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Abstract. In most models of population dynamics, increases in population due to birth are
assumed to be time-independent, but many species reproduce only during a single period
of the year. We propose a single-species model with stage structure for the dynamics in
a wild animal population for which births occur in a single pulse once per time period.
Using the discrete dynamical system determined by the stroboscopic map, we obtain an
exact periodic solution of systems which are with Ricker functions or Beverton-Holt func-
tions, and obtain the threshold conditions for their stability. Above this threshold, there is a
characteristic sequence of bifurcations, leading to chaotic dynamics, which implies that the
dynamical behaviors of the single species model with birth pulses are very complex, includ-
ing small-amplitude annual oscillations, large-amplitude multi-annual cycles, and chaos.
This suggests that birth pulse, in effect, provides a natural period or cyclicity that allows for
a period-doubling route to chaos.

1. Introduction

Plant, insect and animal life histories exhibit enormous diversity. Individuals may
live for hours or for centuries; they may lavish parental care on a single offspring or
abandon millions of larvae to the vagaries of life in the seas. Metamorphosis may
carry the same individual through several totally different niches during a lifetime.
Specialized stages may exist for dispersal or for dormancy. The vital rates(rates of
survival, development, and reproduction) almost always depend on age, size, or
development stage. Stage structure models have received much attention in recent
years(Aiello & Freedman, 1990; Aiello et al., 1990; Hastings, 1983,1984). This is
not only because they are much more simple than the models governed by partial
differential equations but also they can exhibit phenomena similar to those of partial
differential models (see Bence & Nisbet, 1989), and many important physiological
parameters can be incorporated.

The key to the formulation of tractable structured population models is the
recognition that individuals of many species have life-histories composed of a
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sequence of stages within which their characteristics are broadly similar to those
of other individuals in the same stage and markedly different from those of indi-
viduals in other stages. In insects such stages are particularly easy to recognize,
being separated by short, clearly identifiable, events such as moults or pupation, but
most species show discernible morphological, behavioural or biochemical changes
which define similar natural stage boundaries, perhaps the most universal being
the onset of reproductive activity. Thus, in the first part of this paper, we consider
a single species model with stage structure and assume only the mature species
can reproduce in which the birth rate of mature population depends on the popu-
lation density. It is shown that under suitable hypotheses the system has a globally
asymptotically stable positive equilibrium(From a biological point of view, we are
talking about the asymptotic properties of solutions in the positive orthant), i.e., if
the intrinsic net reproductive rate(later defined as R0) is greater than unity, then the
positive equilibrium is globally asymptotically stable.

These models have invariably assumed that the mature population reproduce
throughout the year, whereas it is often the case that births are seasonal or occur in
regular pulses. The continuous reproduction of mature population is then removed
from the model, and replaced with an annual birth pulse. These models are subject
to short-term perturbations which are often assumed to be in the form of impulses
in the modeling process. Consequently, impulsive differential equations provide a
natural description of such systems(Bainov & Simeonov, 1989; Laksmikantham
et al., 1989). Equations of this kind are found in almost every domain of applied
sciences. Numerous examples are given in Bainov’s and his collaborators’ books
(Bainov & Simeonov, 1989). They generally describe phenomena which are subject
to steep and /or instantaneous changes. Some impulsive equations have been recent-
ly introduced in population dynamics in relation to: vaccination(Agur,1993; Shulgin
et al., 1988), and chemotherupeutic treatment of disease(Panetta, 1996; Lakmeche
and Arino, 2000). In terms of the mathematical treatment, the presence of impuls-
es gives the system a mixed nature, both continuous and discrete. The qualitive
properties of the system are embodied in those of the discrete system which deter-
mines the state after a pulse in terms of the state after the previous pulse. Thus, in
section 4, we deduce the stroboscopic map , where the map determines the number of
immature population and mature population, immediately after each pulse birth at
the discrete times m(m is a positive integer). When the birth rates of mature pop-
ulation are influenced by the population density, the discrete dynamical system
determined by the stroboscopic map becomes nonlinear. The population in the
pulsed birth time is characterized not by an exponential growth rate, but by the
existence and stability of equilibria, by the bifurcations that occur when stability is
lost, and by the patterns of dynamics(cycles, chaos) that follow the bifurcations.

