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Abstract. Dispersal polymorphism and evolutionary branching of dispersal strategies has
been found in several metapopulation models. The mechanism behind those findings has
been temporal variation caused by cyclic or chaotic local dynamics, or temporally and spa-
tially varying carrying capacities. We present a new mechanism: spatial heterogeneity in the
sense of different patch types with sufficient proportions, and temporal variation caused by
catastrophes. The model where this occurs is a generalization of the model by Gyllenberg and
Metz (2001). Their model is a size-structured metapopulation model with infinitely many
identical patches. We present a generalized version of their metapopulation model allowing
for different types of patches. In structured population models, defining and computing fit-
ness in polymorphic situations is, in general, difficult. We present an efficient method, which
can be applied also to other structured population or metapopulation models.

1. Introduction

Dispersal is a key feature in metapopulations and the evolution of dispersal has
recently received a lot of attention (Doebeli 1995; Holt and McPeek 1996; Doebeli
and Ruxton 1997; Gandon 1999; Gandon and Michalakis 1999; Johst et al. 1999;
Parvinen 1999; Gyllenberg et al. 2002; Parvinen et al. in press; Ronce et al. 2000;
Gyllenberg and Metz 2001; Heino and Hanski 2001; Metz and Gyllenberg 2001;
Clobert et al. 2001; Parvinen 2001).

Adaptive dynamics (Metz et al. 1992, 1996; Geritz et al. 1997, 1998) gives the
appropriate general framework to analyze the evolutionary phenotype dynamics
of a population or a metapopulation. It is assumed that a resident population has
reached its population dynamical attractor. Then an initially rare mutant with a
slightly different strategy appears. If the mutant is able to grow in population size,
it can invade and possibly replace the old resident and become the new resident
itself. These mutation-invasion events result in the change of the strategy of the
individuals constituting the population.

If no mutant can invade the resident, then the strategy of the resident is un-
beatable, and it is called an evolutionarily stable strategy (Maynard Smith 1976). A
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strategy k∗ is convergence stable or an evolutionary attractor if the repeated inva-
sion of nearby mutant strategies into resident strategies will lead to the convergence
of resident strategies towards k∗ (Christiansen 1991). If an evolutionary attractor
is also evolutionarily stable, it is called a continuously stable strategy (Eshel 1983)
and it is a feasible final outcome of an evolutionary process. If an evolutionary at-
tractor is not unbeatable, evolution will not stop there, but evolutionary branching
occurs. The population will then divide into two groups, and the strategies of these
groups will evolve further away from each other.

In this paper we present a new mechanism for dispersal polymorphism in struc-
tured metapopulations through evolutionary branching. Branching can occur if
there is enough spatial heterogeneity in the sense of different patch types in suffi-
cient quantities, and temporal variation caused by catastrophes. Previously found
mechanisms are temporal variation caused by cyclic or chaotic local dynamics in
deterministic models with finitely many patches (Holt and McPeek 1996; Doebeli
and Ruxton 1997; Johst et al. 1999; Parvinen 1999; Kisdi 2002), and temporally and
spatially varying carrying capacities (McPeek and Holt 1992; Mathias et al. 2001).

The classical Levins metapopulation (Levins 1969, 1970) neglects local dynam-
ics and assumes that all habitat patches are identical. Structured metapopulation
models that take into account local dynamics, are more challenging to study. Metz
and Gyllenberg (2001) and Gyllenberg and Metz (2001) presented a size-structured
metapopulation model with local growth and catastrophes. That model was studied
also by Parvinen et al. (in press) and Gyllenberg et al. (2002). See also Gyllenberg
and Parvinen (2001).

The model in Gyllenberg and Metz (2001), however, assumes that habitat patch-
es are identical and differ only in population size. The population dynamics in the
context of models where patches have different quality has been studied, for ex-
ample, by Gyllenberg and Hanski (1997) and Hanski and Gyllenberg (1993). Here
we present a generalization of the model by Gyllenberg and Metz (2001). This
generalized model incorporates several different types of patches. These patches
have different growth conditions and catastrophe rates.

Defining and computing fitness in polymorphic situations, that is, when there
are several phenotypes having different dispersal behaviour, is definitely not trivial.
We present a method for studying resident dynamics and to compute the fitness of
a mutant in an environment set by the resident populations. The idea of this method
can be applied to other structured population or metapopulation models.

In Section 2 we introduce our metapopulation model. In Section 3 we show
that evolutionary branching of dispersal strategies can occur in our model if there
is enough spatial heterogeneity, that is, enough variability in the patch types, and
temporal variability caused by catastrophes. The existence of different patch types
is not necessarily enough to observe branching. The environment that an individual
experiences has to have enough variability.

