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Abstract. We consider the determination of the harvesting strategy maximizing the pres-
ent expected value of the cumulative yield from the present up to extinction. By relying
on a combination of stochastic calculus, ordinary nonlinear programming, and the classi-
cal theory of diffusions, we show that if the underlying population evolves according to a
logistic diffusion subject to a general diffusion coefficient, then there is a single threshold
density at which harvesting should be initiated in a singular fashion. We derive the condition
which uniquely determines the threshold and show that harvesting should be initiated only
when the option value of further preserving another individual falls below its opportunity
cost. In this way, we present a real option interpretation of rational harvesting planning. We
also consider the comparative static properties of the value of the harvesting opportunity
and state a set of usually satisfied conditions under which increased stochastic fluctuations
(demographic or environmental) decrease the expected cumulative yield from harvesting
and increase the optimal harvesting threshold, thus postponing the rational exercise of the
irreversible harvesting decision.

1. Introduction

Determining socially acceptable harvesting policies is undoubtly one of the most
challenging and most controversial problems in the management of renewable re-
sources. The main source of disagreement is whether a rationally planned harvesting
policy should be based principally on ecologically important factors or on purely
economic principles. More precisely, in the presence of capital markets and a con-
tinually present harvesting effort, economically rational harvesting often leads to
the biological overexploitation of the harvested population (cf. [2], [10], Section
2.3, [23], and [24]). This has led to the emergence of two separate approaches for
studying the effects of harvesting on population growth and its long run behavior.
In ecology, the most preferred approach to study this problem is to consider the
expected consequences of a harvesting policy on the dynamic behavior of the pop-
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ulation density independently on whether the implemented policy is optimal or not
(cf. [7], [9], [28], [32], and [33]). In turn in economics, the harvesting problem
is usually approached by relying on capital theoretic models which take into ac-
count the capital markets and their role as an alternative source of potential income
for the harvester. Thus, in those studies the harvester is viewed as an investor having
the opportunity to invest either on a harvesting venture yielding a (possibly known)
rate of return or buying bonds yielding a safe interest income. Economical studies
on this topic can be roughly divided into two separate classes. Namely, those mod-
elling the harvested resource as an input for production (cf. [10], Sections 2.4, and
2.5, [11], chapter 5, [30], Part III) or those modelling the harvested resource as the
supplied output ([2], [6], [23], [24], and [25]). In both cases the objective of the
harvester is generally assumed to be the maximization of the present expected value
of the cumulative yield from harvesting over an arbitrary time horizon (it can be
either finite or infinite; cf. [10], Section 2.5). As is well-known, the optimal harvest-
ing problem results in a linear variational problem which can be solved by relying
on various approaches from which the most popular ones are the classical calcu-
lus of variations (cf. [10], chapter 2) and dynamic programming (cf. [2], [6], and
[25]). The resulting optimal policy is singular in the sense that there is an optimal
population density towards which the population should be driven by harvesting
at a maximal rate as long as the population density is above the optimal threshold
density. At this density, the population is harvested just enough to keep the popu-
lation at the optimal threshold (the harvester lives off the marginal increases in the
population density). The traditional approaches to this problem have, however, a
limitation which plays a major role in realistic decision making problems. Namely,
the models are generally assumed to be deterministic (see [2], [6], [23], [24], and
[25] for exceptions). Thus, in such approach the harvester does not face uncertain-
ty about the consequences of his actions (for example, increased extinction risk),
nor does he face unanticipated stochastic shocks affecting the dynamic fluctuation
of the density of the harvested population (environmental or demographic shocks,
unanticipated catastrophes).

In light of these arguments, it is our purpose in this study to consider the de-
termination of the optimal harvesting strategy of a harvester facing a stochastically
fluctuating population. In accordance with the traditional economical studies of
rational harvesting planning, we assume that the objective of the harvester is to
find a harvesting plan maximizing the present expected value of the cumulative
yield. However, in order to also take into account the existing environmental and
demographic noise, we assume that the population evolves according to a stochas-
tic approximation of the classical logistic model of population growth and that
the time horizon of the harvester is from the present up to extinction (cf. [2], [6],
[23], [24], and [25]). In order to gain both mathematical generality and biolog-
ical tractability (cf. [2], [6], [23], [24], [25], [34], and [35]), we do not specify
exactly the form of the diffusion coefficient (i.e. the volatility coefficient). In this
way, we are able to maintain the analysis more generally valid than in previous
studies of this problem and to provide the optimal solutions for a great variety
of problems belonging into this class independently of their local stochastic be-
havior. By relying on a combination of modern stochastic calculus, the classical
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theory of diffusions, and ordinary nonlinear programming techniques (cf. [5]), we
demonstrate that it is a general property of models belonging into this class that,
whenever the per capita growth rate of the population at low densities is great-
er than the discount rate, there is a single optimal harvesting threshold at which
harvesting should be initiated at a maximal rate. Below this critical density the
population is left unharvested and evolving according to the law of the population
in the absence of harvesting. In other words, the resulting optimal harvest policy
is singular (cf. [15], chapter VIII). It is worth pointing out that these type of har-
vesting policies are difficult, if possible at all, to be implemented in reality (see [6]
for an explanation). In accordance with the literature on real options and optimal
harvesting, we find that the immediate depletion of a population can be optimal
only if the net convenience yield accrued from preserving the population is non-
positive for all densities. In other words, if the expected net growth rate of the
population is non-positive for all densities, then a rational harvester should exer-
cise the harvesting opportunity immediately at full capacity and deplete the entire
population instantaneously. In accordance with the modern theory of real options
(cf. [12]), we demonstrate that harvesting is discontinued whenever its option val-
ue falls short its opportunity cost, which we interpret accordingly as the option
value of preservation (cf. [2] and [6]). Put differently, we show that harvesting
should be initiated whenever the marginal option value of preservation vanishes.
In contrast to models considering the rational exercise of investment opportunities,
we demonstrate that the present expected value of the cumulative yield is an in-
creasing and concave function of the current population density and that increased
stochastic fluctuations decrease its value. Thus, increased volatility decreases the
cumulative yield independently of the source of the fluctuations (whether they are
demographic or environmental). We also consider the long-run effect of rational
harvesting planning. As intuitively is clear, harvesting has a significant impact on
the long-run dynamic behavior of the population density. Especially, if the un-
harvested population is never expected to go extinct in finite time, then neither is
the harvested population expected to do so. However, it is worth pointing out that
since the considered population process constitutes a continuous approximation of
a real discrete population density, the extinction for a real population may actually
occur in finite expected time (cf. [23], and [24]). Moreover, it turns out that har-
vesting may lead to the introduction of a long-run stationary distribution towards
which the population evolves in the long-run even while such a distribution would
not exist in the absence of harvesting. Thus, the long-run stationary behavior of
the population density is significantly altered as both the shape and the support
of the approached long run stationary distribution are changed by the presence of
harvesting.

