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Abstract. A reaction-diffusion model for the evolution of dispersal rates is considered in
which there is both spatial heterogeneity and temporal periodicity. The model is restrict-
ed to two phenotypes because of technical difficulties, but a wide range of mathematical
techniques and computational effort are needed to obtain useful answers. We find that the
question of selection is a great deal richer than in the autonomous case, where the phenotype
with the lowest diffusion is selected for. In the current model either the lower or higher
diffuser rate may be selected, or there may be coexistence of phenotypes. The paper raises
several open questions and suggests in particular that a mutation-selection multi-phenotypic
model would repay study.

1. Introduction

It has now become well accepted that it is essential to include the spatial environ-
ment in ecological, evolutionary and/or genetic models (see [24,36] for a variety
of perspectives and references). However, as soon as a spatial component is intro-
duced into the analysis, it becomes important to understand dispersal within the
environment and in particular the mechanisms for the evolution of dispersal rates.
Within the biological literature one can find the following claims:

1. Spatial heterogeneities occur at all scales of the environment [20].
2. Spatial variation that is temporally constant tends to reduce dispersal rates [4,

18,25].
3. Temporal changes in the environment tend to lead to higher dispersal rates [4,

18,37].
4. If habitats fluctuate both spatially and temporally, then the interaction between

the two determines the optimal dispersal rate [4]; alternatively there is the claim
that it can lead to coexistence of phenotypes with differing dispersal rates [25].
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The most direct way of incorporating the first point, and the path that we shall fol-
low, is to view space as a continuous variable. Having made this choice, the purpose
of this paper is to present a mathematically tractable model which permits precise
formulations of claims 2-4, and then to examine to what extent they are valid.

Up to this point we have been deliberately vague as to our definition of dispers-
al. Obviously organisms have developed a wide variety of dispersal mechanisms
and no single model will be able to capture all of them. Since we wish to under-
stand as clearly as possible the mechanism behind the evolution of dispersal rates
we have chosen the simplest dispersal model consistent with a continuous spatial
variable, namely diffusion. Furthermore, since our goal is to understand how spatial
and temporal heterogeneity in and of themselves have an evolutionary impact we
have used a haploid model of a species where the only phenotypic difference is the
diffusion rate. Finally, we assume that the evolution is driven by competition and
that the local fitness is density dependent.

With this in mind, consider 2 phenotypes of a species with densities u(x, t)

and v(x, t) at the point x in the smooth bounded domain � ⊂ R
n at time t . The

phenotypes u and v have diffusion rates µ and ν respectively where it is assumed
that

0 < µ ≤ ν.

Thus, u always represents the phenotype with the slower dispersal rate. Since the
phenotypes are taken to be identical in all other aspects, they both experience the
same per-capita rate of increase a(x, t) though a is allowed to change smoothly
in space and time. For the sake of simplicity of exposition we assume a logistic
growth function and, of course, intraspecific competition. Thus, the set of equations
we will consider take the form

∂u

∂t
= µ�u + (a(x, t) − u − v)u,

∂v

∂t
= ν�v + (a(x, t) − u − v)v, x ∈ �, t > 0.

(1.1)

Again, to avoid the introduction of extraneous events we impose Neumann bound-
ary conditions

∂u

∂n
= 0,

∂v

∂n
= 0 on ∂�, t > 0, (1.2)

where n is the unit outward normal to ∂�; this corresponds to the assumption that
there is no migration across the physical boundary of the region.

We begin by returning to the first claim that spatial heterogeneities occur on
all levels. In particular, we interpret this in two ways. Given a fixed spatial domain
there is either no minimal size on which the environment should be viewed as ho-
mogeneous; or, perhaps more reasonably, the size of the homogeneous regions is
small as compared to the size of the entire domain. In the first case, a continuous
model is necessary, and in the second, the continuous model should be viewed
as an approximation to a high dimensional system consisting of many different
homogeneous regions.
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A considerable body of literature on the evolution of dispersal has appeared in
the last few years. A significant portion of the theoretical work that led to the above
mentioned claims are based on patch models, and an extensive list of references
may be found in the reviews [18,4,8] and in the papers [6,17,25,37] for example.
We therefore wish to enquire to what extent this class of model is related to the
reaction-diffusion model (1.1). In the setting of a patch model, the environment
is essentially viewed as a collection of distinct patches and dispersal is taken to
be movement between the patches. This leads to a system of ordinary differential
equations, or more typically to a system of maps (perhaps because the latter are
more tractable numerically) discrete in both space and time. These models are no-
toriously intractable analytically, and in our view this makes it difficult to obtain
convincing results concerning the effect of variation in the parameters and indeed
the structure of the models themselves. Furthermore, in our view the patch models
are quite different from (1.1). Indeed, it is well known that the approximation of
continuous evolution equations via discretization in time and/or space is a delicate
issue. In particular, it is not uncommon for a coarse discretization, e.g. a patch mod-
el with few patches, to exhibit more solutions than the limiting system, in our case
the reaction diffusion system. Perhaps the simplest example of this phenomena is
the logistic map x �→ ax(1 − x) which can be obtained via a coarse Euler approx-
imation to the corresponding differential equation ẋ = x(1 − x). For appropriate
values of a the map exhibits chaotic dynamics, thus an infinite number of distinct
solutions, while the dynamics of the differential equation is trivial.

Unfortunately, just choosing more patches does not necessarily overcome this
problem. High dimensional systems provide better approximations only if the mi-
gration matrix incorporates appropriate scalings in space and time (see [27] for
such an analysis in the context of genetics). Because such scalings rapidly lead to
mathematically intractable systems, this is often not done, in which case the spatial
structure of the problem is not explicitly represented in the limiting system (see [1]
for a more complete discussion).

Given the above mentioned difficulty of studying high dimensional patch sys-
tems which approximate spatially explicit models, one cannot expect that the cor-
responding partial differential equations should be easy to analyze. Fortunately
though the reaction diffusion system (1.1). is sufficiently tractable to allow us to
investigate rigorously the effect of simultaneous spatial and temporal fluctuations
in the habitat on dispersal rates. Our main aim is then to make a contribution to the
study of the rather difficult issues raised in Claim 4, and we outline our approach
and some of our main results in Subsection 1.3. However, we first consider Claims
2 and 3 as these are important limiting cases which provide perspective on our
results. To simplify the discussion we will assume that the initial conditions for
solutions to (1.1) are continuous nonnegative functions, that is

u(·, 0) = u0, v(·, 0) = v0 (1.3)

where (u0, v0) ∈ C(�̄) × C(�̄) and u0, v0 ≥ 0.
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1.1. Spatially heterogeneous but temporally homogeneous

When the environment is time independent, that is a(x) = a(x, t) for all t ∈ R,
rather strong results may be proved [11,5], see Appendix A for details. However,
here we shall outline the principal conclusion in biological terms. It is the case
that in a very strong sense, and under very clear conditions ona, the phenotype
with the slowest dispersal rate will be selected.Specifically, coexistence between
phenotypes of differing diffusion rates is impossible, and if two phenotypes of dif-
fering diffusion rates are present, then the phenotype with the faster diffusion rate
is driven to extinction. This is in agreement with Claim 2.

It is tempting to argue that this result follows from the fact that through diffusion
individuals are, in effect, moving into areas in which their fitness is reduced. In our
view this argument is on its own rather unconvincing, and we are not able to provide
a proof of the result along these lines. This is unfortunate, since it is conceivable
that such an argument could be applied to understanding the global dynamics of an
arbitrary number of phenotypes differentiated only by their diffusion rate.

On the mathematical side, the above assertion, formulated precisely in The-
orem 7.1, rests on two important points. The first is that in the time independent
case, the principle eigenvalue (which is the one that determines stability) is a mono-
tone function of the diffusion rate. The second is that with only two phenotypes the
system is monotone and therefore the global dynamics can be ascertained. Unfortu-
nately, this monotonicity is lost for systems representing three or more phenotypes
and so it remains an open question whether Theorem 7.1 can be extended.

1.2. Spatially homogeneous but temporally heterogeneous

The simplest interpretation of the third claim is that temporal heterogeneity can have
an effect on dispersal rates even when the environment is spatially homogeneous.
This is certainly possible as is shown by the interesting Hamilton, May, Commins
patch model discussed in detail in [18]. However, it is probable that often Claim
3 is implicitly rather that a small spatially heterogeneous perturbation imposed on
the temporal heterogeneity causes an increase in dispersal rate.

