), being related to the small-x be-
haviour of ΓLL, is a physical quantity. On the contrary,
the gluon anomalous dimensions γgg,N are factorization-
scheme dependent and, in general, one might expect that
this scheme-dependence affects also their LL behaviour.
As can be seen from (29–31), to the purpose of eval-

uating the LL terms in ΓL2, as well as the next-to-leading
terms in Γ2L and Γ22, it is not sufficient to know the lead-
ing contributions in the gluon channel, i.e. in γgq and γgg .
One has to use the full information provided by the next-to-
leading order resummation performed in [10]. This feature
emphasizes once more that the standard anomalous dimen-
sions and coefficient functions are not physical observables.
The power counting of small-x logarithms is different for
physical observables and leading and next-to-leading log-
arithms in anomalous dimensions and coefficient functions
get (slightly) mixed up. Without the NLL calculations in
[10], no LL analysis of physical quantities at small x can be
carried out.
Using the results for γgq , γSg , C

a
L obtained in [10], (29)

gives the following expression for the LL terms in ΓL2

ΓL2, N (αS) =
αS

2π

{(
CF

CA
Cg (0)

L,N − CS (0)
L,N

)
γN (αS)

+ O
(
αS(αS/N )

k
)}

, (36)

where Ca (0)
L,N are the N -moments of the lowest-order coef-

ficient functions Ca (0)
L (x) in (13). One can see that, even-

tually, also the small-x resummation in ΓL2 turns out to
be proportional to the BFKL anomalous dimension. As for
the NLL terms in ΓL2, part of them can be obtained from
those known [10] for quark anomalous dimensions and coef-
ficient functions. The remaining terms require the evaluation
of the gluon anomalous dimensions γgg and γgq to NLL
order and the computation of the DIS-scheme coefficient
functions Ca

L to next-to-next-to-leading logarithmic (NNLL)
accuracy! This feature is consistent with the factorization-
scheme dependence of (1–3). Indeed, it is straightforward
to check that, after having fixed the factorization scheme to
NLL accuracy in (1, 2), only the NLL contributions of Pgg

in (3) are unambiguously defined: by properly choosing the
scheme transformation in (10), one still has the freedom of
arbitrarily defining the NLL terms in the non-diagonal gluon
splitting function Pgq . In other words, the sole calculation
of the still unknown gluon anomalous dimensions to NLL
order will not be sufficient to provide a consistent theoretical
framework for the analysis of physical observables to NLL
accuracy in resummed perturbation theory.
The evaluation of the next-to-leading contributions to the

physical anomalous dimensions Γ2L, Γ22 enterely relies on
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the calculations of the quark anomalous dimensions in [9]
and of the longitudinal coefficient functions in [10]. Using
these results and (30, 31), one obtains7

αS

2π
Γ2L,N (αS) =

αS

2π

[
1

1− γN (αS)
+
3

2
γN (αS)

]
+O

(
α2S(αS/N )

k
)

, (37)

Γ22, N (αS) =
αS

2π

{(
CF

CA
Cg (0)

L,N − CS (0)
L,N

)

×
[

1

1− γN (αS)
+
3

2
γN (αS)

]

+

(
γ(0)SS,N − CF

CA
γ(0)Sg,N

)}
+O

(
α2S(αS/N )

k
)

. (38)

Equations (37, 38) provide resummed analytical formulae for
Γ2L and Γ22 in terms of the BFKL anomalous dimension in
(32). Note that, if one compares the right-hand sides of these
equations with the corresponding expressions for γSS , γSg ,
Ca

L in [10], one can see that (37, 38) are remarkably simpler.
These equations have to be considered as the main scheme-
invariant output of the next-to-leading order resummation in
the quark channel.
Having presented the main features of the physical ano-

malous dimensions Γij both in fixed-order and in resummed
perturbation theory, let me add some comments on the dy-
namical equations (14, 15).
The first comment regards the theoretical accuracy at

small x. Suppose, for instance, that the physical anomalous
dimensions Γij, N (αS) are evaluated only to LL order in
resummed perturbation theory. This implies the following
theoretical indeterminacy δΓN/ΓN = O (αS(αS/N )

k) or,
equivalently, O (α2S(αS lnx)

k) in x space. In order to make
a direct comparison with the discussion in Sect. 2.3, we can
parametrize this uncertainty in terms of a singular function
of the type Aα2S x−KαS . Owing to the convolution structure
in (14, 15) and considering the extreme case of flat structure
functions, this leads to the following theoretical uncertainty