The contents of this study are as follows. In section two we present the general
model and solve it explicitly in terms of the fundamental solutions of an ordinary
second order differential equation. In section three we illustrate our theoretical
results explicitly by relying on a model with environmental stochasticity first in-
troduced in [34] and later considered in an optimal harvesting problem in [25].
We solve the arising problem explicitly and study its consequences numerically.
Finally, our section four concludes.
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2. Optimal harvesting

Consider a stochastically fluctuating population with a density{X(t); t ∈ [0, τ (0))},
whereτ(0) = inf {t ≥ 0 : X(t) = 0} denotes the possibly infinite extinction date,
defined on a complete filtered probability space(�, P, {Ft }t≥0,F) and described
onR+ by the (It̂o-) stochastic differential equation

dX(t) = µX(t)(1 − γX(t))dt + σ(X(t))dW(t)− dZ(t), X(0) = x , (1)

whereµ > 0 denotes the per capita growth rate of the population at low densities,
γ−1 > 0 denotes the carrying capacity of the environment,Z(t) denotes the cumu-
lative harvesting effort, and the mappingσ : R+ 7→ R denoting the infinitesimal
diffusion coefficient ofX is a given Lipschitz-continuous mapping onR+ satisfy-
ing the condition{σ−1(0)} ∩ (0, γ−1) = ∅ (i.e.σ(x) 6= 0 on(0, γ−1)). We call a
harvesting strategyZ admissibleif it is non-negative, non-decreasing, right-contin-
uous, and{Ft }-adapted, and denote the set of admissible controls as3. Moreover,
since the considered population process is defined up to the extinction date, we
observe thatX(t) > 0 for all t ∈ [0, τ (0)) and, therefore, thatZ(t) ≤ X(t). It
is now clear that under these assumptions the population densityX evolves in the
absence of harvesting according to a regular, time-homogeneous, and linear dif-
fusion process for which the infinitesimal diffusion coefficientσ does not vanish
on (0, γ−1). If a singularityx̄ ≥ γ−1, whereσ(x̄) = 0, exists then it is assumed
to be a natural boundary for the diffusion process describing the density of the
population (cf. [8], pp. 14–17, and [22], pp. 226–242, for a complete boundary
classification for linear diffusions). Thus, we assume that while the process may
evolve towards the upper boundaryx̄, it is never expected to hit it in finite time.
Moreover, in accordance with reality (cf. [2], [6], [23], [24], and [25]), we assume
that the upper boundary∞ of the state-space of the population density processX

is natural. Thus, even while the population density may be expected to increase, it
is never expected to become infinitely high in finite time. Moreover, we know that
the basic characteristics of the diffusionX are (cf. [8], chapter II, [17], chapter 4)

S′(x) = exp

(
−

∫ x 2µs(1 − γ s)ds

σ 2(s)

)
(2)

denoting its scale density and

m′(x) = 2

σ 2(x)S′(x)
denoting the density of its speed measure. These characteristics determine the be-
havior of the underlying population processX (cf. [8], chapter II, [22], chapter 15).
Especially, we know that if the populationX evolves towards a long run stationary
distribution with support on(0, x̄), wherex̄ ≥ γ−1 denotes the upper boundary of
the state-space ofX (i.e. x̄ has to be a singular point forX), then the density, de-
noted asp(x), of the stationary distribution is given as the solution of the ordinary
differential (adjoint) equation (cf. [22], pp. 220–222)

1

2

d2

dx2
[σ 2(x)p(x)] − d

dx
[µx(1 − γ x)p(x)] = 0 , (3)
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subject to a set of appropriate boundary conditions (cf. [8], p. 18). As intuitively
is clear and will be proved in the subsequent analysis, harvesting has a significant
impact on the form of this distribution whenever it exists. Moreover, it is worth
emphasizing that it is not difficult to construct examples where the population pro-
cess does not posess a stationary distribution in the absence of harvesting but does
have one in the presence of harvesting. Thus, as will become apparent from our
subsequent analysis, harvesting has a strong impact on the asymptotic behavior of
the harvested species.

By following the recent literature on optimal harvesting of stochastically fluctu-
ating populations (cf. [2], [6], [23], [24], and [25]) consider now a harvester whose
sole objective is to maximize thepresent expected value of the cumulative yield
from the present up to extinction. That is, consider the (singular) stochastic control
problem

V (x) = sup
Z∈3

Ex

∫ τ(0)

0
e−rsdZ(s) , (4)

wherer ≥ 0 denotes the discount rate which in this study is assumed to mea-
sure both economic discounting, denoted asr1, and an exogeneously determined
density-independent catastrophes rate, denoted asr2 (i.e. the catastrophe can be
interpreted as a discrete Poisson event). Put formally, we assume thatr = r1 + r2.
In a purely capital theoretic approach neglecting the potentially catastrophical phe-
nomena, the economic discounting termr1 constitutes the factor measuring the
opportunity cost of investing in an asset rendering a profit flow increasing at the
expected growth rate of the population instead of investing a similar amount of
capital in bonds yielding the sure rate of returnr1 (cf. [12], pp. 114–117). As is
clear from the definition of the discount factor in our model, potential catastrophes
increase this opportunity cost; a result which is in accordance with the findings on
the rational pricing of defaultable bonds (cf. [13]). Before proceeding, we state an
auxiliary verification lemma

Lemma 1. Let U : R+ 7→ R+ be a twice continuously differentiable function
satisfying the conditions

(i) U ′(x) ≥ 1 for all x ∈ R+;
(ii) ((A − r)U)(x) ≤ 0 for all x ∈ R+ ,

where

A = 1

2
σ 2(x)

d2

dx2
+ µx(1 − γ x)

d

dx
(5)

is the differential operator representing the infinitesimal generator ofX. Then,
V (x) ≤ U(x) for all x ∈ R+.

Proof. Follows directly from Lemma 1 in [5]. ut
Lemma 1 shows that if we find ar-superharmonic mappingU growing faster

than the identity mappingx 7→ x, then such a mapping dominates the value of the
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harvesting strategy. Unfortunately, this does not give us the value explicitly even
while it hints how the value function should be constructed. In order to accomplish
this task, define the net convenience yield from holding a reservoir (cf. [12], p.
115, for an economic interpretation of this factor) as the mappingθ : R+ 7→ R
described by the equation

θ(x) = µx(1 − γ x)− rx . (6)

It is now clear thatθ is twice continuously differentiable and strictly concave on
R+. Moreover, we find that (cf. [2], [6], and [25])

Lemma 2. If the per capita growth rate of the population at low densities is smaller
than or equal to the discount rate, then it is optimal to deplete the entire population
instantaneously. That is, ifµ ≤ r, thenZ(0) = x, τ(0) = 0, andV (x) = x.

