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Abstract. In this paper we derive a general expression measuring fitness in general struc-
tured metapopulation models. We apply the theory to a model structured by local population
size and in which local dynamics is explicitly modelled. In particular, we calculate the evolu-
tionarily stable dispersal strategy for individuals that can assess the local population density
in the case where only dispersal is subject to evolutionary control but all other model in-
gredients are assumed fixed. We show that there exists a threshold size such that at ESS
everyone should stay as long as the population size is below the threshold and everyone
should disperse immediately as the population size reaches the threshold.

1. Introduction

During the past decade we have witnessed an increasing interest in the dynamics
of metapopulations. The book edited by Hanski and Gilpin (1997) and the book by
Hanski (1999) contain more than 1000 references each. At the same time the evo-
lution of dispersal has caught the interest of many scientists (Hastings 1983; Holt
and McPeek 1996; Doebeli and Ruxton 1997; Parvinen 1999). Long-term evolution
is the result of invasions of mutant traits and the success of invasion attempts is
determined by the fitness of the mutant. As most species have a hierarchical spatial
structure with several local populations connected by dispersal comprising a meta-
population, the evolution of migration or dispersal is most conveniently modelled
in the framework of metapopulation dynamics. It is the purpose of the present paper
to present a mathematical definition of fitness in structured metapopulation models.

In a single population fitness is usually defined as the long-term exponential
growth rate r(E) of a phenotype in a given environment E (Metz et al. 1992). Here
one should think of the environment as an interaction variable through which all
(nonlinear) feedback takes place. If the environment is constant, E(t) ≡ E, then
one can alternatively and equivalently use the basic reproduction ratio R(E) as
fitness measure because it is well known that R(E) is less than, equal to, or greater
than 1 depending on whether r(E) is less than, equal to, or greater than 0. R(E) is
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the expected lifetime production of offspring. The difference between r and R is
that r is the growth rate in real time, whereas R operates at the generation level.

The question concerning successful invasion is easily addressed using the basic
reproduction ratio R. Assume that the resident population is in demographic equi-
librium corresponding to a constant environment E

res
. Since at demographic equi-

librium every individual on average exactly replaces itself one hasRres
(
E

res
)

= 1.

The basic reproduction ratio R depends on both the environment and the strate-
gy and the superscript res refers to the strategy played by the resident. A mutant
playing a different strategy can invade if and only if

Rmut
(
E

res
)
> 1. (1.1)

This means that a mutant can invade if and only if its basic reproduction ratio in
the environment set by the resident is greater than 1.

When we want to apply the procedure outlined above to metapopulations we
encounter several difficulties. The most obvious one is that even if the environmen-
tal interaction variable is constant at the resident attractor, a mutant experiences
different conditions in different patches, and moreover, the conditions change in
the patch due to the development of the resident local population. So it is far from

obvious how to define Rmut
(
E

res
)

in the case of metapopulation models.

In this paper we present, for a large class of structured metapopulation models
including models with stochasticity at the level of local populations, a mathematical

definition of a quantity that plays the same role as Rmut
(
E

res
)

for ordinary popu-

lations. In order not to unduly multiply notation we shall denote this new quantity

by the same symbol Rmut
(
E

res
)

as there is no risk of ambiguity. In Section 5 we

give an explicit formula for Rmut
(
E

res
)

for a model with deterministic growth

of local populations. We also calculate the evolutionarily stable dispersal strategy
assuming that the tendency to migrate depends only upon the local population size
and not for instance on the age of the individual. Because of the deterministic nature
of local dynamics this model assumes infinite local populations. In a companion
paper (Metz and Gyllenberg 2001) we work out the details for the finite local pop-

ulation case and give recipes to efficiently calculate Rmut
(
E

res
)

using existing

software. In that paper we also calculate the evolutionarily stable dispersal strategy
for the case of juvenile migration and infinite local populations as opposed to the
age-independent migration considered in the present paper.

2. Structured metapopulation dynamics

In this paper we model structured metapopulations in the spirit of Gyllenberg et al.
(1997). We start by giving a brief description of that part of the theory which is es-
sential for our present needs. As pointed out by Metz and Diekmann (1986) (see also
Diekmann et al. 1988, 1989), the theory of structured populations can be applied
to metapopulations in a rather straightforward manner if one makes the analogy
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between local populations and individuals and between metapopulation and pop-
ulation. Our approach is therefore merely an adaptation of the general structured
population framework of Diekmann et al. (1993, 1998, 2001) to metapopulation
models.

