
{ HAUPTBEITRAG / DATA STREAM PROCESSING IN THE FOG

Towards a Framework for Data
StreamProcessing in the Fog

Thomas Hießl · Christoph Hochreiner
Stefan Schulte

Introduction
The advent of the Internet of Things (IoT) has con-
tributed to the ever-growing equipment of personal,
public, and business spaces with ubiquitous devices
which generate, process, and consume data [1, 3]. Ex-
amples of the rising advent of the IoT can be found in
areas like smart factories [15], smart cities [16, 21], or
smart healthcare [7]. In all these areas, a potentially
very large number of IoT devices might be used to
sense and actuate, leading to very large volumes of
data being produced. Very often, IoT data is gen-
erated as a series of data items, i. e., data streams,
making it necessary to provide software solutions
which are able to process these data streams in
(near) real-time instead of processing the data in
batches [20].

Since the IoT and smart systems are inherently
volatile, with entities leaving or entering a system at
all times, or the data volumes produced by the single
devices changing frequently, one particular chal-
lenge in data stream processing is the allocation of
an appropriate amount of computational resources
(e. g., CPU, memory, storage resources) in an on-
demand fashion [12]. Today, this is mostly solved by
using cloud-based computational resources in the
form of virtual machines (VMs) or containers [26].

As an alternative, the exploitation of already
existing computational resources in the IoT (e. g.,
provided by networking equipment, cyber-physical
systems (CPS), or powerful sensor nodes) to deploy
software services has recently gained much attention
by the research community and the industry. The
combination of IoT-based computational resources
at the edge of the network with cloud-based data
processing is known as fog computing [4, 8], which

is defined as “a system-level horizontal architecture
that distributes resources and services of computing,
storage, control and networking anywhere along the
continuum from cloud to things” [18]. Accordingly,
computational resources at the edge of the network
include IoT devices as well as devices in field area
networks [4].

In short, fog computing provides a conceptual
approach for virtualizing and orchestrating com-
putational, network, and storage capabilities in the
IoT and in the cloud. It does so by providing IoT-
based computational resources in a similar manner
as physical resources are offered as VMs or contain-
ers in the cloud [8]. Fog computing is seen as a basic
building block in future smart systems where data
(pre-)processing or data filtering should be done in
the vicinity of data sources, while big data tasks and
tasks which are in general too compute intensive
to be executed on IoT devices are offloaded to the
cloud [25].

The benefits arising from the enactment of
stream processing on fog devices are manifold, espe-
cially compared to stream processing in the public
cloud. Example use cases for fog-based stream pro-
cessing are, e. g., urban surveillance [6], industrial
automation, and mobile crowdsensing [26]. In the
following, we will briefly discuss the benefits of fog-
based stream processing using these example use
case scenarios.

https://doi.org/10.1007/s00287-019-01192-z
© The authors 2019.

Thomas Hießl · Christoph Hochreiner · Stefan Schulte
Distributed Systems Group, TU Wien,
Vienna, Austria
E-Mail: s.schulte@infosys.tuwien.ac.at

256 Informatik_Spektrum_42_4_2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s00287-019-01192-z&domain=pdf
https://doi.org/10.1007/s00287-019-01192-z


Abstract
In volatile data streams as encountered in the
Internet of Things (IoT), the data volume to be
processed changes permanently. Hence, to en-
sure timely data processing, there is a need to
reconfigure the computational resources used
for processing data streams. Up to now, mostly
cloud-based computational resources have been
utilized for this. However, cloud data centers are
usually located far away from IoT data sources,
which leads to an increase in latency since data
needs to be sent from the data sources to the
cloud and back. With the advent of fog comput-
ing, it is possible to perform data processing in
the cloud as well as at the edge of the network,
i. e., by exploiting the computational resources
offered by networked devices. This leads to de-
creased latency and a lower communication
overhead. Despite this, there is currently a lack
of approaches to data stream processing which
explicitly exploit the computational resources
available in the fog.

