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Abstract. In the frame of a Markov chain model for cooperative interactions in proteins,
previously introduced by us, we deal here with estimation of unknown parameters from
protein energy data. One of these parameters characterizes the cooperativity of a protein; we
propose to measure it also by the so-called approximate entropy. By our computations the
approximate entropy turns out to be a decreasing function of the cooperativity. We analyse
both simulated data of the Markov chain, and protein energy data obtained by molecular dy-
namics simulation. Moreover, we compare two rubredoxin proteins at different temperatures,
according to their degrees of cooperativity.

1. Introduction

Understanding the dynamic behaviour of protein molecules is one of the main
goals of contemporary biophysics. Structural fluctuations of the peptidic chain are
involved in many processes of great biological relevance, like protein folding, li-
gand binding and equilibrium dynamics [19]. The principal determinant of all these
phenomena is the cooperativity of intramolecular interactions: mainly for entropic
reasons, the formation of bonding interactions favours the formation of additional
bonds. In the protein folding process, this behaviour results in a very fast transition
from the unfolded to the native conformation, that in many cases are the only sig-
nificantly populated states [11]. The cooperativity of the interactions is apparent
also in equilibrium fluctuations of the protein conformation, that are usually domi-
nated by large scale correlated motions [6]. These properties are shared by the great
majority of proteins, irrespective of the variety of their tertiary structure; therefore,
it should be possible to define a very general model of the dynamic behaviour of
protein interactions that is independent from the specific protein or its structural
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features. Many simplified models of protein folding have been proposed, but they
all maintain some description of the protein structure [7], [11], [13], [14]. In [1]
we have introduced a phenomenological model for cooperative behaviour in pro-
teins that is based only on the dynamics of intramolecular interactions, without any
reference to the specific protein conformation. The basic model [1], that has been
extended in [2] and [3], is described by a homogeneous Markov chain (MC), which
depends only on two parameters: the average probability p to form an interaction
(that is physically related to the mean free energy for the formation of a bond), and
the maximum increase in this probability that can be caused by the previous for-
mation of other bonds,�p. This last parameter describes the coupling capacity and
therefore it consitutes a measure of the degree of cooperativity. The main quality
of this model is that it summarizes the cooperative behaviour of a given protein in
this single parameter;�p can be estimated from data regarding real proteins and it
can be used as a simple way to compare molecules with different cooperativity.

In general, our model can describe both the transition of a protein between two
different states (e.g. the folding/unfolding process, caused by a variation in temper-
ature) and the conformational fluctuations at equilibrium: the two phenomena are
associated to the non stationary and to the stationary behaviour of the MC, respec-
tively. Previous papers were focused to the first application [1], [2], [3], while here
we will use the model to study protein dynamics in the steady-state. Our first aim is
to describe and compare several ways to estimate model parameters from the time
evolution of an observable quantity (e.g. the system potential energy). After testing
the various estimation methods on simulated data (Section 2), we will estimate�p
for two real proteins (under two different temperature conditions), as an example
of practical application (Section 4); we will show that the degree of cooperativity
can be related to the protein functional status.

Since the degree of cooperativity influences the time evolution of the protein
system, in principle it should be correlated with other parameters that quantify
the complexity of the protein dynamics. Recently, Pincus [16] has introduced the
so-called approximate entropy (ApEn), that determines the degree of randomness
in time series (or simply in sequences of numbers). Here we show that ApEn cal-
culated on the time evolution of the interactions determined by our model is a
decreasing function of the degree of cooperativity of a protein, and therefore it can
also be used as a useful parameter to describe the cooperative behaviour of proteins
(Section 3).

Now, we briefly recall from [1] the model. Let (Xk)k∈N be a homogeneous
Markov chain with state space S = {0, 1, . . . , N} and transition probabilities

pij
.= Pr{Xk+1 = j |Xk = i} =

(
N

j

)
p
j
i (1 − pi)N−j , (1.1)

where pi
.= p −�p + 2�p i

N
.