We consider a given configuration of habitat patches that can support local pop-
ulations and that allow for migration between the patches. We regard a metapopu-
lation as a population of such local populations plus the population of dispersers.
Local populations and dispersers are called local entities. A local entity is charac-
terized by its state x, which typically is a vector in a finite dimensional space. The
components of x may for instance stand for the size of a local population or the
quality of the patch it inhabits. Dispersers may be structured by age, etc.

A local entity develops (i.e., its state changes with time) as a consequence of for
instance patch quality dynamics, local population growth due to births, deaths and
migration; it gives rise to new local entities (e.g. local populations produce dispers-
ers, dispersers colonize empty patches); and vanishes (e.g. when a local population
goes extinct or a disperser dies). To model mechanisms at the local level, we there-
fore need two ingredients, one describing the production of new local entities and
one describing the development and survival of local entities.

In this paper we shall only be concerned with constant environments and this
makes the notation much simpler as compared with the one in (Gyllenberg et al.
1997). In particular we shall drop the overbar on constant environments and since
the environment is always assumed to be set by the resident, the superscript res
becomes superfluous. We thus write simply E instead of E

res
.

We let 
 denote the local state space, that is, the set of all admissible local
states. We introduce the lifetime cumulative reproduction measure � and the local
development measure as follows: For each given constant environment E, each
x ∈ 
 and each measurable set ω ⊂ 
 we let

�E(x)(ω) = expected number of new local entities with birth state in ω pro-
duced by a local entity with birth state x during its entire life, the
expectation being taken over all possible sample functions of birth
giving by local entities starting in state x,

uE(x; t)(ω) = probability that a local entity with state x will still be alive and have
state in ω, t time units later.

The measures�E(x) anduE(x; t) are not independent but satisfy certain consisten-
cy relations (Diekmann et al. 1998, 2001; Gyllenberg et al. 1997). For instance, the
measures uE(x; t) are the transition probabilities of a Markov process and therefore
they satisfy the Chapman-Kolmogorov relation.

The metapopulation state is by definition the distribution of local states and is
represented by a measure m ∈ M+(
), the set of all finite positive Borel measures
in 
. We can now lift the model to the metapopulation level by defining the next
generation operator W and the next state operators T (t), t ≥ 0 acting on M+(
).
For each given constant environment E, each m ∈ M+(
) and each measurable
set ω ∈ 
 we set

(WEm) (ω) =
∫



�E(x)(ω)m(dx), (2.1)
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(TE(t)m) (ω) =
∫



uE(x; t)(ω)m(dx). (2.2)

(WEm) (ω) is the expected number of new local entities with birth state in ω pro-
duced by a collection of local entities distributed as m, during their entire lives.
TE(t)m is the distribution at time t of a collection of local entities which at time
zero were distributed as m. It follows from the fact that uE satisfies the Chapman-
Kolmogorov relation that {TE(t)}t≥0 is a semigroup.

Following Diekmann et al. (1990, 1998), Heesterbeek (1992) and Gyllenberg
et al. (1997) we now define the basic reproduction ratio R(E) as the spectral radius
of the operator WE .

In most cases of interest positivity arguments guarantee that R(E) is an eigen-
value and that all other eigenvalues have absolute value less than or equal to R(E).
An irreducibility condition is needed to accomplish that R(E) is the only positive
eigenvalue and that it is simple.

Let bE be the eigenvector corresponding to R(E). bE and R(E) have important
biological interpretations: bE is the distribution of birth states at equilibrium and
R(E) is the expected number of new local entities produced by one “typical”, that
is, sampled from bE , local entity during its entire life.

Usually the set 
b of admissible birth states is much smaller than the local state
space 
. It is clear that for solving the eigenvalue problem (determining R(E))
one only has to consider the restriction of WE to M+(
b). In many models there
are only a finite number of admissible birth states. When this is the case determin-
ing R(E) boils down to finding the dominant eigenvalue of a nonnegative (finite
dimensional) matrix. Without risk of confusion we shall use the same symbol for
WE and its restriction to M+(
b) or the corresponding matrix.