Let us start investigating the situation when the environment is periodic but
spatially constant, that is a(x, t) = a(t) for all x ∈ �. The periodicity of a is
assumed for the sake of simplicity, but note that the much more general class of
almost periodic functions can be dealt with in a similar manner. We refer the reader
to Appendix A for additional remarks about this point and for the precise statement
of a theorem on which the following is based. With the environment as assumed
above, for any nonnegative initial conditionsu0, v0, the solution(u, v) of (1.1)
-(1.3)) tends to a spatially homogeneous solution(u∗(t), v∗(t)) as t → ∞. One
can also show that each such limit solution (u∗(t), v∗(t)) is stable, hence spatial-
ly heterogeneous perturbations die out. This is in contrast with patch models [1]
which permit solutions in which different patches support different numbers of
individuals at a given time instant.

Returning to the question of dispersal rates, consider any spatially homoge-
neous solution u∗(t)/v∗(t) with v∗(0) �= 0. From (1.1) we then obtain dw/dt = 0,



Dispersal rates in a heterogeneous time-periodic environment 505

where w(t) = u∗(t)/v∗(t). That is, the ratio of u∗ to v∗ is constant in time, and
there is no selection on the dispersal rate.

On the other hand, suppose an additional spatial perturbation is imposed on
the environment. Then the analysis in Section 3.2, in particular (3.5), suggests that
there may be selection for either lower or higher dispersal rate. We summarize these
observations as follows.

Conclusion 1. Temporal variability in the absence of spatial heterogeneity does
not select for or against dispersal. However, an additional small spatio-temporal
change in the environment may cause either selection for or against dispersal.

It is worth speculating why this conclusion is at odds with the perceptions of
the biological community. Another way of stating this conclusion is that temporal
variability has a neutral effect on dispersal rates. Thus, small perturbations to the
model could lead to dramatic changes in the asymptotic states and hence the selec-
tion for faster or slower diffusion. In many of the models which examine dispersal
rates against fluctuations in the environment the populations have distinguishing
features beyond just their dispersal rates; for further discussion see for example
[18,6,26,7,21,8]. It is conceivable that it is the interaction of these distinguishing
features and the time variability that has raised the idea that temporal changes lead
to higher dispersal rates. After all, as will be made clear in this paper, the interaction
between temporal and spatial variability can lead to a variety of outcomes.

In conclusion, it is worth noting in view of what follows that the above shows
that spatial homogeneity is a somewhat degenerate assumption in the context of our
model. For there is a family of homogeneous periodic solutions (u∗, v∗) with pos-
itive components which attracts all solutions (u, v) with positive initial conditions.
Thus for any non-trivial initial conditions one gets coexistence asymptotically. This
contrasts with the situation described in section 1.1 and with that which follows.

1.3. Spatially and temporally heterogeneous

In this subsection we summarize the main body of our investigation, which is the
analysis of system (1.1) when a is allowed to have an arbitrary dependence on space
but is periodic in time. We remark that if more generally an arbitrary dependence
on time is allowed, the analysis is likely to be considerably more difficult.

Thus we will recast (1.1) in the form

∂u

∂t
= µ�u + (a(x, ωt) − u − v)u,

∂v

∂t
= ν�v + (a(x, ωt) − u − v)v, x ∈ �, t > 0

(1.4)

where ω > 0 represents the frequency of the periodic oscillation. Rescaling the
time variable of (1.4) leads to

ω
∂u

∂t
= µ�u + (a(x, t) − u − v)u,

ω
∂v

∂t
= ν�v + (a(x, t) − u − v)v, x ∈ �, t > 0.

(1.5)
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We impose the following assumption which is a standing hypothesis for the re-
mainder of this paper:

(H) a is a continuous function on �̄ × R and it is 1-periodic in t . Furthermore,
ω > 0 and 0 < µ ≤ ν (usually, it is assumed that µ < ν).

Before continuing we make a few remarks on the mathematical setting of the prob-
lem. We make it a standing convention that Neumann boundary conditions are
imposed on solutions of all parabolic equations considered in the paper. The initial
conditions for problem (1.5) are assumed to lie inX := C(�̄)×C(�̄). By solutions
of (1.5), (1.2), we understand mild solutions, that is solutions of the corresponding
variation of constant formula (see [12,23]). If a is Hölder continuous, then these are
classical solutions. When referring to periodic solutions of (1.5), we mean, unless
stated otherwise, solutions that are 1-periodic in t .

It is within the context of this model that we have investigated the relationship
between dispersal rates and spatial and temporal heterogeneity, and been able to
draw the following conclusions for our model with two phenotypes.

Conclusion 2. For a given spatio-temporal heterogeneous environment, there need
not be an optimal dispersal rate (‘optimal’ being used here in the sense of ‘selected
for’).

As is shown in Section 4 under certain conditions on a(x, t) and µ sufficiently
small we are able to prove the existence of an asymptotically stable periodic so-
lution in which both variables u and v are positive. Furthermore, our numerical
investigations suggest that this is a fairly common phenomenon. We discuss this
issue further in Section 6.

As is pointed out in the review article of Gaines and Johnson [18] there are
few empirical tests for the evolution of dispersal. However, this conclusion adds
yet another difficulty to such an undertaking. Measuring precise dispersal rates of a
population is extremely difficult. Since in our model we are assuming that the only
phenotypic difference between individuals are their dispersal rates it is difficult
to imagine how an experimentalist would be able to distinguish between individ-
uals with different dispersal rates and errors in measuring the rate. In particular,
this result suggests that averaging of measurements between different individuals
requires justification.

Conclusion 3. A given spatio-temporal heterogeneous environment can select for
the higher dispersal rate.

Given the results in the settings of only spatial variability or only temporal vari-
ability, this result is somewhat surprising since it indicates that interaction between
spatial and temporal changes can completely reverse the effects of spatial heteroge-
neity alone. In particular, Theorem 5.2 states that under certain conditions the global
attractor for the set of positive initial conditions is a periodic solution (0, v∗(x, t)).
Thus the phenotype with the slower diffusion rate is driven to extinction.

Conclusion 4. Given any spatio temporal heterogeneous environment, if the fre-
quency of oscillationω is too large or too small then the phenotype displaying the
higher dispersal rate is driven to extinction.



Dispersal rates in a heterogeneous time-periodic environment 507

The precise formulation of this conclusion can be found in Theorem 5.3, how-
ever the point that needs to be made is that this reinforces our feeling that the
assertion that temporal variability selects for dispersal must be used cautiously.
In fact, our numerical simulations suggest that given a fixed a(x, t) if there is a
range of frequencies ω for which either one has coexistence of both phenotypes
or one has selection of the faster diffuser, then it is rather narrow; there is what
might tentatively be described as a ‘tuning’ in operation. We return to this point in
Section 6.

1.4. Outline of contents

Sections 2-5 consist of a theoretical and numerical examination of asymptotic (large
time) behavior of the system (1.6), with the aim of discovering the conditions under
which one or the other of the phenotypes is selected or coexistence of phenotypes
holds. Since the periodic-parabolic problem is considerably more difficult than the
corresponding problem considered in [5], a wide range of mathematical techniques
needs to be used. For example, in order to resolve the large ν behavior, we employ
(an extension of) a shadow-system lemma in [9], and to understand the dynamics
when ω → ∞ we rely on the method of averaging. We also construct a num-
ber of classes of examples to show that certain types of behavior can arise. The
investigation throws up a number of open problems.

In Section 2 we examine the principal eigenvalue of a scalar periodic-parabolic
problem, focusing on its dependence on the diffusion coefficient. We also make
some remarks on its dependence on frequency. Both theoretical and computational
results are obtained, which extend the discussion in [13] and make a contribution
towards obtaining a broader view of the behavior of the periodic-parabolic eigen-
value. In Section 3, we consider semitrivial periodic solutions, by which we mean
time-periodic solutions (u, v) of (1.5) with u ≥ 0, v ≥ 0 and with exactly one of
the components identically equal to zero. We discuss stability properties of such
solutions under various assumptions on the parameters. For easy reference, these
results are summarized in a table at the end of the section.

In Section 4, we address the problem of coexistence. Thus we deal with the
question whether a stable periodic solution with both components positive may ex-
ist. We give sufficient conditions for this to happen. Using an explicit example, we
also indicate how a coexistence solution can appear and disappear via bifurcations
at semitrivial periodic solutions.

In Section 5, we describe the global dynamics of (1.4). At present we are only
able to do this in a few special cases, where the global attractor turns out to be one
of the semitrivial periodic solutions. We indicate basic problems that one has to
face when attempting more general results.