2. Model presentation

We study a metapopulation with an infinite number of patches of different quality.
It is a generalization of a model presented by Gyllenberg and Metz (2001) and Metz
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and Gyllenberg (2001). The number of different types of patches is denoted by M

and the fraction of type j is pj , where
∑M

j=1 pj = 1.
In a patch of type j , local population growth due to birth and death events is

described by a per capita growth function gj (x), where x is the local population
size. Individuals emigrate to a dispersal pool at a per capita rate k(x) and immi-
grate at a per capita rate α. Dispersal is often costly in the sense that a migrating
individual may die before reaching a new patch. This is incorporated in this model
by having the individuals in the dispersal pool experience death at per capita rate
ν. The probability to survive dispersal is thus π = α/(α + ν). The density of
dispersers (per patch) is D and the gross immigration rate is therefore I := αD.
Immigrants choose their patch at random, independently of the patch type and the
local population size. Therefore the probability that a randomly selected individual
will arrive in a patch of type j is pj . In patches of type j and population size x,
catastrophes occur at rate µj (x). A catastrophe wipes out the local population in
the patch, but the patch remains habitable and it can be re-colonized by immigrants
from the dispersal pool immediately after the catastrophe.

The state of the metapopulation is the collection of population size distribu-
tions nj , where j = 1, . . . ,M . As nj are probability distributions, the quantity∫

[x1,x2] nj (dx) is the probability that the local population size in a patch of type
j is between x1 and x2. Furthermore,

∫
[0,∞)

nj (dx) = 1 for all j = 1, . . . ,M .
Instead of using a partial differential equation formulation for the dynamics of nj

we use the so-called cumulative formulation (Diekmann et al. 1998, 2001). The
main reason for this is that it follows from Diekmann et al. (2001) that the model in
the cumulative formulation is well-posed. Diekmann et al. (2000) gave examples of
innocent looking hyperbolic systems very similar to the case here, that lack unique
solutions. Another reason for this is that, as will be seen later, the equilibrium pop-
ulation size distributions nj have a one-dimensional support also in a polymorphic
population. The distribution is thus concentrated on a curve. For such a distribu-
tion, the partial derivatives ∂

∂xi
nj do not exist, and therefore the situation cannot be

described with partial differential equations. For a more detailed description of the
cumulative formulation see the appendix.

The population in the dispersal pool decreases from immigration and death,
which occur at per capita rates α and ν, respectively. The population increase from
emigration is added over all patch types and local population sizes.

d

dt
D(t) = −(α + ν)D(t) +

M∑
j=1

pj

∫ ∞

0
k(x)xnj (t, dx). (1)

The dynamics of the immigration rate I = αD is then given by

d

dt
I (t) = −(α + ν)I (t) +

M∑
j=1

pjα

∫ ∞

0
k(x)xnj (t, dx). (2)

If M = 1 this model is identical to the model presented in Gyllenberg and Metz
(2001) and Metz and Gyllenberg (2001).
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2.1. Polymorphic resident

In this paper the words monomorphic and polymorphic correspond to the number
of different resident phenotypes present. A polymorphic resident consists thus of
two or more phenotypes.

We assume that there areN coexisting phenotypes, which differ only in dispersal
tendency, with dispersal rates ki(x), i = 1, . . . , N . In general, the state of a poly-
morphic metapopulation is a collection of N -dimensional measures nj (dx1, dx2,

. . . , dxN, t), j = 1, . . . ,M (See Figure 1a) together with the immigration rates
Ii(t). At an equilibrium the immigration rates and the measures are constant.

Now consider the case of constant immigration rates Ii . Our strategy is to derive
conditions for these immigration rates Ii to be equilibrium immigration rates. The
conditions will be that for each phenotype i, the basic reproduction ratio must be
equal to 1.