Proof. Apply the Doĺeans-Dade-Meyer change of variables formula to the identity
mappingx 7→ x. In that case, we find that for all admissible controlsZ ∈ 3 and
all x ∈ R+ we have (cf. [31], p. 74)

Ex [e
−rTRX(TR)] = x + Ex

∫ TR

0
e−rsX(s)[µ− r − µγX(s)]ds

−Ex
∫ TR

0
e−rsdZ(s) ,

whereTR = τ(0) ∧ R ∧ τ(R), andτ(R) = inf {t ≥ 0 :X(t) ≥ R}. By reordering
terms, we find that for all admissible controlsZ ∈ 3 and allx ∈ R+ we have

Ex

∫ TR

0
e−rsdZ(s) = x − Ex [e

−rTRX(TR)] + Ex

∫ TR

0
e−rsθ(X(s))ds ≤ x ,

because of our assumptionµ ≤ r. By letting nowR tend to infinity we obtain by
monotone convergence that for all admissible controlsZ ∈ 3 and allx ∈ R+

Ex

∫ τ(0)

0
e−rsdZ(s) ≤ x ,

completing our proof. ut

Lemma 2 states a familar result form the modern theory of real options. Namely,
that if the net marginal convenience yield from holding reservoirs is non-positive
for all population densities, then waiting is never optimal and the population should
be instantaneously depleted. In other words, in case the expected net yield accrued
from holding part of the harvested population alive is always negative, then it is
always suboptimal to wait for future potential unexpected increases of the popu-
lation densityX. This result is somewhat alarming since it shows that potential
catastrophes increase the required rate of return accrued from the population and,
therefore, decrease the incentives to wait and postpone the harvesting decision. It
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is also obvious from the proof of Lemma 2 that due to the nonnegativity of the
processX and monotone convergence, we find that for allx ∈ R+

V (x) ≤ x + sup
Z(t)∈3

Ex

∫ τ(0)

0
e−rsθ(X(s))ds . (7)

That is, the value of the optimal harvesting policy can never exceed the sum of the
current population density and the maximized present expected value of the cumu-
lative convenience yields from the present up to the extinction date. Interestingly,
it is also clear from our results that if limR↑∞ Ex [e−rTRX(TR)] = 0 for allZ ∈ 3
and allx ∈ R+ (a transversality condition), then we have that

V (x) = x + sup
Z(t)∈3

Ex

∫ τ(0)

0
e−rsθ(X(s))ds,

that is, that the value of the optimal harvesting strategy is equal to the sum of the
current density and the maximized present expected value of the future convenience
yields accrued from preserving part of the population. Thus, if the present expected
net population density vanishes in the long run independently of the implemented
harvesting strategy, then maximizing the present expected value of the cumula-
tive yield from the present up to extinction is equivalent with maximizing the sum
of the current population density (measuring the current harvesting potential) and
the present expected value of the cumulative future net convenience yields from
holding inventories. This result illustrates the close connection between rational
harvesting planning and optimal cash flow control (cf. [4]). Moreover, (7) implies
that

Lemma 3. If µ > r > 0 then for allx ∈ R+ andZ(t) ∈ 3 we have that

x ≤ V (x) ≤ x + (µ− r)2

4µγ r
.

Therefore,

lim
x↑∞

V (x)

x
= 1 .

Proof. ChoosingZ(0) = x implies thatV (x) ≥ x for all x ∈ R+. On the other

hand, by noticing thatθ(x) ≤ (µ−r)2
4µγ for all x ∈ R+ and invoking (7) yields the

required result. The limit condition follows directly by dividing the inequality by
x and lettingx tend to infinity. ut
Remark.It is worth noticing that in the absence of discounting, that is, ifr = 0
then the inequality of Lemma 3 reads as

x ≤ V (x) ≤ x + µ

4γ
Ex [τ

∗(0)],

whereτ ∗(0) denotes the expected extinction date in the absence of harvesting.
Thus, the value of the optimal harvesting strategy is bounded whenever extinction
is attainable in finite expected time.
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Lemma 3 demonstrates that under logistic growth, the value of the optimal strat-
egy is bounded for any admissible strategy. Thus, no matter how complicated the
optimal strategy turns out to be, its value will always remain between two known
boundaries. As intuitively is clear, the upper boundary measures the sum of the
current harvesting potentialx and the maximum present expected value of the cu-
mulative net convenience yields accrued from postponing the harvesting decision
and keeping the population alive. Moreover, it is also clear from the lemma, that the
value function is going to eventually grow linearly thus indicating that harvesting
should be optimal at high densities (which is indeed the case, as we will later prove).
Before proceeding in our analysis, we state the following definition:

Definition 1. ([8], chapter II, and [17], Section 4.6, and [26], Section II.3) The
Green-kernelGr : R2+ 7→ R+ of the diffusionX is defined as

Gr(x, y) =
∫ ∞

0
e−rtp(t; x, y)dt ,

wherep(t; x, y) is the transition density ofX defined with respect to its speed mea-
surem. There are two linearly independent functions (thefundamental solutions),
ψ(x) andϕ(x), with ψ(x) increasing andϕ(x) decreasing, spanning the set of so-
lutions of the ordinary differential equation((A− r)u)(x) = 0. The Green-kernel
Gr(x, y) can be rewritten in terms of these solutions in the alternative form

Gr(x, y) =
{
B−1ψ(x)ϕ(y), x < y

B−1ψ(y)ϕ(x), x ≥ y

where

B = ψ ′(x)
S′(x)

ϕ(x)− ϕ′(x)
S′(x)

ψ(x) > 0

is theconstant Wronskiandeterminant of the fundamental solutions.