In section 5, we focus our attention on the relationships between the differential
dynamical system with birth pulses and the discrete dynamical system determined
by the corresponding stroboscopic map. It is shown that dynamical behaviors
of models with birth pulses are very complex, and include small-amplitude an-
nual oscillations, large amplitude multi annual cycles, and chaos. That is, birth
pulse, in effect, provides a natural period or cyclicity that allows for a period-dou-
bling route to chaos. The population fluctuations associated with stage structure
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effects have been found by many authors(Nicholson, 1954; Gurney et al., 1983).
For Nicholson’s Blowfiles, the period of the cycles is 2-3 times the maturation time,
and for the Lawton’s Plodia, the irregular fluctuations have a dominant period close
to the generation time.

2. Population model formulation

In the absence of stage-structure, we assume that the population size changes
according to a population growth equation

Ṅ = B(N)N − dN, (2.1)

where d > 0 is the death rate constant, and B(N)N is a birth rate function with
B(N) satisfying the following basic assumptions for N ∈ (0,∞):

(A1) B(N) > 0;
(A2) B(N) is continuously differentiable with B ′(N) < 0;
(A3) B(0+) > d > B(∞).
Note that (A2) and (A3) imply that B−(N) exists for N ∈ (B(∞), B(0+))

(where B− denotes the inverse function of B), and (A3) gives the existence of a
carrying capacity K such that B(N) > d for N < K , and B(N) < d for N > K .
Under these assumptions, nontrivial solutions of system (2.1) approach the unique
positive equilibrium N∗ = K = B−(d) as t → ∞. Examples of birth functions
B(N) found in the biological literature that satisfy (A1) − (A3) are:

(B1) B1(N) = be−N , with b > d;
(B2) B2(N) = p

q+Nn , with p, q, n > 0 and p
q
> d.

Functions B1, and B2 with n = 1 are used in fisheries, and are known as the
Ricker function and Beverton-Holt function, respectively.

3. Single-species population models with stage structure

We assume now that the single species population in model (2.1) has stage structure,
and that the population N is divided into immature and mature classes, with the
size of each class given by x(t) and y(t), respectively, so that N(t) = x(t) + y(t),
and only the mature population can reproduce. This leads to the model{

ẋ(t) = B(N(t))y(t) − dx(t) − δx(t),

ẏ(t) = δx(t) − dy(t).
(3.1)

The maturity rate is δ(δ > 0), which determines the mean length of the juvenile
period.

3.1. Equilibria and their local stability

Clearly system (3.1) has the trivial equilibrium E0(0, 0). There exists a unique
positive equilibrium E∗(x∗, y∗) = ( d

δ+d
B−(

d(d+δ)
δ

), δ
δ+d

B−(
d(d+δ)

δ
)) if

B−(
d(d + δ)

δ
) > 0. (3.2)

For the local stability of the equilibria E0 and E∗ , we have the following results.
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Theorem 3.1. Assume (A1) and (A2) hold. Then E0 is locally asymptotically stable
if (3.2) is reversed, and unstable if (3.2) holds; E∗ is locally asymptotically stable
if (3.2) holds.

3.2. Boundedness and global stability of equilibria of system (3.1)

Standard and simple arguments show that solutions of system (3.1) always exist
and stay positive.

If B(∞) < d , then it is easy to see that system (3.1) is dissipative, that is , there
exists a positive constant M > 0 such that the following set

� = {(x, y)|0 ≤ x ≤ M, 0 ≤ y ≤ M}
is positively invariant with respect to system (3.1). Using the Poincaré-Bendixson
theory, we can obtain the following global stability results on the equilibria.

Theorem 3.2. Assume (A1), (A2) and B(∞) < d hold. Then the set � is an asymp-
totic stability region for E0 if inequality (3.2) is reversed; the set � is an asymptotic
stability region for E∗ if inequality (3.2) holds.