δFi=2,L(x)

Fi=2,L(x)
∼ A

K
αS x−KαS . (39)

Comparing (11) and (39), we can see that the replacement of
unphysical parton densities with physical observables (and
the ensuing elimination of the factorization-scheme depen-
dence) allows one to gain a factor of αS in the nominal
theoretical accuracy. Of course, this is due to the fact that
the dynamical evolution equations (14, 15) to LL accuracy
contain more theoretical information than (1–3) to the same
accuracy. As a matter of fact, the evaluation of the physi-
cal anomalous dimensions to LL order is equivalent to the
knowledge of leading-order splitting functions and next-to-
leading order coefficient functions (see the discussion above
(36)).

7 Note that, consistently with the logarithmic accuracy of the right-hand
sides of (36, 38), theN -moments of the lowest-order anomalous dimensions
and coefficient functions can be replaced with their values atN = 0, namely

γ(0)SS,N=0 = 0, γ(0)Sg,N=0 = Cg (0)
L,N=0 =

4
3
TRNf , CS (0)

L,N=0 = CF

Other comments regard phenomenological aspects. The
evolution equation (15) for FL is physically analogous to
the evolution equation for the gluon density. This analogy
is particularly clear at small x, because the physical anoma-
lous dimensions ΓLL and ΓL2 turn out to be proportional to
the BFKL anomalous dimension. Thus the effects of small-
x resummation in (15) can directly be inferred from those
studied in [25] for the gluon density.
The evolution equation (14) for F2 is physically analo-

gous to the evolution equation for the quark density. From
the expressions in (37, 38) we see that the small-x resumma-
tion effects increase the amount of scaling violation. Equa-
tion (37), for instance, can be rewritten as follows

Γ2L,N (αS) = 1 + 2.5 γN (αS) +

+∞∑
n=2

(γN (αS))
n . (40)

Thus, besides the resummation accomplished by the BFKL
anomalous dimension, there are further enhancing effects
due to the positive definite (although, not large) coefficients
in the series (40). Phenomenological studies of these purely
perturbative (i.e. independent of the parton densities) effects
appear interesting.
In general (14, 15) relate measurable values of observ-

ables, F2, FL and their derivatives with respect to Q2, to
perturbative quantities, the physical anomalous dimensions.
Thus, in the hard scattering regime, these equations provide
absolute predictions of perturbative QCD. In practice, the
measurement of dFL/d lnQ

2 can be quite difficult. In this
respect, once FL is measured at a certain value of Q

2, from
(15) one can obtain its value at any Q2 and then one can
use (14) as a test of perturbative QCD that is free from non-
perturbative parameters. Phenomenological analyses along
these lines are in progress [34].

4 Parton picture and the unphysical gluon density

The mathematical steps that are necessary to go from (1–
3, 12) to (14, 15) are pretty straightforward and, naively,
one would be led to conclude that the former equations are
in one-to-one correspondence with the latter. This is not the
case. In order to clarify this point let me first consider a case
in which a one-to-one correspondence between physical and
partonic observables can really be established.
Suppose we want to evaluate the high-Q2 behaviour of

a hadronic observable FC other than, say, F2 and FL. Sup-
pose also that it is a flavour-singlet observable measured in
lepton-hadron scattering processes. Thus, within the partonic
framework, we should consider a factorization formula anal-
ogous to (12). Writing this formula directly in N -space, we
have

FC,N (Q
2) = CS

C,N (αS(Q
2)) f̃S,N (Q

2)

+Cg
C,N (αS(Q

2)) f̃g,N (Q
2) . (41)

Using the parton densities as determined from the scaling
violations of (for instance) F2 and FL, the perturbative QCD
prediction for FC in (41) amounts to the computation of two
factorization-scheme dependent quantities: the coefficients
functions CS

C,N (αS) and Cg
C,N (αS).