Consider the lifetime of a local population in a patch of type j : We define the
patch “age” τ as the time elapsed since the last catastrophe. A local population is
born when an empty patch is colonized, therefore xi(0) = 0. As the immigration
rates are constant, all local populations in patches of type j grow according to{

d
dτ

xi(τ ) = gj

(∑N
i=1 xi(τ )

)
xi(τ ) − ki

(∑N
i=1 xi(τ )

)
xi(τ ) + Ii

xi(0) = 0
(3)

All extant local populations of age τ in patches of type j thus have the popu-
lation sizes (x1(τ ), . . . , xN(τ)). Therefore each measure nj has one-dimensional
support in the sense that it is concentrated on the curve (x1(τ ), . . . , xN(τ)) ∈ R

N ,
τ � 0. (See Figure 1b)

2.2. Basic reproduction ratio for the resident

At an equilibrium the immigration rates are constant, the population size distribu-
tions are constant, and each local population must exactly replace itself. The basic
reproduction ratio Rres

i measures population growth between dispersal events, and
is the expected number of new dispersers (of phenotype i) produced by a disperser
(of phenotype i). In a more abstract way, it can be defined as the spectral radius
of the next generation operator. The equilibrium condition can be formulated as
Rres

i = 1. Note that we do not obtain the equilibrium immigration rates explicitly.
Gyllenberg and Metz (2001) defined the basic reproduction ratio in the mono-

morphic case in their model with one patch type. (In a monomorphic situation one
R suffices.) Next we define the basic reproduction ratios Rres

i in a polymorphic
case, i.e. when there are several resident phenotypes present, with one patch type.
After that we expand the definition to the case with several patch types. We also
present an efficient method for computing the basic reproduction ratios.

2.2.1. One patch type (M = 1)
First we study the case with one patch type (M = 1). All extant populations
of age τ have population size x1(τ ), x2(τ ), . . . , xN(τ) given by (3). We denote
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Fig. 1. a) An example of a 2-dimensional measure, which has a density. b) An example of a
2-dimensional measure with a 1-dimensional support in the sense that it is concentrated on
a curve.

x̄(τ ) = ∑N
i=1 xi(τ ). The probability F that a catastrophe has not occurred before

time t , and thus the population is still extant, has to satisfy the differential equation

d

dt
FI1,... ,IN (t) = −µ(x̄I1,... ,IN (t))FI1,... ,IN (t). (4)

The probability that a population is extant at age τ is thus

FI1,... ,IN (τ ) = exp

[
−

∫ τ

0
µ(x̄(s))ds

]
. (5)

The amount of emigrants of phenotype i during a short time-interval dτ

equals ki(x̄(τ ))xi(τ ). An emigrant will survive dispersal with probability π . The
expected number of surviving emigrants for a local population during its entire life
is therefore
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πEi(I1, . . . , IN ) = π

∫ ∞

0
k (x̄(τ )) xi(τ )FI1,... ,IN (τ )dτ , (6)

The expected number of immigrants arriving into a patch during its entire life
is IiL(I1, . . . , IN ), where

L(I1, . . . , IN ) =
∫ ∞

0
τµ(x̄(τ ))FI1,... ,IN (τ )dτ =

∫ ∞

0
FI1,... ,IN (τ )dτ (7)

is the expected life-time of a local population. The second equality follows from
integration by parts.

The basic reproduction ratio for the phenotype i is the expected number of sur-
viving emigrants divided by the expected number of immigrants. It is thus obtained
by

Rres
i = πEi(I1, . . . , IN )

IiL(I1, . . . , IN )
= π

IiL(I1, . . . , IN )

∫ ∞

0
k (x̄(τ )) xi(τ )FI1,... ,IN (τ )dτ ,

(8)

where τ is the age of a local population and xi(τ ) is the population size of the
phenotype i in a local population of age τ determined by (3).

An alternative interpretation of Rres
i starts by noting that at an equilibrium, the

patch age distribution has density

m(τ) = FI1,... ,IN (τ )

L(I1, . . . , IN )
. (9)

The rate at which all patches send surviving emigrants of phenotype i is then
π

∫ ∞
τ=0 k (x̄(τ )) xi(τ )m(τ)dτ . The basic reproduction ratio is then this amount di-

vided by Ii , which results in (8).
The basic reproduction ratio can be computed numerically using the following

system of differential equations:


x′
i = g

(∑N
i=1 xi

)
xi − ki

(∑N
i=1 xi

)
xi + Ii xi(0) = 0

F ′ = −µ
(∑N

i=1 xi

)
F F(0) = 1

L′ = F L(0) = 0

E′
i = ki

(∑N
i=1 xi

)
xiF Ei(0) = 0

(10)

xi(τ ) is the population size of phenotype i as given by (3), F(τ ) = FI1,... ,IN (τ )

as in (5), Ei(∞) = Ei(I1, . . . , IN ) as in (6) and L(∞) = L(I1, . . . , IN ) from
(7) is the expected lifetime of a local population. The basic reproduction ratio for
a phenotype i is

Rres
i = π

Ei(∞)

L(∞)Ii
. (11)

As Metz and Gyllenberg (2001) stated, it takes a long integration to arrive at τ = ∞.
In practice we can replace the tail of the integration by an analytical approximation.
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As time goes on, xi(τ ) converge to x∗
i defined as a solution of the equation obtained

by putting dxi (τ )
dτ

= 0 in (3). When xi(τ ) is sufficiently close to x∗
i at time T , we

can stop integrating and write

Ei(∞) = Ei(T ) + ki(x̄(T ))xi(T )
F(T )

µ(x̄(T ))

L(∞) = L(T ) + F(T )
µ(x̄(T ))

,
(12)

where x̄(T ) = ∑N
i=1 xi(T ).