The state of the chain at time k represents the number of existing bonds (or
interactions) at the discrete instant k, among amino acidic residues, during the pro-
tein folding. N represents the maximum number of pairings (bondings) which are
allowed.
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The parameters p and �p are supposed to satisfy the obvious constraint

0 ≤ p ±�p ≤ 1 (1.2)

in order that all probabilities (1.1) are indeed numbers between 0 and 1.
For p = �p = 1/2 the model coincides with the well-known Fisher-Wright

model in population genetics ([10]). When p > �p > 0 and p + �p < 1, the
MC is irreducible because pij > 0∀i, j ∈ S (see [1]); so there exists a unique
stationary, invariant distribution {πj }, j ∈ S such that

πj = lim
n→∞p

(n)
ij ∀i, j ∈ S, (1.3)

where p(n)ij is the probability that the system goes from the state i to the state j in
n steps. In [1] the qualitative behaviour of the stationary distribution was studied
as a function of the parameters p and �p; in fact the stationary probabilities were
numerically found, i.e. the πj were exactly computed by means of a computer, by
using a software for finding eigenvalues of large-dimension matrices. Indeed, the
probabilitiesπj are the components of the left eigenvector relative to the eigenvalue
1, of the transition probability matrix given by (1.1) (see e.g. [1] or (2.4) of the next
section).

Although an explicit theoretical formula for the stationary probabilities πj can-
not be found, various approximations of πj , in the limit N → ∞ can be obtained.
One rather crude asymptotic approximation for N large and �p far from 1/2 is
(see [1])

πj ∼
(
N

j

) (
p −�p
1 − 2�p

)j (
1 − p −�p

1 − 2�p

)N−j
(1.4)

for every fixed j ∈ S.
The right-hand side of (1.4) coincides with the probability function of a two-

type mutation population model considered earlier by Feller ([9]), where mutations
from type 1 to type 2 occur with some probability a and from type 2 to type 1 with
some probability b. Setting a

.= p−�p and b
.= 1 − p−�p, in Feller’s notation

(1.4) reduces to

πj ∼
(
N

j

)
ajbN−j /(a + b)N . (1.4′)

The obvious constraints are a + b > 0 and a, b ∈ [0, 1].
A more rigorous estimate of the stationary probability πj for N large can be

obtained by the continuous approximation of the MC via a diffusion process in
[0, 1], which has a stationary distribution with beta density (see [5]).

Notice that the convergence to the equilibrium (1.3) implies the validity of
the ergodic theorem, i.e. (X0 + . . . + XM)/(M + 1), which represents the time
average of the state of the system during the time interval [0,M], converges al-
most surely asM tends to infinity to the first moment of the stationary distribution
m
.= ∑N

j=0 jπj , that is

(X0 + . . .+XM)/(M + 1)→ m(M → ∞). (1.5)
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The argument presented in (2.5) shows that

m = N p −�p
1 − 2�p

. (1.6)

The value of the sample mean, obtained by computer simulation, agrees very well
with the right-hand side of (1.6) (see [2]).

Alternatively, an estimate of the stationary probability πj can be obtained by
finding, for every j ∈ S, the sample frequency of the state j in a long enough trajec-
tory. Of course, while for simulated data one can construct a statistic by generating
several trajectories with the same initial value, for real data one has to estimate the
probabilty πj by using only one trajectory (even if a long one).

Several others methods are available to calculate numerically the stationary
distribution, but we do not treat this topic, here.

In the following section we present four methods to estimate parameters, and
we compare them for what concerns their efficiency when using simulated data of
the MC. In Section 3, we define ApEn and we discuss some general analytical and
numerical results about it. Section 4 is devoted to the elaboration and interpretation
of the numerical results for two rubredoxin proteins at different temperatures. After
processing the protein data by means of our model, we have obtained estimates of
the parameters and approximate entropy; then we present a comparison of the pro-
teins according to their degrees of cooperativity. These data, obtained by molecular
dynamics simulation, are available from the authors on request.

2. Parameter estimation

If we put α = p −�p and β = 2�p, the transition probabilities (1.1) become

pij = pij (α, β,N) =
(
N

j

) (
α + β i

N

)j (
1 − α − β i

N

)N−j
(2.1)

with

0 ≤ α, α + β ≤ 1. (2.2)

Suppose a discrete trajectory {x0, x1, . . . , xM} of the process Xk, k = 0, . . . ,M
is given such that M is the final time of observation. Our aim is to show how the
unknown parameters α, β and N can be estimated by these data. We analyse four
different methods to estimate the parameters, namely: (i) the maximum likelihood
method, (ii) the method of moments, (iii) the least square method, (iv) the diffusion
approximation of the MC. By using simulated data, we compare the four methods,
in order to study the quality of the estimates and the numerical efficiency of each
algorithm.
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2.1. Estimation of parameters by the maximum likelihood method

For a given data set {x0, x1, . . . , xM} we consider the likelihood function, condi-
tionally on the initial value being x0 :

L(α, β,N) =
M−1∏
k=0

pxkxk+1(α, β,N), (2.3)

wherepij (α, β,N) is given by (2.1). By maximizing the logarithm of the likelihood
function corresponding to the given data set, we can find the estimate (α̂, β̂, N̂) of
(α, β,N).