The steady metapopulation state corresponding to E is given by

mE =
∫ ∞

0
TE(t)bEdt. (2.3)

A necessary condition for equilibrium is

R (E) = 1. (2.4)

Often, and in particular in the cases considered below, the environmental interac-
tion variable E is connected to the metapopulation state through a linear operator
A and this gives us an additional equilibrium condition:

E = AmE. (2.5)

We emphasize that at the local level the model is stochastic and that it therefore
allows for finite local population sizes taking on integer values. But the way in
which the model is lifted to the metapopulation level involves taking expectations
and therefore the full model is deterministic and based on the tacit assumption of
an infinite number of patches.
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3. A class of structured metapopulation models

In this section we specify the class of models to which the general framework of
Section 2 will be applied.

We assume that selection operates at the level of individuals and therefore we
shall always include local population density x1 as a component of the structur-
ing variable x of local populations. Other components can for instance reflect patch
quality and area (Hanski and Gyllenberg 1993, 1997; Gyllenberg and Hanski 1997)
and they may or may not be dynamical variables. The set of all admissible x is de-
noted by 
p (p for population). The dispersers are unstructured and they do not
reproduce during migration. The condition of being a disperser is symbolically
represented by “d”. The local state space is thus 
 = 
p ∪ {d}.

Although our model allows for stochastic development of local entities, it is de-
terministic as the reproduction measure � describes expectation. In order to justify
the deterministic approximation we assume that both the number of patches and
the patch size are very large, that is, mathematically speaking, infinite. The total
patch density (that is, the number of patches per unit of area) will be scaled to 1.
The disperser pool will be scaled by letting D denote the number of dispersers per
patch and patch area. We shall refer toD as the density of dispersers. We refer to the
paper by Metz and Gyllenberg (2001) for a detailed discussion of the appropriate
limit as the patch size tend to infinity.

The density D of dispersers affects local dynamics through immigration. This
is most conveniently modelled by taking D as one component of the environmental
interaction variable (Gyllenberg and Hanski 1992). We shall do so in this paper.

We shall allow for local disasters in which all individuals of a patch die. A local
disaster is considered as the simultaneous death of the old local population and the
birth of a new local population with size zero. This is a valid model assumption,
since in our deterministic setting there is a continuous inflow of migrants from the
disperser pool: There are no empty patches.

Emigration is interpreted as a local population giving birth to a disperser. The
set of population birth states is therefore 
b = 
bp ∪ {d}, where 
bp is a subset
of

{
x ∈ 
p | x1 = 0

}
.

We represent a measure on 
 by a 2-vector the first component of which is a
measure p on 
p and the second component is a real number D. Because there are
no empty patches in our model, p is a probability measure, that is, its total mass
equals 1. Similarly a measure on 
b is represented by a vector with components
consisting of a measure b(p) on 
bp and a real number b(d). With this notation the

components of �E(x) become �
(p)
E (x) and �

(d)
E (x). �(p)

E (x)(ω) is the expected

number of new local populations with birth state in ω and �
(d)
E (x) is the expect-

ed number of dispersers produced by a local population born in state x during its
lifetime. By our model description dispersers do not produce new local entities.
The next generation operator W therefore vanishes on the b(d) component of b

and we have
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WE


 b(p)

b(d)


 =


W

(p)
E 0

W
(d)
E 0





 b(p)

b(d)


 =




∫

bp

�
(p)
E (x)b(p)(dx)

∫

bp

�
(d)
E (x)b(p)(dx)


 . (3.1)

Because by our model assumption there is neither loss nor gain of local populations
it is clear that the spectral radius of W(p)

E is one and hence the same is true of WE .
It follows that

R (E) = 1. (3.2)

The eigenvector bE =
(
b
(p)
E , b

(d)
E

)T
corresponding to R (E) = 1 (unique up to a

multiplying constant) is now obtained by first solving

∫

bp

�
(p)
E (x)b

(p)
E (dx) = b

(p)
E , (3.3)

and then defining

b
(d)
E =

∫

bp

�
(d)
E (x)b

(p)
E (dx). (3.4)

Finally the equilibrium metapopulation state is obtained from (2.3) and (2.2)

pE =
∫ ∞

0

∫

bp

uE(x; t)b(p)E (dx)dt, (3.5)