Finally, in Section 6, we pick out a number of particular points of interest which
have arisen during this investigation and discuss some of the biological implica-
tions.
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2. The principal eigenvalue

A central notion in our investigation is that of the principal eigenvalue of a linear
periodic-parabolic operator. In this section we recall some of its basic properties
which are used throughout the paper. We then study in some detail the dependence
of the eigenvalue on the diffusion coefficient. The main result says that, in contrast
to the time-independent problem, the principal eigenvalue may not be monotone
in the diffusion coefficient. This observation will help us to construct examples
of problems (1.5) demonstrating interesting phenomena that do not occur in au-
tonomous equations. We conclude with some remarks on the dependence of the
eigenvalue on the frequency ω. This section is crucial for an understanding of the
later analysis. However, in order not to interrupt the outline of the investigation,
we put the proofs of technical results in Appendix B.

Consider the eigenvalue problem

ω
∂φ

∂t
− ρ�φ − h(x, t)φ = λφ, x ∈ �, t ∈ R (2.1)

where ω, ρ are positive constants and h is a continuous function that is 1-periodic
in t . Recall, that by our standing convention, a zero Neumann boundary condition
is imposed on φ.

The principal eigenvalueof (2.1) is a real number λ such that (2.1) has a positive
1-periodic solution. It is known (see [13]) that such a value exists, that it is unique
and that the corresponding 1-periodic solution φ is unique up to a scalar multiple.
The eigenvalues of (2.1) can equivalently be discussed in terms of the period-1 map
(that is, the Poincaré map) � : C(�̄) → C(�̄) of the equation

ω
∂φ

∂t
− ρ�φ − h(x, t)φ = 0, x ∈ �, t > 0. (2.2)

In particular, if λ is the principal eigenvalue of (2.1), then e−λ is an eigenvalue of �
with a positive eigenfunction. By the Krein-Rutman theorem, it is an algebraically
simple eigenvalue, it is greater than the modulus of any other eigenvalue, and no
other eigenvalue has a nonnegative eigenfunction. Furthermore, e−λ is an eigen-
value of the adjoint operator �∗ whose eigenvector is a nonnegative functional. As
a consequence one deduces that λ is the principal eigenvalue of the adjoint problem

−ω
∂ψ

∂t
− ρ�ψ − h(x, t)ψ = λψ, x ∈ �, t ∈ R. (2.3)

(Note that upon time reversal, this becomes a regular periodic-parabolic equation.)
See [13] for more details on principal eigenvalues.

We denote by λ(h, ρ) the principal eigenvalue of (2.1). By standard results
on perturbation of simple eigenvalues (see [22]), λ(h, ρ) is a smooth function of
ρ ∈ (0,∞) and h ∈ C(�̄ × [0, 1]).

We next examine monotonicity properties of ρ �→ λ(h, ρ). There appears to
be a significant difference, crucial in our study, between autonomous and time-pe-
riodic equations. When h is independent of t , λ(h, ρ) is increasing in ρ, but this
may no longer be true in the time periodic case. We state the results precisely.
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Theorem 2.1. If h is independent oft and it is not constant thenρ �→ λ(h, ρ) is
an increasing function:

Dρλ(h, ρ) > 0 (ρ ∈ (0,∞)),

whereDρ denotes the partial derivative with respect toρ.

In the next theorem and at other places below we frequently use the following
notation for the temporal and spatial averages of a function h : �̄ × R → R.

ĥ(x) =
∫ 1

0
h(x, t)dt

h̄(t) = 1

|�|
∫
�

h(x, t)dx.

We say that a function h(x, t) is spatially homogeneous (or spatially constant) if
h(x, t) = h(y, t) for any x, y, t .

Theorem 2.2. Let h(x, t) = ĥ(x) + γH(x, t), whereγ ∈ R (and Ĥ ≡ 0), and
suppose thath lies in one of the following classes of functions.

(a) ĥ is constant, andh is not spatially homogeneous.
(b) ĥ(x) ≤ 0 (x ∈ �̄),

∫ 1
0 maxx∈�̄ H(x, t) dt > 0, andγ is large.

Then the following two statements hold.

(i) Dρλ(h, ρ) < 0 for someρ > 0,
(ii) λ(h, ρ1) = λ(h, ρ2) for some0 < ρ1 < ρ2.

In the autonomous case, λ(h, ρ) is the principal eigenvalue of a formally
self-adjoint elliptic operator, hence one can use its variational characterization.
This can be employed to prove the monotonicity property stated in Theorem 2.1
(see [5]). Alternatively, one can compute the derivative directly using Lemma 2.3
below. An intriguing observation [15] which complements (b) above is that, under
weak conditions on h, λ(h, ρ) < λ(ĥ, ρ). That is, effectively independent of the
environment, the principal periodic-parabolic eigenvalue is less than the principal
eigenvalue for the elliptic problem.

The time-periodic problem does not have a variational structure. Although
λ(h, ρ) can be shown to be monotone with respect to h, as in the autonomous
case, it may in general fail to be monotone in ρ. In fact, Theorem 2.2 shows that it
is not monotone for a large class of functions. Figure 1 illustrates this in a special
case.

We proceed by stating two preparatory results; their proofs are given in Appen-
dix B. In the first one we compute the derivative of λ(h, ρ).

Lemma 2.3. One has

Dρλ(h, ρ) =
∫ 1

0

∫
�

∇φρ(x, t) · ∇ψρ(x, t)dxdt, (2.4)
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Fig. 1. The eigenvalue λ(h, ρ) as a function of ρ1/2 for h(x, t) = 4 sin 2πt cosπx and
ω = 0.25.

whereφρ(x, t) is the positive solution of(2.1) (with λ = λ(h, ρ)) with normaliza-
tion

1

|�|
∫
�

φ2
ρ(·, 0) = 1, (2.5)

andψρ(x, t) is the positive 1-periodic solution of(2.3) with normalization∫
�

φρ(x, 0)ψρ(x, 0)dx = 1. (2.6)

This lemma easily implies the conclusion of Theorem 2.1. Indeed, if h is in-
dependent of t , the adjoint eigenfunction ψ is a positive scalar multiple of φ (and
they are both independent of t). Hence (2.4) gives Dρλ(h, ρ) > 0. Below, we shall
use Lemma 2.3 again when discussing the dependence of the principal eigenvalue
on ω.

Lemma 2.4. The following statements hold

(a) λ(h, ρ) ≤ −ˆ̄h (ρ ∈ (0,∞)) with strict inequality ifh is not spatially homo-
geneous.

(b) limρ→∞ λ(h, ρ) = −ˆ̄h.
(c) limρ→0 λ(h, ρ) = − maxx∈�̄ ĥ(x).

Proof of Theorem 2.2 (a) Clearly from Lemma 2.4(b),(c)

lim
ρ→0

λ(h, ρ) = −ˆ̄h = lim
ρ→∞ λ(h, ρ).

The result follows from Lemma 2.4(a).
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Fig. 2. The eigenvalue λ(h, ρ) plotted against ω for h(x, t) = 2 sin 2πt cosπx and ρ =
0.05.

(b) The idea is to use [13, Lemma 15.4]; the reader is warned of possible confu-
sion resulting from the different role played byλ there. Also, ĥmust be incorporated
in the elliptic operator A [13, pp. 34, 38] by putting a0 = −ĥ(x).

Fix some ρ0 > 0. Then by the lemma referred to above we may choose γ so
large that λ(h, ρ0) < 0. By Lemma 2.4, λ(h, ρ0) has nonnegative limits as ρ → 0
and ρ → ∞, and the result follows. �

An interesting question, both for its own sake and also for its implications in
the biological problem, concerns the role of the frequency ω and we conclude the
section with some remarks on it.

Suppose that a formal expansion of the principal eigenvalue in negative powers
of ω is carried out; the details are somewhat tedious and we shall omit them here.
For the case ĥ = 0, with h not spatially homogeneous, one finds that to order
ω−1, ∇φ = −∇ψ . It then follows from Lemma 2.3 that for any fixed ρ and large
enough ω, Dρλ(h, ρ) < 0. This provides another range of examples for which the
conclusions of Theorem 2.2 hold. It does not appear to be easy to obtain further
analytical results of this nature. Some numerical calculations have been carried out
for a case where ĥ ≡ 0, and these suggest that λ(h, ρ) is an increasing function
of ω and tends to a finite negative limit as ω → 0, see Fig. 2. This conclusion is
supported for λ(εh, ρ) when ε is small by using an expansion technique. However,
a proof of the general result is not available.

3. Semitrivial periodic solutions and their stability

In this section we examine the semitrivial periodic solutions of (1.5), i.e. those
1-periodic solutions with one of the components u, v equal to zero and the other
component positive. Obviously, the nonzero component of a semitrivial periodic
solution is a solution of a scalar logistic equation. We examine that equation in
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Subsection 3.1. In Subsections 3.2 and 3.3, we separately consider the stability of
the slow diffuserand fast diffuserby which we mean semitrivial periodic solutions
of the form (u, 0) and (0, v), respectively.