By following now the approach presented in [5] (see also [2], [3], and [4]), we
now consider the associated nonlinear programming problem

R(x) = sup
b≥0

Ex

∫ τ(0)

0
e−rsθ(X̂(s))ds , (8)

whereX̂ denotes the (uncontrolled) diffusionX constrained to be killed at the origin
and reflected at the upper boundaryb. That is, we will consider the maximization
problem of the present expected value of the cumulative convenience yields from
the present up to extinction under the constraint that there is an upper boundary
at which the process is reflected. In accordance with the definition first introduced
in [6] and with the terminology of the modern theory of real options (cf. [12],
p. chapters 5 and 6), we call the mappingR : R+ 7→ R+ the option value of
preservationsince it measures the expected present value of the cumulative yield
accrued from postponing the harvesting decision and retaining part of the popu-
lation alive. Therefore, it can also be interpreted asthe option value of waiting to
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harvestsince it essentially measures the expected intertemporal gains accrued from
leaving the harvesting decision unexercised. By relying now on Definition 1, we
find that the Green representation of the Markovian functional in (8) forx ∈ (0, b]
is

R(x) = sup
b≥0

∫ b

0
G(0,b]r (x, y)θ(y)m′(y)dy , (9)

whereG(0,b]r (x, y) denotes the Green-kernel of the constrained processX̃ (cf. [8],
pp. 27–31). It is worth noticing thatG(0,b]r (x, y) can be written in terms of the
fundamental solutions of the original unconstrained population processX as

G(0,b]r (x, y) =
{
B̃−1ϕ(y, b)ψ(x,0), x < y

B̃−1ϕ(x, b)ψ(y,0), x ≥ y

where

ϕ(x, b) = ϕ(x)− ϕ′(b)
ψ ′(b)

ψ(x)

denotes the decreasing and

ψ(x,0) = ψ(x)− ψ(0)

ϕ(0)
ϕ(x)

denotes the increasing fundamental solution of the ordinary differential equation
((A − r)u)(x) = 0 under the assumption of killing at 0 and reflection atb, and

B̃−1 = B−1

ϕ(0, b)
ϕ(0) = B−1

ψ ′(b,0)
ψ ′(b) ,

denotes the Wronskian ofϕ(x, b) andψ(x,0). We can now demonstrate that

Lemma 4. Assume thatµ > r. Then there is an optimal threshold, denoted
b∗ ∈ ((µ− r)/(2γµ), (µ− r)/(γµ)), satisfying the first order condition

r

∫ b∗

0
ψ(y,0)[µy(1 − γy)− ry]m′(y)dy = [µb∗(1 − γ b∗)− rb∗]

ψ ′(b∗,0)
S′(b∗)

.

(10)

Alternatively, the first order condition (10) can be written as

r

∫ b∗

0

ψ ′(y,0)
S′(y)

[µ− r − 2γµy]dy = 0 . (11)

Moreover, the option value of preservationR(x) satisfies on(0, b∗] the conditions

(i) R′(x) ≥ 0 for all x ∈ (0, b∗), and
(ii) R(0) = limx↑b∗ R′(x) = limx↑b∗ R′′(x) = 0 .
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Proof. Assume first that the density process has no singularities onR+. By follow-
ing then the approach of [5] and invoking the strong Markov property of diffusions,
rewrite (9) in the form

R(x) = R̃(x)− R̃′(b)
ψ(x,0)

ψ ′(b,0)
, (12)

where

R̃(x) =
∫ ∞

0
G(0,∞)
r (x, y)θ(y)m′(y)dy

denotes the option value of postponing the harvesting opportunity indefinitely. By
differentiating now (12) with respect to the boundary pointb we find that a can-
didate for an optimal reflection boundary, denoted nowb∗, has to satisfy the first
order necessary condition

∂R(x)

∂b

∣∣∣
b=b∗ = − ψ(x,0)

ψ ′2(b∗,0)
[R̃′′(b∗)ψ ′(b∗,0)− R̃′(b∗)ψ ′′(b∗,0)]

= − 2S′(b∗)ψ(x,0)
σ 2(b∗)ψ ′2(b∗,0)

[
r

∫ b∗

0
ψ(y,0)θ(y)m′(y)dy − θ(b∗)

ψ ′(b∗,0)
S′(b∗)

]
= 0 ,

proving (10). (11) is then obtained by noticing that

θ(b∗)
ψ ′(b∗,0)
S′(b∗)

= r

∫ b∗

0
θ(b∗)ψ(y,0)m′(y)dy + θ(b∗)

ψ ′(0,0)
S′(0)

,

collecting terms, and invoking Fubini’s theorem. To prove the existence and unique-
ness ofb∗, define the parametersx0 = µ−r

2µγ andx1 = µ−r
µγ

, and notice that the
mapping

h(x) = r

∫ x

0

ψ ′(y,0)
S′(y)

θ ′(y)dy

satisfies the conditionh(0) = 0, and the inequality

h(x0) = r

∫ x0

0

ψ ′(y,0)
S′(y)

θ ′(y)dy > 0 ,

sinceθ is increasing on(0, x0). Moreover, we find by the mean value theorem for
integrals that

h(x1) = r

∫ x0

0

ψ ′(y,0)
S′(y)

θ ′(y)dy + r

∫ x1

x0

ψ ′(y,0)
S′(y)

θ ′(y)dy

= r(
ψ ′(η1,0)

S′(η1)
− ψ ′(η2,0)

S′(η2)
)θ(x0) ,

whereη1 ∈ (0, x0) andη2 ∈ (x0, x1). By noticing now that

d

dx

ψ ′(x,0)
S′(x)

= rψ(x,0)m′(x) > 0 ,
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we find thath(x1) < 0 implying that (11) has at least one root in(x0, x1). However,
since

h′(x) = θ ′(x)
ψ ′(x,0)
S′(x)

< 0

on(x0,∞)we find that the monotonicity ofh on(x0,∞) then prove the uniqueness
of the rootb∗. Moreover, this demonstrates that also the second-order (sufficiency)
local concavity condition

∂2R(x)

∂b2

∣∣∣
b∗opt.

= 2ψ(x,0)θ ′(b∗)
σ 2(b∗)ψ ′(b∗,0)

< 0

is met, thus proving the optimality ofb∗. By differentiating (12) with respect tox,
we find that

R′(x) = ψ ′(x,0)
[ R̃′(x)
ψ ′(x,0)

− R̃′(b∗)
ψ ′(b∗,0)

]
. (13)

On the other hand, we have that

d

dx

[ R̃′(x)
ψ ′(x,0)

]
= 2S′(x)h(x)
σ 2(x)ψ ′2(x,0)

,

proving thatR′(x) ≥ 0 for all x ≤ b∗. It remains to show thatR(x) satisfies part
(ii). The conditionsR(0) = R′(b∗) = 0 are clear by definition. By differentiating
(9) twice with respect tox and lettingx ↑ b∗ we find that

R′′(b∗) = B−1ψ
′(b∗,0)ϕ′′(b∗, b∗)
ψ ′(b∗,0)

∫ b∗

0
ψ(y,0)θ(y)m′(y)dy − 2θ(b∗)

σ 2(b∗)
.