D = τb
(d)
E , (3.6)

where

τ =
∫ ∞

0
uE(d; t)dt (3.7)

is the expected time a disperser stays (until dying or immigrating into a patch) in
the disperser pool. We now determine the hidden constant in b

(p)
E by requiring

∫



pE(dx) = 1. (3.8)

Note that in the calculations above we have pretended that the constant environment
E is given. As we have pointed out E is determined by the metapopulation state
and contains D as a component. Therefore (3.5) and (3.6) are not explicit formulas
but equations from which E (and hence D) can be solved. An example of how this
can be done is given in Section 5.
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4. The fitness of a rare mutant

Assume that the resident population has reached an equilibrium mE corresponding
to a constant environment E. The fitness of a rare mutant is in principle defined in a
straightforward manner along the lines outlined in the introduction and in Section
2. We thus let �mut

E be the lifetime cumulative reproduction measure of mutants
when the environment is set by the resident. The next generation operator of the
mutant is then analogously to (2.1) given by

(
Wmut

E m
)
(ω) =

∫



�mut
E (x)(ω)m(dx) (4.1)

and Rmut(E) is defined as the spectral radius of Wmut
E .

When it comes to the actual specification of the reproduction measures we
observe a fundamental difference between �mut

E and �res
E . Recall from Section 3

that there is no reproduction event associated with a resident disperser immigrat-
ing into a patch — the local resident population already exists and immigration
will only affect the growth of the local population and not its existence. For the
mutant the situation is different. A mutant disperser arriving at a patch with only
resident individuals will indeed initiate a new mutant local population. After that
the development of the mutant local population depends only on the state of the
resident local population in the same patch, because the rarity of the mutant makes
its contribution to density dependent effects negligible. This means that the mutant
population is structured by the state of the corresponding local resident population.
Contrary to the case of the resident for which the admissible birth states of local
populations were restricted to a subset 
bp of

{
x ∈ 
p | x1 = 0

}
, the mutant local

populations can have any birth state in 
p.
Precisely as for the resident a mutant local population is considered to produce

or “give birth” to mutant dispersers.
In order to derive a simple formula for the mutant fitness we make the additional

assumption that dispersers choose their new patch at random. The fate of a dispers-
er is then completely determined by the probability π of surviving migration. The
value of π may of course be different for residents and mutants.

Consider now a newborn mutant. It is either a disperser or a mutant colony
surrounded by residents in a patch. If it is a disperser it will survive migration
with probability πmut in which case it founds a new mutant colony. Because the
disperser chooses its patch at random, the state at birth of the new mutant colony
is distributed according to the resident metapopulation steady state pE given by
(3.5). It follows that the life-time production of new local entities produced by one
mutant disperser is described by the measure

�
(p)
E (d) = πmutpE.

If the mutant is born in a patch it will start to reproduce in the patch and form a lo-
cal mutant colony. How many mutant dispersers this colony is expected to produce
during its entire life is affected by competition with the residents. Since the mutants
are rare, this expectation is determined by the state of the resident local population



552 M. Gyllenberg, J.A.J. Metz

at time of initiation of the mutant colony. Consistently with our notation, we denote
it by �

(d)mut
E (x), x ∈ 
p.

Lifting this description of local mutant behaviour to the level of the metapop-
ulation we obtain the next generation operator:

Wmut
E


 b(p)

b(d)


 =


 πmutb(d)pE

∫

p

�
(d)mut
E (x)b(p)(dx)


 . (4.2)

The definition (4.2) of Wmut
E should be compared with the corresponding definition

(3.1) for the next generation operator of the resident.
The mutant fitness is now obtained as a solution to the eigenvalue problem

Wmut
E

(
b(p)

b(d)

)
= Rmut(E)

(
b(p)

b(d)

)
(4.3)

It follows from (4.2) and (4.3) that

Rmut(E) =
√
πmut

∫

p

�
(d)mut
E (x)pE(dx). (4.4)

Formula (4.4) calls for some comments. First of all −Rmut(E) is also an eigen-
value of Wmut

E so the spectral radius is not a strictly dominant eigenvalue. This is
due to the fact that the mutant has alternating generations: dispersers give rise to
local populations and vice versa, so at the generation level the mutant metapopu-
lation oscillates. On the other hand, because the generations overlap, there will be
convergence towards a stable metapopulation state in real time.