In the whole of this section we assume the standing hypotheses given in the
introduction (� is a smooth bounded domain, a(x, t) is a continuous function that is
1-periodic in t and zero Neumann boundary conditions are assumed with parabolic
equations throughout).

We use the notion of linear stability of periodic solutions as in [13]: a periodic
solution (u, v) of (1.5) is linearly stableif all eigenvalues of the period map of the
linear variational equation

ω
∂ū

∂t
= µ�ū + (a(x, t) − u − v)ū − u(ū + v̄),

(3.1)
ω
∂v̄

∂t
= ν�v̄ + (a(x, t) − u − v)v̄ − v(ū + v̄), x ∈ �, t > 0,

(under Neumann boundary conditions) have modulus less than 1. If at least one
eigenvalue has modulus greater than 1, the periodic solution (u, v) is said to be lin-
early unstable. We remark that the period maps that we discuss are always compact
(since � is bounded) and therefore their spectrum consists entirely of eigenvalues
and the point 0. For different types of equation, the linear stability is understood in
an analogous way. Of course, when the principal eigenvalue of the linearization is
defined, its sign determines the linear stability. This applies in particular to scalar
equations to be discussed in the Subsection 3.1.

If a periodic solution (u, v) is linearly stable, then it is asymptotically stablein
the sense that (u(·, 0), v(·, 0)) is an asymptotically stable fixed point of the period
map F : X �→ X of (1.5) (recall that X = C(�̄) × C(�̄)).

Conversely, a linearly unstable periodic solution is not stable. For a semitrivial
periodic solution (u, v) this can be made more specific. If it is linearly unstable,
then (u(·, 0), v(·, 0)) is an unstable fixed point for the restrictionF |X+ of the period
map to the positively invariant cone X+ = {(u, v) : u ≥ 0, v ≥ 0}. This follows
from the competitive structure of (1.5) (see [13, Sect. IV.33] for details).

3.1. The logistic equation

Let (ũ, ṽ) be a semitrivial periodic solution of (1.5). For definiteness assume that
ṽ = 0, the other case can be treated in a similar way. Then ũ is a solution of the
equation

ω
∂u

∂t
= µ�u + (a(x, t) − u)u, x ∈ �, t > 0. (3.2)

From the previous section we recall that λ(h, ρ) is the principal eigenvalue of (2.1).
With h = a and ρ = µ, (2.1) is the linearization of (3.2) around u = 0. Thus the
conditions λ(a, µ) < 0 in the following proposition means that the trivial solution
of (3.2) is linearly unstable. A sufficient, but by no means necessary, condition for
this is ˆ̄a > 0, see Lemma 2.4.
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Proposition 3.1. A positive 1-periodic solutioñu of (3.2) exists if and only if
λ(a, µ) < 0. If the solution exists then it is unique, linearly stable, that is,
λ(a − 2ũ, µ) > 0, and globally attractive, that is, any positive solutionu of (3.2)
satisfies

‖u(·, t) − ũ(·, t)‖L∞(�) → 0 ast → ∞.

See [13, Sect. III.28] for the proof.
Proposition 3.1 in particular implies that ũ(·, 0) is a nondegenerate fixed point

of the period-1 map of (3.2). Therefore, by the implicit function theorem, ũ(·, 0)
depends smoothly on the parameters in the equation. This statement will be made
more precise when needed.

We next characterize the stability of semitrivial periodic solutions relative to
system (1.5).

Lemma 3.2. Assumeλ(a, µ) < 0 so that there exists a unique semi-trivial periodic
solution(ũ, 0) of (1.5). Then this periodic solution is linearly stable, respectively
linearly unstable ifλ(a − ũ, ν) > 0, respectivelyλ(a − ũ, ν) < 0. Analogous
statements hold for the semitrivial periodic solution(0, ṽ) if λ(a, ν) > 0.

Proof. For (u, v) = (ũ, 0), the linearization (3.1) simplifies to the triangular system

ω
∂ū

∂t
= µ�ū + [a(x, t) − 2ũ]ū − ũv̄,

ω
∂v̄

∂t
= ν�v̄ + [a(x, t) − ũ]v̄.

(3.3)

Let � be the period map of this system. It is easy to see that if γ is an eigenvalue
of � then it is either an eigenvalue of the period map of the second equation (if the
eigenfunction has a nonzero v-component) or an eigenvalue of the period map of

ω
∂ū

∂t
= µ�ū + [a(x, t) − 2ũ]ū. (3.4)

Equation (3.4) is the linearization of the logistic equation at its positive solution,
hence, by Proposition 3.1, all eigenvalues of the period map of (3.4) lie inside the
unit circle. The linear stability of (ũ, 0) is therefore determined by the principal
eigenvalue of the second equation and we obtain the linear stability and instability
criteria as in the lemma. �

3.2. Slow diffuser

In this subsection we give various conditions on the stability and instability of the
semitrivial periodic solution (ũ, 0), provided it exists. For the sake of simplicity, we
usually make the assumption ˆ̄a > 0 which guarantees that both semitrivial periodic
solutions exist for all values of the parameters. In several cases this assumption can
be relaxed, but we will not consider this question here.

The reader may find it instructive to look at the following special example first.
Take the one-dimensional domain � = (0, 1) and let

a(x, t) = 1 + εq(x, t),
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where q can be expanded in the double Fourier series

q(x, t) =
∞∑

m,n=0,m+n�=0

cosmπx(amn cos 2πnt + bmn sin 2πnt).

Then one can show formally, that for small ε,

λ(a − ũ, ν) = (ν − µ)ε2π2

{
µ

2ν

∞∑
m=1

m2

(1 + µm2π2)2
a2
m0

+1

4

∞∑
m,n≥1

m2(µνm4π2 − 4n2ω2)(a2
mn + b2

mn)

[π2ν2m4 + 4n2ω2][(1 + µm2π2)2 + 4n2π2ω2]

}

+O(ε3). (3.5)

Of course, we recover λ(a − ṽ, µ) by interchanging µ and ν. From this formula
one can find several relations between the parameters that give λ(a − ũ, ν) > 0
or λ(a − ũ, ν) < 0. It turns out that the estimates of λ give a fairly reliable guide
to the general case in many circumstances, even for ε as large as 1 or 2. We give
rigorous proofs of the stability results is some limit situations, assuming that one
of the parameters is small or large. Other cases will be treated numerically.

In the assertions below the parameters not explicitly mentioned are assumed to
be fixed and may enter the indicated estimates. For example, the statement “a con-
dition holds for ω small enough” should be interpreted as saying that the condition
holds for ω < C where the constant C may depend on a, µ and ν.

Lemma 3.3. Assume that̂̄a > 0, so that the semitrivial periodic solution(ũ, 0)
exists for any0 < µ < ν andω > 0. Further assume that̂a is not constant. Then
λ(a − ũ, ν) > 0, that is(ũ, 0) is linearly stable, in each of the following cases:

(a) ā(t) > 0 (t ∈ [0, 1]), a is of classC1 andω is small enough,
(b) ω is large enough,
(c) ν is large enough,
(d) supx,t |a(x, t) − â(x)| is small enough.

Proof. (a) Consider the family of elliptic problems obtained formally by setting
ω = 0 in (3.2)

0 = µ�u + (a(x, t) − u)u, x ∈ �, (3.6)

(as always we assume Neumann boundary conditions). One can view (3.6) as the
stationary equation for the following autonomous logistic equation with artificial
time s and parameter t :

∂u

∂s
= µ�u + (a(x, t) − u)u, x ∈ �, s > 0. (3.7)

The assumption ā(t) > 0 implies that for any t , equation (3.7) has a positive linear-
ly stable periodic solution u0(·, t). This periodic solution is unique, by Lemma 3.1,
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hence, by the periodicity of a, u0(x, t) is 1-periodic in t . It follows (see [34]) that
for ω sufficiently small, there exists a linearly stable 1-periodic solution uω of (3.2)
that satisfies

‖uω − u0‖L∞(�×(0,1)) → 0 as ω → 0. (3.8)

This property in particular implies that uω is positive for small ω, hence, by unique-
ness, uω = ũ.

We next claim that λ(a−u0, ν) > 0, which, combined with (3.8) and continuity
of λ(h, ν) in h ∈ C(�̄ × [0, 1]), implies that λ(a − uω, ν) > 0 for small ω.