673

Alternatively, we can use (1, 12), or (1, 2), to rewrite
(41) as follows

FC,N (Q
2) = KC2, N (αS(Q

2)) F2, N (Q
2)

+KCL,N (αS(Q
2)) FL,N (Q

2) , (42)

FC,N (Q
2) = KC2, N (αS(Q

2)) F2, N (Q
2)

+
1

Γ2C,N (αS(Q2))

d lnF2, N (Q
2)

d lnQ2
, (43)

where, using the same notation as in (28–30), we have:

KC2, N =
1

〈e2f 〉

[
CS

C,N − CS
L,N

Cg
L,N

Cg
C,N

]
DIS

,

KCL,N =
1

〈e2f 〉

[
Cg

C,N

Cg
L,N

]
DIS

. (44)

or:

KC2, N =
1

〈e2f 〉
[
CS

C,N − γSS,N

γSg,N
Cg

C,N

]
DIS

,

Γ2C,N = 〈e2f 〉
[
γSg,N

Cg
C,N

]
DIS

, (45)

Equations (42) and (43) are equivalent to (41). The only
difference is that the factorization-scheme dependence em-
bodied in the coefficient functions CS

C and Cg
C (and in the

parton densities) has been explicitly eliminated by replac-
ing the parton densities with physical quantities (F2 and FL

in (42) or F2 and its Q
2-derivative in (43)) and introducing

the K-factors KC2, KCL or KC2, Γ2C . These K-factors are
factorization-scheme independent and have the same pertur-
bative properties of the physical anomalous dimensions (one
of them, Γ2C , actually coincides with a physical anomalous
dimension). As for the study of small-x physics and the
comparison between fixed-order and resummed perturbation
theory, the K-factors are certainly preferred [5, 32] with
respect to the coefficient functions in (41). However, the
perturbative QCD prediction for FC in (42) or (43) still in-
volves the computation of two K-factors that replace the
two coefficient functions.
The counting of ‘degrees of freedom’ is instead differ-

ent in the case of scaling violations. In order to describe the
scaling violations of F2 and FL according to the partonic for-
mulae in (1, 2, 3, 12), one has to assign two input parton den-
sities f̃S(x,Q

2
0), f̃g(x,Q

2
0) (related to the low-Q

2 behaviour

of F2 and FL or of F2 and its Q
2-slope) and to compute six1

quantities in QCD perturbation theory: four flavour-singlet
splitting functions Pab(αS , x) and two coefficient functions
CS

L (αS , x), C
g
L(αS , x). On the contrary, the solution of the

dynamical evolution equations (14, 15) requires two non-
perturbative initial conditions at the input scale Q20 and the
calculation of only four quantities, the physical anomalous
dimensions Γij(αS , x), in QCD perturbation theory. It is ev-
ident that the parton picture in (1–3, 12) introduces spurious
perturbative QCD effects.
Obviously, there is nothing wrong with the parton model

or with the (light-cone) Wilson expansion for deep-inelastic

1 This number becomes eight in factorization schemes (like the MS
scheme) that are different from the DIS scheme

lepton-hadron scattering. The spurious effects noticed above
simply follow from the ambiguity in the definition of singlet-
quark and gluon densities. From a field theory viewpoint,
the ambiguity is related to the mixing under renormalization
of singlet-quark and gluon operators. Owing to the mixing
matrix, the renormalization prescription has to be specified
by four (two, in DIS-type schemes) arbitrary perturbative
functions. In the partonic framework this ambiguity is un-
avoidable and ultimately related to the fact that no physical
current with point-like coupling to gluons does exist.
The unphysical perturbative contributions that are intro-

duced through the definition of the gluon density are respon-
sible for the theoretical uncertainty pointed out in Sect. 2.3.
In order to furtherly clarify this aspect, let me discuss an-
other possible effect in resummed perturbation theory.
Suppose that in a certain factorization scheme the re-

summation of non-leading logarithmic contributions in the
quark or gluon anomalous dimensions produces a singularity
in the N -plane at a positive value N = N (αS) = ckα

k
S + . . ..