The invasion criterion Rmut(E) > 1 is of course equivalent to the condition(
Rmut(E)

)2
> 1 and because the period on the generation level is two genera-

tions, the square of the basic reproduction ratio is easier to interpret biological-
ly. The probability that the state of the local population inhabiting the patch at
which a mutant disperser arrives lies in ω is pE(ω). This mutant produces a local
mutant colony. The expected number of dispersers produced by such a colony is∫

p

�
mut (d)
E (x)pE(dx). Of these a fraction πmut will reach a habitat patch where

they can found a new colony. The product of these two last mentioned numbers
is

(
Rmut(E)

)2 which therefore is the expected number of new mutant colonies
produced by one newly started mutant colony in an otherwise mutant free meta-
population. Thus

(
Rmut(E)

)2 is here the direct local-entity analogue of the usual
individual level concept of basic reproduction ratio.

5. An example

In the general discussion above we have assumed that �mut
E is given beforehand. In

applications the reproduction measure of mutants has, however, to be determined
from the vital rates of both the resident and the mutant. In this section we shall
illustrate the general theory by calculating

(
Rmut(E)

)2 for a concrete example.
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We assume that the local populations are only structured by size and that the
density D of dispersers is the only component of the environmental interaction
variable. We thus write D = E. The local population state space is 
p = [0,∞).
The space of admissible local population birth states of the resident is a single
point: 
bp = {0}. The birth state measure can therefore be represented by a vector(
b(p) , b(d)

)T ∈ R2 and the next generation operator WD becomes a 2 × 2 matrix.
Our model is specified by the following ingredients:

g(x) density dependent per capita growth rate due to local births and deaths,
k(x) density dependent per capita emigration rate,

α immigration rate per disperser,
ν death rate per disperser,

µ(x) density dependent local disaster rate.

The first four of these rates describe individual behaviour. Therefore they depend
on the strategy and will be equipped with superscripts res and mut whenever it is
needed. The disaster rate µ operates at the level of local populations and is there-
fore independent of the strategy (recall that we assume that selection occurs at the
individual level).

When two types are simultaneously present it is conceivable that they affect
the local environment in different ways and therefore the functions g, k and µ are
in general functions of both the resident and mutant densities. However, below we
shall only consider the invasion problem in the case of infinite local populations
and there the mutant is present only in infinitesimal quantities so its influence on
these functions can be neglected.

Local dynamics are deterministic and are governed by the ordinary differential
equation

dx

dt
= g(x)x − k(x)x + αD. (5.1)

For constant D the local population size can never exceed the least positive x

for which the right hand side of (5.1) is zero. We denote this value by xmax(D). If
the right hand side of (5.1) is positive for all x ∈ [0,∞), then xmax(D) = ∞.

For constant D, let XD(y; t) be the solution of (5.1) with initial condition
x(0) = y. Then

uD(x; t) =



exp
(
− ∫ t

0 µ(XD(x; s)ds)
)
δXD(x;t) if x ∈ [0,∞),

exp (−(α + ν)t) δd if x = d.

(5.2)

Here δx denotes the point mass concentrated at x. The expected time a disperser
spends migrating is

τ = 1

α + ν
(5.3)

and the probability of surviving dispersal is

π = α

α + ν
. (5.4)
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Next we derive the equilibrium of the resident metapopulation following the
procedure described in Section 3. We therefore have to compute the next generation
operator, which, as noted above, in the present case reduces to a 2 × 2 matrix. We
know that the the element in the upper left corner has spectral radius 1, but because
it is now a scalar the element itself equals one: W(p)

D = 1. This reflects the fact
that when a local population goes extinct, the patch is immediately recolonized
by immigrants from other patches. We therefore only have to compute the other
nonzero element W(d)

D = �
res (d)
D (0) which is the expected number of dispersers

produced by a newly initiated local population during its entire life.
Consider a local population. The probability that it is still extant when it has

size x is

exp

(
−

∫ x

0

µ(ξ)

gres(ξ)ξ − kres(ξ)ξ + αresD
dξ

)
. (5.5)

A local population produces

kres(x)x dx

gres(x)x − kres(x)x + αresD
(5.6)

dispersers while its size is in the infinitesimal interval [x, x+dx]. The denominator
in (5.5) and (5.6) is of course nothing but the conversion factor between growth
and aging of a population as defined by equation (5.1). Summing up over all sizes
at which a local population produces dispersers one obtains

�
res (d)
D (0) =

∫ xmax(D)

0

kres(x)x

gres(x)x − kres(x)x + αresD
.