In order to reduce the number of independent variables of the likelihood func-
tion (this is only for numerical convenience), we shall use the following argument,
by combining maximum likelihood estimation with the methods of moments.

Disregarding the trivial cases in which the extreme states of the MC (0 and N)
are absorbing, for α > 0 and α + β < 1, the MC turns out to be ergodic (see [1]);
then there exist the stationary probabilities πi , i ∈ S and they are given by (1.3).
Moreover

πj =
N∑
i=0

pijπi , j ∈ S. (2.4)

The first moment of the stationary distribution satisfies

m
.=

∑
j

jπj =
∑
j

j
∑
i

pijπi

=
∑
i

πi
∑
j

jpij =∗ ∑
i

πiN(α + βi/N)

= Nα + βm (2.5)

where the equality (*) is based on the fact that the expectation of a random variable
with binomial distribution B(N, q) is Nq. Thus

m = Nα/(1 − β) , β �= 1 (2.6)

or in Feller’ s notation (see (1.4’)) m = Na/(a + b).
If m̂ is the sample mean of the data set, i.e.

m̂ = 1

M + 1

M∑
k=0

xk, (2.7)

then, due to the ergodicity, for largeM the approximation

m̂ ≈ m = Nα/(1 − β) (2.8)

holds, or equivalently
α ≈ (1 − β)m̂/N. (2.9)

Thus for largeM the number of independent arguments of the likelihood function
L in (2.3) reduces to only two (they are β and N). This is very convenient when
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one searches for the maximum of L by a numerical algorithm, expecially in the
present case where the likelihood function has many local maxima whose values
are high and close to each other.

Remark. The argument used in (2.5) yelds also the variance s2
.= ∑

i∈S(i −m)2πi
of the stationary distribution. Indeed, it holds

s2 = abN

(a + b)2(1 − (1 − a − b)2(1 − 1/N))

= α(1 − α − β)N
(1 − β)2(1 − β2 + β2/N)

. (2.10)

Formula (2.10) will be proved in Section 2.2.
Note that s2 is larger than or equal to, and even not asymptotically equal to

the variance of a binomial random variable with parameters N and α/(1 − β) =
a/(a+ β). This is an additional indication that the approximation (1.4) is not very
satisfying. (1.4) holds in the sense of probabilities, but functionals like the variance
are not respected. However, although better approximations can be numerically
found (see the discussion at the end of Section 1), (1.4) furnishes a convenient
analytical expression to approximate the stationary probability πj , j ∈ S. Another
estimation of the stationary probability πj is given by the normal approximation

πj ≈ 1

s
√

2π
e−(j−m)

2/2s2

which is simple to calculate, and in many cases even better than (1.4).

2.2. Estimation of parameters by the method of moments

The method of moments consists in comparing for a given trajectory {x0, . . . , xM}
the sample moments

m̂h
.= 1

M + 1

M∑
k=0

xhk , h = 1, 2, . . . (2.11)

with the moments mh of the stationary distribution {πi} defined via

mh
.=
N∑
j=0

jhπj , h = 1, 2, . . . (2.12)

For any positive integer h explicit formulae for mh can be obtained. For the first
three moments one has

m1
.= m = αN/(1 − β), (2.13)

m2 = (1 − β2 + β2/N)−1[(Nα(1 + α(N − 1))+m1β(1 + 2α(N − 1))] (2.14)
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and

m3 = (1 − β3(N − 1)(N − 2)/N2)−1{Nα[α2(N − 1)(N − 2)
+3α(N − 1)+ 1] +m1β[3α2(N − 1)(N − 2)+ 6α(N − 1)+ 1]
+3β2m2(1 − 1/N)(α(N − 2)+ 1)}. (2.15)

Since the variance of the stationary distribution satisfies s2 = m2 − m2
1, (2.10)

follows from(2.13) and (2.14).
As (2.13) is already derived in (2.5), we briefly report how (2.14) and (2.15)

are obtained.
For what concerns m2, we have:

m2 =
∑
j

j2πj =
∑
j

j2
∑
i

pijπi =
∑
i

πi
∑
j

j2pij .