To prove the claim, let λ(t) and ψ0(·, t) > 0 be the principal eigenvalue and
L2-normalized eigenfunction of the elliptic eigenvalue problem

ν�w + (a(x, t) − u0(x, t) + λ)w = 0. (3.9)

Clearly, λ(t) and ψ0(·, t) are 1-periodic in t . The sign of λ(t) determines the linear
stability of the slow diffuser (u0, 0) of the artificial system

ω
∂u

∂s
= µ�u + (a(x, t) − u − v)u,

ω
∂v

∂s
= ν�v + (a(x, t) − u − v)v, x ∈ �, s > 0,

(3.10)

(cf. Lemma 3.2). Since this system is autonomous for each t , we have λ(t) > 0 as
proved in [5]. By continuity and periodicity, inf t λ(t) > 0.

Now, we are assuming that a is of classC1. Thusu0 is of classC1, by the implicit
function theorem, and consequently, ψ0(·, t) is of class C1. Further, w = ψ0(·, t)
satisfies

ωwt − ν�w − (a(x, t) − u0(x, t))w = ωwt + λ(t)w.

If ω is sufficiently small, the right-hand side of this equation is positive. Since the
equation has a positive 1-periodic solution ψ0(·, t), the principal eigenvalue of the
operator on the left-hand side is necessarily positive, that is, λ(a − u0, ν) > 0 (see
[13, Theorem 16.6 and Remark 16.7]). This completes the proof of (a).

(b) The result is based on the method of averaging (see [10] and references
therein for a general background). We first compare the logistic equation in the
following rescaled form

∂u

∂t
= µ�u + (a(x, ωt) − u)u, x ∈ �, t > 0, (3.11)

with the corresponding averaged equation

∂u

∂t
= µ�u + (â(x) − u)u, x ∈ �, t > 0. (3.12)

As ˆ̄a is assumed positive, (3.12) has a unique positive periodic solution u0 and
this periodic solution is linearly stable. Therefore, for ω sufficiently large there is
a 1/ω-periodic solution uω of (3.11) such that

sup
t

‖uω(·, t) − u0‖L∞(�) → 0 as ω → ∞ (3.13)
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(see [12, Exercise 2, Sect. 7.5]). This in particular implies that for large ω, uω is
the unique positive solution of (3.11).

We next consider the linear equation

vt = ν�v − (a(x, ωt) − uω(x, ωt))v x ∈ �, t > 0, (3.14)

which determines the stability of the fast diffuser (see Lemma 3.2), and compare
it with the following autonomous equation

vt = ν�v − (â(x) − u0(x))v x ∈ �, t > 0. (3.15)

By (3.13), ûω → u0 in C(�̄). Further,

∫ 1

0
(a(x, ωt) − â(x))dt → 0,

∫ 1

0
(uω(x, ωt) − u0(x))dt → 0

in C(�̄) as ω → ∞. Therefore [12, Theorem 7.5.2] applies in the present situation
(cf. [12, Sect. 7.5, Example 1]) and it asserts that the evolution operators of (3.14)
and (3.15) are close to one another, uniformly on compact time intervals, if ω suf-
ficiently large. Now, there is an r > 0 such that for any τ > 0, the eigenvalues
of the time-τ map of the autonomous equation (3.15) are contained in the circle
of radius e−rτ (the slow diffuser (u0, 0) is linearly stable in the autonomous case
by [5]). Hence the same is true of the time-τ map of (3.14), uniformly for τ in
any compact interval in (0,∞), if ω is large enough. This clearly implies the
assertion (b).

(c) The (positive) function ũ satisfies (3.2). Divide that equation by u and inte-
grate over � × (0, 1) obtaining

(a − ũ)ˆ̄ = −µ

∫
�̄

∫ 1

0

|∇ũ|2
ũ2

< 0.

The assertion now follows from Lemma 2.4 on taking h = a − ũ.
(d) The autonomous equation (3.12) has a unique solution u0 and this solution

is a hyperbolic equilibrium. With supx,t |a(x, t)− â(x)| small, (3.1) is a small per-
turbation of (3.12), hence its unique positive periodic solution ũ is close to u0. This
further implies that λ(a − ũ, ν) is close to the principal eigenvalue of

ωvt = ν�v + (â(x) − u0(x))v + λv.

The latter being positive (the slow diffuser is linearly stable in the autonomous
case), we obtain λ(a − ũ, ν) > 0. �

The situation that occurs under any of the above conditions (a)-(d) is similar
to that in the autonomous case, where the slow diffuser is always stable. However,
under certain other conditions, which we now consider, the stability is reversed
with (ũ, 0) unstable.
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Lemma 3.4. Assumea ∈ C2(�̄ × [0, 1]), â(x) > 0 (x ∈ �̄) and

∂a(x, t)

∂n
= 0 (x ∈ ∂�, t ∈ [0, 1]). (3.16)

Further assume that
a(x, t) �≡ c(x)ed(t) + d(t) (3.17)

for any functionsc(x), d(t). Then forµ sufficiently small,λ(a − ũ, ν) < 0.

The assumptions a ∈ C2(�̄× [0, 1]) and (3.16) can be relaxed, but this would
only burden the proof with additional technicalities.

Proof. Consider the formal limit of (3.2) when µ → 0:

ω
∂u

∂t
= (a(x, t) − u)u. (3.18)

The assumption â > 0 implies that for each x ∈ �̄ there is a unique positive and
linearly stable 1-periodic solution p(x, t) of the ODE (3.18). As a is of class C2,
so is p(x, t).

We claim that for each µ sufficiently small, the positive solution u = uµ of
(3.2) exists and satisfies

‖uµ − p‖L∞(�×(0,1)) → 0 as µ ↘ 0. (3.19)

Assume for the moment that the claim is true. Then λ(ν, a − uµ) approaches
λ(ν, a−p), asµ ↘ 0. The assertion of the lemma follows because λ(ν, a−p) < 0,
as we now show. Let ψ be a positive eigenfunction, corresponding to the principal
eigenvalue λ = λ(ν, a − p), of the problem

ωψt − ν�ψ − (a(x, t) − p(x, t))ψ = λψ. (3.20)

Dividing this equation by ψ and integrating by parts we obtain

λ(ν, a − p) = −ν

∫ 1

0

∫
�

|∇ψ |2
ψ2

−
∫ 1

0

∫
�

(a − p).

By (3.18) and the periodicity of p,∫ 1

0

∫
�

(a − p) =
∫
�

∫ 1

0

pt

p
= 0

Further we have ∇ψ �≡ 0 for otherwise (3.20) implies that a − p is spatially ho-
mogeneous and then (3.18) leads to a contradiction with (3.17). We conclude that,
indeed, λ(ν, a − p) < 0.

It remains to prove the claim. Sincep is linearly stable, an application of the im-
plicit function theorem shows that there is a δ0 > 0 such that for any δ ∈ (−δ0, δ0)

and x ∈ �̄ there exist linearly stable 1-periodic solutions p±
δ of the equations

ω
∂u

∂t
= u(a(x, t) − u) ± δ. (3.21)
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Strictly speaking, when applying the implicit function theorem, one only obtains a
δ0 depending on x, but using a compactness argument it is easy to see that it can be
chosen independent of x. Clearly, p±

δ (x, t) are of class C2 in x, t, δ and we have

‖pδ − p‖L∞(�×(0,1) → 0 as δ → 0. (3.22)

In particular, p±
δ are positive (by choice of δ0 smaller if necessary). We next verify

the following properties:

(A)
∂p±

δ

∂n
= 0 on ∂�,

(B) p−
δ < p+

δ if δ > 0,
(C) For any δ ∈ (0, δ0) there exists an m0 = m0(δ) such that for 0 < µ < m0 the

function p−
δ (x, t) is a subsolution and p+

δ (x, t) is a supersolution of (3.2).

To verify (A), we differentiate (3.21) with respect to x, in the normal direction.
Using (3.16), we obtain the following equation for v = ∂p±

δ /∂n at any point
x ∈ ∂�:

ωvt = (a(x, t) − 2p±
δ (x, t))v. (3.23)

Since this is the linearization of (3.21) along the linearly stable solution p+
δ (x, t),

its only 1-periodic solution is v ≡ 0. This implies (A).
Differentiating (3.21) with respect to δ, we obtain a linear nonhomogeneous

equation for Dδp
+
δ . This equation and the periodicity of p+

δ yields Dδp
+
δ > 0.

Since p±
0 = p, (B) follows.

Finally, for a fixed δ > 0 we have

ω
∂p+

δ

∂t
− µ�p+

δ − (a(x, t) − p+
δ )p

+
δ = µ�p+

δ + δ, x ∈ �, t ∈ R.

