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Abstract. The equations governing oxygen transport from blood to tissue are presented for
a cylindrical tissue compartment, with blood flowing along a co–axial cylindrical capillary
inside the tissue. These governing equations take account of: (i) the non–linear reactions
between oxygen and haemoglobin in blood and between oxygen and myoglobin in tis-
sue; (ii) diffusion of oxygen in both the axial and radial directions; and (iii) convection of
haemoglobin and plasma in the capillary. A non–dimensional analysis is carried out to assess
some assumptions made in previous studies. It is predicted that: (i) there is a boundary layer
for oxygen partial pressure but not for haemoglobin or myoglobin oxygen saturation close
to the inflow boundary in the capillary; (ii) axial diffusion may not be neglected everywhere
in the model; (iii) the reaction between oxygen and both haemoglobin and myoglobin may
be assumed to be instantaneous in nearly all cases; and (iv) the effect of myoglobin is only
significant for tissue with a low oxygen partial pressure. These predictions are validated by
solving the full equations numerically and are then interpreted physically.

1. Introduction

Oxygen is transported to the body tissues by the systemic circulation. Most of
the oxygen stored in the blood flowing into the capillaries is chemically bound to
haemoglobin, although a small fraction is dissolved in plasma. The transport of
oxygen into the tissue is driven by partial pressure gradients. Typically, oxygen
stored in blood has to free itself from the haemoglobin molecule which is flowing
through the capillary before it diffuses into tissue. Similarly, oxygen stored in tissue
may be dissolved or chemically bound to myoglobin. The transport of oxygen from
blood to tissue therefore involves convection, diffusion and reaction processes. An
accurate description of the oxygen partial pressure within tissue is physiologically
important - there is evidence that the oxygen consumption of cells within the tissue
falls dramatically when the oxygen partial pressure falls below a critical threshold,
[17]. In addition, some clinical techniques (see, for example, [4] and some models
predicting the collapse of regions of the lungs, [5]) use calculations based on mathe-
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matical models of oxygen transport to tissue. If these techniques are to be successful,
it is therefore essential that oxygen transport to tissue is modelled realistically.

Many authors have investigated the solution of the governing equations using
various simplifications. Murray, [7], considered the one dimensional transport of
oxygen through a solution containing either haemoglobin or myoglobin. This model
considered diffusion in one dimension and the reaction between oxygen and either
the haemoglobin or myoglobin molecule. A singular perturbation method was used
to solve the governing equations. This was later extended, [8], to the problem of
oxygen transport in a circular region with radial symmetry.

Rather than consider each capillary separately, Salathe and co–workers [11,
13–15] considered a group of several capillaries to investigate the effect of inho-
mogeneities in oxygen supply in capillaries. Oxygen concentration was calculated
by combining the governing equations inside the capillaries and in tissue using a
suitable weighting. This work has assumed that free oxygen and chemically bound
oxygen are in equilibrium in both blood and tissue and neglects diffusion in the
direction of the blood flow. Initial work, [11,13] ignored the non–linear effects
of myoglobin and haemoglobin. Later work, [14,15], used asymptotic methods to
investigate the solution of these non–linear equations.

Sharan, [18], considered a single capillary surrounded by a co–axial cylindri-
cal tissue compartment. In the capillary there was diffusion in both the axial and
radial directions, together with consideration of the non–linear oxy-haemoglobin
dissociation curve. An instantaneous reaction was assumed between the oxygen
and haemoglobin molecules. Only radial diffusion was considered in the tissue,
and the effect of myoglobin was neglected completely. A finite–element solution
to the governing equations was used to show the importance of using a non–linear
oxyhaemoglobin dissociation curve.

Despite the common assumption of neglecting diffusion in the direction of
blood flow, Schubert and Zhang, [16], report the importance of axial diffusion in
experimental data.

In this paper we use a model consisting of a single cylindrical capillary with
blood flowing through it surrounded by a co–axial cylindrical tissue compartment.
We take account of the non–linear reaction terms between oxygen and haemoglobin
in blood and between oxygen and myoglobin in the tissue. We consider diffusion
of oxygen, haemoglobin and myoglobin in both the radial and axial directions. The
aim of this paper is to use the non–dimensional form of the governing equations
to investigate the effect of the various simplifying assumptions described above,
namely: (i) neglecting axial diffusion; (ii) assuming an instantaneous reaction be-
tween oxygen and both haemoglobin and myoglobin: and (iii) neglecting the effect
of facilitated myoglobin diffusion. In particular, we show that there is a boundary
layer for oxygen partial pressure in the region of the inflow boundary of blood
into the capillary, but not for either haemoglobin or myoglobin saturation near
this boundary. Due to this boundary layer, we may not neglect axial diffusion. In
most cases, we may assume an instantaneous reaction between oxygen and the
haemoglobin and myoglobin molecules. The effect of myoglobin only becomes
significant when oxygen partial pressure in tissue is low. These predictions are
validated numerically, and interpreted physically.
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Fig. 1. The mathematical model used.

