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What’s new in Description Logics
Franz Baader

Mainstream DL research of the last
25 years: towards very expressive DLs
with practical inference procedures

Description Logics [5] are a well-investigated family
of logic-based knowledge representation formalisms,
which can be used to represent the conceptual know-
ledge of an application domain in a structured and
formally well-understood way. They are employed in
various application domains, such as natural lan-
guage processing, configuration, and databases,
but their most notable success so far is the adop-
tion of the DL-based language OWL (http://www.
w3.org/TR/owl-features/) as the standard ontology
language for the Semantic Web [37].

The name Description Logics is motivated by the
fact that, on the one hand, the important notions of
the domain are described by concept descriptions,
that is expressions that are built from atomic con-
cepts (unary predicates) and atomic roles (binary
predicates) using concept constructors. The expres-
sivity of a particular DL is determined by which
concept constructors are available in it. From a se-
mantic point of view, concept names and concept
descriptions represent sets of individuals, whereas
roles represent binary relations between individuals.
For example, using the concept names Man, Doctor,
and Happy and the role names married and child, the
concept of “a man that is married to a doctor, and
has only happy children” can be expressed using the
concept description

Man�∃married. Doctor �∀child. Happy.

On the other hand, DLs differ from their prede-
cessors in that they are equipped with a formal,

logic-based semantics, which can, for example be
given by a translation into first-order predicate logic.
For example, the above concept description can be
translated into the following first-order formula
(with one free variable x):

Man(x)∧∃y. (married(x, y)∧Doctor(y))

∧∀y. (child(x, y) → Happy(y)).

The motivation for introducing the early prede-
cessors of DLs, such as semantic networks and
frames [50, 57], actually was to develop means of
representation that are closer to the way humans
represent knowledge than a representation in formal
logics, like first-order predicate logic. Minsky [50]
even combined his introduction of the frame idea
with a general rejection of logic as an appropriate
formalism for representing knowledge. However,
once people tried to equip these “formalisms” with
a formal semantics, it turned out that they can be
seen as syntactic variants of (subclasses of) first-
order predicate logic [33, 63]. Description Logics
were developed with the intention of keeping the ad-
vantages of the logic-based approach to knowledge
representation (like a formal model-theoretic se-
mantics and well-defined inference problems), while
avoiding the disadvantages of using full first-order
predicate logic (e. g., by using a variable-free syntax
that is easier to read, and by ensuring decidability of
the important inference problems).
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Abstract
Main stream research in Description Logics
(DLs) until recently concentrated on increasing
the expressive power of the employed description
language while keeping standard inference prob-
lems like subsumption and instance manageable
in the sense that highly-optimized reasoning
procedure for them behave well in practice. One
of the main successes of this line of research
was the adoption of OWL DL, which is based
on an expressive DL, as the standard ontology
language for the Semantic Web.

More recently, there has been a growing
interest in more light-weight DLs, and in other
kinds of inference problems, mainly triggered by
need in applications with large-scale ontologies.
In this paper, we first review the DL research
leading to the very expressive DLs with practical
inference procedures underlying OWL, and then
sketch the recent development of light-weight
DLs and novel inference procedures.

Concept descriptions can be used to define the
terminology of the application domain, and to make
statements about a specific application situation in
the assertional part of the knowledge base. In its sim-
plest form, a DL terminology (usually called TBox)
can be used to introduce abbreviations for com-
plex concept descriptions. For example, the concept
definitions

Man ≡ Human�¬Female,

Woman ≡ Human�Female,

Father ≡ Man�∃child. �
define the concept of a man (woman) as a human
that is not female (is female), and the concept of
a father as a man that has a child, where � stands
for the top concept (which is interpreted as the uni-
verse of all individuals in the application domain).
The above is a (very simple) example of an acyclic
TBox, which is a finite set of concept definitions that
is unambiguous (i. e., every concept name appears
at most once on the left-hand side of a definition)
and acyclic (i. e., there are no cyclic dependencies
between definitions). In general TBoxes, so-called
general concept inclusions (GCIs) can be used to
state additional constraints on the interpretation

of concepts and roles. In our example, it makes sense
to state domain and range restrictions for the role
child. The GCIs

∃child. Human 	 Human and

Human 	 ∀child. Human

say that only human beings can have human chil-
dren, and that the child of a human being must be
human.