Within this paper, we consider the usage of
fog-based computational resources for the pur-
poses of data stream processing in the IoT. For
this, we introduce a representative application
scenario in the field of Industry 4.0 and present
a framework for stream processing in the fog.

First, by processing data streams (partially) at
the edge of the network, it is possible to decrease
the latency and communication overhead, since data
items do not have to be sent to centralized cloud data
centers [8, 28]. This is an important feature in areas
where data needs to be processed very quickly, e. g.,
as part of online monitoring for decision-making
purposes in industrial automation. Second, com-
munication efforts in general are reduced, leading
to lower bandwidth consumption, since data does
not have to be sent to the large data centers that
constitute the public cloud. For instance, in mobile
participatory sensing settings where a very large
number of mobile clients are involved, this may
lead to less load on the telecommunication net-
work. Third, fog devices are very often located on
the premises of the data owners. Thus, if apply-
ing fog computing, data does not have to leave the
premises of the data owner, or the amount of data

to be sent to the cloud is at least reduced. This leads
to improvements in data privacy and data protec-
tion. However, even in more public scenarios, fog
computing can lead to improved data privacy. For
instance, in the case of urban traffic surveillance,
car plates may be analyzed in the fog, and only if
a sought-after car is identified its data is forwarded
to the authorities, while data about other cars is dis-
carded after initial analysis. Fourth, the utilization
of already existing hardware at the edge of the net-
work may even lead to reduced cost, since there is
no need to obtain resources from a public cloud or
to set up a private cloud. This is especially an option
in scenarios where unused computational resources
are already available, e. g., in CPS on a factory shop
floor.

The discussed benefits of fog computing also ap-
ply to the field of data analytics, and therefore to data
stream processing: Stream processing applications
deployed at the edge of the network are suitable to
achieve low latency or real-time data analysis, while
cloud-based computational resources are well suited
for longer-running data analysis batch processes [4].

Despite this conceptual work on the application
of fog computing in data stream processing, there is
to the best of our knowledge still a lack of concrete
technical solutions. Therefore, within this paper,
we discuss how fog computing can be applied in data
stream processing. For this, we first give a general in-
troduction to data stream processing in the fog in the
next section and discuss the current state of the art.
Afterwards, we briefly present a framework for fog-
based distributed stream processing in industrial
settings.

Data stream processing in the fog
In order to discuss the core entities in data stream
processing in the fog, we apply the simplified sce-
nario shown in Fig. 1. The figure shows the different
entities in a smart system, e. g., a smart factory. In
IoT-based data stream processing scenarios, the
data streams are generated by single sensors or
groups of sensors, as indicated at the bottom of the
figure. These data streams consist of continuously
generated data items [2].

Data stream processing
Stream processing operators (SPOs) are software
entities that consume one or more data streams
as data inputs, transform the data, and gener-

Informatik_Spektrum_42_4_2019 257



{ DATA STREAM PROCESSING IN THE FOG

Fig. 1 Example hierarchy of
cloud and edge resources in
an IoT/fog scenario

ate one or more output streams. Together, the
SPOs in a system and the connections between
the SPOs constitute a stream processing top-
ology, with the connections defining the data flow
between the SPOs. In general, SPOs are able to pro-
cess structured data, which follow a well-defined
data schema, semi-structured data, for which no
schema are available, but for which the data can
be extracted from context data or metadata, and
unstructured data, for which this is not possible,
e. g., video or audio streams, binary-encoded data,
etc. [2]. The software managing the deployment and
execution of SPOs is named stream processing en-
gine (SPE). For instance, Apache Storm1 or Heron2

are well-known SPEs.

Deployment of stream processing
operators in the fog

Usually, cloud-based computational resources are
leased and released to host SPO instances. The
amount of cloud-based resources to be leased
should be based on the actual resource demand [10].
Thereby, SPOs may be operated both on private as
well as on public cloud hosts. The deployment of
SPOs on a set of hosts is also known as operator
placement. The decision where to place SPOs can be
made during the design time of a stream processing
topology, but also during runtime [13].