× exp

(
−

∫ x

0

µ(ξ)

gres(ξ)ξ − kres(ξ)ξ + αresD
dξ

)
dx. (5.7)

The eigenvector
(
b(p) , b(d)

)T
corresponding to the eigenvalue 1 of the matrix

WD is now obtained from the equation

WD

(
b(p)

b(d)

)
=

(
1 0

�
res (d)
D (0) 0

) (
b(p)

b(d)

)
=

(
b(p)

b(d)

)
. (5.8)

The first component of Equation (5.8) is b(p)D = b
(p)
D and gives no information. The

other component yields

b
(d)
D = �

res (d)
D (0)b(p)D . (5.9)

It follows from (3.5) and (5.2) that

pD(dx) = b
(p)
D

gres(x)x − kres(x)x + αresD

× exp

(
−

∫ x

0

µ(ξ)

gres(ξ)ξ − kres(ξ)ξ + αresD
dξ

)
dx. (5.10)
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The expression (5.10) for pD still contains the unknown quantity b
(p)
D . But because

pD is a probability measure, b(p)D is determined by the requirement∫ xmax(D)

0
pD(dx) = 1.

Hence

b
(p)
D = 1

$res
D

, (5.11)

where

$res
D =

∫ xmax(D)

0

1

gres(x)x − kres(x)x + αresD

× exp

(
−

∫ x

0

µ(ξ)

gres(ξ)ξ − kres(ξ)ξ + αresD
dξ

)
dx. (5.12)

Notice that $res
D is the expected life-time of a resident local population.

From (3.6), (5.3), (5.4), (5.9) and (5.11) we now deduce the equation

αresD = π res�
res (d)
D (0)

$res
D

(5.13)

from which the equilibrium number D of dispersers per patch can be solved. Note
that equation (5.13) is a balance equation. It says that at equilibrium the immigra-
tion rate equals the emigration rate times the probability of surviving dispersal.
Once D has been solved from (5.13), the equilibrium metapopulation state pD is
obtained from (5.10).

Next we derive the expression for the mutant fitness. In order to apply formula
(4.4) we still have to calculate �

mut (d)
D (x). To do so, recall that since the mutant

is rare it does not affect the local population dynamics. The structuring variable x

(the size of the local resident population) will still grow according to (5.2). If the
mutation happened in a local population of size x the mutant colony will therefore
grow thereafter (as long as the mutants remain rare) according to the time dependent
linear ordinary differential equation

dy

dt
=

(
gmut(XD(x; t)) − kmut(XD(x; t))

)
y. (5.14)

Solving equation (5.14) we find that the mutant colony initiated when the resident
local population had size x has size

exp

(∫ t

0

(
gmut(XD(x; τ)) − kmut(XD(x; τ))

))
dτ

t time units later. Shifting back to size of the resident population as book-keeping
variable we find that a mutant colony that was initiated when the resident population
had size x has size

exp

(∫ y

x

gmut(ξ) − kmut(ξ)

gres(ξ)ξ − kres(ξ)ξ + αresD
dξ

)
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when the resident population has reached size y. Arguing precisely as when de-
riving formula (5.7) we conclude that the expected number of mutant dispersers
produced by a mutant local population that was initiated when the corresponding
resident local population had size x is

�
mut (d)
D (x) =

∫ xmax(D)

x

kmut(y)

gres(y)y − kres(y)y + αresD

× exp

(∫ y

x

gmut(ξ) − kmut(ξ) − µ(ξ)

gres(ξ)ξ − kres(ξ)ξ + αresD
dξ

)
dy. (5.15)

Substituting (5.4), (5.15), and (5.10) into (4.4) we obtain the following formula for
the fitness of the mutant:

Rmut (D)2 = αmut

αmut + νmut

1

$res
D

∫ ∞

0

∫ xmax(D)

x

kmut(y)

gres(y)y − kres(y)y + αresD

× exp

(∫ y

x

gmut(ξ) − kmut(ξ) − µ(ξ)

gres(ξ)ξ − kres(ξ)ξ + αresD
dξ

)
dy

× 1

gres(x)x − kres(x)x + αresD

× exp

(
−

∫ x

0

µ(ξ)

gres(ξ)ξ − kres(ξ)ξ + αresD
dξ

)
dx. (5.16)

Here D is a solution of (5.13) representing the equilibrium value of the environ-
mental interaction set by the resident.