Solving the evolution equation (24) from the input scale
Q20 to the hard scale Q

2, these higher-order terms factorize
into Q20-dependent and Q2-dependent contributions. In par-
ticular, the Q20-dependent factor will contain the singularity

at N = N (αS(Q
2
0)) and this singularity will dominate the

small-x behaviour of F2(x,Q
2) at any Q2 unless it is can-

celled by a zero in the input parton densities f̃a,N (Q
2
0). In

this case, however, since the parton densities are assumed
to be positive definite, they must have a singularity at a
value of N larger than N (αS(Q

2
0)). As a result the small-x

behaviour of F2(x,Q
2) turns out to be controlled by an un-

physical singularity that is simply due to the choice of the
factorization scheme.
This is certainly an extreme effect. Nonetheless, it shows

that the spurious perturbative functions that are introduced in
the partonic picture may lead to obstructions that cannot any
longer be removed within the same framework (i.e. without
releasing the positivity constraint on the parton densities).

5 Heavy-flavour structure functions

Most of the discussion in Sect. 3 on physical anomalous
dimensions can be repeated for other structure functions
in deep-inelastic lepton-proton scattering, for instance, the

heavy-flavour structure functions FQQ̄
2 or FQQ̄

L . These struc-
ture functions are completely analogous to the customary
structure functions F2, FL with the only additional constraint
that heavy quarks of massM are produced in the final state.
To be precise, all the theoretical formulae in the previous

Sections refer to the kinematical region Q2 	 M 2 and thus
neglect corrections of relative order M 2/Q2. In order to
take into account the mass effects, one should perform the

replacement Fi → Fi + FQQ̄
i . However, in the following

Fi still denotes the massless contribution to the structure
function.
There are advantages and disadvantages in substituting

the heavy-quark structure functions for FL in the study of
scaling violations. On the experimetal side [35], the charm
contribution F cc̄

2 to the small-x behaviour of the proton
structure function is certainly more easily measurable than
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FL. This feature has to be contrasted with a larger theoret-
ical uncertainty [36] due to the unknown precise value of
the charm mass and with related complications considered
below.
In the heavy-flavour case, the analogue of the collinear-

factorization formula (12) is (i = 2, L):

FQQ̄
i (ξ,Q2;M 2)

=

∫ 1

ξ

dz

z

[
CQQ̄, g

i (αS(Q
2), ξ/z;Q2/M 2) f̃g(z,Q

2)

+ CQQ̄, S
i (αS(Q

2), ξ/z;Q2/M 2) f̃S(z,Q
2)
]

. (46)

Note that FQQ̄
i and the coefficient functions CQQ̄, a

i depend

on the mass M . Also note that in (46) I have defined FQQ̄
i

as function of Q2,M 2 and the inelasticity variable ξ, which
is related to the customary Bjorken variable x by ξ = x(1 +
4M 2/Q2). From a theoretical viewpoint the scaling variable
ξ is preferred to x because it fulfils the kinematical constraint
0 ≤ ξ ≤ 1. Thus, considering N -moments with respect to ξ,
(46) is diagonalized as follows

FQQ̄
i,N (Q

2;M 2) = CQQ̄, g
i,N (αS(Q

2);Q2/M 2) f̃g,N (Q
2)

+CQQ̄, S
i,N (αS(Q

2);Q2/M 2) f̃S,N (Q
2) .(47)

The functions CQQ̄, a
i have a perturbative expansion sim-

ilar to (13). There are two main differences with respect
to the case of Ca

L. For fixed αS the heavy-quark coeffi-
cient functions are not scale invariant because of their ex-
plicit dependence onQ2/M 2. The expansion for CQQ̄, S

i,N (αS ;

Q2/M 2) starts in O (α2S) (i.e. n ≥ 2) and thus only gluons
contribute to (46) at LO (the sensitivity to the gluon density
is somehow enhanced).