1 https://storm.apache.org
2 https://apache.github.io/incubator-heron/

Figure 1 also shows that – apart from the public
cloud or a potentially available private cloud – in
a typical IoT scenario, further computational re-
sources exist at the edge of the network, provided
by so-called fog devices. Fog devices are all devices
which are located within the network or at the edge
of the network and could become part of the fog.
From a hardware perspective, fog devices can be very
heterogeneous. Typical examples are powerful sen-
sor nodes, routers, switches, single-board computers
like Raspberry Pis, or even resource-rich computers
providing cloudlet capabilities (e. g., Amazon’s AWS
Snowball Edge or TTTech’s Nerve) [28]. With regard
to data stream processing, the most important ca-
pability of these fog devices is the provisioning of
virtualized computational resources, which can then
be used to host arbitrary software (here: SPOs). In
the example scenario depicted in Fig. 1, fog devices
could be used in order to pre-filter or pre-process
data, thus decreasing the amount of data that needs
to be processed using the private or public cloud re-
sources, or even completely avoiding that data needs
to be sent to the cloud.

Current state of the art
Despite the potential benefits discussed above,
the number of approaches explicitly aiming at
data stream processing in the fog is still quite
limited, i. e., the computational resources of-
fered by fog devices are mostly neglected today.
Nevertheless, there are some examples where

258 Informatik_Spektrum_42_4_2019

https://storm.apache.org
https://apache.github.io/incubator-heron/


the exploitation of IoT-inherent computational
resources is proposed.

For instance, Sajjad et al. [24] discuss the utiliza-
tion of cloud-based and near-the-edge data centers
to decrease latency and bandwidth consumption in
data stream processing. For this, the authors ap-
ply the notion of data centers, while fog computing
allows to also address computational resources on
a more fine-grained level. A similar approach is pre-
sented by Renart et al. [23]. Here, the authors make
use of an overlay network to orchestrate geograph-
ically distributed computational resources. Yassine
et al. [27] discuss the usage of fog-based data ana-
lytics (which includes data stream processing) for
smart homes. While in the work at hand, we focus
on a framework to conduct data stream processing
in the fog, Yassine et al. focus on particular data an-
alytics methods. In a very recent approach, Dautov
et al. discuss the clusterization of edge devices for
data stream processing [9]. While the authors focus
on rather powerful edge devices, this is nevertheless
the approach that comes closest to the work at hand.
Finally, Cardellini et al. [5] present a fine-grained
approach to allocate computational resources for
stream processing in the fog in an elastic manner.

Also, some approaches applying complex event
processing (CEP) in the fog have been proposed,
e. g., [19]. In general, CEP is similar to stream pro-
cessing with regard to the need to provide results
without undue delays and the processing of input
data streams [2, 28]. However, CEP systems usu-
ally provide only limited support for the handling
of unstructured data and apply a rule-based pro-
gramming model different from the exploratory
programming model applied in stream process-
ing [2]. Despite this, there are some similarities
regarding the utilization of fog-based computa-
tional resources in stream processing and CEP which
should be taken into account.

There is – to the best of our knowledge – no
framework for data stream processing in the fog
which explicitly facilitates the integration of fine-
grained computational resources at the edge of the
network. Such a framework allows us to not only
apply basic data stream processing capabilities in
the fog, but could also serve as the foundation for
pursuing advanced research questions. These ques-
tions cover the already established research field of
optimal SPO placement across different geographic
locations, but also the development of complex key

performance indicators (KPIs), which could serve
as a foundation for SPO placement instead of the
usually applied low-level metrics like CPU or mem-
ory utilization. Also, fog computing allows taking
into account data ownership and data privacy. By
defining data models or a domain-specific language
which allow to detail if individual data items or data
types should be processed in the cloud or at par-
ticular computational resources at the edge of the
network, data privacy could be enforced on a fine-
grained level. In addition, there is currently a lack
of complex approaches to fault tolerance in stream
processing. Such approaches need to go further than
the usually applied notion of active replication on
the level of single SPOs. Instead, the relationships
between the single operators in a topology need to
be taken into account in order to avoid backpressure
and ripple effects.