The right-hand side is positive if µ is small enough, hence p+
δ is a supersolution.

Similarly one shows that p−
δ is a subsolution.

Using (A) – (C) one proves, employing the monotonicity method for compet-
itive systems (see [13]), that there exists a periodic solution u of (3.2) satisfying
0 < p−

δ < u < p+
δ . By uniqueness, this periodic solution coincides with uµ.

Property (3.19) now follows from (3.22). �

Lemma 3.5. There exist a smooth functiona(x, t), 1-periodic in t , with the
following property. For someµ > 0 the positive solutioñu of (3.2) exists, and
Dνλ(a − ũ, ν)|ν=µ < 0. In particular,λ(a − ũ, ν) < 0 for ν sufficiently close to
µ (and greater thanµ).

Proof. Choose h and ρ such that statement (i) of Theorem 2.2 holds. Without af-
fecting this property, we may assume, replacing h by h + const , if necessary, that
λ(h, ρ) = 0. Let φ > 0 be the corresponding eigenfunction of (2.1). Set µ = ρ,
and a(x, t) = h(x, t) + φ(x, t). Then ũ = φ is a positive solution of the lo-
gistic equation (3.2), and for any ν we have λ(a − ũ, ν) = λ(h, ν). This implies
Dνλ(a− ũ, ν)|ν=µ < 0. Next observe that λ(a− ũ, µ) = 0 (indeed, with h = a− ũ

and ρ = µ, ũ is a positive eigenfunction of (2.1) with eigenvalue λ = 0). Hence,
λ(a − ũ, ν) < 0 for ν > µ, ν ≈ µ. �
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Lemma 3.4 shows that, for a large class of a, (ũ, 0) is unstable for µ small.
Lemma 3.5 has a different flavor and proves that an a exists such that (ũ, 0) is
unstable even for µ very near ν with µ < ν. We remark that there is another set of
conditions ensuring this, which is suggested by the large ω expansion discussed at
the end of Section 2, namely that â ≡ 0 and ω is large enough.

3.3. Fast diffuser

We next examine the stability of the fast diffuser (0, ṽ), ṽ > 0. Again, in the
statements below parameters not mentioned explicitly are assumed to be fixed.

In the autonomous case, the fast diffuser is always unstable. The next lemma
gives a few other conditions for this to be the case.

Lemma 3.6. Assume that̄̂a > 0 and thatâ is not constant. Thenλ(a − ṽ, µ) < 0,
that is ,(0, ṽ) is linearly unstable, in each of the following cases

(a) ā(t) > 0 (t ∈ [0, 1]), a is of classC1 andω is small enough,
(b) ω is large enough,
(c) ν is large enough,
(d) supx,t |a(x, t) − â(x)| is small enough.

If ω, ν anda are fixed such thatmaxx∈�̄(a − ṽ)ˆ(x) > 0 (this condition does not
involveµ), thenλ(a − ṽ, µ) < 0 also in the case

(e) µ is sufficiently small.

The hypothesismaxx∈�̄(a − ṽ)ˆ(x) > 0 is satisfied ifν is sufficiently large.

The proofs of (a), (b) and (d) are analogous to the proofs of the corresponding
statements of Lemma 3.3 and are omitted.

For the proof of (c) we need the following preliminary result on the behavior of
the fast diffuser when ν → ∞. For future purposes, we state a more general result
dealing with any periodic solution.

Lemma 3.7. Assume that̂̄a > 0. Let νk > 0 be a sequence approaching∞ and
let (uk, vk) be an periodic solution of(1.5) with ν = νk such thatuk ≥ 0, vk ≥ 0.
Then the sequence{(uk, vk)} is relatively compact inC(�̄× [0, 1]) and the limit of
any of its convergent subsequences is a 1-periodic solution(u∗, v∗) of the shadow
system:

ωut = µ�u + (a(x, t) − u − ζ )u,

ωζt = (ā − ū − ζ )ζ x ∈ �, t > 0.
(3.24)

Proof. The result is essentially proved in [9], however a few modifications are
necessary. We give some details. For ν ≥ µ let Aν denote the unbounded closed
operator on Y = C(�̄) defined by

D(Aν) = {u ∈
⋂
p≥1

W 2,p(�̄) :
∂u

∂n
= 0, on ∂�, �u ∈ Y },

Aνu = ν�u (u ∈ D(Aν)).
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Then Aν generates an analytic semigroup eAνt on Y and we have the following
estimate (see [23, Sect. 3.1.5])

‖eAνtu‖Y 1/2 ≤ Mt−1/2‖u‖Y , (u ∈ Y, t > 0). (3.25)

Here Y 1/2 stands for a Banach space (a fractional power space) compactly imbed-
ded in Y , and M is a constant independent of ν (one chooses a constant for ν = µ

and scales time to find a ν-independent constant). Moreover, on the invariant space

Y⊥ := {u ∈ Y : ū = 0},
the spectrum ofAν consists of positive eigenvalues, therefore we have the estimates
(see [12,23])

‖eAνtw‖Y ≤ Ke−νrt‖w‖Y , (w ∈ Y⊥, t > 0),
‖eAνtw‖Y 1/2 ≤ Ke−νrt t−1/2‖w‖Y , (w ∈ Y⊥, t > 0),

(3.26)

where K, r > 0 are independent of ν (using the scaling of t again). Now, as in [5],
the maximum principle implies that the periodic solutions (uk, vk) are uniformly
bounded in X = Y × Y :

max {‖uν‖L∞(�×(0,1)), ‖vν‖L∞(�×(0,1))} ≤ max
x,t

a(x, t). (3.27)

Thus along the solutions (uk, vk) the nonlinearities in (1.5) are uniformly bound-
ed in X. By (3.25), a standard estimate using the variation of constants implies
that (uk(·, 1), vk(·, 1)) (which is the same as (uk(·, 0), vk(·, 0)), by periodicity) is
bounded in Y 1/2 × Y 1/2, hence relatively compact in X. The assertion can now be
proved using the estimates (3.26) and the estimates in Lemma 1 of [9]. �

Proof of Lemma 3.6 (c) (d).It follows from Lemma 3.7 that as ν → ∞, the semitriv-
ial periodic solution (0, ṽ) approaches the function (0, ζ ), where ζ is a 1-periodic
solution of the equation

ωζt = (â − ζ )ζ.

It is easy to see that ṽ cannot converge to 0 (since there is a uniform subsolution),
hence ζ(t) > 0. The last equation then gives (â − ζ̂ )¯ = 0. As a is not spatially
constant, Lemma 2.4(a) implies that λ(a − ζ, µ) < 0. Therefore, by continuity of
λ in the first argument, we also have λ(a − ṽ, µ) < 0 if ν is large enough. This
proves (c).

Next note that under the hypothesis maxx∈�̄(a − ṽ)ˆ(x) > 0, the inequality
λ(a − ṽ, µ) < 0 follows directly from Lemma 2.4(c). To see that the hypothesis
is satisfied for large ν, we use the property (â − ζ̂ )¯ = 0 again. Since a is not
spatially constant, it clearly implies that â(x)− ζ̂ > 0 for some x. Therefore, also
(a − ṽ)ˆ(x) > 0 for this value of x if ν is large enough. �

In the following lemmas the stability of the fast diffuser is opposite to that in
the autonomous case.

Lemma 3.8. Assume that̂a ≡ 0 but a is not spatially homogeneous. Then, the
semitrivial periodic solution(0, ṽ) exists (for anyµ) and forµ sufficiently small
one hasλ(a − ṽ, µ) > 0, that is,(0, ṽ) is linearly stable.
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Proof. We have λ(a, ν) < 0 by Lemma 2.4(a), thus the semitrivial periodic solu-
tion exists. Take h = a − ṽ and note that ĥ(x) = −ˆ̃v < 0 for every x ∈ �̄. The
result follows from Lemma 2.4(c). �

Lemma 3.9. Leta(x, t) be as in Lemma 3.5. Then, there is a positive constantµ0
such that ifµ < ν are both sufficiently close toµ0 then system(1.5) has both
semitrivial periodic solutions and

λ(a − ũ, ν) < 0, λ(a − ṽ, µ) > 0. (3.28)

Proof. Let a(x, t) be as in Lemma 3.5. For any µ > 0 let ũµ denote the positive
periodic solution of (3.2), if it exists. By the implicit function theorem, ũµ exists
for an open set of values of µ, and it depends smoothly, in the supremum norm, on
µ. Consider the smooth function

β : (µ, ν) �→ λ(a − ũµ, ν).