As the second moment of a binomial random variable with parameters N and q is
Nq(1 + q(N − 1)), the expression above (with q = α + βi/N ) becomes

m2 = N
∑
i

πi(α + βi/N + (α + βi/N)2(N − 1))

= Nα + βm1 +N(N − 1)α2 + 2αβ(N − 1)m1 + (1 − 1/N)β2
∑
i

i2πi.

Thus:

m2(1 − (1 − 1/N)β2) = Nα + βm1 +N(N − 1)α2 + 2αβ(N − 1)m1

from which (2.14) follows.
For m3, we have

m3 =
∑
j

j3πj =
∑
j

j3
∑
i

pijπi =
∑
i

πi
∑
j

j3pij .

Recalling that the third moment of B(N, q) is Nq[1 + 3q(N − 1) + q2(N − 1)
(N − 2)], it follows that

m3 =
∑
i

πi[N(N − 1)(N − 2)(α + βi/N)3 + 3N(N − 1)(α + βi/N)2

+N(α + βi/N)]
= N(N − 1)(N − 2)(α3 + 3α2βm1/N + 3αβ2m2/N

2 + β3m3/N
3)

+3N(N − 1)(α2 + 2αβm1/N + β2m2/N
2)+N(α + βm1/N)

and (2.15) follows immediately.
To find the estimates of the unknown parameters, one could solve the algebraic

system obtained from (2.13), (2.14), (2.15), by replacing the quantities mh with
the sample values m̂h, h = 1, 2, 3. However, doing so, the solution of the system
may not satisfy the natural constraints of the three parameters. Thus, the estimates
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N̂, α̂, β̂ ofN,α, β are obtained by finding the values of the arguments at which the
function

Q(N, α, β)
.=

3∑
h=1

(mh − m̂h)2 (2.16)

takes its minimum under the constraints N ∈ N, α, β ≥ 0 , α + β ≤ 1. From
N̂, α̂, β̂, the estimates of the original parameters of biological interest, N,p,�p,
are easily recovered.

2.3. Estimation of parameters by least squares method

This is a variant of the previous method. Here we use the estimate (1.4) of the
stationary probability for large N, i.e.

πj ∼ π̂j .=
(
N

j

)
(m/N)j (1 −m/N)N−j

=
(
N

j

) (
α

1 − β
)j (

1 − α

1 − β
)N−j

, β �= 1. (2.17)

Indeed, the further β is away from 1, the better the agreement between the true
value of πj and that of π̂j . By using (2.17), the estimate of the stationary probabil-
ity πj becomes a function of N and m/N. Now, let π̃j be the sample frequency of
the state j (that is the number of j ′s in the sequence {x0, x1, . . . , xM}, divided by
M + 1).

The least squares method consists in finding the values of the arguments at
which the minimum (with the obvious constraints) is obtained for the function

Q̃(m/N,N) =
N∑
j=0

(π̂j − π̃j )2

Note that this method allows only to find an estimate of N and m/N = α/(1 − β)
and not of the parameters α and β independently. It can be useful when one is
interested to estimate the ratio α/(1 − β).

2.4. Estimation of parameters by using the diffusion approximation of the MC

We make use of the following approximation result for N → ∞ (see [3], [4], [5]).

Theorem 2.1. Let α and β depend on N such that the limits

λ = lim
N→∞

N · α(N) and µ = lim
N→∞

N · (β(N)− 1) (2.18)

exist. Assume further that X0/N converges in distribution to some constant y0.

Then, asN → ∞, the normalized process ( 1
N
X[Nt])t with values inKN = { i

N
, i =

0, 1, . . . , N} converges weakly to Yt in the Skorohod space D[0,1]([0,∞)), (see e.g.
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[8]) where Yt denotes the diffusion process with values in [0, 1], which is the strong
solution of the stochastic differential equation (SDE):

dYt = (λ+ µYt)dt +
√
Yt (1 − Yt )dBt , Y0 = y0 (2.19)

where Bt denotes standard Brownian motion.