2. The mathematical model

We use a mathematical model consisting of a circular cylindrical capillary inside
a coaxial circular cylindrical region of tissue, shown in Fig. 1. A glossary of terms
used is given below.

r Radial coordinate
z Axial coordinate
Rc Capillary radius
RT Tissue radius
a Length of capillary
u Blood velocity in capillary
P Oxygen partial pressure
Pa Arterial oxygen partial pressure
S Fractional haemoglobin saturation
Y Fractional myoglobin saturation
αc Oxygen solubility in plasma
αT Oxygen solubility in tissue
Dc Diffusion coefficient of oxygen in plasma
DT Diffusion coefficient of oxygen in tissue
DH Diffusion coefficient of haemoglobin
DM Diffusion coefficient of myoglobin
cH Oxygen carrying capacity of haemoglobin
cM Oxygen carrying capacity of myoglobin
kH Backward reaction rate for oxyhaemoglobin reaction
kM Backward reaction rate for oxymyoglobin reaction
k′
M Forward reaction rate for oxymyoglobin reaction

q Oxygen consumption

We assume that blood flowing into the capillary from the artery, known as
“arterial blood”, has a constant partial pressure and that the oxy–haemoglobin
reaction has reached equilibrium in arterial blood. Assuming a steady state and
radial symmetry, we look for solutions of the form P = P(r, z), S = S(r, z) and
Y = Y (r, z).
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2.1. Governing equations

2.1.1. Capillary

In the capillary, the equations governing oxygen transport are

αcDc∇2P = uαc
∂P

∂z
− ρc (1)

cHDH∇2S = ucH
∂S

∂z
+ ρc (2)

where the reaction term, ρc, is given by

ρc = kHcH
S − f (P )

1 − f (P )
(3)

as derived by Clark et al., [1], and Whiteley et al., [19], where S = f (P ) is
the equilibrium oxyhaemoglobin dissociation relationship. We use the dissociation
curve given by Kelman, [6]:

f (P ) =
{

a1P+a2P
2+a3P

3+P 4

a4+a5P+a6P
2+a7P 3+P 4 P ≥ 12mmHg

0.003683P + 0.000584P 2 P < 12mmHg
(4)

where P is measured in mmHg, and

a1 = −8.5322289 × 103 a2 = 2.1214010 × 103

a3 = −6.7073989 × 10 a4 = 9.3596087 × 105

a5 = −3.1346258 × 104 a6 = 2.3961674 × 103

a7 = −6.7104406 × 10

We note that when oxygen partial pressure and haemoglobin saturation are in equi-
librium the reaction term, Eq. 3, is zero.

Some authors, [10,12,15], have negected radial diffusion of oxygen in the
capillary. These authors justify this by claiming that the recirculating flow in the
plasma reported by Aroesty and Gross, [3], leads to uniform radial mixing of oxygen
within the capillary. However work by Whiteley et al., [19], using a more realistic
geometry has shown that there is no recirculating flow, and so we include radial
diffusion of oxygen in the capillary in the mathematical model used in this study.

2.1.2. Tissue

The governing equations in tissue have a very similar form. They are given by

αTDT∇2P = −ρT + q (5)

cMDM∇2Y = ρT (6)
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where the reaction term, ρT, is given by, [8]:

ρT = kMcMY − αTk′
McM(1 − Y )P (7)

The dissociation curve for myoglobin saturation in equilibrium is given by

g(P ) = k′
MαTP

k′
MαTP + kM

(8)

Combining Eqs. 7 and 8 allows us to write the reaction term in terms of this
dissociation curve as

ρT = cMkM
Y − g(P )

1 − g(P )
(9)

2.2. Boundary conditions

1. Radial symmetry implies that

∂P

∂r
= ∂S

∂r
= 0 at r = 0, 0 ≤ z ≤ a (10)

2. P is initially in equilibrium with arterial blood, so

P = Pa z = 0, 0 ≤ r ≤ Rc (11)

3. The flux of dissolved oxygen per unit area is given by αD ∇P , and is zero across
closed boundaries. In addition, we assume a non–diffusional flux condition
where blood flows out of the capillary, and so we have

∂P

∂z
= 0 z = 0, Rc ≤ r ≤ RT (12)