In the assertional part (ABox) of a DL knowledge
base, facts about a specific application situation can
be stated by introducing named individuals and re-
lating them to concepts and roles. For example, the
assertions

Man(JOHN), child(JOHN, MACKENZIE),

Female(MACKENZIE),

state that John is a man, who has the female child
Mackenzie.

Knowledge representation systems based on DLs
provide their users with various inference services
that allow them to deduce implicit knowledge from
the explicitly represented knowledge. For instance,
the subsumption algorithm allows one to determine
subconcept-superconcept relationships. For ex-
ample, w.r.t. the concept definitions from above, the
concept Human subsumes the concept Father since
all instances of the second concept are necessarily
instances of the first concept, that is whenever the
above concept definitions are satisfied, then Father
is interpreted as a subset of Human. With the help
of the subsumption algorithm, one can compute the
hierarchy of all concepts defined in a TBox. This
inference service is usually called classification. The
instance algorithm can be used to check whether an
individual occurring in an ABox is necessarily an
instance of a given concept. For example, w.r.t. the
above assertions, concept definitions, and GCIs, the
individual MACKENZIE is an instance of the concept
Human. With the help of the instance algorithm, one
can compute answers to instance queries, that is all
individuals occurring in the ABox that are instances
of the query concept C.

In order to ensure a reasonable and predictable
behavior of a DL system, the underlying inference
problems (like the subsumption and the instance
problem) should at least be decidable for the DL
employed by the system, and preferably of low com-
plexity. Consequently, the expressive power of the
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DL in question must be restricted in an appropriate
way. If the imposed restrictions are too severe, how-
ever, then the important notions of the application
domain can no longer be specified using concept de-
scriptions. Investigating this trade-off between the
expressivity of DLs and the complexity of their infer-
ence problems has been one of the most important
issues in DL research.

The general opinion on the (worst-case) com-
plexity that is acceptable for a DL has changed
dramatically over time. Historically, in the early
times of DL research people concentrated on
identifying formalisms for which reasoning is
tractable, that is can be performed in polynomial
time [55]. The precursor of all DL systems, KL-
ONE [22], as well as its early successor systems, like
Kandor [55], K-Rep [49], and Back [56], indeed em-
ployed polynomial-time subsumption algorithms.
Later on, however, it turned out that subsumption in
rather inexpressive DLs may be intractable [43], that
subsumption in KL-ONE is even undecidable [61],
and that even for systems like Kandor and Back,
for which the expressiveness of the underlying DL
had been carefully restricted with the goal of re-
taining tractability, the subsumption problem is
in fact intractable [51]. The reason for the discrep-
ancy between the complexity of the subsumption
algorithms employed in the above-mentioned early
DL systems and the worst-case complexity of the
subsumption problems these algorithms were sup-
posed to solve was due to the fact that these systems
employed sound, but incomplete subsumption algo-
rithms, that is algorithms whose positive answers
to subsumption queries are correct, but whose
negative answers may be incorrect. The use of in-
complete algorithms has since then largely been
abandoned in the DL community, mainly because
of the problem that the behavior of the systems is no
longer determined by the semantics of the descrip-
tion language: an incomplete algorithm may claim
that a subsumption relationship does not hold, al-
though it should hold according to the semantics. All
the intractability results mentioned above already
hold for subsumption between concept descrip-
tions without a TBox. An even worse blow to the
quest for a practically useful DL with a sound, com-
plete, and polynomial-time subsumption algorithm
was Nebel’s result [52] that subsumption w.r.t. an
acyclic TBox (i. e., an unambiguous set of concept
definitions without cyclic dependencies) in a DL

