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Abstract
Machine intelligence, a.k.a. artificial intelligence (AI) is one of the most prominent and relevant technologies today. It is in
everyday use in the form of AI applications and has a strong impact on society. This article presents selected results of the
2020 Dagstuhl workshop on applied machine intelligence. Selected AI applications in various domains, namely culture,
education, and industrial manufacturing are presented. Current trends, best practices, and recommendations regarding AI
methodology and technology are explained. The focus is on ontologies (knowledge-based AI) and machine learning.
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Introduction

Machine intelligence, a.k.a. artificial intelligence (AI)1, is
one of the most prominent and relevant technologies today.
It is in everyday use in the form of AI applications and has
a strong impact on society.

In 2014, we started a series of annual workshops at the
Leibniz Zentrum für Informatik, Schloss Dagstuhl, Ger-
many, initially focusing on corporate semantic web, and
later widening the scope to applied machine intelligence
(AMI). In all workshops, we focussed on the application of
AI technologies in corporate and organizational contexts.
A number of books [1–3] and journal articles [4–7] re-
sulted from those workshops. The workshops are character-
ized by an intense spirit of interdisciplinarity, collaboration,
and focus on practical results [8]. Due to the coronavirus
pandemic, the 2020 workshop was, for the first time, held
online—however, this made it no less intense. It consisted
of two half-day workshops with short presentations and par-
allel barcamp sessions. This article presents selected results
from the 2020 workshop.

This article is structured as follows: In the next section
we present selected AI applications in various domains,
namely culture, education, and industrial manufacturing.
The following section focuses on AI methodology, namely
aspects of machine learning and knowledge representation.
We then discuss selected technological issues of AI before
concluding this article.

Current applications of AI

The following overview of AI applications in the domains
of culture, education, and industrial manufacturing is not
meant to be exhaustive, but shall demonstrate the diversity
of AI by examples.

AI for performing arts

The term performing arts refers to ephemeral forms of art
in which artists use their voices, bodies, or inanimate ob-
jects to convey artistic expression2. This comprises opera,
theatre, ballet, concerts, and many other types of perfor-
mances. As part of our cultural heritage, it is important
to preserve works of performing arts. Developing archives
for performing arts involves particular challenges. Due to

1 We prefer the term machine intelligence to artificial intelligence (AI)
in order to avoid interpretations of AI being a form of intelligence
equivalent to human intelligence. However, we will use both terms in-
terchangeably.
2 Wikipedia: Performing arts. In Wikipedia, Accessed 6/11/2020
from https://en.wikipedia.org/w/index.php?title=Performing_arts&
oldid=984658242.

its ephemeral nature, it is not possible to archive the per-
formance itself. Instead, archives of performing arts con-
tain artefacts in which a performing art work manifests it-
self, e.g., photographs, videos of performances, newspaper
reviews, or interviews with contemporary witnesses (oral
history). For major works, this leads to a large amount of
typically unstructured material, which must be made acces-
sible by archivists and historians. Examples of projects that
have dealt with the development of archives for performing
arts include:

� Development of the digital Pina Bausch archive of the
Pina Bausch Foundation, Wuppertal, Germany
(2011–2020): Development of an archive to represent
the work of the choreographer Pina Bausch based on
standards of Linked Data and Semantic Web, as well as
CIDOC/Conceptual Reference Model (CRM) [9]. See
Fig. 1.

� Development of the archive of the free theatre (dt. Archiv
des Freien Theaters, 2017): Development of an approach
to archive the work of more than 3000 individual artists
and small companies who have performed theatre in Ger-
many since the 1970s. The approach was also based on
semantic web standards [10].

� Project study on the implementation of a live archive
for the David Earle Dance Theatre, Toronto, Canada
(2018–2019): Use of an archive to create new perfor-
mances based on archived data by mixing real perfor-
mances with archived material.