The Vienna platform
for elastic stream processing

IoTmanufacturing scenario
In order to further exemplify the discussion from
the last section, we consider a simplified scenario
from the field of Industry 4.0 in Fig. 2. This scenario
is based on our work in EU H2020 RIA CREMA3.
Notably, this smart factory scenario is used for il-
lustration purposes only and does not limit the
discussion in this paper to the field of Industry 4.0 or
the entities depicted in the figure. Instead, fog-based
data stream processing could be also applied in other
scenarios where data is generated continuously, e. g.,
smart cities, smart healthcare, or smart grids, as
discussed above.

As can be seen in the figure, we consider a man-
ufacturer with two smart factories, which are located
in different countries. For the purpose of our sim-
plified scenario, we assume that Smart Factory 1
operates two CPS in terms of manufacturing as-
sets. These CPS offer sensor and actor capabilities,
computational capabilities, and are connected to
a network, in order to provide monitoring, coordi-
nation, control, and integration of the operations
offered by the CPS [22]. One particular functionality
of the CPS is to provide a (real-time) feedback loop
for its operations [17]. Smart Factory 2 operates one
CPS, which is again a manufacturing asset. Notably,

3 http://www.crema-project.eu

Informatik_Spektrum_42_4_2019 259

http://www.crema-project.eu


{ DATA STREAM PROCESSING IN THE FOG

Fig. 2 Example distributed stream processing in smart factories

the “system of cyber-physical systems” depicted in
Fig. 2 is itself a CPS.

Each CPS features a number of sensors (e. g.,
availability, temperature, and frequency sensors),
which provide important input for decision sup-
port. The CPS sensors emit data items regularly and
with a high frequency, i. e., the CPS are data stream
sources. Therefore, it is necessary to process the data
using the capabilities of an SPE. We assume that
a data schema is available for all data streams, i. e.,
that the SPOs process structured data.

Figure 2 shows the SPOs O1–O6 which are used
for data stream processing. In brief, the SPOs are
orchestrated to derive several KPIs of production
processes from the different sensors of CPS 1–3. If

irregularities are detected, maintenance actions are
initiated to avoid serious production problems. This
is also done via an SPO.

The company is able to deploy SPOs on a variety
of different computational resources. In the figure,
hosts provide these resources in terms of software
container slots (CS). It should be noted that for now,
we assume that all slots provide the same amount
of computational resources. Of course, this is in re-
ality not the case, since different SPOs running in
containers need different amounts of computational
resources. We will discuss this in more detail below.

CPS 1–3 possess the capability to host SPOs,
however, only to a certain extent, since the com-
putational resources offered by the CPS are rather

260 Informatik_Spektrum_42_4_2019



limited. Therefore, some SPOs may be hosted on
the CPS themselves (in the figure: two instances of
O3), while others need to be hosted in the cloud.
In addition to the CPS and cloud resources, both
factories possess further computational resources,
e. g., single-board computers, as depicted for Smart
Factory 1 (hosting O1). CPS-inherent computa-
tional resources and single-board computers are
fog devices as depicted in Fig. 1.

The company also owns a private cloud, which
can be used to host SPOs. This private cloud is not
located in one of the two smart factories but still
within the premises of the company. Therefore, host-
ing SPOs in the private cloud may lead to higher
communication delays and is, therefore, preferable
for SPOs that are not very delay sensitive. In Fig. 2,
the private cloud hosts O2 and O5, but the delay
sensitive O1 and both O3 instances are hosted on
the CPS and on a single-board computer close to the
CPS, respectively. Last but not least, the company
could also deploy SPOs in the public cloud, e. g., if
the amount of computational resources is otherwise
not sufficient, if the fog devices or the private cloud
are not available, or if SPOs are shared with exter-
nal partners. In Fig. 2, O4 and O6 are hosted in the
public cloud.