By Lemma 3.5, there is a µ0 such that

Dνλ(a − ũµ0 , ν)|ν=µ0 < 0. (3.29)

It was noted in the proof of Lemma 3.5 that the function β vanishes on the diagonal

λ(a − ũµ, ν) = 0 for µ = ν.

By (3.29) and the implicit function theorem, the diagonal contains all solutions of
β(µ, ν) = 0 near (µ0, µ0), hence β takes opposite signs on the different sides of
the diagonal. This together with (3.29) imply (3.28). �

3.4. Stability table

The following table summarizes some of the stability and instability results proved
in this section. We indicate by + and − the linear stability and instability, re-
spectively, of the semitrivial periodic solutions and indicate the lemma where the
corresponding result is proved. In all cases, it is assumed that µ < ν and ˆ̄a > 0

Table 1.

a(x, t): µ, ν, ω: Slow diffuser Fast diffuser

∇â �≡ 0,
|a − â| small + (L 3.3) − (L 3.6)
∇â �≡ 0 ω large + (L 3.3) − (L 3.6)
∇â �≡ 0, ā > 0 ω small + (L 3.3) − (L 3.6)
∇â �≡ 0 ν large + (L 3.3) − (L 3.6)
Examples of a(x, t) µ, ν ≈ µ0 − (L 3.9) + (L 3.9)
â > 0 and ν large, µ < µ0(ν)
additional conditions with µ0(ν) small − (L 3.4) − (L 3.6)
â ≡ 0, ∇a �≡ 0 µ small ? − (L 3.8)



522 V. Hutson et al.

(so that both semitrivial periodic solutions exist). For simplicity we also assume
a ∈ C1 or a ∈ C2 where needed (see the lemmas for the precise assumptions).

The most interesting cases are those of simultaneous instability, which will be
used to prove coexistence, and of a stable fast diffuser and unstable slow diffuser,
which is opposite to the stability in the autonomous case.

4. Coexistence

In this section we discuss coexistence periodic solutionsof (1.5), that is periodic
solutions with both components positive. We first show that under certain condi-
tions on a(x, t) there exists a stable coexistence periodic solution ifµ is sufficiently
small. The proof is based on the observation that both semitrivial periodic solutions
are unstable together with a monotonicity argument. It does not appear to be very
easy to obtain more general conditions under which the existence of a stable coex-
istence periodic solution may be proved. However, formula (3.5) for λ in a small
perturbation case suggests that this existence is very common. This is confirmed
(without the small perturbation assumption) by computation, a sample set of results
being shown in the table below.

We also give an interesting example of a global bifurcation. With the function
a depending on a parameter γ , we find a branch of coexistence periodic solutions
connecting the fast diffuser (for γ =0) with the slow diffuser (for γ =1).

Theorem 4.1. Let a be as in Lemma 3.4. Then there areω > 0, 0 < µ < ν such
that (1.5) has an asymptotically stable coexistence periodic solution.

Proof. Note that a function a satisfying the hypotheses of Lemma 3.4 also satis-
fies the hypotheses of Lemma 3.6. By these two lemmas (more specifically, from
Lemma 3.6 we use (e) and the last statement), we can choose ω,µ, ν such that both
semitrivial periodic solutions exist and are linearly unstable. Monotonicity method
for competitive systems now yields a stable periodic solution (uc, vc) satisfying

0 < uc(x, t) < ũ(x, t) 0 < vc(x, t) < ṽ(x, t),

see [13, Sect. IV.33]. We prove that this stable periodic solution is actually as-
ymptotically stable. It is sufficient to show that (u0

c, v
0
c ) := (uc(·, 0), vc(·, 0) is

Table 2. a(x, t) = 1.0 + (0.25 + 0.5 sin 2πt) cosπx. Parameters ω = 0.25, ν = 0.1. Both
semitrivial periodic solutions appear to be unstable for all values of µ. Hence there is always
a stable coexistence periodic solution.

µ λ(a − ũ, ν) λ(a − ṽ, µ)

0.01 −0.0079 −0.037
0.05 −0.00030 −0.0039
0.075 −0.00046 −0.0011
0.095 −0.00016 −0.00018
0.0975 −0.000082 −0.000087
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an isolated fixed point of the period map � of (1.5); its asymptotic stability then
follows from a well-know result on monotone maps (see [2], for example).

We employ the fact that� is a real-analytic map onX (cf. [12]). Using a Lyapu-
nov-Schmidt reduction and continuation one can show that if (the stable fixed point)
(u0

c, v
0
c ) is not an isolated fixed point, then there is an unbounded curve of fixed

points. See [19,32,38] for results of this type that are easily adapted to the present
setting. Now, the existence of an unbounded curve of fixed points is ruled out by
an L∞ a priori bound on periodic solutions of (1.5). This shows that (u0

c, v
0
c ) is

isolated and therefore asymptotically stable. �

Theorem 4.2. There exists a smooth functiona(x, t, γ ) ofx ∈ �̄, t ∈ R, γ ∈ [0, 1]
that is 1-periodic int and is such that the system(1.5) with a = a(·, ·, γ ) has a
periodic solution(uγ , vγ ) with the following properties:

(i) γ �→ (uγ , vγ ) : [0, 1] → C(�̄) × C(�̄) is continuous,
(ii) uγ > 0 for γ ∈ (0, 1], vγ > 0 for γ ∈ [0, 1),

(iii) u0 = 0, v1 = 0.

Proof. Let h and ρ1 < ρ2 be as in statement (ii) of Theorem 2.2, that is λ :=
λ(h, ρ1) = λ(h, ρ2). Then there are positive 1-periodic solutions ξ , η of the equa-
tions

ωξt = ρ1�ξ + (h(x, t) + λ)ξ,

ωηt = ρ2�η + (h(x, t) + λ)η.

These solutions are smooth by parabolic regularity. Set

µ = ρ1, ν = ρ2,

a(x, t, γ ) = h(x, t) + λ + γ ξ + (1 − γ )η,

uγ = γ ξ, vγ = (1 − γ )η.

It is easy to verify that these functions have all the properties stated in the theorem.
�

5. Global dynamics: examples

In the autonomous case, the fact that there are no coexistence periodic solutions
combined with the competitive structure of (1.5) leads to the conclusion that the
slow diffuser, if it exists, is the global attractor for solutions in the positive cone

X+ := {(u, v) ∈ C(�̄) × C(�̄) : u > 0, v > 0}
(see [5]). The situation is quite different in the time-periodic case. Indeed, we have
seen above that coexistence periodic solutions may occur. The question of how
solutions of (1.5) behave for large t is certainly an interesting one, but it will not
be addressed here in general. We only give two theorems describing the global
dynamics in special cases. In the first one, we show that the dynamics can be “com-
pletely opposite” to that in the autonomous case; specifically, the fast diffuser is
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the global attractor. Then we consider two situations where the slow diffuser is the
global attractor. By [5], this is easily seen to be the case when a(x, t) is a small
perturbation of a nonconstant autonomous function. In Theorem 5.3 we discuss the
more interesting cases of large ω and large ν. In the former case the proof relies on
the method of averaging, in the latter case the shadow system is employed.

We use the following standard result on competitive systems (see Section IV.34
in [13]).

Lemma 5.1. Assume that(1.5) has both semitrivial periodic solutions, one of them,
say(us, vs), linearly stable, the other one linearly unstable. Further assume that
(1.5) has no coexistence periodic solution. Then the linearly stable semitrivial peri-
odic solution(us, vs) is the global attractor inX+. In other words, for any solution
(u, v) ∈ X+ of (1.5) one has

‖u(·, t) − us(·, t)‖L∞(�) → 0, ‖v(·, t) − vs(·, t)‖L∞(�) → 0 ast → ∞.

Theorem 5.2. Let a be as in Lemma 3.5, that is, for someµ > 0 the positive pe-
riodic solution ũ of (3.2) exists, andDνλ(a − ũ, ν)|ν=µ < 0. Then, forν > µ

sufficiently close toµ both semitrivial periodic solutions(ũ, 0), (0, ṽ) of (1.5) exist
and the fast diffuser(0, ṽ) is the global attractor inX+.

Proof. By assumption, there is a δ > 0 such that the condition

Dνλ(h, ν) < 0 (ν ∈ [µ,µ + δ]) (5.1)

holds true for h = a− ũ. Since λ(h, ν) is a smooth function of ν and h, there exists
a neighborhood U of a − ũ in C(�̄ × [0, 1]) such that (5.1) holds for any h ∈ U .

Now consider system (1.5) with ν = µ

ω
∂u

∂t
= µ�u + (a(x, t) − u − v)u,

ω
∂v

∂t
= µ�v + (a(x, t) − u − v)v.