∂P

∂r
= 0 r = RT, 0 ≤ z ≤ a (13)

∂P

∂z
= 0 z = a, 0 ≤ r ≤ RT (14)

4. Haemoglobin saturation is in equilibrium with partial pressure in blood entering
the capillary and so

S = f (Pa) z = 0, 0 ≤ r ≤ Rc (15)

where f (P ) is the oxyhaemoglobin equilibrium relationship given in Eq. 4.
5. No diffusive flux of haemoglobin out of capillary across any other boundary

∂S

∂r
= 0 r = Rc, 0 ≤ z ≤ a (16)

∂S

∂z
= 0 z = a, 0 ≤ r ≤ Rc (17)
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6. No diffusive flux of myoglobin out of tissue

∂Y

∂r
= 0 r = Rc, RT, 0 ≤ z ≤ a (18)

∂Y

∂z
= 0 z = 0, a, Rc ≤ r ≤ RT (19)

7. For a unique solution for Y we must specify its value on some part of the
tissue boundary. At a large distance from the capillary we assume it will be in
equilibrium with partial pressure. We apply this by writing

Y (a, RT) = g(P (a, RT)) (20)

where g(P ) is the oxymyoglobin equilibrium relationship given in Eq. 8.
8. P and the flux of oxygen are continuous across the capillary–tissue interface.

These conditions may be written

P
∣∣
z=Rc− = P

∣∣
z=Rc+ 0 ≤ z ≤ a (21)

αCDC
∂P

∂r

∣∣∣
z=Rc−

= αTDT
∂P

∂r

∣∣∣
z=Rc+

0 ≤ z ≤ a (22)

3. Non–dimensionalisation of the problem

In this section we non–dimensionalise the governing eqations, Eqs. 1-9. This will
enable us to estimate the magnitude of each term in these equations and predict
which terms, and therefore which physical processes, dominate the solution of these
equations. It will also allow us to investigate some of the assumptions made by other
authors, described in Section 1.

Before we non–dimensionalise the governing equations, we must obtain values
for each of the parameters occuring. These are given in Table 1. In this table we
have chosen a, the length of the capillary to be 50 times Rc.

3.1. Capillary

We first consider the reaction term between oxygen and haemoglobin, Eq. 3. This
reaction unbinds oxygen from the haemoglobin model so that it can be transported
to tissue, and so we assume that S − f (P ) ≥ 0. By noting further that S < 1 we
may deduce that

0 ≤ S − f (P )

1 − f (P )
< 1

We now non–dimensionalise the problem in the capillary in the region of the
inflow boundary. All scalings are chosen so that the non–dimensional variables
range from 0 to 1. We set

P → P0 + (P1 − P0) P S → S0 + (S1 − S0) S

r → Rcr z → Lz
(23)
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Table 1. The parameters used.

Parameter Value Reference

Rc 3.25 × 10−4 cm [18]
RT 3.25 × 10−3 cm [18]
a 1.625 × 10−2 cm
u 0.03 cm s−1 [18]
αc 1.527 × 10−9 mol cm−3 (mmHg)−1 [18]
αT 1.295 × 10−9 mol cm−3 (mmHg)−1 [18]
Dc 1.12 × 10−5 cm2 s−1 [18]
DT 1.7 × 10−5 cm2 s−1 [18]
DH 1.4 × 10−7 cm2 s−1 [2]
DM 5.0 × 10−7 cm2 s−1 [14]
cH 9.1 × 10−6 mol cm−3 [18]
cM 2.8 × 10−7 mol cm−3 [8]
kH 40 s−1 [7]
kM 65 s−1 [8]
k′

M 2.4 × 1010 mol−1 cm3 s−1 [8]
q 5 × 10−8 mol cm−3 s−1 [8]

where L is a length scale to be chosen appropriately, and P0, P1, S0 and S1 are to
be determined. We will use different scalings in different regions of the capillary.
We may now write down the non–dimensional form of Eqs. 1-3:

A1
1

r

∂

∂r

(
r
∂P

∂r

)
+ A2

∂2P

∂z2
= ∂P

∂z
+ A3

S − f (P )

(1 − S0)/(S1 − S0) − f (P )
(24)

B1
1

r

∂

∂r

(
r
∂S

∂r

)
+ B2

∂2S

∂z2
= ∂S

∂z
− B3

S − f (P )

(1 − S0)/(S1 − S0) − f (P )
(25)

where f (P ), has been non–dimensionalised using the same scaling as for S and
the dimensionless parameters A1, A2, A3, B1, B2, B3 are given by

A1 = DcL

R2
c u

= 3.5 × 103L

A2 = Dc

Lu
= 3.7 × 10−4

L

A3 = kHcHL

uαc (P1 − P0)
= 7.9 × 106L

P1 − P0

B1 = DHL

R2
c u

= 4.4 × 10−1L

B2 = DH

Lu
= 4.7 × 10−6

L

B3 = kHL

u(S1 − S0)
= 1.3 × 103L

S1 − S0

and L is measured in cm.
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Fig. 2. The oxyhaemoglobin dissociation curve.