Proof. If B−(
d(d+δ)

δ
) < 0, there cannot be any periodic solutions in � since a

periodic solution must contain at least one equilibrium. By the Poincaré-Bendixson
theory, paths in � must approach an equilibrium. Thus, the set � is an asymptotic
region for E0 if B−(

d(d+δ)
δ

) < 0.

If B−(
d(d+δ)

δ
) > 0, then E∗ exists, and is locally asymptotically stable. Using

Dulac’s test with P and Q as the right sides of (3.1), we obtain

∂P

∂x
+ ∂Q

∂y
= B ′(N)y − (2d + δ) < 0

in the interior of �, which implies that there are no limit cycles or cycle graphs in
�. By the Poincaré-Bendixson theory, all paths in � must approach the equilibrium
E∗.

Note that inequality (3.2) can be rewritten as R0 > 1 for the special case of
B(N), where R0 represents the intrinsic net reproductive number(sometimes called
the net reproductive value or rate). For example, if B(N) = be−N , inequality (3.2)
is equivalent to R0 = bδ

d(d+δ)
> 1. This quantity is defined to be the expected

number of offspring per individual per lifetime(Cushing,1998). Thus, if R0 > 1
then the equilibrium E∗ is globally asymptotically stable, that is, if on average,
individuals do replace themselves before they die, then the population is doomed.
The equilibria and stability conditions are listed in Table 1 for each of the models
with Ricker function and Beverton-Holt function, respectively.

4. Single-species population models with stage-structure and birth pulses

Model (3.1) has invariably assumed that the mature populations are born through-
out the year, whereas it is often the case that births are seasonal or occur in regular
pulses. An assumption that led to system (3.1) is that births are evenly distributed
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Table 1. Nontrivial equilibria of the two models with Ricker function and Beverton-Holt
function, respectively.

Function Equilibrium B−( d(d+δ)

δ
) R0

Ricker
x∗ = − d

d+δ
ln 1

R0

y∗ = − δ

d+δ
ln 1

R0

−ln 1
R0

bδ

d(d+δ)

Beverton-Holt
x∗ = d

δ+d
n
√
q(R0 − 1)

y∗ = δ

δ+d
n
√
q(R0 − 1)

n
√
q(R0 − 1) δp

qd(d+δ)

throughout the year. To model a single annual birth pulseB(N) is set to zero, and the
immature population density x(t) is increased by an amount B(N)y whenever t has
an integer value. The equations for the dynamics of the single-species population,
and the proportion of immature and mature are now:


ẋ(t) = −dx(t) − δx(t),

ẏ(t) = δx(t) − dy(t),

x(m+) = x(m−) + B(N(m−))y(m−),

(4.1)

whenever m is an integer.
In a manner analogous to our analysis of the long-term dynamics of solutions

of system (3.1) , we now analyze the dynamics of system (4.1) . Instead of steady
states we investigate period-one solutions, period-doubling bifurcations and chaos
of this system. For this purpose, we consider the special cases of B(N) , i.e., we
consider that B(N) has the form of a Ricker function or a Beverton-Holt function
and deduce the stroboscopic map in the following subsection.

4.1. Stroboscopic map of system (4.1) with Ricker or Beverton-Holt function

First we analyze system (4.1) with the Ricker function, i.e., B(N) = be−(x+y), and
system (4.1) becomes


ẋ(t) = −dx(t) − δx(t),

ẏ(t) = δx(t) − dy(t),

x(m+) = x(m−) + be−(x(m−)+y(m−))y(m−).

(4.2)

We integrate and solve for the immature population in system (4.2) between
pulses,

x(t) = xme−(δ+d)(t−m), m < t < m + 1, (4.3)

with xm the initial population of immatures at timem. Adding the first two equations
of system (4.2), yields

ẋ + ẏ = −d(x + y). (4.4)

We integrate and solve for the total population between pulses,

x(t) + y(t) = (xm + ym)e−d(t−m), m < t < m + 1, (4.5)
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with xm and ym the initial population of immatures and matures at time m. From
(4.3) and (4.5) we have

{
x(t) = xme−(δ+d)(t−m),

y(t) = e−d(t−m)[ym + xm(1 − e−δ(t−m))].
(4.6)

Equation (4.6) holds between pulses. At each successive pulse, more of the imma-
ture population is added, yielding

{
xm+1 = xme−(δ+d) + b[ym + xm(1 − e−δ)]e−[d+e−d(xm+ym)],

ym+1 = e−d(1 − e−δ)xm + e−dym.
(4.7)

If B(N) = p
q+Nn , then system (4.1) becomes




ẋ(t) = −dx(t) − δx(t),

ẏ(t) = δx(t) − dy(t),

x(m+) = x(m−) + p

q+(x(m−)+y(m−))n
y(m−).