By noticing now thatψ ′(b∗)ϕ′′(b∗, b∗) = 2rBS′(b∗)
σ2(b∗) and then invoking condition

(10) completes our proof in the non-singular case.
The representation ofR(x) above assumes that the population density process

does not have a singularity onR+. If such a singularity, denoted now asx̄ > γ−1,
exists then the assumed naturality of this boundary for the density processX(t)

guarantees thatR(x) can in that case be as written as in (12) with

R̃(x) =
∫ x̄

0
G(0,x̄)r (x, y)θ(y)m′(y)dy .

The rest of the proof is then completely analogous with the proof in the non-singular
case. ut

Lemma 4 proves that for adiffusion approximation of the classical Verhulst-
Pearl model of logistic population growth, there typically exists a critical density
below carrying capacity at which the option value of preservation falls below the
value of the opportunity to harvest. As in traditional models of future-oriented
rational harvesting planning, our results show that the optimal threshold will lie
above the thresoldx0 at which the convenience yield is maximized but below the
thresholdx1 at which the convenience yield from retaining part of the population
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unharvested vanishes. Specially, our results demonstrate that ifµ < 2r, then the op-
timal thresholdb∗ will always be smaller than(2γ )−1 which is the density at which
the growth rate of the population is maximized. Unfortunately, it is impossible to
state a set of simple parametric conditions guaranteeing the contrary result. It is,
however, clear that it is essentially the relative sizes between the population growth
rate at low densities and the size of the stochastic fluctuations which determine
whether the optimal threshold is above(2γ )−1 or not. Thus,stochastic fluctuations
may lead to the implementation of a biologically sustainable harvesting policy. It
is also worth noticing that our results demonstrate that the applied representation
is indeed a maximal one since (8) isstructurally stable(cf. [5]) in the sense that

R′(x) = sup
b≥0

[
R̃′(x)− R̃′(b)

ψ ′(x,0)
ψ ′(b,0)

]
,

demonstrating that also the marginal option value of preservationR′(x) can be
interpreted as the solution of a standard nonlinear programming problem (i.e. dif-
ferentiation and maximization commute; cf. [24] for a similar result). On the basis
of these results it is now clear that the critical harvesting thresholdb∗ is chosen so
as to maximize both the option value of preservation and its marginal value for all
densities below the critical threshold. Put formally,

Theorem 1.Assume thatµ > r. Then the optimal harvesting strategy is

Z(t) = max
0≤s≤t

(X(s)− b∗)+ , (14)

whereb∗ ∈ (x0, x1) is the unique interior root of the necessary condition (10).
Moreover, the present expected value of the cumulative yield resulting from the
optimal policy reads as

V (x) =
{
x + θ(b∗)

r
, x ≥ b∗

x + R(x), x < b∗ ,
(15)

whereR(x), denoting the option value of preservation, is defined as in (9).

Proof. By relying on Lemma 4, it is now straightforward to verify thatV satisfies
the conditions of the verification Lemma 1. Thus, it is a majorant for the value
of the optimal harvesting policy. On the other hand, it is clear that in the case of
this section, the stochastic differential equation (1) with reflection atb∗ admits a
unique solution (cf. [16], Section 1.6). Thus we notice by the Doléans- Dade-Meyer
change of variables formula that

Ex [e
−rTRV (X(TR))] = V (x)+ Ex

∫ TR

0
e−rs((A − r)V )(X(s))ds

−Ex
∫ TR

0
e−rsV ′(X(s))dZ(s)

+Ex
∑

0<s≤TR
e−rs [V (X(s))− V (X(s−))

−V ′(X(s−))(X(s)−X(s−))] ,
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whereTR = τ(0)∧R∧ τ(R). Since the local timeZ(t) = max0≤s≤t (X(s)−b∗)+
increases only at the boundaryb∗, V ′(b∗) = 1, V is bounded on(0, b∗], and
((A − r)V )(X(t)) = 0 outside at-set of Lebesgue measure zero, we find by
lettingR ↑ ∞ that

V (x) = Ex

∫ τ(0)

0
e−rsdZ(s) ,

completing the proof of our Theorem (see [15], p. 328, for a description of the
consideredSkorokhod-problem). ut

Theorem 1 proves that for any diffusion approximation of the type (1) of the
classical Verhulst–Pearl model of logistic population growth, there is a unique op-
timal harvesting threshold at which the harvesting opportunity should be exercised
at a maximal rate in order to keep the population below the thresholdb∗. This
result demonstrates why standard models studying the maximization of the present
expected value of the cumulative yield from the present up to extinction (cf. [2],
[6], [23], [24], and [25]) end up having a single upper threshold at which harvesting
is initiated in a singular fashion. Moreover, it is now clear from our Theorem 1 that

Corollary 1. Assume that the conditions of Theorem 1 are satisfied. Then the opti-
mal harvesting strategy is of the form (14) where the optimal harvesting threshold
b∗ is the unique root of the algebraic equation

ψ ′′(b∗,0) = 0 . (16)

Moreover, the present expected value of the cumulative yield (15) can be rewritten
as

V (x) =
{
x + θ(b∗)

r
, x ≥ b∗

ψ(x,0)
ψ ′(b∗,0) , x < b∗ (17)

Proof. It is now clear from Theorem 1 that on(0, b∗] the valueV (x) is the solution
of the ordinary differential equation((A − r)V )(x) = 0 subject to the boundary
constraintsV (0) = 0 andV ′(b∗) = 1. Moreover, sinceV ′(x) = 1 on(b∗,∞) and
the value is continuous, we have (17). Finally, the smooth-fit principleV ′′(b∗) = 0
then proves (16). ut
Corollary 1 presents the results of our Theorem 1 in a more familiar form (cf. [6],
[23], [24], and [25]). Since the present expected value of the cumulative yield has
to ber-harmonic on the non-action region where harvesting is suboptimal, it can be
written in terms of the fundamental solutions of the ordinary differential equation
((A− r)V )(x) = 0. By using this representation, we find that the cumulative yield
can be written on(0, b∗] alternatively in the form

V (x) = x + ψ(x,0)

ψ ′(b∗,0)
− x = x +

∫ x

0

(
ψ ′(y,0)
ψ ′(b∗,0)

− 1

)
dy , (18)

demonstrating that the option value of preservation can be alternatively written as

R(x) =
∫ x

0

(
ψ ′(y,0)
ψ ′(b∗,0)

− 1

)
dy .
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It is worth noticing that extinction risk plays a significant role in the determination
of the harvesting threshold only if the lower boundary 0 is either regular or en-
trance. If this is not the case, then according to Corollary 1 the optimal threshold
simply satisfies the conditionψ ′′(b∗) = 0 (cf. [6], and [25]). Moreover, by relying
on Theorem 1 we also find that (cf. [6], [23], and [24])

Corollary 2. Assume that the mapping2µx(1−γ x)
σ2(x)

is locally integrable at the car-

rying capacityγ−1 and that0 is an attracting boundary for the population in the
absence of harvesting. Then, in the absence of discounting, the optimal harvesting
policy is

Z(t) = max
0≤s≤t

(X(s)− γ−1)+ .