The coefficient functions CQQ̄, a (n−1)
i have been fully

computed up to NLO (n = 0, 1) in [37]. The corresponding
resummed formulae to NLL accuracy2 were obtained in [5].
The evolution equations that involve the physical anoma-

lous dimensions ΓQQ̄ for the pair of observables {F2, FQQ̄
i }

are the following

dF2(x,Q
2)

d lnQ2

=

∫ 1

x

dz

z

[
ΓQQ̄
22 (αS(Q

2), x/z;Q2/M 2) F2(z,Q
2)

+ ΓQQ̄
2i (αS(Q

2), x/z;Q2/M 2) FQQ̄
i (z,Q2;M 2)

]
, (48)

dFQQ̄
i (ξ,Q2;M 2)

d lnQ2

=

∫ 1

ξ

dz

z

[
ΓQQ̄
i2 (αS(Q

2), ξ/z;Q2/M 2) F2(z,Q
2)

+ ΓQQ̄
ii (αS(Q

2), ξ/z;Q2/M 2) FQQ̄
i (z,Q2;M 2)

]
, (49)

or, equivalently, in N -space:

2 The explicit formula for CQQ̄, a
L,N was not reported in [5] and can be

found in [38]

dF2, N (Q
2)

d lnQ2

= ΓQQ̄
22, N (αS(Q

2);Q2/M 2) F2, N (Q
2)

+ΓQQ̄
2i, N (αS(Q

2);Q2/M 2) FQQ̄
i,N (Q

2;M 2) , (50)

dFQQ̄
i,N (Q

2;M 2)

d lnQ2

= ΓQQ̄
i2, N (αS(Q

2);Q2/M 2) F2, N (Q
2)

+ΓQQ̄
ii,N (αS(Q

2);Q2/M 2) FQQ̄
i,N (Q

2;M 2) . (51)

The relation between the physical anomalous dimensions

ΓQQ̄ and the customary splitting and coefficient functions is
similar to that in (28–31) for the case of {F2, FL}, apart from
the replacement Ca

L,N → CQQ̄, a
i,N /〈e2f 〉. Using the same no-

tation as in (28–31), we have:

ΓQQ̄
ii,N =

[
γgg,N +

CQQ̄, S
i,N

CQQ̄, g
i,N

γSg,N +
d lnCQQ̄, g

i,N

d lnQ2

]
DIS

, (52)

ΓQQ̄
i2, N =

1

〈e2f 〉
[
CQQ̄, g

i,N γgq,N − CQQ̄, S
i,N γgg,N

+CQQ̄, S
i,N

(
γSS,N − CQQ̄, S

i,N

CQQ̄, g
i,N

γSg,N

)

+ CQQ̄, S
i,N

(
d lnCQQ̄, S

i,N

d lnQ2
− d lnCQQ̄, g

i,N

d lnQ2

)]
DIS

, (53)

ΓQQ̄
2i, N = 〈e2f 〉

[
γSg,N

CQQ̄, g
i,N

]
DIS

, (54)

ΓQQ̄
22, N =

[
γSS,N − CQQ̄, S

i,N

CQQ̄, g
i,N

γSg,N

]
DIS

. (55)

5.1 Perturbative features

The dynamical evolution equations (48, 49) (or (50),(51)) are
analogous to (14, 15) (or (26),(27)). Note, however, a main

and important difference: now the physical kernels ΓQQ̄ de-
pend not only on αS but also on Q

2/M 2. This dependence is
due to the mass-dependence of the heavy-flavour coefficients

functions CQQ̄, a
i . In particular, using the identity:

d lnCQQ̄, a
i,N (αS(Q

2);Q2/M 2)

d lnQ2

=
d lnαS(Q

2)

d lnQ2
∂ lnCQQ̄, a

i,N (αS(Q
2);Q2/M 2)

∂ lnαS(Q2)

+
∂ lnCQQ̄, a

i,N (αS(Q
2);Q2/M 2)

∂ lnQ2
, (56)

we can see that the perturbative expansions of the physical

anomalous dimensions ΓQQ̄
ii and ΓQQ̄

i2 are the following
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ΓQQ̄
ii,N (αS ;Q

2/M 2) =
d lnCQQ̄, g(0)

i, N (Q2/M 2)

d lnQ2

+

+∞∑
n=1

(αS

2π

)n

ΓQQ̄ (n−1)
ii, N (Q2/M 2)

=
d lnCQQ̄, g(0)

i, N (Q2/M 2)

d lnQ2

+
αS

2π

[
ΓQQ̄ (0)
ii, N (Q2/M 2)

+
αS

2π
ΓQQ̄ (1)
ii, N (Q2/M 2) + . . .