Which AI lessons can be learned from the development
of archives for performing arts? Semantic web standards
have proven to be well suited for these tasks. Additionally,
we identified the need to apply pattern recognition algo-
rithms. Due to high demands on data quality and accuracy,
retrieval and formalization of data is done manually. How-
ever, this cannot usually be done for all collected material,
the archive of the free theatre being the most striking ex-
ample. It is therefore necessary to identify promising can-
didates within a huge search space, i.e, material that has not
yet been described, but whose cataloguing is likely worth-
while. Here, the application of automated pattern recogni-
tion is a promising approach.

In the Pina Bausch Archive, videos are analyzed by
marking scenes within a recorded performance. With more
than 8000 video tapes and sometimes more than 100 scenes
within one performance, this leads to a huge amount of
work when carried out manually. In performances, scenes
are usually identified with the help of cues, i.e., certain
movements of actors, or changes in lighting or music. Au-
tomatic cue detection on videos can be of help here.

The reuse of material, e.g., to create new performances,
creates the need to synchronize activities in real time. This
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Fig. 1 Data browser for the dig-
ital archive of the Pina Bausch
Foundation with a web page
containing data on a photograph.
By clicking on the correspond-
ing links, users can find out
more about the photograph it-
self, people depicted therein, the
piece “The Seven Deadly Sins
of the Petty Bourgeoisie,” the
title or the scene “Greed,” and
the photographer Rolf Borzik

is likewise done with the help of cues, and again, automatic
cue detection on video and onstage is helpful.

Archiving material is a task lasting many years, carried
out by institutions that are typically not equipped with IT
departments. It is therefore a mandatory prerequisite that
machine intelligence applications can be configured and
used by lay people.

Building a semantic qualificationweb

The opportunities and offers for qualification and life-long
learning are becoming ever more extensive. If you con-
sider the academic sector alone, there are already more than
20,000 study courses offered by approximately 400 quali-
fication institutes in Germany [11]. Consequently, planning
individual qualifications may become a challenge. How
might AI help in this scenario?

The vision of Tim Berners-Lee3, the inventor of the
WWW, was to create a data network in which software
agents (SWA) can act [12]. SWAs are symbolic AI pro-
grams that can navigate the WWW and make autonomous

3 https://www.w3.org/People/Berners-Lee/ (accessed 4 Nov 2020).

decisions based on ontologies [13]. Examples of SWA tasks
include booking trips, arranging medical appointments, or
creating qualification paths, i.e., sequences of qualifying
actions that lead to a certain qualification goal. This data
network was named semantic web (SeW) and was intro-
duced by Berners-Lee in the Scientific American 2002 [14,
15].

We use the term semantic qualification web (SQW) for
the idea of a semantic network in the qualification sector.
An SQW needs to model qualifications offered by organi-
zations (e.g., universities, courses, and modules), as well as
competences taught. Such information is usually provided
in textual form on the websites of such organizations, e.g.,
in module descriptions. A representation in machine-read-
able form, e.g, as an ontology using SeW standards, is rare.
Manually creating such an SQW ontology is extremely cost-
intensive and constantly keeping it up-to-date is not feasi-
ble. Therefore, AI methods of natural language processing
(NLP) using machine learning (ML) may be used to semi-
automatically create an SQW ontology from texts provided
on such websites.

Fig. 2 shows a simplified process for retrieving qualifi-
cation offer texts from websites and transforming them into
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Fig. 2 Natural language processing (NLP)-based process for trans-
forming text to semantic qualification web. HTML HyperText Markup
Language document, TXT Text document, PDF Portable Document
Format document, NLP Natural Language Processing, NER Named
Entity Recognition, SQW Semantic Qualification Web

an SQW ontology. The process is shown as a UML Activity
Diagram.

Web crawling can be used for systematically analyzing
web pages, starting with yellow pages for qualification of-
fers, e.g., Higher Education Compass4. Pages are automat-
ically classified for relevance for the SQW, using the NLP
technique of named entity recognition (NER) [16].