Moreover, the value of the optimal strategyV : R+ 7→ R+ is monotonically in-
creasing, concave, and reads as

V (x) =

 x − γ−1 + S(γ−1)

S′(γ−1)
, x ≥ γ−1

S(x)

S′(γ−1)
, x < γ−1 ,

whereS′(x) denoting the scale density ofX is defined as in (2) and

S(x) =
∫ x

0
S′(y)dy

denotes the scale function ofX.

Proof. Analogous with the proof of Theorem 1. ut
Corollary 2 proves the intuitively clear result that in the absence of capital markets
and potential catastrophes the optimal harvesting threshold is equal to the carry-
ing capacity of the population whenever the lower boundary 0 is attracting. Thus,
discounting speeds up harvesting and accelerates extinction by increasing the op-
portunity cost of leaving the harvesting opportunity unexercised. The reason for this
result is obvious from a capital theoretic point of view. Whenever the harvester is
intertemporally indifferent between different generations, the only source of “inte-
rest income” is the population density and, therefore, by exercising the opportunity
at carrying capacity the harvester maximizes the potentially productive capacity.

We have not yet characterized the general comparative static properties of the
expected cumulative yield under the rational harvesting policy. As usually, the
relationship between discounting and the value of the harvesting opportunity is
negative, as is demonstrated in

Theorem 2.Denote now asVr(x) the value of the harvesting opportunity under
the discount rater and assume that̃r ≥ r. ThenVr(x) ≥ Vr̃(x).

Proof. We know thatVr(x) satisfies for allx ∈ R+ the variational inequalities
Vr(x) ≥ 1 and((A− r)Vr)(x) ≤ 0. We observe then by the non-negativity of the
value that under our assumptions((A − r̃)Vr)(x) = ((A − r + r − r̃)Vr)(x) ≤
(r − r̃)Vr(x) ≤ 0 for all x ∈ R+. Thus, the required result follows from Lemma 1.

ut
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Theorem 2 states a familiar result from investment theory. Namely, that in-
creased discounting decreases the value of the harvesting opportunity by increasing
the opportunity cost of investment. Thus, the higher the rate of return of alternative
capital assets is, the lower is the value of the harvesting opportunity and, therefore,
the lower are the incentives to hold the option to harvest alive. Another key factor
affecting the rational harvesting decision is the size of the stochastic fluctuations of
the underlying diffusionX. In order to describe the relationship between volatili-
ty and the rational harvesting policy, we first prove the following auxiliary result
characterizing the curvature of the expected cumulative yield:

Theorem 3.Assume that

(i) the mappingσ : R+ 7→ R is continuously differentiable with Lipschitz-con-
tinuous derivative and the mappingσ ′(x) satisfies the usual Novikov-condition
(cf. [36], Section 8.6), and

(ii) the extinction boundary0 is natural for the density processX(t).

Then, the value of the optimal harvesting strategy is increasing and concave onR+.
Moreover, the cumulative expected present value of the future convenience yields
from the present up to extinction, i.e.R(x), is also concave on(0, b∗).

Proof. The result is a direct implication of Theorem 5 in [5]. ut

Theorem 3 demonstrates that the expected marginal cumulative yield is positive
but diminishing. A central implication of Theorem 3 is now summarized in

Theorem 4.Assume that the conditions of Theorem 3 are met. Then, increased sto-
chastic fluctuations decreases or leaves unchanged the expected cumulative yield
from harvesting and increases or leaves unchanged the optimal harvesting thresh-
old. That is, ifσ̃ : R+ 7→ R satisfies the conditioñσ(x) ≥ σ(x) on R+, Ṽ (x)
denotes the value of the harvesting opportunity, andb̃ denotes the optimal harvest-
ing threshold in the presence of greater stochastic fluctuations, thenb̃ ≥ b∗ and
Ṽ (x) ≤ V (x) onR+.

Proof. As was shown in Theorem 3, the valueV (x) of the harvesting opportunity is
concave inx. Moreover, as was shown in Theorem 1 it also satisfies for allx ∈ R+
the conditionsV ′(x) ≥ 1 and

1

2
σ 2(x)V ′′(x)+ µx(1 − γ x)V ′(x)− rV (x) ≤ 0 .

Consider now the population subject to greater stochastic fluctuations measured by
the infinitesimal diffusion coefficient̃σ(x). In that case the differential operator
describing the infinitesimal generator of the underlying population process reads
as

Ã = 1

2
σ̃ 2(x)

d2

dx2
+ µx(1 − γ x)

d

dx
.
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The concavity of the valueV (x) then implies that((Ã−r)V )(x) = ((Ã−A+A−
r)V )(x) ≤ 1

2(σ̃
2(x)− σ 2(x))V ′′(x) ≤ 0. Therefore,V (x) satisfies the conditions

of Lemma 1 and we find that for allx ∈ R+ we have

V (x) ≥ Ṽ (x) = sup
Z∈3

Ex

∫ τ(0)

0
e−rsdZ(s) ,

where

dX(t) = µX(t)(1 − γX(t))dt + σ̃ (X(t))dW(t)− dZ(t), X(0) = x .

To prove that̃b ≥ b∗, notice that on(max(b̃, b∗),∞) we have that

V (x)− Ṽ (x) = θ(b∗)− θ(b̃)

r
.

SinceV (x) ≥ Ṽ (x) for all x ∈ R+ we find thatθ(b∗) ≥ θ(b̃). However, since the
optimal threshold is attained in the decreasing part of the mappingθ we find that
b∗ ≤ b̃ completing the proof of our theorem. ut
Theorem 4 states a set of usually satisfied conditions under which increased un-
certainty has a negative impact on the expected cumulative yield from harvesting.
This result is of interest since it contradicts a usual result from the literature on
real options stating that increased uncertainty increases the value of investment
opportunities. Moreover, we also find that increased uncertainty increases the op-
timal harvesting threshold and, therefore, postpones the exercise of the harvesting
opportunity. Thus, as in ordinary models of real investment opportunities, we find
that increased uncertainty increases the option value of waiting and, therefore,
postpones the rational exercise of the opportunity. These results are of interest
since they prove thatthe sign of the relationship between uncertainty and rational
harvesting planning is negative in any logistic diffusion modelsatisfying the appro-
priate smoothness requirements. At least to the best knowledge of the author, this
is the first time such results are rigurously proven in models considering rational
(singular) harvesting planning.