]
, (57)

ΓQQ̄
i2, N (αS ;Q

2/M 2) =

+∞∑
n=1

(αS

2π

)n+1

ΓQQ̄ (n−1)
i2, N (Q2/M 2)

=
(αS

2π

)2 [
ΓQQ̄ (0)
i2, N (Q2/M 2)

+
αS

2π
ΓQQ̄ (1)
i2, N (Q2/M 2) + . . .

]
. (58)

Comparing (57) and (17), we see that ΓQQ̄
ii contains a

lowest-order contribution (the first term on the right-hand
side of (57)) that is absent in ΓLL. This contribution leads
to kinematical scaling violations, that is, to scaling violations
that are independent of the running of αS(Q

2) and are sim-
ply due to the production kinematics of the heavy-quark pair.
Thus, as for the ‘true’ dynamical scaling violations, the per-
turbative QCD calculation should consistently consider the

coefficients ΓQQ̄ (0) in (57, 58) as LO terms, ΓQQ̄ (1) as NLO
terms and so forth.
Apart from the explicit (Q2/M 2)-dependence of the co-

efficients ΓQQ̄ (n−1)(Q2/M 2), the perturbative expansions of

ΓQQ̄
2i and ΓQQ̄

22 are completely analogous to those in (19) and
(20), respectively.
Owing to its kinematical origin, the first term on the

right-hand side of (57) can be eliminated from the physical
anomalous dimensions. To this purpouse it is sufficient to

rescale FQQ̄
i in (50, 51) by the (factorization-scheme inde-

pendent) coefficient CQQ̄, g(0)
i and, thus, to consider F2, N

and FQQ̄
i,N /CQQ̄, g(0)

i, N as dynamical variables. Nonetheless,
this rescaling is not sufficient to exactly put the physical

anomalous dimensions ΓQQ̄ on equal terms with those in
(17–20). The interplay between kinematical and dynami-
cal scaling violations in the heavy-flavour case cannot be

avoided beyond the LO. The NLO coefficients ΓQQ̄ (1)
ii, N and

ΓQQ̄ (1)
i2, N will always depend on the next-to-next-to-leading
order (NNLO) (!) coefficient functions CQQ̄, a(2)

i . Since these
have not yet been computed, a fully consistent NLO study of
the dynamical evolution equation (49) is, strictly speaking,
not feasible at present.
This discussion of the perturbative features of the physi-

cal anomalous dimensions ΓQQ̄ is not peculiar to the heavy-
quark case. It applies to the physical anomalous dimensions
of any structure function that depends on some other large-
momentum scale besides Q2.

5.2 Small-x resummation

The power counting of the logarithmic behaviour of ΓQQ̄ at
small x is similar to that of the physical anomalous dimen-
sions relating F2 and FL.

The two entries ΓQQ̄
ii and ΓQQ̄

i2 have LL contributions.
These can be obtained by using (52, 53) and the known re-
summed formulae for the heavy-quark coefficient functions
[5] and the quark anomalous dimensions [9]. I find:

ΓQQ̄
ii,N (αS ;Q

2/M 2) = γN (αS) +
∂ lnH (i)(γN (αS);Q

2/M 2)

∂ lnQ2

+O
(
αS(αS/N )

k
)

, (59)

ΓQQ̄
i2, N (αS ;Q

2/M 2) =
1

〈e2f 〉
αS

2π

{
CF

CA
CQQ̄, g (0)

i, N (Q2/M 2)

×
[
ΓQQ̄
ii,N (αS ;Q

2/M 2)

−d lnCQQ̄, g (0)
i, N (Q2/M 2)

d lnQ2

]

+ O
(
αS(αS/N )

k
)}

, (60)

where the functions H (i)(γ;Q2/M 2) in (59) are simply pro-

portional to the K-factors K (i)
N (Q

2/M 2) introduced in the
second paper of [5]. Their eplicit expressions are:

H (2)(γ;Q2/M 2)

=

(
Q2

4M 2

)1−γ {
2(1 + γ)

M 2

Q2

+

[
2 + 3γ − 3γ2 − 2(1 + γ)M

2

Q2

]

·
(
1 +

Q2

4M 2

)γ−1
F (1− γ, 1/2; 3/2;

Q2

Q2 + 4M 2
)

}
, (61)