This means that, if, for large N

α ∼ λ/N, β ∼ µ/N + 1, (2.20)

then the normalized process approximately satisfies (2.19).
Diffusion equations such as (2.19) arise e.g. from Fisher&Wright-like mod-

els in population genetics ([10], [17], [18]) and from stochastic models for neural
activity ([15]). By discretization of (2.19) one obtains x0 = y0 and

xn+1 = xn + (λ+ µxn)h+
√
xn(1 − xn)�Bn (2.21)

where xn, n = 0, 1, . . . denotes the process (Yt )t evaluated at the time tn = nh,
h ∼ 1/N , and �Bn = Btn+1 − Btn is the increment of a standard Brownian mo-
tion. The relations (2.21) mean that the random variable Xn+1 conditionally to
(Xn = xn) is distributed according to a Gaussian with expextation xn+ (λ+µxn)h
and variance xn(1−xn)h. Then, given the sequence of data (xn)n=0,1,...M , we obtain
the likelihood function, conditionally on the initial value being x0:

L(λ,µ) =
M∏
n=0

1√
2πhxn(1 − xn)

·exp{−[xn+1−xn−(λ+µxn)h]2/2hxn(1−xn)}
(2.22)

The maximum likelihood estimates λ̂, µ̂ of the diffusion parameters λ, µ are ob-
tained by setting to zero the partial derivatives of the log-likelihood function with
respect to its arguments. In this way, we obtain

λ̂ = 1

hA

(
D + B(CD − EA)

A2 − CB
)

and µ̂ = 1

h

EA− CD
A2 − CB , (2.23)

where

A =
∑
n

1

1 − xn , B =
∑
n

xn

1 − xn , C =
∑
n

1

xn(1 − xn) ,

D =
∑
n

xn+1 − xn
1 − xn , E =

∑
n

xn+1 − xn
xn(1 − xn) .

Finally, from λ̂, µ̂, the estimates α̂, β̂ of the parametersα andβ are easily recovered,
in the approximation N large, by using the relations (2.20).

We emphasize that the above procedure does not allow to estimate N, since it
is taken ∞ in the diffusion limit.
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2.5. Comparison of the four methods

In this section, we focus on the original parameters of biological interest p and
�p instead of α and β, although the former parameters can be simply obtained
from the latter ones. We have performed a number of simulation runs with given
input values of p,�p,N, each of them consisting of 20000 data points, and we
have applied independently the four methods mentioned above. The simulation of
the MC trajectories and the estimation of parameters have been obtained running
FORTRAN computer programs specifically written to this end. Their execution
requires from few minutes of CPU time for simulation, up to some tens of minutes
for parameter estimation, by using an ALPHA Server 800 computer.

Then, by the first and second method, we have recovered the estimates of
all three parameters; by the third method we have found the estimates of N and
(p−�p)/(1 − 2�p) (i.e. α/(1 − β)); finally the fourth method has allowed us to
estimate p and �p. Notice that, although the estimates obtained by the diffusion
approximation do not provide the value of N, the fourth method is very efficient
to refine any estimate of (p̂, �̂p, N̂) obtained by the first or the second one (i.e.
when N̂ has been already found). In fact, while the first three methods need a nu-
merical algorithm for function maximization (or minimization), and therefore their
execution is time consuming, the estimate (p̂, �̂p) (that is obtained by finding the
point (λ̂, µ̂) at which the likelihood function (2.22) takes its maximum) can be
analytically found with the fourth method, by explicit calculation.

Although the diffusion limit holds in the approximation α ≈ 0, β ≈ 1, i.e.
p ≈ �p,�p ≈ 1/2 (see (2.19)), the fourth method provides good estimates of
p and �p, also for p and �p far from 1/2, in the case when N is a large integer
which is known in advance. Roughly speaking, the estimates of these parameters,
obtained by applying brutally the method, are good enough also in the cases when
we are not entitled to use the diffusion approximation.

In Table 1, we report, for a set of simulation runs, the input values of the pa-
rameters and their estimates recovered with the four methods, for comparison.

The estimates of the parameters obtained by the first and second method are
both excellent; the estimates found by the third method are good in the cases when
p −�p is large enough and �p is small, and rather bad otherwise. This is due to
the fact that (2.17) is only an approximation of πj (see [1]).