It is now of interest to consider the long-run behavior of the harvested popula-
tion. It is a standard result in the theory of linear diffusions that since forx ∈ (l, b∗]

Ex [e
−rτ (l); τ(l) < ∞] = ϕ(x, b∗)

ϕ(l, b∗)
,

we find that

Px [τ(l) < ∞] = lim
r↓0

ϕ(x, b∗)
ϕ(l, b∗)

.

Therefore, by lettingl decrease to zero, we find thatif 0 is either natural or en-
trance, then the population is never going to become extinct in finite time under the
optimal harvesting policy. In the remaining cases (i.e. when 0 is either regular or
exit) we have that

Px [τ(0) < ∞] = lim
r↓0

ϕ(x, b∗)
ϕ(0, b∗)

. (19)
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It is clear from this analysis that the expected extinction date can be (but does not
have to be) finite only if the limit in (19) equals 1. Otherwise, the (unconditionally)
expected extinction date is always infinite. If the lower boundary is attainable in
finite expected time, then the expected extinction date of the rationally harvested
population reads as (cf. [22], pp. 192–202)

Ex [τ(0)] =
∫ x

0
S(y)m′(y)dy + S(x)

∫ b∗

x

m′(y)dy ,

whereS(x) = ∫ x
0 S

′(y)dy. It is also worth noticing that for allx ∈ (0, b∗] we find
that

Ex [e
−rτ (0); τ(0) < ∞] = ϕ(x, b∗)

ϕ(l, b∗)
>
ϕ(x)

ϕ(0)
= Ex [e

−rτ̃ (0); τ̃ (0) < ∞] ,

whereτ̃ (0) = inf {t ≥ 0 : X(t) = 0} denotes the extinction date of the population
in the absence of harvesting. Thus, by lettingr ↓ 0 we find that

Px [τ(0) < ∞] > Px [τ̃ (0) < ∞] .

In other words, theprobability of extinction in finite time is higher in the presence of
harvesting than in the absence of itwhenever the lower boundary 0 is either regular
or exit. Our main results on the long-run distributional behavior of the population
density is summarized in

Theorem 5.Assume that the lower boundary0 of the state space of the population
densityX is either entrance or natural, non-attracting, and satisfies the condition
lim l↓0

∫ x
l
m′(y)dy < ∞ for any x ∈ (l, b∗]. Then the population density of the

rationally harvested population evolves towards a long-run stationary distribution
with density

p(x) = m′(x)∫ b∗
0 m′(s)ds

.

Proof. This is a direct consequence of (3) and the assumptions on the boundary
behavior of the population densityX (cf. [22], pp. 220–222). ut

Remark.Theorem 5 shows how harvesting affects the long run behavior of the har-
vested population (cf. [6], [7], [9], [27], [32], and [35]). The nonnegativity of the
harvesting rate guarantees that the harvested population is dominated by the den-
sity of the population density in the absence of harvesting. Therefore, as intuitively
is clear, harvesting will always speed up extinction. However, it is an interesting
property of the implemented harvesting strategy, that it may lead to the introduction
of a long-run stationary distribution even in cases where such a distribution does
not exist for the unregulated population. This is a property which is usually neglect-
ed in theoretical studies of singular harvesting strategies (cf. [23], [24], and [25])
even while it plays a significant role in determining the future expected population
densities for populations evolving “close” to the stationary distribution.
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3. Optimal harvesting in the presence of environmental noise

To illustrate our results, consider as in [25] a population evolving according the stan-
dard (Verhulst–Pearl) logistic population growth model subject to environmental
stochasticity. In that case, the dynamics of the harvested population are described
by the stochastic differential equation (cf. [25], [34], and [35])

dX(t) = µX(t)(1 − γX(t))dt + σX(t)(1 − γX(t))dW(t)− dZ(t),

X(0) := x . (20)

As was proven in [25], ifµ > r, then the optimal harvesting problem (4) has a
unique well-defined solution. In the spirit of our Corollary 1, we can now demon-
strate that this solution can be stated explicitly in terms of standard hypergeometric
functions as summarized in

Lemma 5. (A) Assume thatµ > r. Then the optimal harvesting strategy is of
the form (14) where the optimal harvesting thresholdb∗ is the unique root of the
algebraic equationψ ′′(b∗) = 0, where

ψ(x) =
(

γ x

1 − γ x

)α1

F(a, b, c; − γ x

1 − γ x
)

denotes the increasing fundamental solution of the ordinary second-order differ-
ential equation

1

2
σ 2x2(1 − γ x)2U ′′(x)+ µx(1 − γ x)U ′(x)− rU(x) = 0 ,

F is the standard hypergeometric function,

a = 1 − α2

2
+ α1

2
− 1

2

√
(α2

2 − 2α2(2 + α1))+ (2 − α1)2,

b = 1 − α2

2
+ α1

2
+ 1

2

√
(α2

2 − 2α2(2 + α1))+ (2 − α1)2,

c = 1 − α2 + α1,

α1 = 1

2
− µ

σ 2
+

√(
1

2
− µ

σ 2

)2

+ 2r

σ 2
> 0,

and

α2 = 1

2
− µ

σ 2
−

√(
1

2
− µ

σ 2

)2

+ 2r

σ 2
< 0 .

Moreover, the present expected value of the cumulative yield (15) resulting from
the optimal policy reads as

V (x) =
{
x + θ(b∗)

r
, x ≥ b∗

ψ(x,0)
ψ ′(b∗,0) , x < b∗

(B) Increased uncertainty, that is, increasedσ decreases the valueV (x) and
increases the optimal harvesting thresholdb∗.
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Proof. In order to derive the value function explicitly, we have to determine the
increasing solution of the ordinary second order differential equation

1

2
σ 2x2(1 − γ x)2U ′′(x)+ µx(1 − γ x)U ′(x)− rU(x) = 0 .

By making the transformation

U(x) = H(γ x/(1 − γ x)) (21)

and noticing that 1+γ x/(1−γ x) = 1/(1−γ x), we find that (21) can be rewritten
as

(1 + y)y2H ′′(y)+ (2y + 2µ

σ 2
(1 + y))yH ′(y)− 2r

σ 2
(1 + y)H(y) = 0 , (22)

wherey = γ x/(1 − γ x). Denote now the positive and the negative root of the
quadratic equationz2 − (1 − 2µ

σ2 )z− 2r
σ2 = 0 as

α1 = 1

2
− µ

σ 2
+

√(
1

2
− µ

σ 2

)2

+ 2r

σ 2

and

α2 = 1

2
− µ

σ 2
−

√(
1

2
− µ

σ 2

)2

+ 2r

σ 2
,

respectively. Then (22) reads as

(1+ y)y2H ′′(y)+ (2y+ (1−α1 −α2)(1+ y))yH ′(y)+α1α2(1+ y)H(y) = 0 .