Other NLP approaches like Stemming5 can be used for
semi-automatically extracting a competence ontology. Do-

4 https://www.hochschulkompass.de/en/ (accessed 4/11/2020).
5 https://link.springer.com/referenceworkentry/10.1007%2F978-1-
4899-7993-3_942-2.

main experts need to manually support by filtering and
building the competence ontology. In a parallel process, the
NLP approach of Topic Extraction6 may be used to build
a qualification taxonomy.

Finally, NER-based auto-classification can be used for
linking modules from the organizational taxonomy and the
competencies from the competence ontology. Thus, the re-
sulting SQW ontology connects the qualification taxonomy
with the competence ontology.

This example shows how AI methods from NLP and ML
can help create SeW ontologies.

Context-aware fault diagnosis in the smart factory

The smart factory forms a complex environment with
highly coupled, integrated, and interconnected machinery.
The detection of a fault is a complex task, especially in the
transition between industry 3.0 with brownfield machinery
and industry 4.0. In this transition, brownfield machinery
exists side by side with new cyber-physical systems (CPSs).
Brownfield machinery has almost no monitoring, whereas
CPSs have a large amount of sensors to monitor each
component and condition separately. Consequently, there
may be an information overload on CPSs [17], whereas
there is almost no live information available on brownfield
machinery [18]. In between, there is brownfield machinery
that is enhanced with internet of things (IoT) devices [19]
to monitor certain conditions of the production process. As
a result, there is a diverse amount and granularity of in-
formation available in current factories—some over–fulfill,
some under-fulfill the information needed for the fault
diagnosis process.

For the fault diagnosis process, information is key to ex-
cavating the reason for a fault. The faster the problem is
solved, the less costly is the production downtime. Fig. 3
shows the smart factory laboratory at Darmstadt University
of Applied Sciences, Germany, where new innovations can
be tested with the latest automation hardware in real-world
scenarios. The smart factory produces fully functional elec-
tric relays that are used, e.g., in wind turbines. A high-bay
storage with a three-axis robot lifts the unassembled relay
onto a shuttle monorail system that interconnects all sta-
tions. The shuttle passes a six-axis robot that assembles the
relay. Next, the pneumatic press assures connectivity be-
tween the relay and its socket. Additionally, in two inspec-
tion stations, the functionality of the relay is tested. One
inspection is performed optically and by weight, the other
electrically. Finally, the functioning relay will be stored
back in the high-bay storage.

6 https://towardsdatascience.com/nlp-extracting-the-main-topics-from-
your-dataset-using-lda-in-minutes-21486f5aa925 (accessed 4/11/2020).
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Fig. 3 Smart factory at Darm-
stadt University of Applied
Sciences, Germany [20]

In such a complex environment, machine intelligence
can assist the personnel in various areas to mitigate the
consequences of a fault. We have published examples of
automatic information extraction and information fusion to
speed up the fault diagnosis process [21, 22]. Furthermore,
we used autoencoder neural networks to find outliers in
log data that a domain expert can use to start analyzing. In
addition, we developed a semantic fusion process that is ca-
pable of semantically enriching machine events and fusing
them together with documentation that guides the personnel
throughout the fixing process. Guidance, or enablement of
personnel, is key to solving the issues in such a complex
environment. As complex the process of fault diagnosis can
become, so manifold are the research directions currently
in focus:

� Information provision (e.g., through the enhancement of
brownfield machinery [23, 24])

� Formalization of machines, networks, and interactions,
e.g., in cyber-physical systems of systems [25]

� Automatic information extraction and annotation, e.g.,
using machine learning to cope with big data [26]

� Assistance through intelligent visualisation, e.g., to visu-
ally pin-point faults and preconditions [27]

Addressing these research directions, we published a vi-
sual analytics (VA) model [28]. This combines production
systems and their environment with computational models
and visualizations to assist analysts in their daily tasks. We
introduced and formalized the context as a standalone en-
tity. We believe this will be an important entity in the fault
diagnosis of the future. Consequently, we use our VA model
for context-aware fault diagnosis. In addition, we published
an article on a first dataset containing contextual faults to
highlight the importance of the context and contextual in-
formation [20].