H (L)(γ;Q2/M 2)

=

(
Q2

4M 2

)1−γ
4M 2

Q2 + 4M 2

{(
1− γ +

6M 2

Q2

)

+

[
γ(1− γ)

Q2

2M 2
− 2(1− γ)− 6M 2

Q2

]

×
(
1 +

Q2

4M 2

)γ−1
F (1− γ, 1/2; 3/2;

Q2

Q2 + 4M 2
)

}
, (62)

where F (a, b; c; z) is the hypergeometric function.
Owing to the dependence on Q2/M 2, the LL behaviour

of ΓQQ̄
ii (unlike that of ΓLL in (35)) is not simply given by

the BFKL anomalous dimension γN (αS). The resummation

of the LL terms in ΓQQ̄
ii is achieved through the (αS/N )-

dependence of γN (αS) and the γ-dependence of the func-
tion H (i)(γ;Q2/M 2) on the right-hand side of (59). The LL

contributions to ΓQQ̄
i2 in (60) are proportional to ΓQQ̄

ii af-
ter subtraction of its lowest-order kinematic contribution (cf.
(57)).
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The evaluation of ΓQQ̄
ii and ΓQQ̄

i2 to NLL accuracy
would require the calculation of the gluon anomalous di-
mensions γga to NLL order and that of the heavy-flavour
coefficient functions to NNLL order. The NNLL accuracy

in CQQ̄ a
i is demanded by the interplay between kinematical

and dynamical scaling violations, as discussed in Sect. 5.1.

The anomalous dimensions ΓQQ̄
2i and ΓQQ̄

22 contain only
NLL terms at small x. These are explicitly given by the
following expressions

αS

2π
ΓQQ̄
2i, N (αS ;Q

2/M 2)

=
αS

2π

NfTR〈e2f 〉
e2Q

[
2 + 3γN (αS)− 3γ2N (αS)

]

·
√
π Γ (1 + γN (αS))

Γ (1/2 + γN (αS)) H (i)(γN (αS);Q2/M 2)

+O
(
α2S(αS/N )

k
)
, (63)

ΓQQ̄
22, N (αS ;Q

2/M 2)

=
αS

2π

{
CF

CA

CQQ̄, g (0)
i, N (Q2/M 2)

〈e2f 〉
ΓQQ̄
2i, N (αS ;Q

2/M 2)

+

(
γ(0)SS,N − CF

CA
γ(0)Sg,N

)}
+ O

(
α2S(αS/N )

k
)
, (64)

where eQ is the heavy-quark electric charge and Γ (z) is the
Euler Γ -function. The resummation of the logarithmic con-
tributions in (63) is embodied in the (αS/N )-dependence of
BFKL anomalous dimension γN (αS) and the γN -dependence
of the functionsH (i), according to (61, 62). In (64) the physi-

cal anomalous dimension ΓQQ̄
22 to NLL accuracy is expressed

in terms of ΓQQ̄
2i through a relation that is analogous to that

between Γ22 and Γ2L in (37, 38).

6 Summary and discussion

In this contribution I have discussed how the study of dif-
ferent observables can contribute to our understanding of
the dynamics of high-energy hadronic interactions in the
hard-scattering regime. The main motivation for considering
different observables is that from the analysis of a single
quantity is difficult to disentangle perturbative from non-
perturbative QCD physics. Of course, we aim to describe
both perturbative and non-perturbative physics but keeping
separate the two aspects can simplify theoretical and phe-
nomenological investigations.
In Sect. 2 the interplay between perturbative and non-

perturbative dynamics has been pointed out in the context
of QCD analyses of the small-x behaviour of the proton
structure function F2(x,Q