3. The approximate entropy

In [16] Pincus introduced approximate entropy (ApEn) to quantify the concept of
changing complexity. Usually, the parameters utilized to measure chaos associated
to a given set of data are e.g. Hausdorff and correlation dimension, K-S entropy,
and the Lyapunov spectrum (see [16] for a discussion). While for computing one
of those parameters, the amount of data typically required to achieve convergence
is impractically large, estimation of ApEn(m, r) (see below for the definition) can
be achieved with relatively few points. In fact, as shown in [16], with only 1000
points, and m = 2, ApEn(m, r) is able to distinguish a wide variety of system
behaviour. Indeed, it can potentially separate deterministic systems from stochastic
ones, periodic from chaotic systems.
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Table 1. Estimates of parameters obtained by the four methods of section 2, for simulat-
ed data of the MC with transition probabilities (1.1). For six simulation runs, the input
values of the parameters and their estimates are reported, for comparison; (pi,�pi,Ni)
denotes the estimate of (p,�p,N) obtained by the method i (i = 1, 2, 3, 4). The four
columns after the first one contain the input values of the parameters, and the value of
θ := (p − �p)/(1 − 2�p) = α/1 − β, to make more convenient the comparison with
column 12, containing the estimate θ3 of the ratio obtained by the third method. Each run
consists of 20000 steps of simulation.

Run p �p θ N p1 �p1 N1

1 0.90 0.05 0.944 1000 0.8957 0.050 1005

2 0.89 0.10 0.987 1000 0.8894 0.0995 1000

3 0.30 0.05 0.277 800 0.2924 0.050 825

4 0.30 0.10 0.250 1000 0.2928 0.0995 1034

5 0.55 0.40 0.750 1000 0.5460 0.390 1026

6 0.70 0.10 0.750 1000 0.6850 0.099 1025

p2 �p2 N2 θ3 N3 p4 �p4

0.8965 0.0505 1004 0.9463 999 0.8937 0.052

0.8893 0.0995 1002 0.9470 1041 0.8907 0.0992

0.2935 0.0505 820 0.2800 769 0.2910 0.0472

0.2935 0.0995 1030 0.2499 1000 0.2908 0.0952

0.550 0.395 1025 0.9000 804 0.556 0.399

0.6851 0.099 1023 0.9000 801 0.687 0.0945

Now, we will recall from [16] the definition of ApEn. Let us suppose we are
given a time-series of data {x1, x2, . . . , xM} equally spaced in time. Fix a positive
integer m and let r be a positive number. Then, let us form a sequence of vectors
{v1, v2, . . . , vM−m+1} in Rm defined by

vi = (xi, xi+1, . . . , xi+m−1)
T (3.1)

Next, define for each i, 1 ≤ i ≤ M −m+ 1,

Ci(m, r) = (number of j such that d(vi , vj ) ≤ r)
M −m+ 1

, (3.2)

where the distance d(·, ·) between two vectors is defined by

d(vi , vj ) = max
k=1,...,m

|xi+k−1 − xj+k−1|. (3.3)



352 M. Abundo et al.

The Ci(m, r) values measure within a tolerance r the frequency of patterns similar
to a given pattern of window lenght m. Now define

/(m, r) =
∑M−m+1
i=1 logCi(m, r)

M −m+ 1
(3.4)

and

ApEn (m, r) = lim
M→∞

(/(m, r)−/(m+ 1, r)). (3.5)

GivenM data points, the formula (3.5) can be implemented by defining the statistics

ApEn(m, r,M) = /(m, r)−/(m+ 1, r). (3.6)

Heuristically ApEn measures the logarithmic likelihood that runs of patterns that
are close for m observations, remain close on the next incremental comparison.
A greater likelihood of remaining close (i.e. regularity) produces smaller ApEn
values, and viceversa.

On the basis of the analysis of simulated data, Pincus showed that for m = 2
andM = 1000, choices of r ranging from 0.1 to 0.2 times the standard deviation
(SD) of the xi data produce reasonable statistical validity of ApEn(m, r,M).

The following analytical result shows that for a Markov chain, ApEn coincides
with the Kolmogorov-Sinai entropy (see e.g. [20]).