To conclude, analyzing the context of a fault will become
more important in the future, since the complexity of smart
factories will continue to increase.

Intelligent information systems in industrial
applications

An example of an intelligent information system in indus-
trial applications supports the production process of an au-
tomotive supplier for turbochargers. A system of this kind
has been implemented [29] in accordance with ISO 18828-2
standard [30]. In this use-case, requirements such as cus-
tomer-specific products and services, as well as lot-size one
production, play a central role. In order to enable lot-size
one production, production planning must be carried out
and manufacturing needs to be transformed. Dynamically
operating production lines need to react to changing de-
mands in the shortest possible time. Outsourced production
steps need to be converted to manufacturing networks with
an integrated flow of information, data storage, and data
access.

In order to meet these requirements, the Knowledge Pro-
duction Planning (KPP7) approach ([31], see Fig. 4) with
its KPP production planning ontology [32] offers the pos-
sibility to represent and store data sets in Labeled Prop-
erty Graphs (LPG; see the section on AI technology be-
low). KPP implementation is, among others, based on graph
database Neo4j8 platform [33], which enables graph search
with Cypher Query Language (CQL9).

7 Knowledge Based Production Planning (KPP)—Scheme and proof-
of-concept implementation, https://kpp.fernuni-hagen.de, (accessed
28/10/2020).
8 Neo4J Platform, https://neo4j.com (accessed 28/10/2020).
9 Cypher Query Language https://neo4j.com/developer/cypher-query-
language (accessed 28/10/2020).
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Fig. 4 Knowledge production planning process in component manufacturing of a turbocharger housing cover

Resource description framework (RDF) triple stores and
LPGs both allow connected data to be explored and graphi-
cally depicted. But their models are different [34], and each
have different strengths in different use cases. This has been
shown in production planning use cases [35], in the fields
of logistical production planning, additive production plan-
ning, and assembly production planning.

The RDF specification and model is more focused on
data exchange, while LPGs are about data storage and
querying. Another difference is that RDF does not offer
any internal structures for nodes and edges. In contrast,
LPG has these internal structures and thus enables a more
detailed representation and annotation of nodes and edges.
In LPGs, entities are called nodes with a unique identifier,
plus a set of properties for characterization. Relationships
between these nodes also have unique identifiers (IDs). Es-
pecially in LPGs, it is necessary to uniquely identify rela-
tionships to add a type and/or a set of key-value pairs in
order to characterize them. “The important thing to remem-
ber here is that both the nodes and relationships have an
internal structure, which differentiates this model from the
RDF model” [34].

Building on this semantic formalization, and going be-
yond by using property graphs, KPP supports the collec-
tion, representation, administration, and reuse of knowl-
edge related to production planning processes. In this way,
KPP combines both a knowledge and a process perspec-
tive. Therefore, activities of a process with resources such
as expert knowledge and documents can be commented on.
These technologies offer a clearly defined formal seman-
tic representation that supports the formal description of
machine-readable production knowledge in industrial ap-
plications.

AI methodology

Knowledge-based AI (a.k.a. symbolic AI) and machine
learning (a.k.a. non-symbolic AI or subsymbolic AI) are
the two major AI approaches that complement each other.
Engineering AI applications requires sound methodological
skills. In this section, we present some selected aspects.

An ontology formachine learning

Machine learning (ML) is considered the most dominant
AI approach today. Engineering professional ML applica-
tions is difficult and can be considered an art. Sound experi-
ence is mandatory and agreed-on engineering guidelines are
scarce. ML libraries like scikit-learn10 or TensorFlow11, as
well as integrated tools like RapidMiner12 or Knime13, offer
hundreds of different ML approaches to choose from. De-
velopers of ML applications are confronted with questions
like:

� Which approaches for classification can be recom-
mended with little training data?