with conjunction (�) and value restriction (∀r. C) is
already intractable.1

At about the time when these (negative) com-
plexity results were obtained, a new approach for
solving inference problems in DLs, such as the sub-
sumption and the instance problem, was introduced.
This so-called tableau-based approach was first in-
troduced in the context of DLs by Schmidt-Schauß
and Smolka [62], though it had already been used
for modal logics long before that [29]. It has turned
out that this approach can be used to handle a great
variety of different DLs (see [18] for an overview
and, e. g., [35, 38, 45] for more recent results), and
it yields sound and complete inference algorithms
also for very expressive DLs. Although the worst-
case complexity of these algorithms is quite high, the
tableau-based approach nevertheless often yields
practical procedures: optimized implementations of
such procedures have turned out to behave quite well
in applications [6, 32, 34], even for expressive DLs
with a high worst-case complexity (ExpTime and
beyond). The advent of tableau-based algorithms
was the main reason why the DL community basi-
cally abandoned the search for DLs with tractable
inference problems, and concentrated on the design
of practical tableau-based algorithms for expres-
sive DLs. The most prominent modern DL systems,
FaCT++ [67], Racer [31], and Pellet [64] support
very expressive DLs and employ highly optimized
tableau-based algorithms. In addition to the fact
that DLs are equipped with a well-defined formal
semantics, the availability of mature systems that
support sound and complete reasoning in very ex-
pressive description formalisms was an important
argument in favor of using DLs as the foundation
of OWL, the standard ontology language for the
Semantic Web. In fact, OWL DL is based on the ex-
pressive DL SHOIN (D), for which reasoning is in
the worst-case NExpTime-complete [36].

The research on how to extend the expressive
power of DLs has actually not stopped with the adop-
tion of SHOIN (D) as the DL underlying OWL. In
fact, the new version of the OWL standard, OWL 2
(http://www.w3.org/TR/2009/REC-owl2-overview-
20091027/), is based on the even more expressive DL
SROIQ(D), which is 2NExpTime-complete [40].
The main new features of SROIQ(D) are the use of

1 All the systems mentioned above supported these two concept constructors,
which were at that time viewed as being indispensable for a DL. The DL with
exactly these two concept constructors is called FL0 [2].
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qualified number restrictions (Q) rather than sim-
ple number restrictions (N ), and the availability of
(a restricted form of) role inclusion axioms (R). For
example, with a simple number restriction we can
describe the concept of a man that has three children

Man� (≥ 3 child),

but we cannot specify properties of these children, as
in the qualified number restriction

Man� (≥ 3 child. Happy).

More recent developments:
Light-weight DLs and the need
for novel inference tools

In this section, we first discuss the EL and the DL-
Lite families of light-weight DLs, and then consider
inference problems different from the subsumption
and the instance problem.

Light-weight DLs: The EL family
The ever increasing expressive power and worst-
case complexity of expressive DLs, combined with
the increased use of DL-based ontology languages
in practical applications due to the OWL stan-
dard, has also resulted in an increasing number
of ontologies that cannot be handled by tableau-
based reasoning systems without manual tuning
by the system developers, despite highly optimized
implementations. Perhaps the most prominent
example is the well-known medical ontology
SNOMED CT (http://www.ihtsdo.org/snomed-ct/),
which comprises 380.000 concepts and is used as
a standardized health care terminology in a variety
of countries such as the US, Canada, and Aus-
tralia. In tests performed in 2005 with FaCT++
and Racer, neither of the two systems could classify
SNOMED CT [12],2 and Pellet still could not classify
SNOMED CT in tests performed in 2008 [66].

From the DL point of view, SNOMED CT is an
acyclic TBox that contains only the concept con-
structors conjunction (�), existential restriction
(∃r. C), and the top concept (�). The DL with ex-
actly these three concept constructors is called
EL [11]. In contrast to its counterpart with value
restrictions, FL0, the light-weight DL EL has much

2 Note, however, that more recent versions of FaCT++ and Racer perform quite
well on SNOMED CT [66], due to optimizations specifically tailored towards
the classification of SNOMED CT.

better algorithmic properties. Whereas subsump-
tion without a TBox is polynomial in both EL [11]
and FL0 [43], subsumption in FL0 w.r.t. an acyclic
TBox is coNP-complete [52] and w.r.t. GCIs it is even
ExpTime-complete [3]. In contrast, subsumption in
EL stays tractable even w.r.t. GCIs [23], and this re-
sult is stable under the addition of several interesting
means of expressivity [3, 4].