We begin by considering the region of the capillary near to the inflow boundary.
The equilibrium oxyhaemoglobin dissociation relationship given by Eq. 4 is plotted
in Fig. 2. We see that f (P ) > 0.95 for P > 75 mmHg. Arterial blood entering the
capillary typically has P = 100 mmHg and S = 0.97. As we have assumed that
S > f (P ), we may use the non–dimensionalisation P0 = 75 mmHg, P1 = Pa,
S0 = 0.95 and S1 = 1 in Eq. 23. To balance terms in Eq. 24 we set L = Rc. A1
and A2 are now approximately the same size in this region. Neglecting terms of
O(10−2) the size of the largest terms the non–dimensional equations in this region
are now:

A1
1

r

∂

∂r

(
r
∂P

∂r

)
+ A2

∂2P

∂z2
= ∂P

∂z
+ A3

S − f (P )

1 − f (P )
(26)

0 = ∂S

∂z
− B3

S − f (P )

1 − f (P )
(27)

The only terms that were included in the original equations, Eqs. 1 and 2 that are
not included in these non–dimensional equations are the diffusion terms for oxygen
bound to haemoglobin. In particular, as A1 and A2 are of the same order, we see
that in this small region for P diffusion is equally important in both the axial and
radial directions and so it is not valid to neglect axial diffusion. We see that, as the
second derivatives are significant for P but not for S, we have a boundary layer for
P but not S in the region of the inflow boundary into the capillary. As we have used
the lengthscale L = Rc to non–dimensionalise the axial coordinate, the thickness
of the boundary layer is O(Rc).
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We note that, using Eq. 27 and transforming back to dimensional parameters,
we may deduce that

S − f (P ) = O(10−3)

and so, to a first approximation, we may write S = f (P ) in this boundary layer, i.e.
assume an instantaneous reaction between oxygen and the haemoglobin molecule.
We may then eliminate the reaction term from Eqs. 26 and 27 to give

A1
1

r

∂

∂r

(
r
∂P

∂r

)
+ A2

∂2P

∂z2
=

(
1 + A3

B3
f ′(P )

)
∂P

∂z
(28)

and so we have now neglected the reaction term as well as diffusion of oxygen
bound to haemoglobin from the original equations, Eqs. 1 and 2.

Whilst we have shown using the governing differential equations that we may
write S = f (P ), we must use this with caution. We note that ∂P/∂r �= 0 on
r = Rc, the boundary between blood and tissue. As a result, by writing S = f (P )

it is impossible to satisfy the boundary conditions of no flux of haemoglobin across
the blood–tissue boundary, Eq. 16. This may be reconciled by a boundary layer
for S along the blood–tissue boundary. In this boundary layer, the radial derivative
of S changes rapidly to satisfy Eq. 16, and so the parameter B1 must balance the
parameter B3 in Eq. 25. This may be achieved by using a scaling of r → Lrr in
Eq. 23 where Lr = 10−5 cm, and so there is a boundary layer of O(10−5cm) for S

along this boundary.
Away from these boundary layers, we may now take L = 0.01 cm, (of order of

the length of the capillary), P0 = 40 mmHg (typical of P in blood leaving tissue)
and P1 = 75 mmHg in the non–dimensionalisation (Eq. 23). The corresponding
values for S are S0 = 0.75 and S1 = 0.95. In this region, neglecting terms of
size O(10−2) the magnitude of the largest term, the approximate non–dimensional
equations are now

A1
1

r

∂

∂r

(
r
∂P

∂r

)
= ∂P

∂z
+ A3

S − f (P )

1.25 − f (P )
(29)

0 = ∂S

∂z
− B3

S − f (P )

1.25 − f (P )
(30)

and so diffusion of oxygen bound to haemoglobin and axial diffusion of free oxygen
may be neglected in this region.

From Eq. 30 we may deduce that

S − f (P )

1.25 − f (P )
= O(10−2)

and so transforming Eq. 30 back to dimensional coordinates,

S − f (P ) = O(10−3)
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and so we may again assume an instantaneous reaction, taking S = f (P ), except for
the boundary layer for S on the capillary–tissue interface which we have discussed
earlier. On combining Eqs. 29 and 30 this gives

A1
1

r

∂

∂r

(
r
∂P

∂r

)
=

(
1 + A3

B3
f ′(P )

)
∂P

∂z
(31)

The only difference between Eq. 31 and Eq. 28 (the corresponding equation in the
boundary) is that outside the boundary layer we may neglect diffusion in the axial
direction.