(4.8)

Similarly to system (4.2), we can deduce the following stroboscopic map of system
(4.8) {

xm+1 = xme−(δ+d) + pe−d [ym+xm(1−e−δ)]
q+e−nd (xm+ym)n

,

ym+1 = e−d(1 − e−δ)xm + e−dym.
(4.9)

Equations (4.7) and (4.9) are difference equations. They describe the numbers
of immature population and mature population at a pulse in terms of values at the
previous pulse. We are, in other words, stroboscopically sampling at its pulsing
period. The dynamical behavior of system (4.7), coupled with (4.6), determines the
dynamical behaviors of system (4.2); similarly the dynamical behavior of system
(4.9) , coupled with (4.6), determines the dynamical behaviors of system (4.8) .
Thus , in the following section, we will focus our attention on systems (4.7) and
(4.9), and investigate the various dynamical behaviors.

The dynamics of these nonlinear models can be studied as a function of any
of the parameters. We will focus here on b for the Ricker function and p for the
Beverton-Holt function, and document the changes in the qualitative dynamics
of the model (4.7)((4.9)) as b(p) varies. First, the trivial equilibrium Ē0(0, 0) is
always a solution to equation(4.7)(or equation(4.9)). When b( p) is small enough,
this solution is locally stable, and the species cannot increase when rare or invade a
habitat from which it is absent. Our first concern will be with the conditions under
which Ē0(0, 0) becomes unstable, permitting colonization of the population. Sec-
ond, the destabilization of Ē0 with increasing b(p) is always accompanied by the
appearance of a stable positive equilibrium Ē∗. As b(p) is increased further, this
equilibrium in turn becomes unstable. A flip bifurcation occurs and the equilibri-
um loses stability to a stable two-cycle. Finally, as b(p) is increased still further,
there is a characteristic sequence of bifurcations, leading, in most cases, to chaotic
dynamics.
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4.2. Bifurcations of (x, y) = (0, 0)

In the neighborhood of (x, y) = (0, 0), the dynamics of equations (4.7) and (4.9)
are controlled by the linearization

Xm+1 = AXm, (4.10)

with A as in the linear counterpart of (4.7) or (4.9) and X = (x, y). X = 0 is stable
when the eigenvalues of A are less than one in magnitude. This is true only when
A satisfies the three Jury conditions(Jury, 1974):

1 − trA + detA > 0, (4.11a)

1 + trA + detA > 0, (4.11b)

1 − detA > 0. (4.11c)

These three conditions correspond to the three ways that an eigenvalue may
exit the unit circle in the complex plane. If inequality (4.11a) is violated, then one
of the eigenvalues of A is larger than 1. If inequality (4.11b) is violated, then one
of the eigenvalues of A is less than −1. Finally, If inequality (4.11c) is violated,
then A has a complex-conjugate pair of eigenvalues lying outside the unit circle.

With A defined in model 4.7 ((4.9)), it can be shown that inequalities (4.11b)
and (4.11c) are always satisfied, and that as b(p) increases, inequality (4.11a) is
violated at a critical point b0(p0). In terms of the model parameters, and after a bit
of rearranging, for equation (4.7) inequality (4.11a) reads

b <
(1 − e−d)(1 − e−(δ+d))

e−d(1 − e−δ)
≡ b0, (4.12)

and for equation (4.9) inequality (4.11a) reads

p <
q(1 − e−d)(1 − e−(δ+d))

e−d(1 − e−δ)
≡ p0. (4.13)

Thus b(p) must be larger than b0(p0) in order for a small population to increase
from X = 0.