The polynomial-time subsumption algorithm
for EL [3, 23] actually classifies the given TBox T ,
that is it simultaneously computes all subsumption
relationships between the concept names occurring
in T . This algorithm proceeds in four steps:

1. Normalize the TBox.
2. Translate the normalized TBox into a graph.
3. Complete the graph using completion rules.
4. Read off the subsumption relationships from the

normalized graph.

An EL-TBox is normalized iff it only contains
GCIs of the following form: A1 �A2 	 B, A 	 ∃r. B,
∃r. A 	 B, where A, A1, A2, B are concept names or
the top-concept �. Any EL-TBox can be trans-
formed in polynomial time into a normalized one
by applying equivalence-preserving normalization
rules [23]. In the next step, a classification graph
GT = (V , V ×V , S, R) is built, where

– V is the set of concept names (including �)
occurring in the normalized TBox T ,

– S labels nodes with sets of concept names (again
including �),

– R labels edges with sets of role names.

The label sets are supposed to satisfy the following
invariants:

– S(A) contains only subsumers of A w.r.t. T .
– R(A, B) contains only roles r such that ∃r. B

subsumes A w.r.t. T .

Initially, we set S(A) := {A, �} for all nodes A ∈ V ,
and R(A, B) := ∅ for all edges (A, B) ∈ V ×V . Ob-
viously, the above invariants are satisfied by these
initial label sets.

The labels of nodes and edges are then extended
by applying the rules of Fig. 1. Note that a rule is only
applied if it really extends a label set. It is easy to see
that these rules preserve the above invariants. The
fact that subsumption in EL w.r.t. TBoxes can be
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(R1) A1 �A2 	 B ∈ T and A1, A2 ∈ S(A) then add B to S(A)

(R2) A1 	 ∃r. B ∈ T and A1 ∈ S(A) then add r to R(A, B)

(R3) ∃r. B1 	 A1 ∈ T and B1 ∈ S(B), r ∈ R(A, B) then add A1 to S(A)

Fig. 1 The completion rules for subsumption in EL w.r.t. general TBoxes

decided in polynomial time is an immediate conse-
quence of the facts that 1) rule application terminates
after a polynomial number of steps, and 2) if no more
rules are applicable then S(A) contains exactly those
concept names B occurring in T that are subsumers
of A w.r.t. T (see [3, 23] for more details and full
proofs).

Light-weight DLs: The DL-Lite family
Another problematic issue with expressive DLs is
that query answering in such DLs does not scale too
well to knowledge bases with a very large ABox. In
this context, queries are conjunctions of assertions
that may also contain variables, of which some can
be existentially quantified. For example, the query

∃y. Man(x) ∧ child(x, y) ∧ Woman(y)

asks for all men that have a child that is a woman.3

In the database world, these kinds of queries are
called conjunctive queries [1]; the difference to the
pure database case is that, in addition to the in-
stance data, we also have a TBox. As an example,
consider the ABox assertions stating facts about John
and Mackenzie from the previous section. Without
any additional information about the meaning of
the predicates Man, child, and Woman, the indi-
vidual JOHN is not an answer to the above query.
However, if we take the concept definitions and
GCIs introduced in the previous section into ac-
count, then JOHN turns out to be an answer to this
query.

Query answering in expressive DLs such as the
already mentioned SHOIN (i. e., SHOIN (D)
without concrete domains) is 2ExpTime-complete
regarding combined complexity [44], that is the
complexity w.r.t. the size of the TBox and the ABox.
Thus, query answering in this logic is even harder

3 This simple query could also be expressed as an instance query using the EL-
concept description Man �∃child. Woman, but in general the use of variables
allows the formulation of more complex queries than simple instance queries.

than subsumption while at the same time being
much more time critical. Moreover, query answer-
ing in SHOIN is coNP-complete [53] regarding
data complexity (i. e., in the size of the ABox),
which is viewed as “unfeasible” in the database
community. These complexity hardness results for
answering conjunctive queries in expressive DLs
are dramatic since many DL applications, such as
those that use ABoxes as web repositories, involve
ABoxes with hundred of thousands of individu-
als. It is a commonly held opinion that, in order to
achieve truly scalable query answering in the short
term, it is essential to make use of conventional
relational database systems for query answering
in DLs. Given this proviso, the question is what
expressivity can a DL offer such that queries can
be answered using relational database technology
while at the same time meaningful concepts can
be specified in the TBox. As an answer to this, the
DL-Lite family has been introduced in [24–26], de-
signed to allow the implementation of conjunctive
query answering “on top of” a relational database
system.