3.2. Tissue

We first consider the reaction term between oxygen and myoglobin, Eq. 7. This
reaction converts free oxygen to oxygen bound to the myoglobin molecule. The
equilibrium relation between oxygen partial pressure and myoglobin saturation,
Eq. 8, is shown in Fig. 3. We see that myoglobin is at least 90% saturated for
P > 20 mmHg and at least 95% saturated for P > 40 mmHg.

Using the non–dimensionalisation

P → P0 + (P1 − P0) P Y → Y0 + (Y1 − Y0) Y

r → Lrr z → Lzz
(32)

Eqs. 5 and 6 become

1

r

∂

∂r

(
r
∂P

∂r

)
+ L2

r

L2
z

∂2P

∂z2
= −C1

Y − g(P )

(1 − Y0)/(Y1 − Y0) − g(P )
+ C2 (33)

1

r

∂

∂r

(
r
∂Y

∂r

)
+ L2

r

L2
z

∂2Y

∂z2
= D1

Y − g(P )

(1 − Y0)/(Y1 − Y0) − g(P )
(34)

Fig. 3. The oxymyoglobin dissociation curve.



Mathematical modelling of oxygen transport to tissue 513

where we have used the same scaling for g(P ) as for Y , and

C1 = cMkML2
r

αTDT(P1 − P0)
= 8.2 × 108L2

r

(P1 − P0)

C2 = L2
r

αTDT(P1 − P0)
q = 2.3 × 106L2

r

(P1 − P0)

D1 = kML2
r

DM(Y1 − Y0)
= 1.3 × 108L2

r

Y1 − Y0

In Section 3.1 we deduced that there is a boundary layer of order Rc in the
z-direction in the region of z = 0. As P is continuous across the capillary–tissue
boundary, Eq. 21, this boundary layer will apply in the tissue region as well. There
is also a discontinuity in the boundary condition for P at z = 0, r = Rc where the
boundary condition switches from a Dirichlet boundary condition to a Neumann
boundary condition, and so we expect that diffusion in both the z and r directions
to be significant in this region. A suitable scaling is therefore Lr = Lz = Rc.
Using P0 = 50 mmHg and P1 = Pa and the corresponding scalings Y0 = 0.96
and Y1 = 1 we see that, on neglecting terms of size O(10−2) the magnitude of the
biggest term, Eq. 34 reduces to

0 = D1
Y − g(P )

1 − g(P )
(35)

from which we deduce that we can assume an instantaneous reaction and write
Y = g(P ). Eq. 33 then reduces to

∇2P = C2 (36)

We have already explained that as we have a boundary layer for P in the capillary,
we will also have a boundary layer for P in the tissue. In this region we have
justified writing Y = g(P ). From Fig. 3 we see that Y changes by only a small
amount between the values of P0 and P1 in this region, and so there is not a boundary
layer for Y in this region.

Outside this boundary layer, we use the scaling Lr = RT and Lz = 0.01 (as was
used in the capillary), P0 = 0 mmHg, P1 = 75 mmHg, Y0 = 0 and Y1 = 1. Using
this scaling in Eqs. 33 and 34 we see that axial diffusion is of the order only ten
times smaller than radial diffusion, and so may not be neglected. By using the same
argument as that leading up to Eq. 35 we may deduce from the non–dimensional
equations that we may write Y = g(P ), and so we may eliminate the reaction term
to give

1

r

∂

∂r

(
r

∂

∂r

(
P + C1

D1
g(P )

))
+ L2

r

L2
z

∂2

∂z2

(
P + C1

D1
g(P )

)
= C2 (37)

The graph of g′(P ) is shown in Fig. 4. We see that, in dimensional coordinates,
g′(P ) < 0.01 for P > 13 mmHg. Noting that C1/D1 = O(10−1), we see that, for
P > 13 mmHg we may neglect this term to give

∇2P = C2 (38)
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Fig. 4. The derivative of the myoglobin dissociation curve.

and so the contribution of myoglobin diffusion to total oxygen diffusion may be
neglected provided that P > 13 mmHg.