For the difference equations (4.7) and (4.9) we can also define the intrinsic
net reproductive number R̄0(the average number of offspring that an individual
produces over the course of its lifetime). For equation (4.7) R̄0 is given by

R̄0
.= RR

0 = be−d(1 − e−δ)

(1 − e−d)(1 − e−(δ+d))
.

For equation (4.9) R̄0 is given by

R̄0
.= RB

0 = pe−d(1 − e−δ)

q(1 − e−d)(1 − e−(δ+d))
.

Inequality (4.12) ((4.13)) can be rewritten as R̄R
0 < 1 (R̄B

0 < 1). That is, if on
average, individuals do not replace themselves before they die then the population
is doomed.
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4.3. Bifurcations of the positive equilibrium Ē∗(x̄∗, ȳ∗)

There is a second, non-zero, equilibrium solution to equation (4.7) ((4.9)) which
satisfies{

x̄∗ = e−(δ+d)x̄∗ + b[ȳ∗ + x̄∗(1 − e−δ)]e−[d+e−d (x̄∗+ȳ∗)],
ȳ∗ = e−d(1 − e−δ)x̄∗ + e−d ȳ∗.

(4.14)

or {
x̄∗ = e−(δ+d)x̄∗ + pe−d [ȳ∗+x̄∗(1−e−δ)]

q+e−nd (x̄∗+ȳ∗)n ,

ȳ∗ = e−d(1 − e−δ)x̄∗ + e−d ȳ∗.
(4.15)

If R̄0 > 1, then there exists a unique positive equilibrium Ē∗. This equilibrium is
listed in Table 2 for each of the models with birth pulses .

Note that when b = b0(p = p0), R̄0 = 1, and then Ē∗ = (0, 0). Thus as
b(p) increases through b0(p0), Ē∗ passes through the equilibrium at (0, 0) and
exchanges stability with it in a transcritical bifurcation.

As b(p) increases further, Ē∗ remains stable until b(p) reaches another critical
point at b = bc(p = pc). Expressions for bc, pc are given in Table 3.

The stability of Ē∗ is lost in only one way as b(p) is increased. In the
density-dependence reproduction models (4.7) or (4.9), condition (4.11b) is
violated for b > bc(p > pc). A flip bifurcation results and the equilibrium loses
stability to a stable two-cycle (Fig.1).

4.4. Beyond bc(pc)

Our focus so far has been on the equilibria of the system (4.1) with Ricker function
or Beverton-Holt function, and in particular, on the stability of those equilibria. But

Table 2. Nontrivial equilibria of the two models with birth pulses.

Function Equilibrium R̄0
.= RR

0 (or RB
0 )

Ricker
x̄∗ = (1−e−d )

e−d (1−e−(δ+d))
lnRR

0

ȳ∗ = (1−e−δ )

(1−e−(δ+d))
lnRR

0

RR
0 = be−d (1−e−δ )

(1−e−d )(1−e−(δ+d))

Beverton-Holt
x̄∗ = (1−e−d )

e−d (1−e−(δ+d))

n

√
q(RB

0 − 1)

ȳ∗ = (1−e−δ )

(1−e−(δ+d))

n

√
q(RB

0 − 1)
RB

0 = pe−d (1−e−δ )

q(1−e−d )(1−e−(δ+d))

Table 3. Critical value bc(pc) of the parameter b(p) for each of the two types of density
dependence. b(p) must be less than bc(pc) for stability.

Function Stability condition Type of bifurcation

Ricker b < bc ≡ b0e
[(1−e−d )(1+e−d )+ (1−e−d )3(1−e−(δ+d))

(1−e−δ )(1+e−δ+d))
]

Flip bifurcation

Beverton-Holt p < pc ≡ p0
n(1−e−d )(1+e−(δ+d))

n(1−e−d )(1+e−(δ+d))−2(1+e−(δ+2d))
Flip bifurcation
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Fig. 1. Bifurcation diagrams of two equations (4.7) and (4.9) for total population. Show-
ing the bifurcation of Ē0(0, 0) and Ē(x̄∗, ȳ∗). Other parameters are δ = 0.4, d = 0.6,
n = 14, q = 1.