We close this section by calculating the evolutionarily stable dispersal strategy,
when only k is under evolutionary control but all other vital rates are the same for
the resident and the mutant. We therefore drop the superscripts res and mut from
all other ingredients than k and consider Rmut given by (5.16) as a function of kres

and kmut. The ESS is obtained by maximising Rmut in kmut and then putting mutant
equal to resident.

We assume that g and µ are continuous, that g − µ is decreasing and that the
equation

g(x) − µ(x) = 0 (5.17)

has a unique positive solution, which we denote by x̃.
It follows from (4.4) that maximising Rmut amounts to maximising �

mut (d)
D (x)

for all x. It follows from our assumptions that for all x one has

�
mut (d)
D (x) ≤

∫ xmax(D)

x

kmut(y)

g(y)y − kres(y)y + αD

× exp

(∫ y

x

g(x) − kmut(ξ) − µ(x)

g(ξ)ξ − kres(ξ)ξ + αD
dξ

)
dy. (5.18)

If the mutant local population is initiated when the resident local population has
size x > x̃, then
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�
mut (d)
D (x) <

∫ xmax(D)

x

kmut(y)

g(y)y − kres(y)y + αD

× exp

(
−

∫ y

x

kmut(ξ)

g(ξ)ξ − kres(ξ)ξ + αD
dξ

)
dy = 1. (5.19)

A mutant disperser arriving at a local population with size x > x̃ will therefore on
average produce less than one new mutant disperser. It follows that it does not pay to
stay in such a population; the mutant should leave immediately. In our formulation
this requires the per capita emigration rate to be infinite for x > x̃.

It is easily seen that if x < x̃, then the number of mutant dispersers produced is
maximised by not producing any dispersers until x reaches x̃ at which time all mu-
tants in the local population should leave. In other words, the per capita emigration
rate should be zero for x < x̃ (Metz and Gyllenberg 2001, Appendix).

What happens at the critical size x = x̃? Because all individuals leave for
x > x̃ one must have xmax(D) = x̃. k(x̃) can now be solved from the equation
g(x)x−k(x)+αD = 0.We have thus shown that the evolutionarily stable dispersal
strategy is

k(x) =
{

0 if x < x̃,
g(x̃) − αD

x̃
if x = x̃,

∞ if x > x̃.
(5.20)

Strictly speaking it does not make sense to model population dynamics with
rates that take on infinite values on intervals of positive measure. But turning to the
cumulative framework (now at the level of individuals as opposed to local entities
as previously in this paper) this is easily remedied. Let us first note that our model
is memoryless in the sense that an individual born in a patch with local population
size x is indistinguishable from a disperser arriving at a patch with local population
size x. In the cumulative framework the individual dispersal strategy is most con-
veniently described in the context of a thought experiment in which the individual
in question is equipped with a guardian angel who eliminates all causes of death
(both individual death and catastrophes). The cumulative ingredient is thus

λD(x; t) the probability that an individual born in (or arriving at) a patch with
local population size x has not migrated t time-units later, given that the
individual is not subject to any risk of death.

The content of formula (5.20) can now more appropriately be formulated by saying
that the evolutionarily stable dispersal strategy is given by

λD(x; t) =




1 if x < x̃ and t < TD(x, x̃),

exp
(− (

g(x̃) − αD
x̃

)
(t − TD(x, x̃))

)
if x < x̃ and t ≥ TD(x, x̃),

exp
(− (

g(x̃) − αD
x̃

)
t
)

if x = x̃, t > 0,
0 if x > x̃, t > 0.