The placement of the SPOs is the duty of an
SPE which is able to take into account the hetero-
geneous computational resources offered. The SPE
also makes sure that the data flow between different
SPOs is realized and SPO instances are replicated,
if necessary. Different constraints may play a role
during SPO placement, since the deployment loca-
tions of the SPOs may vary according to the current
situation in the computational infrastructure (e. g.,
latency, availability) as well as other constraints,
e. g., data privacy demands – we will discuss these
in more detail below. For instance, as can be seen in
Fig. 2, two different instances of O3 are hosted on
CPS 2 and CPS 3, respectively, since latency plays
a large role when monitoring the temperature, e. g.,
in order to be able to shut down a CPS very quickly.
However, the data is also used to derive more sophis-
ticated KPIs and, therefore, needs to be forwarded
to further SPOs. Importantly, the optimal place-
ment of SPOs on heterogeneous fog resources may
change over time, e. g., since the data volume or
the location of data sources may change in volatile
IoT systems, or because further SPOs are added to
a stream processing topology [11]. Hence, an SPE

needs to be able to find an initial placement and
to replan during the runtime of a topology. In the
next section, we will present the Vienna Platform
for Stream Processing (VISP), which meets these
requirements.

Fog-based data stream processing
with the Vienna Platform
for Elastic Stream Processing

VISP is a fully-fledged research SPE for the fog. Most
importantly, the framework is able to place SPOs on
fog devices as well as in the cloud4.

As can be seen in Fig. 3, there are two major
components in the VISP Ecosystem, namely the VISP
Runtime and the ComputationalResources. The VISP
Runtime facilitates the core SPE functionalities of
VISP, i. e., it provides the means for instantiation,
execution, and monitoring of stream processing
topologies down to the level of single SPOs.

For this, the VISP Runtime is able to pull soft-
ware images from a repository (not depicted in
Fig. 3) in order to instantiate new SPOs. Further-
more, the VISP Runtime has an Elasticity component
which provides the means for monitoring the usage
of computational resources. Based on this monitored
data and information about the topology, VISP’s
Reasoner analyzes whether the system should scale
in or out, i. e., deploy SPOs on additional fog re-
sources or to undeploy existing SPOs since they are
not needed any longer, should utilize further com-
putational resources, or should remain unchanged.
Last but not least, the VISP Runtime provides the
means for the management of SPO instances: VISP
is able to place SPO instances on arbitrary computa-
tional resources, as long as the according hosts are
able to host SPOs which are offered as container-
ized software, e. g., Docker containers. As can be
seen in the figure, the SPO instances themselves are
hosted on the Computational Resources. SPOs pro-
vide the actual processing logic which is applied to
the incoming data streams, as well as system and
failure monitors to track the non-functional behav-
ior of the respective SPO instance. Also, each SPO
instance is provided with a configuration API. For
a more detailed discussion of VISP, we refer to [14].
A first approach to achieve optimal placement of
SPOs using VISP is presented in [11].

4 Further details on VISP as well as the software are available at
https://github.com/visp-streaming.

Informatik_Spektrum_42_4_2019 261

https://github.com/visp-streaming


{ DATA STREAM PROCESSING IN THE FOG

Fig. 3 VISP Ecosystem

In order to be able to allocate computational re-
sources to particular SPOs, VISP considers resource
pools. Figure 4 provides an example of the mapping
from resource pools to computational resources,
which can then be used by VISP for the deployment
of SPO instances. In the figure, we consider a simpli-
fied version of the scenario discussed above. For this,
we consider CPS 1, CPS 3, and the private cloud from
Fig. 2, which become resource pools of different sizes
(indicated by the size of the respective boxes).

In general, a resource pool could be a fog de-
vice, a private cloud, or a public cloud, as shown
in Fig. 2. This allows VISP to apply a technology-
agnostic approach with regard to the computational
resources, as long as the resources are virtualized
and able to host a container. The size of a resource
pool in Fig. 2 refers to the resource capacities avail-
able, like number of CPU cores, memory (RAM), or
storage.