By making now a second transformationH(y) = yζG(y), whereζ is an unknown
constant to be determined, we find that (22) can be rewritten in the form

(1+y)yG′′(y)+ (2ζ + (1−α1 −α2)+ (3+2ζ −α1 −α2)y)G
′(y)+2ζG(y) = 0

wheneverζ = α1 or ζ = α2. By making then the transformationG(y) = J (ŷ),
whereŷ = −y then finally yields

(1− ŷ)ŷJ ′′(ŷ)− (2ζ + (1−α1 −α2)− (3+ 2ζ −α1 −α2)ŷ)J
′(ŷ)− 2ζJ (ŷ) = 0

which is a form of the standard hypergeometric equation (cf. [1], p. 562, and [18],
pp. 465–470). Choosingζ = α1 and solving the equation

a + b = 2 + α1 − α2

ab = 2α1

then completes the proof of part (A) of our theorem. Part (B) then follows directly
from Theorem 4. ut
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Lemma 5 states explicitly in terms of the standard hypergeometric function
the present expected value of the cumulative yield of harvesting. By following the
analysis in [6] we now illustrate numerically in Table 1 below the results of Lemma
4 by relying on the example of the Antarctic fin whale (Balaenoptera physalus)
presented in [10] (pp. 49–50). To this end, we assume thatµ = 8%,γ−1 = 400000,
andx = 70000 (whereγ−1 andx are interpreted as the number of individuals).

As can be directly seen from Table 1, our numerical results support our Theorem
4 stating that the sign of the relationship between environmental stochasticity and
the harvesting incentives is negative. That is, increased infinitesimal fluctuations
σ decrease the present expected value of the cumulative yield. Moreover, Table 1
also indicates that increased uncertainty increases the optimal harvesting threshold
b∗ and, therefore, postpones the rational exercise of the harvesting opportunity. In-
terestingly, it is clear that in the absence of harvesting the population does not have
a long run stationary distribution. However, ifµ > σ 2/2, that is, if the carrying ca-
pacity is an attracting boundary, then in the presence of harvesting the population
density tends towards the invariant truncatedβ-distribution with support(0, b∗)
and density

p(x) = x2µ/σ2−2(1 − γ x)−2µ/σ2−2

γ 1−2µ/σ2 ∫ γ b∗
0 s2µ/σ2−2(1 − s)−2µ/σ2−2ds

. (23)

Therefore, as was argued in the previous section, even while the implemented har-
vesting strategy is instantaneous and singular, it alters dramatically the long run
behavior of the population density. Put formally, in the absence of harvesting the
population density evolves towards the carrying capacityγ−1 wheneverµ > σ 2/2.
However, in the presence of harvesting, the process converges towards a random
variableX(∞) distributed according to the density (23) and posessing an expected
value

E[X(∞)] =
∫ b∗

0 y2µ/σ2−1(1 − γy)−2µ/σ2−2dy

γ 1−2µ/σ2 ∫ γ b∗
0 s2µ/σ2−2(1 − s)−2µ/σ2−2ds

.

Table 1. The impact of increased stochastic fluctuations and discounting on the optimal
harvesting threshold and cumulative yield

r σ b∗ V (70000)
3% 0.1 130252 171549
3% 0.4 186342 140142
3% 0.7 223814 100430
3% 1.0 236677 85415
5% 0.1 78667 92438
5% 0.4 111774 86705
5% 0.7 132547 78721
5% 1.0 140665 74856
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4. Summary and conclusions

We considered the determination of the harvesting strategy maximizing the pres-
ent expected value of the cumulative yield (i.e. the present expected value of the
cumulative catch) from the present up to the potentially finite extinction date of the
harvested population. We demonstrated that if the underlying population follows a
stochastic approximation of the classical logistic (Verhulst-Pearl) model of popula-
tion growth then typically there is a unique harvesting threshold at which harvesting
should be initiated at full capacity in order to keep the population density below
the optimal thresold density. This optimal threshold was shown to be attained at the
point where the option value of further preserving another individual falls below
its opportunity cost. This result, which is familiar from the recent theory on real
options and the valuation of irreversible investment opportunities, shows the way
in which the irreversibility of the harvesting opportunity and the stochasticity of the
population growth create an explicitly defined option value for both harvesting and
preservation. In accordance with intuitive thinking and the theory of real invest-
ment opportunities, the harvesting threshold at which harvesting should be initiated
is higher under stochastic than under deterministic population growth. Moreover,
while the optimal harvesting threshold is below carrying capacity, it is above the
critical density at which the maximum sustainable yield is attained. Thus, deter-
ministic models neglecting the stochastic fluctuations affecting real populations
may recommend the implementation of harvesting policies which both overesti-
mate the “true” growth capacity of a population and neglect the potential extinction
risk affecting all real populations. In accordance with the modern literature on real
investment opportunities, we also found that increased volatility decreases the val-
ue of the harvesting opportunity and increases the optimal harvesting threshold
by increasing the value of waiting and, therefore, by increasing the incentives to
wait and postpone the rational exercise of the harvesting opportunity. Interestingly,
we also found that the optimal policy may lead to the introduction of a long run
stationary distribution for the harvested population even in such cases where such
a distribution would not exist in the absence of harvesting. Thus, as intuitively is
clear, the implemented harvesting strategy has a significant impact on the stochastic
dynamics of the population density as it both shrinks the state space and alters the
(upper) boundary behavior of the population density.

While the model considered in this study generalizes the recent studies on the
present expected value of the cumulative yield-maximizing harvesting strategies, it
does not take into account two important factors affecting real populations. Namely,
it neglects both the structure of a population and the effect of competition on the pop-
ulation dynamics. It is a well-reported phenomenon that regulatory constraints on
implemented harvesting strategies may have a strong impact on both the age-, sex-,
and size-distribution of a population. Similarly, harvesting pressure affects critically
the population dynamics of competing populations. This is especially evident in pre-
dator-prey systems, where harvesting may have a pronouncedly distortionary effect
on the population dynamics by altering the response of either the predator or the prey
to changes in their relative population densities. Unfortunately, such generalizations
are out of the scope of the present analysis and, therefore, left for future research.
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