2). The factorization theorem of
mass singularities provides a representation of F2 in terms of
phenomenological parton densities and perturbatively com-
putable splitting and coefficient functions. As long as the lat-
ter have well-behaved perturbative expansions, this represen-
tation is highly predictive. In the small-x regime, however,
higher perturbative orders are strongly enhanced by loga-
rithmic contributions so that, in principle, resummation pro-
cedures are mandatory. Thus a physical issue arises: where

is the boundary between perturbative and non-perturbative
phenomena in the hard scattering regime? It is quite diffi-
cult to tackle this issue by studying the small-x behaviour
of the sole F2. Indeed, as discussed in Sects. 2.1 and 2.2,
the small-x rise of F2 produced by resumming LL and NLL
contributions in the perturbative expansion of the splitting
functions is, in many respects (and with the present theo-
retical and experimental accuracy), indistinguishable from a
similar rise due to steep parton densities whose Q2 evolution
is performed according to NLO perturbation theory. This un-
certainty is formally taken into account by the factorization-
scheme dependence, as discussed in Sect. 2.3. Owing to this
dependence, the gluon density may play the role of a hidden
variable that, in the case of F2, relates different perturbative
QCD approaches, namely resummed and fixed-order pertur-
bation theory.
A better theoretical control on perturbative physics can

be achieved by exploiting the very physical content of the
factorization theorem, that is, the universality (process inde-
pendence) of the parton densities. This means that the same
parton densities and the same perturbative approach have to
be used to study the small-x behaviour of different phys-
ical observables. Universality is particularly evident in the
framework of the physical anomalous dimensions introduced
in Sect. 3. Here I have discussed in detail the case of F2 and
FL but the method is completely general.
For any given set f̃a of parton densities one should con-

sider a set of an equal number of hadronic observables Fa.
Thus, one can work out the factorization procedure in matrix
form as follows

F = C f̃ , (65)

where C = Cab is the coefficient function matrix and the
simple product structure on the right-hand side is usually
valid in N -moment space. Then, it is straightforward to de-
rive the following evolution equations

dF

d lnQ2
= Γ F , (66)

where the matrix Γ of physical anomalous dimensions for
the given set of hadronic observables is related to C and to
the customary matrix γ of anomalous dimensions as follows

Γ =
dC

d lnQ2
C−1 + C γ C−1 . (67)

While C and γ are separately factorization-scheme depen-
dent, the physical anomalous dimensions (67) are factoriza-
tion-scheme invariant. As any other infrared and collinear
safe observable, they are perturbatively computable apart
from corrections that are suppressed by some inverse power
of Q in the hard-scattering regime.
In Sect. 3.1 I have considered the physical anomalous

dimensions relating the singlet components of F2 and FL.
These are the most important contributions at small x but the
physical anomalous dimensions matrix can be introduced in
any kinematic region of x. It is just sufficient to start from
(65) by including flavour non-singlet parton densities and
hadronic observables.
In the small-x region the theoretical and phenomenolog-

ical importance of the evolution equations (66) follows from
the fact that the small-x perturbative dynamics is completely
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controlled by the physical anomalous dimensions. No spuri-
ous perturbative effect (see the discussion in Sect. 4) and no
subtle interplay between perturbative logarithms and steep-
ness of parton densities takes place in (66). The physical
anomalous dimensions can be evaluated both in fixed-order
perturbation theory and in resummed perturbation theory.
For any given set of observables and kinematic region of x,
one can thus compare the two approaches and study the the-
oretical accuracy of the perturbative expansion. In particular,
this is important to establish where the resummed perturba-
tive corrections start to dominate with respect to perturbative
terms that are not logarithmically-enhanced at small x. Hav-
ing the perturbative dynamics under control, one can go back
to the partonic picture of (65) and investigate more safely the
small-x behaviour of the non-perturbative parton densities.
In Sect. 3.2, I have presented resummed expressions for

the physical anomalous dimensions ΓLL, ΓL2, Γ2L, Γ22.
Perturbative calculations to NLL accuracy are available for
other hadronic observables and, in particular, for the heavy-

flavour structure functions FQQ̄
2 and FQQ̄

L [5]. In Sect. 5,
I have considered the corresponding physical anomalous

dimensions ΓQQ̄. Using the theoretical approach of [5–7]
one can investigate the small-x behaviour of other physical
anomalous dimensions. In my opinion, some phenomeno-
logical studies within the framework of physical anomalous
dimensions are warranted.
The complete feasibility of this program demands pre-

cise experimental determinations of (at least) two inclusive
observables at small x. Measurements of other observables
with a sufficient accuracy to be compared with F2 are cer-
tainly an experimental challenge. Nonetheless, this effort is
likely to be essential to understand the transition between
perturbative and non-perturbative dynamics at small x.
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