Figure 4 shows the two steps of mapping
a resource pool: After the first step, each pool is
partitioned into equally-sized slots CS. In order
to better differentiate between these slots, we have
added the ID of the resource pool to the name of the
slot, i. e., CS1,1 identifies the first slot within Resource
Pool 1 (CPS 1), etc. Each slot is considered to host one
container, which in turn runs one particular SPO in-
stance. For this, each slot at this stage is allocated
with the capacity of a specified reference host, e. g.,

0.2 cores, 1 GB RAM, and 300 MB storage. The con-
crete numbers are based on the available resources.
For instance, in the scenario used here, CPS 1 and
CPS 3 only provide rather limited computational
resources, as can be seen by the limited number of
slots offered by these machines, while the private
cloud provides a larger number of slots.

Due to the fact that VISP places SPOs with
different resource demands in these slots, the pro-
vided resource capacity of one slot might not suffice
for an SPO instance that has to bear higher loads.
Therefore, slots with more computational power
and storage are required. This can be achieved by
mapping the equally partitioned slots in a second
step to larger partitions, as depicted at the bottom
of Fig. 4. For instance, in the example depicted in
the figure, slots of small, medium, and large size
are provided, whereas each category uses a fixed
portion of the overall capacity. Again, this is just
an example, since additional classes of slots might
be introduced, based on the demands of the stream
processing system and the available computational
resources in the fog.

It should be noted that the depicted resource
pool only provides an abstracted and very simplified
view on the computational resources available in
the fog. In fact, the diversity of available devices
in the fog makes it necessary to provide means to
benchmark the performance and to evaluate the

262 Informatik_Spektrum_42_4_2019



Fig. 4 Resource Graph in VISP

capabilities of fog devices, which is currently still an
open issue.

Obviously, one central functionality that needs
to be provided by the VISP Reasoner is to find an
optimal placement of SPO instances on computa-
tional resources, based on the resource demands of
the SPOs and the quality of service demands of the
data stakeholders. Examples for the attributes that
need to be taken into account during computation of
a placement are, e. g.:

– Operator and network latency
This attribute influences the processing duration
within stream processing topologies. Hence, by
optimizing placements such that SPOs are executed
on resources with appropriate computational
power, the processing performance can be maxi-
mized. Furthermore, the response time can be
improved by avoiding long network distances,
which cause delays when data is streamed between
the SPOs and from/to data sources and data sinks.

Informatik_Spektrum_42_4_2019 263



{ DATA STREAM PROCESSING IN THE FOG

– Data privacy
In order to improve data privacy, data stream
processing should allow defining which data items
should be processed or stored on private and
public resources. This obviously influences the
SPO and network latency as well as the required
types of computational resources, and therefore
also becomes a factor when finding an optimal SPO
placement.

– Execution cost of using the underlying
infrastructure
SPOs can be deployed to decentralized hosts that
provide their computing power at different cost
or even with different cost models. While for
privately-owned resources sunk cost and energy
cost may have to be taken into account, public cloud
providers offer different cost models which have to
be regarded.

– Resource availability
SPOs can be placed at different locations and hosts
with varying availability. Especially in a hetero-
geneous environment like the IoT, the differences
in availability can be significant. Monitoring the
online status of the involved cloud and fog re-
sources is the basis for making optimal decisions
to ensure the availability of the overall topology.
Therefore, this data has to be considered during the
computation of an optimal placement.

– Overhead of operator replacement
In order to optimize the criteria above, replace-
ments in terms of deploying, redeploying, and
undeploying SPOs have to be executed. These
replacements lead to overheads and cost for, e. g.,
temporary downtimes and data transfer. This has
to be considered to limit the extra expenditure and
save overall cost.

Conclusion
This paper provides a general introduction to data
stream processing in the fog. To this end, we pre-
sented basic concepts of data stream processing,
discussed an exemplary scenario from the manufac-
turing domain, and presented our work on an SPE
for distributed stream processing in the fog, i. e.,
the Vienna Platform for Elastic Stream Processing
(VISP).