DL-Litecore is the basic member of the DL-Lite
family [26]. Concept descriptions of this DL are of
the form

A, ∃r. �, ∃r–. �
where A is a concept name, r is a role name, and
r– denotes the inverse of the role name r. A DL-
Litecore knowledge base (KB) consists of a TBox and
an ABox. The TBox formalism allows for GCIs and
disjointness axioms between DL-Litecore concept
descriptions C, D:

C 	 D and disj(C, D),

where disj(C, D) states that C, D must always be in-
terpreted as disjoint sets. A DL-Litecore-ABox is
a finite set of concept and role assertions: A(a) and
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r(a, b), where A is a concept name, r is a role name,
and a, b are individual names.

In contrast to EL, DL-Lite cannot express qual-
ified existential restrictions such as ∃child. Woman
in the TBox. Conversely, EL does not have inverse
roles, which are available (albeit in a limited way) in
DL-Lite.

In principle, query answering in DL-Lite can be
realized as follows:

1. use the TBox T to reformulate the given conjunc-
tive queries q into a first-order query qT and then
discard the TBox,

2. view the ABox A as a relational database IA,
3. evaluate qT in the database IA using a relational

query engine.

In practice, more work needs to be done to turn
this into a scalable approach for query answering.
For example, the queries qT generated by the re-
formulation step are very different from the SQL
queries usually formulated by humans, and thus re-
lational database engines are not optimized for such
queries.

Interestingly, also in EL it is possible to imple-
ment query answering using a relational database
system [46]. In contrast to the approach for DL-Lite,
the TBox is incorporated into the ABox and not into
the query. In addition, some limited query reformu-
lation (independent of both the TBox and the ABox)
is also required.

The relevance of the light-weight DLs dis-
cussed above is underlined by the fact that both
of them are captured in the official W3C profiles
(http://www.w3.org/TR/owl2-profiles/) document
for OWL 2. Each of the OWL 2 profiles are designed
for specific application requirements. For applica-
tions that rely on reasoning services for ontologies
with a large number of concepts, the profile OWL 2
EL has been introduced, which is based on EL++,
a tractable extension of EL. For applications that
deal with large sets of data and that mainly use the
reasoning service of query answering, the profile
OWL 2 QL has been defined. The DL underlying this
profile is a member of the DL-Lite family.

Novel inference problems
The developers of the early DL systems concentrated
on the subsumption and the instance problem, and
the same was true until recently for the develop-
ers of highly optimized systems for expressive DLs.

The development, maintenance, and usage of large
ontologies can, however, also profit from the use
of other inference procedures. Certain nonstan-
dard inference problems, like unification [13, 14],
matching [8, 10], and the problem of computing least
common subsumers [7, 11, 19, 28] have been investi-
gated for quite a while [9]. Unification and matching
can, for example, help the ontology engineer to find
redundancies in large ontologies, and least common
subsumers and most specific concepts can be used to
generate concepts from examples.

Other nonstandard inference problems have,
however, come into the focus of mainstream DL
research only recently. One example is conjunctive
query answering, which is not only investigated for
light-weight DLs (see above), but also for expressive
DLs [30, 44].

Another is identification and extraction of
modules inside an ontology. Intuitively, given an
ontology O and a signature Σ (i. e., a subset of the
concept and role names occurring in O), a module
M is a subset of O such that the following holds for
all concept descriptions C, D that can be built from
symbols in Σ: C is subsumed by D w.r.t. O iff C is
subsumed by D w.r.t. M. Consequently, if one is only
interested in subsumption between concepts built
from symbols in Σ, it is sufficient to use M instead
of the (possibly much larger) whole ontology O. Sim-
ilarly, one can also introduce the notion of a module
for other inference problems (such as query an-
swering). An overview over different approaches
for defining modules and a guideline for when to use
which notion of a module can be found in [59]. Mod-
ule identification and extraction is computationally
costly for expressive DLs, and even undecidable for
very expressive ones such as OWL DL [47]. Both for
the EL family [48, 65] and the DL-Lite family [41],
the reasoning problems that are relevant in this area
are decidable and usually of much lower complexity
than for expressive DLs.