Theorem 3.1 ([16]). Let Xk be a homogeneous, stationary MC with discrete state
space S = {x1, x2, . . .} and transition probabilities

pij = P(Xk+1 = xj |Xk = xi), i, j ∈ S.
Let {πi} be the vector of the stationary probabilities, such that

πi = lim
n→∞p

(n)
ij ,

where p(n)ij denotes the n−step transition probability.
Then, if r < min{|x − y|, x �= y, x, y ∈ S}, for any m, a.s. it holds:

ApEn (m, r) = −
∑
i

∑
j

πipij logpij . (3.7)

After recalling the definition of ApEn, we go to show some results about the
approximate entropy of data relative to simulated trajectories of the MC with transi-
tion probabilities (1.1). Since the applicability of formula (3.7) is impractical when
the number of statesN is large, due to the heavy computation required to obtain the
stationary probabilities πi, it is more convenient to calculate ApEn numerically by
(3.6) for sufficiently largeM.

We have performed various simulation runs of the MC, each consisting of
1000 data points. In the first group we have taken N = 300, p = 0.5 and we
have let �p vary from 0 to 0.5. For every input value of �p, we have calculated
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Fig. 1. (a) Plot of ApEn as a function of �p for data relative to Table 2. (b) Zoom of Fig.
1a, for �p near 0.5.
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ApEn(2, 0.5, 1000), finding that its shape as a function of �p is substantially de-
creasing, except for the presence of a local maximum, and some minor oscillations,
near the critical value �p0 in correspondence of which (see [1]), the stationary
distribution of the system is almost uniform. The value �p0 was numerically de-
tected in [1], showing that for p = 0.5 and �p = �p0, the system becomes very
erratic and its trajectory very complex, giving the maximum value of the fractal
dimension (of covering) (see [1]). Maintaining fixed p = 0.5, and letting vary�p,
an increase of N in the simulation runs results in a progressive disappearing of the
oscillation behaviour near the corresponding critical value �p0 mentioned above,
since, as shown in [5],�p0 ∼ 1

2 (1− 1
N
), so the largerN, the more�p0 is shifted at

right towards the value 1/2. In Tables 2 and 3 we summarize the numerical results
obtained for two groups of simulation runs; those relative to the first group are also
reported graphically in Fig. 1 . For data of Table 2, we have put r = 0.5, since the
SD is of order 5, in this case. For Table 3, we have taken r = 0.1 times the SD
of data. Undoubtedly, ApEn(2, r, 1000) appears to be a substantially decreasing
function of the degree of cooperativity �p.

4. Numerical results for protein energy data

In this section, we deal with estimation of parameters, calculation of ApEn and
comparing cooperativity, for protein data obtained by molecular dynamics simula-
tions and referring to a couple of rubredoxin proteins. The first protein comes from
a bacterium living at normal temperature (35 ◦C), the other one comes from an
organism that lives at about 100 ◦C([12]). It remains yet unknown the reason why
the two proteins present a different temperature stability even though their struc-
tures are extremely similar (the structure of the first protein breaks if it is carried
to 100 ◦C). For this, the comparison between the two proteins is particularly inter-
esting. The rubredoxin living at 35 ◦C is indicated by the code 1iro, that resisting
at 100 ◦C by 1caa.

Table 2. Approximate entropy for simulated data of the MC with transition probabilities
(2.1). Here N = 300, p = 0.5, r = 0.5(SD ∼= 5) and m = 2; �p varies from 0.1 to 0.5.

�p ApEn(m, r, 1000)

0.1 1.470
0.2 1.417
0.4 0.950
0.49 0.786
0.495 0.462
0.497 0.418
0.498 0.409
0.49834 = �p0 0.436
0.4985 0.457
0.499 0.470
0.4995 0.51
0.4999 0.415
0.5 − 0 0.040
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Table 3. Approximate entropy for other simulation runs of the MC. Here, N = 150000, r
is taken one tenth of the standard deviation (SD).

p �p SD r ApEn(2, r, 1000)

0.72 0.26 104 10.4 1.465
0.63 0.36 72 7.2 1.29
0.649 0.345 72 7.2 1.3263
0.666 0.329 63.5 6.3 1.30

For each protein we have analysed data referring to two different temperatures:
at 35 ◦C (308K) and 100 ◦C (373K) and concerning the total electrostatic energy
of proteins. The data refer to trajectory segments relative to the time interval from
500 to 2000 ps, with step 0.05 (data relative to the first 500 ps have been disregard-
ed, since at the beginning the situation is far from the equilibrium), and consist of
30000 points. These are contained into 4 data files which are available from the
authors, on request.