At an equilibrium (I1, . . . , IN ) the basic reproduction ratios should satisfy
Rres

i = 1. In general it is not possible to find an equilibrium Ii explicitly, but it is
possible to find a numerical solution.

2.2.2. Several patch types (M > 1)
In the previous section all patches were assumed to be identical with respect to pop-
ulation growth and catastrophes. Next we study the general case with M different
patch types with frequencies pj as described in Section 2.

We assume that dispersers choose the patch into which they immigrate patch at
random, independently of the patch type and the local population size. Therefore
the expected number of dispersers produced by a typical disperser is the weighted
sum of dispersers from different patch types:

Rres
i =

M∑
j=1

pjR
res
ij (13)

where Rres
ij is obtained from (8) where in each Rij the growth function gj (x) and

the catastrophe intensity function µj (x) must be used. This follows directly from
the assumptions. A resident disperser has probability pj to enter into a patch of type
j . It will there produce dispersers as if these patches were the only ones, because
local populations do not affect each other directly, only via dispersal.

2.3. Fitness of the mutant

Now we assume that the present phenotypes have lived in the metapopulation long
enough that the system has reached an equilibrium. We want to answer the question
whether an initially rare mutant with dispersal strategy kmut can grow in population
size. Metz et al. (1996) defined fitness as the long-term exponential growth rate r

of a mutant phenotype in an environment set by the resident. The mutant cannot
invade if r < 0. If r > 0 the mutant may invade, but will not necessarily do so
(demographic stochasticity may prevent it). The basic reproduction ratio R can be
used instead of r , because the quantities r and ln R are sign equivalent: r > 0 if
and only if R > 1.

To compute the fitness we should measure the disperser production of a mutant
arriving in a typical patch, that is, a patch randomly sampled from the equilibrium
distribution of patches with respect to resident population size and composition.
(cf. Gyllenberg and Metz 2001). Again we shall use patch age as the bookkeeping
variable, i.e. exploit the fact that the support of this distribution is a curve.
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2.3.1. One patch type (M = 1)
Consider a very small mutant population arriving in a patch, where the patch age
is tres. The mutant population does not affect the dynamics of the resident. The
mutant population will therefore grow with a per capita growth rate g(x̄(t)), and
mutants will emigrate with a per capita rate kmut(x̄(t)), where x̄ is the total resident
population size. The expected per capita number of mutant emigrants is therefore

Emut (tres, I
∗
1 , . . . , I ∗

N)

=
∫ ∞

tres

kmut(x̄(t)) exp
[∫ t

tres
g(x̄(τ )) − kmut(x̄(τ )) − µ(x̄(τ ))dτ

]
dt, (14)

where x̄(t) = ∑N
i=1 xi(t), and xi(t) is determined by (3). Fitness is now the ex-

pected number of dispersers produced by a mutant arriving in a typical patch.

Rmut (I ∗
1 , . . . , I ∗

N) = π

∫ ∞

0
Emut(tres, I

∗
1 , . . . , I ∗

N)n∗(tres)dtres

= π

L(I ∗
1 , . . . , I ∗

N)

∫ ∞

0
Emut(tres, I

∗
1 , . . . , I ∗

N)FI∗
1 ,... ,I∗

N
(tres)dtres, (15)

since n∗(tres) = FI∗
1 ,... ,I∗

N
(tres)/L(I ∗

1 , . . . , I ∗
N) is the equilibrium patch-age distri-

bution.
Now the integrals in (14) and (15) do not have the same integration boundaries

and a direct transformation to a system of differential equations is not possible.
Using certain auxiliary quantities, we can do the transformation, and the resulting
system of differential equations is



x′
i = g

(∑N
i=1 xi

)
xi − ki

(∑N
i=1 xi

)
xi + Ii xi(0) = 0

F ′ = −µ
(∑N

i=1 xi

)
F F(0) = 1

L′ = F L(0) = 0

U ′ =
[
g

(∑N
i=1 xi

)
− kmut

(∑N
i=1 xi

)
− µ

(∑N
i=1 xi

)]
U U(0) = 1

E′
2 = kmut

(∑N
i=1 xi

)
U E2(0) = 0

V ′ =
[
kmut

(∑N
i=1 xi

)
− g

(∑N
i=1 xi

)]
V V (0) = 1

W ′ = V W(0) = 0
Q′ = E2V Q(0) = 0

(16)