(5.21)
Here TD(x, y) is the time it takes for a population to grow from size x to size y.
In words, at ESS an individual born in or arriving at a patch with local population
size less than x̃ should stay until the population reaches the size x̃. An individual
born in or arriving at a patch with local population size precisely x̃ should stay for
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an exponentially distributed time. Nobody should stay if the local population size
exceeds x̃.

We mention in passing that the cumulative formulation of the full problem
including death is quite complicated because we have to deal with a so-called
competing risk problem with dependent risks. But these complications are of no
importance for the ESS problem and they are therefore omitted.

Finally we observe that at the ESS the equilibrium distribution of local popu-
lation sizes is a measure p concentrated on [0, x̃]. It has an absolutely continuous
part with density

φ(x) = b(p)

g(x)x + αD
exp

(
−

∫ x

0

µ(ξ)

g(ξ)ξ + αD
dξ

)
(5.22)

and an atom at x̃ containing the rest of the mass of p.
We close by pointing out that adding physiological structure of the individuals

leaves most of the arguments in the above example intact. Only the rank of the
reproduction operator becomes larger since we have to take the individual state of
dispersers into account. But the fitness and ESS can be calculated as above mutatis
mutandis.

6. Concluding remarks

In this paper we have introduced a fitness measure for structured metapopulations
that play the same role as the familiar basic reproduction ratio for ordinary unstruc-
tured populations. The derivation was done at an abstract level in order to assure
the greatest possible generality. The example in Section 5 should show how the
calculations can be done in practice. In addition the example is of interest in its
own right.

It remains to consider the generality of the framework from a biological per-
spective. The generality of our presentation is limited by three essential assumptions
only. First of all we assume that the size of the local patches is sufficiently large that
we can apply a deterministic approximation of the local dynamics. A companion
paper (Metz and Gyllenberg 2001) indicates in what manner this assumption can
be relaxed. That paper also gives algorithms for how to proceed in the cases where
there are no further structuring variables than local population densities.

The second essential assumption is that the catastrophes are (i) independent and
(ii) fully eradicate the local population. If (i) is relaxed, no population dynamical
point equilibrium will be reached and we cannot expect to find any fitness measure
resembling the basic reproduction ratio. For a further discussion of this general case
we refer to (Metz and Gyllenberg 2001). If the catastrophes do not set the local
populations back to zero, then the cardinality of 
b is enlarged in one go from 2
to that of the continuum. The same arguments as in this paper still apply, but the
inherent simplicity of the calculations is lost. We now have to solve a complicated
eigenvalue problem for which no simple solution exists.

The third assumption is that all patches are coupled through dispersal with all
other patches in precisely the same manner. Though obviously far from being re-
alistic, this assumption is actually quite harmless. The theory of spatial population
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waves as discussed for instance by Metz et al. (2000) shows that in a more realistic
spatial setting, as long as (i) dispersers from a single patch are spread over a suf-
ficiently large number of patches to make a deterministic approximation feasible,
(ii) patches are distributed homogeneously over space at the resolution set by the
dispersal scale, and (iii) dispersal behaviour is invariant under translation of the
spatial coordinates, a small initial mutant introduction will result in an invasion if
and only if Rmut (Eres) > 1.

A final point is how the condition Rmut (Eres) > 1 is related to the probability
of the mutant type going to fixation. Mutants arise as single individuals. So initially
the deterministic theory developed in this paper does not apply as such. However,
the general theory of branching processes (Jagers 1975) applied to local mutant
colonies as generalized individuals tells us that a mutant has a positive probabil-
ity of invading if and only if Rmut (Eres) > 1. For ESS considerations this is all
that matters. An ESS (denoted by res∗) should be protected against invasion by

alternative variants, which is guaranteed by the condition Rmut
(
Eres∗

)
< 1 for

all mut �= res∗. One cannot give a general answer to what happens after invasion.
In the case Rmut (Eres) > 1, Rres

(
Emut

)
< 1 we may expect a substitution,

but even this is not guaranteed as all depends on the fine details of the dynamics
when the mutant is not rare any longer. Moreover, there is a possibility of protected
polymorphisms in the case Rmut (Eres) > 1, Rres

(
Emut

)
> 1. An example of

such a case is given by Parvinen (2001). He also discussed how further evolution
in the resulting dimorphic population can be treated along the lines laid down in
the present paper.
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