In Section 3.1 we predicted the existence of a boundary layer for the haemoglobin
saturation along the capillary–tissue interface, which may affect the assumption of
an instantaneous reaction between oxygen and haemoglobin. A similar situation
exists for myoglobin along this boundary. However, assuming an instantaneous
reaction between oxygen and myoglobin allows us to write

∂Y

∂r
= g′(P )

∂P

∂r

At the capillary–tissue interface, in a physically realistic situation we will have P >

30 mmHg, and we can see from Fig. 4 that g′(P ) will be tiny giving ∂Y/∂r ≈ 0, and
so the boundary condition Eq. 18 is satisfied even if we assume an instantaneous
reaction.

4. Numerical results

In this section we solve the full conservation of mass equations, Eqs. 1-9 to inves-
tigate the phenonema predicted in Section 3. We solve these equations using the
finite element method (see, for example, Reddy [9]). The mesh used was generated
by the PDE toolbox provided by Matlab (The MathWorks Inc., Natick, MA) and is
shown in Fig. 5. A finer mesh was tested, but did not improve the accuracy of the
computed solution.

4.1. Boundary Layers

Our analysis above has predicted a boundary layer for P of O(Rc) inside the
capillary on z = 0 and of O(Rc) inside the tissue on z = 0 and r = Rc. No
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Fig. 5. The mesh used.

boundary layers were predicted for either S or Y . We begin by investigating this
boundary layer for normal arterial oxygen partial pressure, Pa = 100 mmHg. In
Fig. 6 we plot: (a) a surface plot for P ; (b) a contour plot for P ; (c) a surface plot for
S; and (d) a surface plot for Y . Note the different scale on the r-axis in (c). In graph
(b) we have added the boundary between the blood and tissue, and have drawn a
square at the origin with sides 2Rc to show more clearly the boundary layer. In
this graph, by considering the relative density of contour lines (corresponding to
equally spaced values of P ), we may see the presence of a boundary layer for P .
Graphs (c) and (d) show no boundary layer for S or Y and so our predictions on
boundary layers are correct in this case.

In Fig. 7 we repeat the simulation carried out in Fig. 6, but withPa = 600 mmHg.
We see the same boundary layer behaviour as in Fig. 6 for P , although, by consid-
ering the density of contour lines within the square at the origin, this boundary layer
is more promenent due to the high value of Pa, as within this layer, P is reduced
from Pa to approximately 75 mmHg. We note that there is still no boundary layer
for S or Y .

4.2. Axial diffusion

Many authors have neglected axial diffusion in their solution of the governing
equations. Our analysis in Section 3 and the plots for P in Fig. 6 and 7 indicate
that the axial diffusion term, ∂2P/∂z2 should not be neglected. We demonstrate
this numerically by solving the full governing equations, Eqs. 1-9, but neglecting
the axial diffusion term. We take Pa = 100 mmHg as our boundary condition. This
allows comparison with Fig. 6, the example in Section 4.1 where we solved the
full governing equations (including the axial diffusion term). The solution to the
equations neglecting axial diffusion is shown in Fig. 8, where the graphs are (a) a
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Fig. 6. The solution of the governing equations, Eqs. 1-6 and 9 with Pa = 100 mmHg.

Fig. 7. The solution of the governing equations, Eqs. 1-6 and 9 with Pa = 600 mmHg.
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surface plot for P ; (b) a contour plot for P ; (c) a surface plot for S; and (d) a surface
plot for Y . By comparison with Fig 6, the solution including axial diffusion, we can
see visually that neglecting axial diffusion has a significant effect on the solution.
In this example, P differs by up to 30 mmHg, S differs by up to 0.02 and Y differs
by up to 0.03.

In Fig 9 we plot the percentage error in P that is induced by neglecting axial
diffusion. In Fig 9(a) Pa = 100 mmHg, in Fig 9(b) Pa = 600 mmHg. Note the
difference in the scale of the vertical axis in these graphs. In both diagrams we see
that the error is largest (almost 30% in (a) and over 40% in (b)) where z = 0 and
r = RT. In both diagrams as z increases, the error approaches zero. Note in (b) the
negative value of the error for a small range of values of z.

4.3. Instantaneous reactions

The non–dimensionalisation analysis carried out in Section 3 demonstrated that
we may assume an instantaneous reaction between oxygen and both haemoglobin
and myoglobin. In the capillary region we may write S = f (P ) and eliminate the
reaction terms from Eqs. 1 and 2 to give

∇ · ((
αcDc + cHDHf ′(P )

) ∇P
) = u

(
αc + cHf ′(P )

) ∂P

∂z
(39)

In the same way, in the tissue region we may write Y = g(P ) and eliminate the
reaction term from Eqs. 5 and 6 to give

∇ · ((
αTDT + cMDMg′(P )

) ∇P
) = q (40)

Fig. 8. The solution of the governing equations, Eqs. 1-6 and 9, but neglecting axial diffusion,
with Pa = 100 mmHg.
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Fig. 9. The percentage error in P induced by neglecting axial diffusion.