Fig. 2. Bifurcation diagrams of two equations (4.7) and (4.9) for total population. Showing
the period-adding phenomenon. Other parameters are δ = 0.4, d = 0.6, n = 18, q = 1.

beyond bc(pc), the equations (4.7) and (4.9) exhibit a wide variety of dynamical
behaviors.

As b(p) increases beyond bc(pc), it passes through a series of bifurcations that
eventually lead to chaotic dynamics. In Fig.2, we have displayed bifurcation dia-
grams for equations (4.7) and (4.9). After the first flip bifurcation, the two models
undergo a series of period-doubling bifurcations wherein a cycle of period 2k loses
stability and a stable cycle of period 2k+1 is born as b(or p) increases. Successively
higher periods are stable for smaller ranges of b(p). Eventually, chaotic dynamics
set in. This period-doubling route to chaos is the hallmark of logistic and Ricker
maps(May, 1974; May and Oster, 1976) and has been studied extensively by math-
ematicians(Collet and Eckmann, 1980; Eckmann, 1983). As b(p) increases further,
the population locks into cycles of various periods, which in turn proceeds through
their own period-doubling sequences.

The bifurcation diagrams of both models reveal another interesting phenome-
non. As pointed out above, all of the diagrams are characterized by an alteration of
apparently chaotic dynamics and low-period cycles as b(p) increases. Notice that
if the cycles to the left of a given chaotic window are of period k, then the cycles
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to the right are of period k + 1. These so-called "period-adding" sequences have
been observed in chemical reactions(Epstein, 1983; Hauser et al., 1997 ) and elec-
trical circuits(Hung et al., 1995), and have been studied in one-dimensional differ-
ence equations(Kaneko,1982,1983; Kawczynski and Misiurewicz, 1990). Period-
adding is also present in a delay-difference equation population model with
density-dependent reproduction(Botsford,1992), and in the density-dependent age-
structured model studied by Guckenheimer et al.(1977).

5. The relationships between system (4.2) and equation (4.7)

In section 4, we presented the dynamics of system (4.2) using the stroboscopic
map. This is a special case of the Poincaré map for periodically forced system or
periodically pulsed system; the system trajectory is not recorded continuously in
time but once every period of the forcing term or pulsing term(for example, the
annual birth pulse period). Long-term solutions of system (4.2) will then appear as
follows.

(i): Fixed points of the stroboscopic map (corresponding to periodic solutions
having the same period as the pulsing term).

(ii): Periodic points of the stroboscopic map, of period k (corresponding to
entrained periodic solutions having exactly k times the period of the pulsing, often
called subharmonic periodic solutions or subharmonic period k′s).

(iii): Invariant circles (corresponding to quasi-periodic solutions, tori T 2 for
the original system of impulsive differential equations).

(iv): Possibly chaotic(strange) attractors.
In the following, we show that the solutions of system (4.2) behave like the

above three case (i), (ii), (iv).
For b < b0, equilibrium Ē0(0, 0) is stable. For this range of b, trajectories of

model (4.3) approach the origin.
For b0 < b < bc, the equilibrium Ē∗ is stable. For this range of b, trajectories

of model (4.3) approach the periodic solution (xe(t), ye(t)) with period 1,{
xe(t) = x̄∗e−(δ+d)(t−m),

ye(t) = e−d(t−m)[(ȳ∗ + x̄∗(1 − e−δ(t−m))],
(5.1)

where m < t ≤ m + 1. That is , periodic solution (5.1) of system (4.2) is locally
asymptotically stable. Right at b = b0, there is a transcritical bifurcation of peri-
odic solutions as (0, 0) and (xe(t), ye(t)) pass through each other and exchange
stability. We note in passing that xe(t) is discontinuous for t a multiple of m (see
Fig.3).

The influence of b may be documented by stroboscopically sampling one of
the variables over a range of b values. We numerically integrated system (4.2) for
500 pulsing cycles at each of 1001 values of b. For each b, we plotted the last 101
stroboscopic measurements of the total populations. Since we sampled at the forc-
ing period, periodic solutions of period 1 appear as fixed point, periodic solutions
of period 2 appear as two-cycles, and so forth. The resulting bifurcation diagram,
Fig.4, clearly shows: (1) the first period-doubling at b = 7216.5, (2) a cascade of



Birth pulses 195

Fig. 3. Periodic coexistence of the immature and the mature population with b = 100,
d = 0.2, δ = 0.4. (a) Period 1 solution; (b) time series for period 1 solution of the immature
population.