While VISP is a fully-fledged research SPE, we
primarily consider it as a starting point for future
research in the field of fog-based data stream pro-
cessing, aiming at the research questions mentioned

in the discussion of the related work. Notably, VISP’s
software components as shown in Fig. 3 provide
open interfaces and are loosely coupled. This makes
it possible to easily replace the underlying func-
tionalities of the framework. Hence, researchers can
use VISP in order to evaluate novel approaches to
fault tolerance, monitoring based on KPIs, to take
into account data ownership, and for the evaluation
of other functionalities needed in fog-based data
stream processing.

Acknowledgements
This work is partially funded by COMET K1, FFG –
Austrian Research Promotion Agency, within the
Austrian Center for Digital Production and by the
Commission of the European Union within the
CREMA H2020-RIA project (Grant agreement no.
637066).

Open Access. This article is distributed under the
terms of the Creative Commons Attribution 4.0 In-
ternational License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, pro-
vided you give appropriate credit to the original
author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes
were made.

Funding. Open access funding provided by TU Wien
(TUW).

References
1. Al-Fuqaha AI, Guizani M, Mohammadi M, Mohammed Aledhari M, Ayyash M

(2015) Internet of things: A survey on enabling technologies, protocols, and
applications. IEEE Commun Surv Tutor 17(4):2347–2376

2. Andrade H, Gedik B, Turaga D (2014) Fundamentals of Stream Processing. Cam-
bridge University Press

3. Atzori L, Iera A, Morabito G (2010) The internet of things: A survey. Comput
Networks 54:2787–2805

4. Bonomi F, Milito R, Natarajan P, Zhu J: Fog computing: A platform for internet of
things and analytics. In: Bessis N, Dobre C (eds) Big Data and Internet of Things:
A Roadmap for Smart Environments, Studies in Computational Intelligence, vol
546. Springer, pp 169–186

5. Cardellini V, Lo Presti F, Nardelli M, Russo Russo G (2018) Decentralized
self-adaptation for elastic data stream processing. Future Gener Comp Sy
87:171–185

6. Chen N, Chen Y, You Y, Ling H, Liang P, Zimmermann R: Dynamic Urban Surveil-
lance Video Stream Processing Using Fog Computing. In: 2016 IEEE Second
International Conference on Multimedia Big Data. IEEE, pp 105–112

7. Cortés R, Bonnaire X, Marin O, Sens P (2015) Stream Processing of Healthcare
Sensor Data: Studying User Traces to Identify Challenges from a Big Data Per-
spective. In: 4th International Workshop on Body Area Sensor Networks, Procedia
Computer Science, vol 52. Elsevier, pp 1004–1009

8. Dastjerdi AV, Gupta H, Calheiros RN, Ghosh SK, Buyya R (2016) Fog computing:
Principles, architectures, and applications. In: Buyya R, Dastjerdi AV (eds) Internet
of Things: Principles and Paradigms, chap 4. Morgan Kaufmann, pp 61–75

264 Informatik_Spektrum_42_4_2019

http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0


9. Dautov R, Distefano S, Bruneo D, Longo F, Merlino G, Puliafito A (2018) Data pro-
cessing in cyber-physical-social systems through edge computing. IEEE Access
6:29822–29835

10. Heinze T, Roediger L, Meister A, Ji Y, Jerzak Z, Fetzer C (2015) Online parame-
ter optimization for elastic data stream processing. In: Sixth ACM Symposium on
Cloud Computing. ACM, pp 276–287

11. Hießl T, Karagiannis V, Hochreiner C, Schulte S, Nardelli M (2019) Optimal place-
ment of stream processing operators in the fog (forthcoming). In: 3rd IEEE
International Conference on Fog and Edge Computing. IEEE

12. Hochreiner C, Schulte S, Dustdar S, Lécué F (2015) Elastic stream processing for
distributed environments. IEEE Internet Comput 19:54–59