Reason behind this is as follows. The quantities U(t) and E2(t) defined by (16)
can be written in integral form

U(t) = exp
[∫ t

0 g(x̄(τ )) − kmut(x̄(τ )) − µ(x̄(τ ))dτ
]

(17)

and

E2(t) =
∫ t

0
kmut(x̄(σ ))U(σ)dσ , (18)
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thus Emut(t, I ∗
1 , . . . , I ∗

N) = (E2(∞) − E2(t))/U(t). The integral in (15) equals

∫ ∞

0
Emut(tres, I

∗
1 , . . . , I ∗

N)FI∗
1 ,... ,I∗

N
(tres)dtres =

∫ ∞

0

E2(∞) − E2(t)

U(t)
F(t)dt

= E2(∞)

∫ ∞

0
V (t)dt −

∫ ∞

0
E2(t)V (t)dt = E2(∞)W(∞) − Q(∞),

(19)

because F(t)/U(t) = V (t). The fitness Rmut of the mutant is formally

Rmut = π
E2(∞)W(∞) − Q(∞)

L(∞)
, (20)

but this expression creates numerical problems (W(∞) = ∞ and Q(∞) = ∞).
To avoid these problems, we can use the same scheme as in the monomorphic
case (See also Metz and Gyllenberg 2001). As time goes on, xi(τ ) converge to x∗

i

defined as a solution of the equation obtained by putting dxi (τ )
dτ

= 0 in (3). When
xi(τ ) is sufficiently close to x∗

i at time T , we can stop integrating and replace the
tails of the integrations by analytical approximations. Denote kmut = kmut (x̄(T )),
g = g (x̄(T )), and µ = µ (x̄(T )). For t � T we have, to good approximation,

U(t) =U(T )e(g−kmut−µ)(t−T )

E2(t) =E2(T ) + kmutU(T )

(g − kmut − µ)

[
e(g−kmut−µ)(t−T ) − 1

]
V (t) =V (T )e(kmut−g)(t−T )

W(t) =W(T ) + V (T )

kmut − g

[
e(kmut−g)(t−T ) − 1

]

Q(t) =Q(T ) + E2(∞)V (T )

kmut − g

[
e(kmut−g)(t−T ) − 1

]

− kmut
U(T )V (T )

(g − kmut − µ)µ

[
e−µ(t−T ) − 1

]

(21)

The limit of E2 is therefore approximately given by

E2(∞) = E2(T ) − kmutU(T )

g − kmut − µ
. (22)

Even though both W and Q tend to infinity, the difference E2(t)W(t) − Q(t)

remains bounded and has, in the approximation that we use, the limit

E2(∞)W(∞) − Q(∞) = E2(∞)W(T ) − Q(T ) − kmut
U(T )V (T )

(g − kmut − µ)µ
(23)

The expected life-time L(∞) of a local population is obtained, as in the resident
case, from equation (12).
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2.3.2. Several patch types (M > 1)
In the previous section we computed the fitness of a mutant in a metapopulation
model where all patches are identical with respect to population growth and catas-
trophes. We now extend the fitness computation to cover the general case with M

different patch types with frequencies pj as described in Section 2. This is done
in a way which is analogous to the way in which the computation of the basic
reproduction ratio was extended in Section 2.2.2.

Since we assume that dispersers choose the patch into which they immigrate
patch at random, independently of the patch type and the local population size, a
dispersing mutant arrives in a patch of type j with probability pj . The disperser
production in that patch corresponds to the single-type case. The actual fitness is
therefore the weighted sum of dispersers from different patch types:

Rmut =
M∑

j=1

pjR
mut
j (24)

with analogous growth and catastrophe function choices as in the resident case.

3. Results

3.1. The case without catastrophes

Gyllenberg et al. (2002) studied the model with one patch type (M = 1) and proved
that if there are no catastrophes, the strategy not to disperse is evolutionarily stable,
if π < 1. Their proof can be extended to the model with several patch types. As a
consequence, if there are no catastrophes, evolutionary branching cannot occur.