Fig. 4. Bifurcation diagrams of equation (4.7). For each of 1001 values of b between 100
and 2.5 × 106, we allowed 500 convergence iterations and plotted total population size for
the next 101 iterations. Other parameters are δ = 0.4, d = 0.2.

period doublings, (3) chaotic solutions, and (4) periodic windows within the chaotic
regime(e.g., the three-cycle at b = 2 × 106).

Corresponding to the bifurcation diagrams in Fig.4, Fig.5 illustrates the rela-
tionships between model (4.2) and model (4.7) and shows that birth pulse provides
a natural period or cyclicity that allows for a period-doubling route to chaos. Fig.3
illustrates a simple cycle of period 1. Increasing b leads to a cascade of period-dou-
bling bifurcations (Figs.5(a)-(c), (a), a 2-period cycle; (b), a 4-period cycle; (c), a
8-period cycle) and finally to the appearance of chaotic strange attractors. Fig5.(d)
captures one such strange attractor, that is , increasing b is destabilizing: annual
oscillations yield to multi-annual cycles of increasing period and amplitude as this
parameter is increased(Figs.3 and 5).

By the same method, we can see that the dynamical behavior of system (4.8) is
determined by equation (4.9), coupled with (4.6).
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Fig. 5. Period-doubling cascade to chaos. (a) A 2-periodic solution, (a)′ time series for a
2-periodic solution of immature population; (b) a 4-periodic solution, (b)′ time series for
a 4-periodic solution of immature population; (c) a 8-periodic solution, (c)′ time series for
a 8-periodic solution of immature population; (d) a strange attractor, (d)′ time series for a
strange attractor of immature population. Other parameters are δ = 0.4, d = 0.2.

6. Discussion

We have analyzed what can be considered to be the simplest realistic single species
continuous ecosystem models with stage structure subject to periodic birth pulses.
Firstly, we have considered when the birth rate of the mature population depends
on the population density, and shown that the system exhibits a globally asymp-
totically stable positive equilibrium. Secondly, when the continuous birth of the
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Fig. 5. (continued).

mature population is replaced with an annual birth pulse, we have shown the small
amplitude periodic solutions arising from the periodically pulsed models form a
sequence of period-doubling bifurcations. By using the stroboscopic map, we have
obtained the complete expression for the periodic solution with period 1. As the
parameter increases, the solution may pass from a period 1 (annual) cycle to a pe-
riod 2 to a period 4(multi-annual cycle), etc., tending to a Feigenbaum transition to
chaotic behavior.

Comparing system (3.1) with system (4.1), we can conclude that system (3.1)
is, as we have seen, dominated by its equilibria. It possesses two equilibria, corre-
sponding to washout of population and coexistence. These equilibria are the only
feasible attractors. System (4.1), in contrast, is dominated by periodic and by chaotic
dynamics. The periodic birth pulsing of the mature population (a) destroys equilib-
ria, (b) introduces subharmonic synchronization, and (c) initiates chaos. Pulsing,
in effect, provides a natural period of cyclicity that allows for a period-doubling
route to chaos.

Many authors have made experiments in order to investigate how stage struc-
ture influences the population fluctuations. Laboratory insect cultures in which the
critical controlling factor is the supply of larval food(Nicholson, 1954, 1957) often
display large quasi-cyclic population fluctuations which the period of the cycles is
2-3 times the maturation time. The experiments by Lawton on populations of Indian
meal moth Plodia interpunctella(Gurney et al., 1983) have reemphasied that cycles
with periods close to the generation time are also possible. Our theoretical results
in this paper show that periodic birth pulses make single species model with stage
structure occur with varies kinds of periodic fluctuations, such as annual cycles and
multi-annual cycles, which are in accord with the above experiments. This suggests
that it is more in line with reality from a biological point of view when we consider
the mature population with an annual birth pulse.
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