� Which approaches for regression are able to deal with
missing data?What are the approaches for filling missing
data?

� Which prediction performance measures for classifica-
tion can be recommended with unbalanced datasets?

Providers of integrated ML tools and ML libraries have
started addressing the need for guidance via so-called ML
cheat sheets. Examples include SciKit Learn—Choosing

10 https://scikit-learn.org.
11 https://www.tensorflow.org.
12 https://rapidminer.com.
13 https://www.knime.com.
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Fig. 5 Example concepts of a machine learning (ML) ontology

the right estimator14, Microsoft Azure Machine Learning
Algorithm Cheat Sheet15, and Cheat Sheet: Machine Learn-
ing with KNIME Analytics Platform16. ML cheat sheets
provide an overview of major ML concepts and how they
interrelate. As such, they are simple ontologies, i.e., for-
mal models of concepts and their relationships. However,
they are usually restricted to one page in order to remain
manageable. They may be a good guide for beginners, but
cannot give a comprehensive overview of ML concepts. For
detailed questions, ML engineers are obliged to search for
proper documentation or follow a trial–error approach.

Wouldn’t it be handy to have an ML ontology that makes
it possible to answer questions like those mentioned above?
This would support ML engineers when designing ML ap-
plications. It could also be used for teaching ML. In the
future, such an ontology could also be used as a knowledge
base for AI applications, e.g., to support automated orches-
tration of ML applications (auto-modelling) or a chat bot
in answering questions about ML.

First attempts at ML ontologies have been undertaken:
ML-Schema17 provides a schema for ML ontologies to sup-
port interoperability between concrete ML ontologies. Its
focus is on ML experiments, processing concrete datasets

14 https://scikit-learn.org/stable/tutorial/machine_learning_map/index.
html (accessed 20/11/2020).
15 https://docs.microsoft.com/de-de/azure/machine-learning/media/
algorithm-cheat-sheet/machine-learning-algorithm-cheat-sheet.svg
(accessed 20/11/2020).
16 https://www.knime.com/sites/default/files/110519_KNIME_
Machine_Learning_Cheat%20Sheet.pdf (accessed 20/11/2020).
17 http://ml-schema.github.io.

with concrete ML implementations. Overarching concepts
like supervised/unsupervised/reinforcement learning are
not in focus. Other attempts include OntoDM18, Exposé19,
DMOP20, and The MEX vocabulary21. However, none of
these fully meets the requirements for an ML ontology as
outlined above.

Therefore, we formed a working group to develop such
an ML ontology, potentially by interlinking existing ontolo-
gies. Fig. 5 shows some example concepts of such an ML
ontology.

This example expresses that the ML approach k-nearest
neighbor can be used to classify tasks that belong to the area
of supervised learning. Accuracy can be used as a prediction
performance measure for classification tasks. Its use is not
recommended if the data set is unbalanced. Artificial neural
networks can be used for classification tasks, as well as for
regression tasks—also belonging to the area of supervised
learning. Root mean squared error (RMSE) can be used as
a prediction performance measure for regression tasks.

The working group for building an ML ontology is, at
the time of writing, in the phase of specifying goals of
an ML ontology and researching related work. If you are
interested in participating, please contact Bernhard Humm
<bernhard.humm@h-da.de>.

18 http://www.ontodm.com.
19 https://www.openml.org/downloads/expose.owl.
20 https://raw.githubusercontent.com/agnieszkalawrynowicz/dmop.
21 http://mex.aksw.org.
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Recommendations for sound ontologymodeling

Over the last 20 years, numerous recommendations on on-
tology modeling and meta-modeling, e.g., [36, 37], and
even on bad practices [38], have been published. Criteria
for sound ontologies are completeness, semantic correct-
ness, interoperability, scalability, freedom from redundancy,
compatibility to standards like RDF/OWL, and comprehen-
sibility, e.g., by graph visualization (GV) [39].