3.2. Evolutionary branching

In this section we assume that the dispersal rate is independent of the local popula-
tion size, i.e. ki(x) = ki . We study an example, where we have two kinds of patches
with different growth functions gj (x) = ajx(1 − x/Kj ) (logistic) and catastrophe
rates.

We study dispersal evolution by drawing pairwise invasibility plots (Figure 2).
For each resident strategy kres we find the non-zero stable monomorphic equilib-
rium (which is unique and also the unique attractor in the studied cases) using the
condition that the basic reproduction ratio (13) must be equal to one, Rres = 1.
Then we compute the fitness Rmut of the mutant with strategy kmut from (24).
Next we plot the areas consisting of points (kres, kmut) where Rmut > 1 in dark
gray and those where Rmut < 1 in light gray. Evolutionarily singular strategies lie
in those points, where the nontrivial isocline Rmut = 1 crosses the diagonal. For
a detailed classification of pairwise invasibility plots in general see Geritz et al.
(1998).

We now study the evolution of dispersal in dependence on the fraction p1, with
0 � p1 � 1, p2 = 1 − p1. When p1 = 0 or p1 = 1 we have only one type of
patches present, and an evolutionarily singular dispersal strategy k∗ exists, which
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p p pp

p p p p

p p p p

Fig. 2. Pairwise invasibility plots. Parameters: M = 2, α = 0.5, ν = 0.1. Patch properties:
a1 = 1, K1 = 1, µ1 = 0.5, a2 = 0.7, K2 = 1.5, µ2 = 0.1.
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is also evolutionarily stable (Figure 2a,f). When p1 changes, the singular strategy
changes and loses its evolutionary stability (Figure 2b,e).

With intermediate values of p1, the singular strategy k∗ is a branching point
(Figure 2c,d), see also Figure 3a. When the singular strategy k∗ is a branching
point, evolutionary branching occurs and the metapopulation becomes dimorphic,
that is, there are two resident phenotypes k1, k2. In that case the fitness of a mutant
phenotype can be calculated using the method explained in Section 2.3. Because
of mutations and mutant-resident replacements, the resident strategies (k1, k2) will
change in the set of protected dimorphisms (see Geritz et al. 1998, 1999) until an
evolutionarily stable dimorphism (k∗

1 , k
∗
2) is reached.

Fig. 3. a) Singular dispersal strategies k∗ with respect to p1. The thin curve corresponds
to evolutionarily stable strategies and the thick curve to branching points. b) The domain
of protected dimorphisms (plotted in grey) and the direction of evolution when {p1, p2} =
{0.6, 0.4} (Corresponds to Figure 2c) Parameters: M = 2, α = 0.5, ν = 0.1. Patch proper-
ties: a1 = 1,K1 = 1, µ1(x) = 0.5, a2 = 0.7, K2 = 1.5 µ2(x) = 0.1.
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In Figure 3b we have plotted one example of such a case. The singular strategy
k∗ ≈ 0.17 is a branching point. Because the numbering of the strategies k1 and k2
is arbitrary, the domain of protected dimorphisms is symmetric across the diagonal.
Let k′

i = ∂
∂kmut

Rmut|kmut=ki The probable direction of evolution is (k′
1, k

′
2). When

(k1, k2) is close to (k∗, k∗), the smaller resident strategy will decrease and the larger
increase. The strategies (k1, k2) will finally reach the evolutionarily attracting
dimorphism at the point where the isoclines k′

i = 0 cross, which is approximately
at (0.11, 0.235) or (0.235, 0.11). This unique convergence stable dimorphism is
evolutionarily stable, and is therefore the final outcome of the evolutionary pro-
cess. (In principle the convergence stable dimorphism could be also evolutionarily
unstable, which would lead to further branching.)

Fig. 4. a) Singular dispersal strategies k∗ and b) parameter values for which branching oc-
curs with respect to p1 and µ2. The parameters domain for which branching occurs is plotted
in black in (b). The boundary of the corresponding area is plotted with a thick curve in (a).
Parameters: M = 2, α = 0.5, ν = 0.15. Patch properties: a1,2 = 1, K1,2 = 1, µ1(x) = 0.1.
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We have thus found out that evolutionary branching can occur when there is
enough spatial heterogeneity in the sense of different patch types with sufficient
proportions, and temporal variation caused by catastrophes.

3.3. Dependence on patch properties

To further analyze the occurrence of branching, we take two equal patch types, and
choose one property of the second patch type we vary. Then we see for which com-
binations of this parameter and the fraction of patches p1 evolutionary branching
occurs. More specifically, we vary the catastrophe rate µ2 and carrying capacity K2.