We have already noted that ∂P/∂r �= 0 on r = Rc, the boundary between blood
and tissue. As a result, by writing S = f (P ) and Y = g(P ) it is impossible to
satisfy the boundary conditions of no flux of haemoglobin or myoglobin across the
blood–tissue boundary, Eqs. 16 and 18.

We may investigate the effect of assuming an instantaneous reaction by con-
sidering the difference between the solution to both the full equations, Eqs. 1-9,
and the equations assuming an instantaneous reaction, Eqs. 39 and 40. We do this
for both the parameters used to generate Fig. 6 and a simulation with the same
parameters except q = 7.5 × 10−8 mol cm−3 s−1, a higher than normal oxygen
consumption. The high oxygen consumption case was chosen so that the lowest
value of P was reduced to less than 0.5 mmHg in the tissue region. Let P , S and Y

be the solution of the full equations. Let P̂ be the approximation to P calculated
from Eqs. 39 and 40, and define Ŝ = f (P̂ ) in the capillary region, and Ŷ = g(Ŷ )

in the tissue region. In Table 2 we give the maximum differences between P and
P̂ ; S and Ŝ; Y and Ŷ .

Table 2. The maximum differences between the model with a reaction term
and the model assuming an instantaneous reaction. P , S, Y correspond to the
model with a reaction term; P̂ , Ŝ, Ŷ correspond to the model assuming an
instantaneous reaction.

Oxygen consumption max |P − P̂ | max |S − Ŝ| max |Y − Ŷ |
5 × 10−8 mol cm−3 s−1 0.27 mmHg 0.009 0.001
7.5 × 10−8 mol cm−3 s−1 0.72 mmHg 0.016 0.019
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Table 3. The maximum differences between the model tak-
ing account of facilitated myoglobin transport and neglecting
facilitated myoglobin transport. P , S correspond to the model
taking account of facilitated myoglobin transport; P̂ , Ŝ corre-
spond to the model neglecting facilitated myoglobin transport.

Oxygen consumption max |P − P̂ | max |S − Ŝ|
5 × 10−8 mol cm−3 s−1 0.96 mmHg 0.006
7.5 × 10−8 mol cm−3 s−1 3.79 mmHg 0.011

The relatively large maximum error in Y for q = 7.5×10−8 mol cm−3 s−1 may
be explained by Figs. 2 and 3. For a higher oxygen consumption, the calculated
value of P will be lower. We see in these figures that, for small P , the dissociation
curve for both haemoglobin and myoglobin has a very large derivative. Therefore,
a small error in P̂ may lead to a relatively large error in Ŝ and Ŷ .

4.4. Myoglobin

The analysis leading up to Eqs. 36 and 37 predicted that the effect of myoglobin
on the solution of these equations was negligible provided that P > 13 mmHg.
We investigate this by solving the full governing equations, Eqs. 1-6 and 9, and
then repeating this for the full governing equations, but taking cM = 0. We take
Pa = 100 mmHg and perform this for both q = 5 × 10−8 mol cm−3 s−1 and
q = 7.5 × 10−8 mol cm−3 s−1. The maximum differences are shown in Table 3. P
and S are the values of partial pressure and saturation that are calculated from the
model that allows facilitated myoglobin transport, P̂ and Ŝ are the values calculated
when facilitated myoglobin transport is neglected. We see that, as expected, the
simulation with the higher oxygen consumption is affected the most by neglecting
facilitated myoglobin transport.

5. Discussion

We began by presenting the equations governing oxygen transport to tissue in a
model, with cylindrical symmetry, of a single capillary supplying the oxygen con-
sumed by a region of tissue. In the blood flowing through the capillary, we consid-
ered the effect of the reaction term between oxygen and the haemoglobin molecule.
In the tissue region, we considered the effect of the reaction term between oxygen
and the myoglobin molecule. This model took account of convection of blood
through the capillary and, in both regions, of diffusion of oxygen, haemoglobin
and myoglobin in both the axial and radial directions.

The aim of this paper, as stated in the Introduction, was to investigate the as-
sumptions made by other authors, such as neglecting axial diffusion, assuming
an instantaneous reaction between oxygen and both haemoglobin and myoglobin,
and neglecting the contribution of facilitated myoglobin transport to oxygen diffu-
sion in tissue. We achieved this by non–dimensionalising the governing equations,
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Eqs. 1-9 in Section 3. These predictions were then confirmed by numerical exper-
iments in Section 4.