The filenames are self-explicative, but for the sake of brevity, we recodify them,
by referring to the temperature measured in centigrade degrees, as shown below:

1caa308KEEstot c35

1caa373KEEstot c100

1iro308KEEstot g35

1iro308KEEstot g100

To obtain an estimate of the average number of bonds in the considered protein, an
average energy associated to every bond was needed. We have choosen the value
�Ees = −1 kcal/mole, that is an estimate of the average of the different electro-
static interactions among aminoacidics residues in a protein. In any case, the actual
number of bonds should not be critical as long as it is large enough. Using the
above value we have obtained the number of chemical bonds as a function of time,
with time-step of 0.05 ps, in order to apply our model. Then, we have calculated
for modified data of each of the files c35, c100, g35, g100, the minimum value, the
maximum value (N), the mean value and the standard deviation (SD). These are
reported in Table 4.

Table 4. Statistics of the first 1000 data points relative to the files c35, c100, g35 and g100.

Data file Min Max Mean value SD

c35 108230 110390 109270 317.9
c100 137600 141370 139636.8 601.38
g35 146340 149680 148047.3 487.38
g100 131030 134720 133051.4 571.79
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Since the g35 data have resulted to have the greater value ofN(∼ 150000),we
have rescaled the data relative to every file (except g35) so that the N-values were
the same for all files, this way allowing a comparison between the protein data.

By means of the methods described in Section 2, we have estimated the param-
eters p and�p by using all the 30000 data points, then we have recalculated the SD
of rescaled data and, taking r = 0.1 × SD, we have calculated ApEn(2, r, 1000),
for each set of data. The results are summarized in Table 5 and reported graphically
in Fig. 2 and Fig. 3.

The cooperativity is usually related to the biological activity of proteins. In this
light, every physical modification of the environment, leading to a loss of biological
activity, is related to a loss of cooperativity. The protein 1iro (g) is active at ambient
temperature (∼ 35 ◦C) and then is thermically stressed by raising the temperature
to 100 ◦C. Hence, the cooperativity is reduced by this thermal shock. But also a

Table 5. Estimates of p and�p and approximate entropy (calculated with 1000 points) for
data relative to the files c35, c100, g35 and g100. Here, SD = 10 r .

Data file r p �p ApEn(2, r, 1000)

c35 43 0.725 0.267 1.286
c100 63 0.631 0.364 1.136
g35 49 0.649 0.345 1.153
g100 63 0.666 0.329 1.203

Fig. 2. Graphical representation of the behaviour of ApEn(�), p(∗),�p(�), as a function
of data-files c35, c100, g35, g100 (see Table 5).



Analysing protein energy data by a stochastic model 357

Fig. 3. Histogram representation of cooperativity �p for 1iro (g) and 1caa (c) proteins, at
35 ◦C and 100 ◦C.

Fig. 4. Comparison of cooperativity for 1iro (g) and 1caa (c) proteins, at the natural and
stressed temperature.

strong reduction of the temperature from the usual value, where the protein is ac-
tive, that is about 100 ◦C for 1caa (c), to a low 35 ◦C, can lead to a loss of activity
and then to a reduction of cooperativity (see Fig. 4).
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In physical terms this reduction of cooperativity can be interpreted in the first
case (g) as a larger amplitude motion of atoms, that weakens long range correla-
tions. In the latter case (c), the cold environment tends to reduce the atomic motion
amplitude "freezing" the fluctuations in local and uncorrelated vibrations.

5. Concluding remarks

In this paper, analysing data relative to the time evolution of protein energy data, by
a Markov chain model for cooperative interactions previously introduced by us, we
have been able to characterize cooperativity in proteins. Indeed, we have estimated
the degree of cooperativity of a protein, �p, from data, so rendering possible a
comparison between different proteins.

Another parameter we have used to characterize protein behaviour is the ap-
proximate entropy (ApEn); it turned out that ApEn is related to the cooperativity,
in fact it appears to be a decreasing function of �p. Thus, ApEn is a measure of
cooperativity, alternative to �p, and it is very effective, since a good estimate of
ApEn can be easily obtained with relatively few data points and a small numerical
effort.

We applied our procedures to both simulated data of the Markov chain, and
energy data which have been obtained by molecular dynamics simulation.
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