The results with respect to the catastrophe rate µ2 are plotted in Figure 4. We
observe that branching occurs for intermediate values of the catastrophe rate µ2,
where the difference between the ESS dispersal rates of the patch types alone is
largest.

Next we study the effect of differences in the carrying capacity K . When there
is only one patch type present and the catastrophe rate does not depend on the pop-

Fig. 5. Singular dispersal strategies k∗ and parameter values for which branching occurs
with respect to p1 and K2. The parameters domain for which branching occurs is plotted
in black in (b). The boundary of the corresponding area is plotted with a thick curve in (a).
Parameters: M = 2, α = 0.5, ν = 0.1. Patch properties: a1,2 = 1, K1 = 1, µ1,2(x) = 0.1.
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ulation size, it can be shown analytically that the basic reproduction ratios do not
change if both the immigration rate I and the carrying capacity K are multiplied
with the same positive constant. The carrying capacity is therefore just a scaling
factor of population size, and its value does not affect dispersal behaviour.

When there are two patch types with different carrying capacities the situation
changes completely. The different scales create spatial heterogeneity. Dispersing
individuals may now enter a patch of different size, which changes dispersal be-
haviour. The evolutionarily singular dispersal rates decrease, as can be seen in
Figure 5a. Branching happens when the difference of the carrying capacities is
large enough. (Starting from K2 ≈ 4).

In Figure 3 the parameter values of p1 for which branching occurs are not in
the center of the parameter region. The same phenomenon occurs in Figure 4, and
also in Figure 5. When the only difference in the patch types is the catastrophe
rate µ, the average population size in the patches is higher in the patch type 1 with
lower µ. Therefore the patch type 1 dominates and branching cannot happen if p1
is too high. The biggest level of spatial heterogeneity from the point of view of
an individual occurs thus for relatively small values of p1. Correspondingly, when
patches differ only in the carrying capacity K , the bigger patch type 2 dominates,
and branching happens for high values of p1.

We conclude that spatial heterogeneity can lead to a polymorphic population
through evolutionary branching. The necessary level of spatial heterogeneity can
be obtained with differences in growth conditions alone, as well as with differences
in catastrophe rates alone, and should be measured from the point of view of an
individual.

4. Conclusion

We have presented a generalisation of the metapopulation model presented by
Gyllenberg and Metz (2001) and Metz and Gyllenberg (2001). We then gave a
method for analyzing resident and mutant behaviour in a metapopulation with
many different patch types. The method covers also the polymorphic situation with
several resident phenotypes. This was, in fact, mentioned as an open research task
in Metz and Gyllenberg (2001). Using these methods we studied the evolution
of dispersal in the generalized model. We found that evolutionary branching can
occur when there is enough spatial heterogeneity in the sense of different patch
types with sufficient proportions, and temporal variation caused by catastrophes.
The level of spatial heterogeneity should be measured from the point of view of an
individual.

Evolutionary branching of dispersal strategies has been found before (Holt and
McPeek 1996; Doebeli and Ruxton 1997; Parvinen 1999; Johst et al. 1999; Mathias
et al. 2001; Kisdi 2002). More precisely, Holt and McPeek (1996), Doebeli and
Ruxton (1997), and Parvinen (1999) studied discrete-time metapopulation models.
Holt and McPeek (1996) found polymorphisms and branching in a model with
two patches when local dynamics is chaotic and patches are unequal. Doebeli
and Ruxton (1997) and Parvinen (1999) studied the difference of equilibrium and
two-cyclic population orbit cases. Parvinen (1999) proved analytically that in the
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case of fixed point equilibria, the strategy not to migrate is evolutionarily stable
and convergence stable. Therefore no branching occurs in fixed point equilibrium
cases. If the resident attractor is a two-cyclic orbit, then evolutionary branching
can occur. Johst et al. (1999) studied evolution of dispersal and complexity of
dynamics in a discrete-time metapopulation model with spatial lattice structure.
They also found branching of dispersal strategies in the case of temporal variation.
McPeek and Holt (1992) found dispersal polymorphisms in a model with tempo-
rally and spatially varying carrying capacities. In a similar setting, Mathias et al.
(2001) found evolutionary branching. Kisdi (2002) studied evolution of dispersal
and local adaptation in a stochastic metapopulation model with two patches, and
found evolutionary branching of the dispersal strategy, as well as of the local ad-
aptation strategy. See also Meszéna et al. (1997) Our work is to our knowledge
therefore the first one to show that evolutionary branching of dispersal strategies
can occur also in the case of spatial heterogeneity and temporal variation caused
by catastrophes. Without catastrophes evolutionary branching cannot occur in our
model.