To date, there are no truly universally accepted standards
for sound ontology modeling. There is, e.g., an ongoing
debate on how many levels of abstraction in a meta-model
should be represented. While RDF seems to represent only
one layer (everything is a resource), other approaches, in-
cluding unified modeling language (UML), assume four
layers (M0, ... , M3), while alternatively one could differ-
entiate between the two layers: schema layer (SL, layer of
classes and meta-classes) and the layer of individuals (IL).

It is recommended that ontologies be modeled step by
step: identify basic concepts (classes), data properties (in-
trinsic), object properties (extrinsic), define axioms. This
can be performed in analogy to agile approaches to soft-
ware engineering.

As in software engineering, proper naming is important
in order to avoid ambiguities and increase comprehensibil-
ity of models. Guidelines for naming are available. In [40],
the author proposes using different special character pre-
fixes for the identifiers of concepts like classes, data prop-
erties, object properties, processes, and relators. This makes
it possible to automatically assign different colours and
shapes for the GV of ontologies. For naming of object prop-
erties, the use of nouns rather than verbs is recommended.
This allows for automatic derivation of the name of an in-
verse property, e.g., has_employee and is_employee_of.

The use of design patterns like the materialization pat-
tern should be enforced. Also, (RDF) reification plays an
important role in modeling knowledge artifacts. Reification
makes it possible to model arbitrarily nested unasserted in-
formation about situations like beliefs, wishes, intentions,
etc.

The following requirements for meta-modeling formu-
lated in [41, 42] can also be regarded as modeling recom-
mendations. The dual facet behavior of classes should be
supported, i.e., a class can be regarded as a subclass and
an instance of another class at the same time. Relationships
between classes and individuals should be allowed, e.g.,
Yo-Yo Ma is_Expert_of Violin. Dynamically adding types
should be possible. Rules for the instantiation of types at
different levels should be provided. Information concern-
ing domain subjects should be described locally to avoid
fragmentation and redundancy. To work with multi-level
models, support for queries and navigation between levels
is required.

Modeling errors should be avoided: creating cycles in
hierarchies, modeling individuals as classes, or modeling
classes as individuals. Reasoners like Pellet, KARMA, Her-
miT, etc., can help validate the syntactical correctness of
ontologies.

Some members of the Dagstuhl workshop formed
a working group to prepare state of art documents and
a website on the topic of sound ontology modeling. If
you are interested in participating, please contact Hermann
Bense <hb@bense.com>.

AI technology

In this section, we focus on one aspect of knowledge based
AI, namely technologies for implementing and visualizing
ontologies.

RDF versus labeled property graphs

Resource Description Framework (RDF)22 is a W3C23 stan-
dard for data interchange on the web. The Web Ontology
Language (OWL)24 is a language designed to represent rich
and complex knowledge about things, groups of things, and
relations between things. OWL is part of W3C’s seman-
tic web technology stack, which includes RDF, RDFS25,
SPARQL26, etc.

In recent years, Labeled Property Graphs (LPG) [34, 43]
have become an important area of research and applica-
tion within the semantic web community. This was mainly
driven by the success of NoSQL databases like Neo4J27. In
[43], the LPG model is defined as follows: “The labeled
property graph model consists of a set of nodes V (some-
times called vertices or knowledge subjects) and edges E
(sometimes called arcs or links). An edge is always related
to exactly two nodes with a fixed direction from a start
to an end node, defining the property graph as a directed
graph. [...] Both, nodes and edges, can store a set of key-
value pairs, called properties and nodes can be tagged with
labels additionally. Neo4J refers to edges as relationships.”