13. Hochreiner C, Vögler M, Schulte S, Dustdar S (2017) Cost-efficient enactment of
stream processing topologies. PeerJ Comput Sci 3:e141

14. Hochreiner C, Vögler M, Waibel P, Dustdar S (2016) VISP: An Ecosystem for Elas-
tic Data Stream Processing for the Internet of Things. In: 20th International
Enterprise Distributed Object Computing Conference. IEEE, pp 19–29

15. Jeschke S, Brecher C, Meisen T, Özdemir D, Eschert T (2017) Industrial internet
of things and cyber manufacturing systems. In: Jeschke S, Brecher C, Song H,
Rawat DB (eds) Industrial Internet of Things: Cybermanufacturing Systems.
Springer, pp 3–19

16. Kolozali S, Bermúdez-Edo M, Puschmann D, Ganz F, Barnaghi PM (2014) A
Knowledge-Based Approach for Real-Time IoT Data Stream Annotation and Pro-
cessing. In: 2014 IEEE International Conference on Internet of Things. IEEE, pp
215–222

17. Lee EA (2010) CPS Foundations. In: 47th Design Automation Conference. IEEE,
pp 737–742

18. OpenFog Consortium (2018) IEEE Standard for Adoption of OpenFog Reference
Architecture for Fog Computing. IEEE Std 1934-2018

19. Ottenwälder B, Koldehofe B, Rothermel K, Ramachandran U (2013) MigCEP: Op-
erator Migration for Mobility Driven Distributed Complex Event Processing. In:
7th ACM International Conference on Distributed Event-Based Systems. ACM,
pp 183–194

20. Perera C, Zaslavsky AB, Christen P, Georgakopoulos D (2014) Context aware
computing for the internet of things: A survey. IEEE Commun Surv Tutor
16(1):414–454

21. Puiu D, Barnaghi PM, Toenjes R, Kuemper D, Ali MI, Mileo A, Parreira JX, Fischer
M, Kolozali S, Farajidavar N, Gao F, Iggena T, Pham T, Nechifor C, Puschmann
D, Fernandes J (2016) CityPulse: Large scale data analytics framework for smart
cities. IEEE Access 4:1086–1108

22. Rajkumar R, Lee I, Sha L, Stankovic J (2010) Cyber-Physical Systems: The Next
Computing Revolution. In: 47th Design Automation Conference. IEEE, pp 731–736

23. Renart E, Diaz-Montes J, Parahsar M (2017) Data-driven Stream Processing at the
Edge. In: IEEE 1st International Conference on Fog and Edge Computing. IEEE, pp
31–40

24. Sajjad HP, Danniswara K, Al-Shishtawy A, Vlassov V (2016) SpanEdge: Towards
Unifying Stream Processing over Central and Near-the-Edge Data Centers. In:
IEEE/ACM Symposium on Edge Computing. IEEE, pp 168–178

25. Stojmenovic I, Wen S (2014) The Fog Computing Paradigm: Scenarios and Secu-
rity Issues. In: 2014 Federated Conference on Computer Science and Information
Systems. IEEE, pp 1–8

26. Yang S (2017) IoT stream processing and analytics in the fog. IEEE Commun Mag
55:21–27

27. Yassine A, Singh S, Hossain MS, Muhammad G (2019) IoT big data analytics for
smart homes with fog and cloud computing. Future Gener Comp Sy 91:563–573

28. Yi S, Li C, Li Q (2015) A Survey of Fog Computing: Concepts, Applications and
Issues. In: Workshop on Mobile Big Data. ACM, pp 37–42

Informatik_Spektrum_42_4_2019 265


	Introduction
	Data stream processing in the fog
	Data stream processing
	Deployment of stream processing operators in the fog

	Current state of the art
	The Vienna platform for elastic stream processing
	IoT manufacturing scenario
	Fog-based data stream processing with the Vienna Platform for Elastic Stream Processing

	Conclusion
	Acknowledgements
	References