Geritz et al. (1998) studied a model where the strategy describes local adapta-
tion in patches. In different patches different strategies are optimal. If all patches
are equal, the strategy which is optimal is naturally evolutionarily stable and con-
vergence stable. If the difference of the optimal local strategies is large enough,
in other words there is enough spatial heterogeneity, then evolutionarily branching
occurs. In our model the situation is a little bit different. When all patches are equal,
changing the carrying capacity of all of them does not have an effect on the evolu-
tionarily stable dispersal rate. However, adding another patch type with a different
carrying capacity does change the dispersal behaviour, and evolutionary branching
can occur. Evolutionary branching is thus possible even though the evolutionarily
stable strategies in the different patch types alone would be equal.

Acknowledgements. The author wishes to thank Stefan Geritz, Mats Gyllenberg, and Éva
Kisdi for discussions. This work has been supported by the Graduate School in Computa-
tional Biology, Bioinformatics, and Biometry, the Academy of Finland and Turku University
Foundation.

A. Cumulative formulation

In the modelling approach of Diekmann et al. (2001) individual development, sur-
vival, and reproduction are assumed to depend on the environmental condition or
environmental interaction variable, which we denote by I . The key point is that
the variable I should be chosen such that for given I = I (t) the population model
becomes a nonautonomous linear model. In this sense the variable I acts as an
input to the system. Individuals affect their own environment. This is modelled by
specifying an individual output. The total population output is then obtained by
adding up all the individual outputs. In mathematical terms the population output
is thus a linear functional of the population state. Finally the full nonlinear problem
is obtained by closing the feedback-loop by declaring input equal to output. In this
model the immigration rate I works as an input to the patch dynamics.
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The nonlinear theory of general structured population models was presented
by Diekmann et al. (2001) and adapted to structured metapopulation models by
Gyllenberg et al. (1997). The model with one patch type was presented by Gyllen-
berg and Metz (2001).

Local population growth is modelled as a Markov process with local extinction
as an absorbing state by specifying the transition probabilities uI (t, x, j), that is,
uI (t, x, j)(ω) is the probability that a local population which had size x in a patch
of type j at time 0 is still extant at time t and has size in the set ω.

Let XI (t, x, j) be the solution of{
d
dt

X(t) = gj (X(t))X(t) − k(X(t))X(t) + I (t)

X(0) = x.
(25)

A local population, which at time 0 had size x, will at time t have size XI (t, x, j),
provided it has not been wiped out by a local catastrophe.

The probability F that a catastrophe has not occurred before time t , and thus
the population is still extant, has to satisfy the differential equation d

dt
FI (t, x, j) =

−µj (XI (s, x, j))FI (t, x, j). The solution is

FI (t, x, j) = exp

[
−

∫ t

0
µj (XI (s, x, j))ds

]
. (26)

The transition probability of the local population size in a patch of type j is
given by the measure

uI (t, x, j) = FI (t, x, j)δXI (t,x,j), (27)

where δXI (t,x,j) is a measure concentrated on a single point XI (t, x, j). uI (t, x, j)

(ω) is the probability that a local population which had size x at time 0 is still extant
at time t and has size in the set ω.

When a local population is wiped out by a catastrophe, the patch it inhabited will
immediately be recolonized by migrants arriving from the dispersal pool provided
I > 0. We consider this event as the simultaneous death of the local population
and the birth of a new local population with size 0. The expected number of new
local populations produced in the time interval [0, t) by a local population having
size x at time 0 and subject to the input I > 0 is therefore

1 − FI (t, x, j). (28)

If I = 0, there are no dispersers and there will still be death but no birth of a new
population.

Reproduction (the formation of new local populations) is modelled by specify-
ing the reproduction kernel .: .I (t, x, j)(ω) is the expected number of new local
populations with “size-at-birth” in the set ω, produced in the time interval [0, t) by
a local population which had size x at time 0. As all new populations are born with
size zero, the reproduction kernel is

.I (t, x, j) =
{
(1 − FI (t, x, j))δ0 if I > 0
0 if I = 0.

(29)
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Kisdi, É., Dispersal: Risk spreading versus local adaptation. Am. Nat. 159, 579–596
(2002)

Levins, R.: Some demographic and genetic consequenses of environmental heterogeneity
for biological control. Bill. Entomol. Soc. Am. 15, 237–240 (1969)

Levins, R.: Extinction. In M. Gerstenhaber (Ed.), Some Mathematical Problems in Biology,
77–107. American Mathematical Society, Providence, RI. 1970
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