5.1. Boundary conditions

A more realistic geometry to model this problem would have the capillary region
extended both upstream and downstream from the tissue region. We could then
apply the boundary conditions given by Eqs. 11 and 15 at z = −∞ and 0 ≤ r ≤ Rc,
and the boundary conditions given by Eqs. 14 and 17 at z = ∞ and 0 ≤ r ≤ Rc.
However, we have found in this study that transport is convection dominated in
the axial direction inside the capillary. As a result, there will be little diffusive
flux of oxygen along the inflow tube and so the assumption P = Pa for blood
entering the geometry used is valid. Similarly, at the exit the transport is convection
dominated and we may assume that diffusion is negligible and write ∂P/∂z = 0. We
have performed numerical simulations using this geometry, extending the capillary
a distance 2a in both directions. The new boundary conditions give only a tiny
difference to the solution, with the solution for P differing by less than 5% in all
places. The greatest difference between these two solutions was in the region of
z = 0, r = RT.

5.2. Axial diffusion

The first prediction of the non–dimensionalisation in Section 3 was of a boundary
layer for P , but not for S or Y in the region of the inflow boundary, z = 0. This
boundary layer was of O(Rc) inside the capillary, and gave rise to a boundary
layer in the tissue, of the same size, near to z = 0, r = Rc. This was demonstrated
numerically in Figs. 6 and 7. This boundary layer corresponds to diffusion of oxygen
dissolved in plasma.

As a result of this, we see that ∂2P/∂z2 is of a significant size in this region and
so it is not valid to neglect axial diffusion inside this boundary layer. In the capillary
region, outside the boundary layer it is valid to neglect axial diffusion, as shown
in Eqs. 29 and 30. These equations correspond to oxygen being convected by the
blood bound to haemoglobin and then released and diffusing radially into tissue.
However, in tissue, axial diffusion is roughly only ten times smaller than radial
diffusion, and so should not be neglected. In Fig. 8 we showed the values of P , S

and Y calculated neglecting axial diffusion. We saw that they differ significantly
from the values calculated including axial diffusion in Fig. 6. P differed by almost
30 mmHg. In Figure 9 we saw that this corresponded to an error of almost 30%. It
may also be seen from this figure that the error induced by ignoring axial diffusion
in the boundary layer propagates out radially from the boundary layer.

We can see from Eqs. 33 and 34 that the geometry of the capillary will have an
effect on the relative importance of axial diffusion in the tissue. As the ratio Lr/Lz
increases, the terms in the equations that govern axial diffusion will become larger,
and so wide, short cylinders will have more axial diffusion.

Other authors, [10], have also investigated boundary layers in oxygen partial
pressure in the region of the inflow boundary using matched asymptotic expansions.
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However, the way in which the axial variable was scaled masked the full extent of
the boundary layer. This study found, in agreement with our study, that increasing
the arterial oxygen partial pressure increased the influence of the boundary layer.

5.3. Assuming an instantaneous reaction

We have shown, Eqs. 28 and 31, that both inside and outside the boundary layer for
P in the capillary region, we may assume an instantaneous reaction between oxygen
and haemoglobin and write S = f (P ). Similarly, we deduced that we could write
Y = g(P ) in the tissue region. This was validated numerically in Section 4.3. The
errors in S and Y were relatively large for very low P where, due to the very high
gradient of the haemoglobin and myoglobin dissociation curve, the small difference
in P induced by making this assumption led to comparatively large errors in S and
Y .

5.4. Myoglobin

Our analysis of Section 3 predicted that the contribution of myoglobin facilitated
oxygen diffusion could be neglected for P > 13 mmHg. This was validated by
numerical experiments in Section 4.4. When oxygen consumption was increased,
thus lowering P , there was a bigger difference seen by neglecting myoglobin. This
is because oxygen bound to myoglobin is used as an “emergency store” of oxygen,
and is only released when P is low.

Another study (Salathe and Kolkka, [12]) has found that for low perfusion
rates there may be regions in tissue where no oxygen reaches even though there is
oxygen in the blood that leaves the capillary. These authors used a very different
mathematical model to that described in this paper. Oxygen was modelled as being
transported in only a very restrictive way: only convection was permitted in the
capillary and only radial diffusion was permitted in tissue. It is likely that using
the model described in this paper, which allows diffusion in both axial and radial
directions, will only allow tissue oxygen partial pressure to reach zero under much
more extreme conditions.

6. Conclusions

We have shown that it is valid to assume an instantaneous reaction between oxygen
and both haemoglobin and myoglobin. Axial diffusion may only be neglected in the
capillary away from the boundary layer for P and may not be neglected in tissue.
Myoglobin need only be considered when P is exceptionally low.
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