RDF and labeled property graphs both provide ways to
explore and graphically depict connected data. But they are
different and each has different strengths in different use
cases [34].

RDF, RDFS, and OWL provide rich modeling features
for the implementation of semantic web applications. On

22 https://www.w3.org/RDF/.
23 https://www.w3.org.
24 https://www.w3.org/2001/sw/wiki/OWL.
25 https://www.w3.org/2001/sw/wiki/RDFS.
26 https://www.w3.org/2001/sw/wiki/SPARQL.
27 https://neo4j.com.

K

https://www.w3.org/RDF/
https://www.w3.org
https://www.w3.org/2001/sw/wiki/OWL
https://www.w3.org/2001/sw/wiki/RDFS
https://www.w3.org/2001/sw/wiki/SPARQL
https://neo4j.com


112 Informatik Spektrum (2021) 44:104–114

Fig. 6 Graph visualization of relationships between students, professors, and universities

the other hand, those technologies also require a lot of
“work around modeling.” RDF tuples do not allow for
storing metadata properties like authors etc. [44]. Neither
nodes nor edges have an internal structure. In contrast, LPG
nodes and edges in Neo4J also have data properties, and
nodes additionally have type information (called “labels”
in Neo4J—not to be confused with labels in RDFS).

Graph visualization

The graph visualisation in Fig. 6 shows an example from
the education context, namely the relationships between stu-
dents, professors, and universities.

The graph visualization shows that the labels of directed
relationships >>hasAdvisor and >>worksFor between the
individuals >StudentB, >ProfessorA, >University1, and
>University2 can be annotated with any number of data
properties like.from and.to. This kind of modeling follows
the singleton property approach (SPA) described in [45]. It
is restricted to linking precisely one subject to one object.

If another participant like the contract for the employ-
ment needs to be incorporated, then one would have to use
n-ary relations instead. An employment subject thus could

Fig. 7 Graph visualization of marriage relationships

have any number of object properties like <>Employer,
<>Employee and <>Contract etc. N-ary relations can be
used to model knowledge subjects like marriage, purchase,
medical treatment, etc. See, e.g., the example about mar-
riage relationships in Fig. 7.

The relator instances >MRG_BT1 and BRG_BT2 can
have any number of object properties, to associate partic-
ipants like partners husband and wife. Compared to direct
relationships, where the first participant is always the sub-
ject and the second is the object of the relationship, none of
the participants in an n-ary relation is privileged. This can
be equally modeled in RDF and LPG.

In cases where there are exactly two participants be-
ing related by an object property, one can choose between
the representation as direct relationships or n-ary relations.
Typical examples when direct relationships should be used
are object properties indicating a direction like <>next,
<>knows, <>worksFor, <>hasAdvisor etc. Typical exam-
ples of when direct relationships should not be used include
when the participants in a relationship are not privileged.
This is, e.g., the case with the object properties <>Hus-
band and <>Wife in a marriage, since this would afford the
redundant annotation of properties like.from and.to within
both vertices.

Conclusions

AI applications are used every day. In this article, we
present some AI applications from selected application
domains, namely culture, education, and industrial man-
ufacturing. Developing AI applications requires special
skills. We have presented current trends, best practices,
and recommendations regarding AI methodology and tech-
nology, focusing on ontologies (knowledge-based AI) and
machine learning.

The selection of approaches presented is by no means
comprehensive. It reflects a subset of topics that were dis-
cussed during the 2020 online Dagstuhl workshop on ap-
plied machine intelligence.

We will continue sharing our experiences in applied
machine intelligence in Dagstuhl workshops and publish-
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ing our results. If you work on intelligent applications
in corporate contexts, you are cordially invited to partic-
ipate in next year’s workshop. Please contact: Bernhard
Humm <bernhard.humm@h-da.de> or Thomas Hoppe
<thomas.hoppe@htw-berlin.de>.

Funding Open Access funding enabled and organized by Projekt
DEAL.
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