For a developer or user of a DL-based ontology,
it is often quite hard to understand why a certain
consequence computed by the reasoner actually fol-
lows from the knowledge base. For example, in the
DL version of the medical ontology SNOMED CT,
the concept Amputation-of-Finger is classified as
a subconcept of Amputation-of-Arm. Finding the
six axioms that are responsible for this error [20]
among the more than 350 000 concept definitions
of SNOMED CT without support by an automated
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reasoning tool is not easy. Axiom pinpointing [60]
has been introduced to help developers or users
of DL-based ontologies understand the reasons
why a certain consequence holds by computing
minimal subsets of the knowledge base that have
the consequence in question (called MinAs or Ex-
planations). There are two general approaches for
computing MinAs: the black-box approach and the
glass-box approach. The most näıve variant of the
black-box approach considers all subsets of the on-
tology, and computes for each of them whether it
still has the consequence or not. More sophisticated
versions [39] use a variant of Reiter’s [58] hitting
set tree algorithm to compute all MinAs. Instead of
applying such a black-box approach to a large ontol-
ogy, one can also first try to find a small and easy to
compute subset of the ontology that contains all Mi-
nAs, and then apply the black-box approach to this
subset [20]. The main advantage of the black-box ap-
proach is that it can use existing highly optimized DL
reasoners unchanged. However, it may be necessary
to call the reasoner an exponential number of times.
In contrast, the glass-box approach tries to find all
MinAs by a single run of a modified reasoner.

Most of the glass-box pinpointing algorithms
described in the DL literature (e. g., [42, 54, 60]) are
obtained as extensions of tableau-based reasoning
algorithms [18] for computing consequences from
DL knowledge bases. To overcome the problem of
having to design a new pinpointing extension for
every tableau-based algorithm, the papers [15, 17]
introduce a general approach for extending tableau-
based algorithms to pinpointing algorithms. This
approach is based on a general notion of “tableau
algorithm,” which captures many of the known
tableau-based algorithms for DLs and Modal Log-
ics, but also other kinds of decision procedures, like
the polynomial-time subsumption algorithm for the
DL EL sketched above. Any such tableau algorithm
can be extended to a pinpointing algorithm, which
is correct in the sense that a terminating run of the
algorithm computes all MinAs. Unfortunately, how-
ever, termination need not transfer from a given
tableau to its pinpointing extension, and the ap-
proach only applies to tableau-based algorithms
that terminate without requiring any cycle-checking
mechanism (usually called “blocking” in the DL
community). Though these problems can, in princi-
ple, be solved by restricting the general framework
to so-called forest tableaux [17], this solution makes

the definitions and proofs more complicated and less
intuitive.

In [16], a different general approach for obtain-
ing glass-box pinpointing algorithms, which also
applies to DLs for which the termination of tableau-
based algorithms requires the use of blocking, is
presented. It is well-known that automata work-
ing on infinite trees can often be used to construct
worst-case optimal decision procedures for such
DLs [21, 27]. In this automata-based approach, the
input inference problem Γ is translated into a tree
automaton AΓ , which is then tested for emptiness.
Basically, pinpointing is then realized by transform-
ing the tree automaton AΓ into a weighted tree
automaton working on infinite trees, and computing
the so-called behavior of this weighted automaton.

Conclusion
The DL research of the last 30 years has led, on the
one hand, to highly expressive ontology languages,
which can nevertheless be supported by practi-
cal reasoning tools. On the other hand, the recent
development of light-weight DLs and specialized
reasoning tools for them ensures that DL reasoning
scales to large ontologies with hundreds of thou-
sands of terminological axioms (like SNOMED CT)
and, by using database technology, to much larger
sets of instance data. In addition, novel inference
methods such as modularization and pinpoint-
ing support building and maintaining high-quality
ontologies.
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16. Baader F, Peñaloza R (2008) Automata-based axiom pinpointing. In: Armando A,
Baumgartner P, Dowek G (eds) Proc of the Int Joint Conf on Automated Reason-
ing (IJCAR 2008), vol 5195 Lecture Notes in Artificial Intelligence. Springer,
pp 226–241
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