(5.2)

Adding the equations, we see that u+ v satisfies the logistic equation (3.2). There-
fore if (u, v) �≡ 0 is any periodic solution of (5.2) with u ≥ 0, v ≥ 0, then
necessarily u + v = ũ. Substituting this in the first equation, we further see that if
u �≡ 0 then ũ and also u are positive eigenfunctions of the same periodic-parabolic
eigenvalue problem. Simplicity of the principal eigenvalue implies that u is scalar
multiple of ũ and, consequently, also v is a scalar multiple of ũ. We conclude that
all nonzero periodic solutions of (5.2) with nonnegative components are contained
on the curve

J := {(γ ũ, (1 − γ )ũ) : γ ∈ [0, 1]}.
The converse is obvious: any element of J is a nonzero periodic solution of (5.2).

We now consider (1.5) with ν ≈ µ as a small perturbation of (5.2). We show
that if ν > µ is sufficiently close to µ, then (1.5) has no coexistence periodic
solution.
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Suppose on the contrary, that for a sequence of values ν ↘ µ there exists a
coexistence periodic solution (uν, vν) of (1.5). By the maximum principle, there is
a uniform L∞-bound on (uν, vν), see (3.27). Using the compactness of the period
map, we conclude, passing to a subsequence, if necessary, that (uν, vν) converges,
as ν ↘ µ, to a periodic solution of (5.2). From the structure of periodic solutions
of (5.2) it then follows that uν + vν converges to ũ or to 0.

In the former case, we find a ν > µ so close to µ that a − uν − vν ∈ U , and
hence (5.1) holds for h = a − uν − vν . In particular,

λ(a − uν − vν, µ) < λ(a − uν − vν, ν).

On the other hand, since uµ, uν are both positive, by (1.5) we have

λ(a − uν − vν, µ) = λ(a − uν − vν, ν) = 0,

a contradiction.
In the latter case, uν + vν → 0, we still have λ(a − uν − vν, µ) = 0 (by

(1.5)), hence, taking the limit, λ(a, µ) = 0. But this contradicts the existence of
the positive periodic solution ũ, see Proposition 3.1.

These contradictions show that (1.5) has no coexistence periodic solution if ν
is close enough to µ. We also know by Lemma 3.9 that if ν is close enough to µ the
fast diffuser is stable and the slow diffuser is unstable. The assertion now follows
from Lemma 5.1. �

Theorem 5.3. Assume that̄̂a > 0 and thatâ is not constant. Then, both semitrivial
periodic solutions exist and the slow diffuser(ũ, 0) is the global attractor inX+ in
each of the following cases:

(a) ν is large enough,
(b) ω is large enough.

(As above, parameters not mentioned are assumed to be fixed.)

Proof. In both cases, the slow diffuser is linearly stable and the fast diffuser is
linearly unstable (see Lemmas 3.3, 3.6). By Lemma 5.1, we only need to rule out
coexistence periodic solutions.

Consider (a). Assume that there is a sequence νk → ∞ such that (1.5) with
ν = νk has a coexistence periodic solution (uk, vk). As in the proof of Theorem 5.2,
this means that

λ(a − uk − vk, µ) = λ(a − uk − vk, νk) = 0. (5.3)

Now by Lemma 3.7, we may assume (passing to a subsequence, if necessary) that
(uk, vk) converges in C(�̄× [0, 1]) to a 1-periodic solution (u∗, ζ ) of the shadow
system (3.24). It is easy to check that a−u∗ − ζ cannot be spatially homogeneous,
for the first equation in (3.24) would imply that u∗ and, consequently a, are spatially
homogeneous. Therefore, by Lemma 2.4(a), we have

λ(a − u∗ − ζ, µ) < −(ā − ū∗ − ζ ) .̂
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Using Remark 1 and the continuity of λ(·, ·) we now conclude that for large
enough k

λ(a − uk − vk, µ) < λ(a − uk − vk, νk),

contradicting (5.3).
Now consider (b). We again proceed by contradiction. Assume (uk, vk) is a

sequence of coexistence periodic solutions of (1.5) with ω = ωk → ∞. By the
maximum principle, there is a uniform L∞ a priori bound on (uk, vk). Using the
rescaled equation (1.4), the periodicity of uk , vk , and standard a priori estimates
(see for example [23, Section 4.4.3]), we further see that uk and vk are uniformly

bounded in the Hölder space Cθ, θ2 (�̄ × [0, 1]) for some θ > 0. Therefore passing
to subsequences, if necessary, we have

uk → u∞ and vk → v∞

in C(�̄, [0, 1]) for some u∞, v∞. Moreover, multiplying the first equation in (1.5)
by a test function ϕ ∈ H 2

0 (�) and integrating over � × (t1, t2), we obtain∫
�

(uk(x, t2) − uk(x, t1))ϕ(x) dx → 0 as ωk → ∞.

Hence ∫
�

(u∞(x, t2) − u∞(x, t1))ϕ(x) dx = 0

for any t1, t2 and ϕ ∈ H 2
0 (�), which implies that u∞ is independent of t . Similarly,

v∞ is independent of t .
We now compare the following two linear problems (assuming Neumann bound-

ary conditions as always).

∂ξ

∂t
= ρ�ξ + [â(x) − u∞(x) − v∞(x)]ξ, (5.4)

and
∂η

∂t
= ρ�η + [a(x, ωkt) − uk(x, ωkt) − vk(x, ωkt)]η. (5.5)

Applying [12, Theorem 7.5.2], as in the proof of Lemma 3.3, one shows that, as
k → ∞, the evolution operator of (5.5) converges in the operator norm of C(�̄) to
the evolution operator of (5.4), uniformly on compact time intervals. In particular,
if�k denotes the period map of the 1

ωk
-periodic problem (5.5) and�∞ is the time-1

map of (5.4) then
�

[1/ωk]
k → �∞, (5.6)

where [1/ωk] is the integer part of 1/ωk . Since (uk, vk) is a coexistence periodic
solution, we see that for ρ = µ and ρ = ν, the principal eigenvalue of �k is equal
to 1. Of course, the principal eigenvalue of �[1/ωk]

k is then also equal to 1 and from
(5.6) we conclude that the principal eigenvalue of �∞ is equal to 1 for both ρ = µ

and ρ = ν. However, by Theorem 2.1, the principal eigenvalue of the autonomous
problem (5.4) is increasing in ρ (note that â − u∞ − v∞ is not constant, otherwise
both u∞ and v∞ are constant, consequently a is constant in x). This contradiction
rules out coexistence periodic solutions of (1.5) for large ω. �
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We finish the section with a few remarks on interesting problems concerning
the global dynamics of (1.5).

First we discuss the typical behavior of solutions. As a consequence of abstract
results on strongly monotone dynamical systems (see [29,30] or [35]), one obtains
the following property. There is an open and dense subset G of X+ such that any
solution of (1.5) emanating from G approaches a solution (u, v) that is k-periodic
in t , for some positive integer k, and that is at least linearly neutrally stable. Here
“at least linearly neutrally stable” means that the Poincaré map of the (k-periodic)
linearized problem (3.1) has all eigenvalues inside or on the unit circle. If the min-
imal period of a k-solution is greater than 1, it is called a subharmonic solution.
Thus stable 1-periodic solutions and subharmonic solutions determine the large
time behavior of most solutions in X+.

The problem of the existence of stable subharmonic solutions is of fundamental
importance in the study of time-periodic equations that define a monotone dynami-
cal system. In various situations it has been resolved. See [14] for conditions ruling
out stable subharmonics and [33,34,3,31] for examples (including time-periodic
reaction-diffusion equations) where such solutions do occur. Whether or not (1.5)
can have stable subharmonic solutions for some function a, is certainly an interest-
ing nontrivial problem worth further investigation.

A similarly interesting problem is the one of multiplicity of coexistence periodic
solutions.

6. Concluding remarks

We comment finally on some points raised by the theoretical and numerical in-
vestigation. The first point concerns the rather difficult question of obtaining some
intuitive insight into the reason for the difference between the autonomous and
periodic cases. One might speculate that the faster phenotype (that is, the one with
the higher diffusion coefficient) could be selected as the organism would move
more rapidly to spatial regions which are better at any given time. Although this
is the most obvious argument, it is open to objection; certainly caution is needed
as the slower phenotype is selected both for small and large frequencies. From a
mathematical point of view, Fig. 1 suggests that there is ‘tuning’ of the diffusion
coefficient to frequency for the eigenvalue of the scalar problem. This leads, as
is confirmed by (3.5), to a similar effect for the two phenotype problem. Figure 3
shows that in a more realistic situation, where there are two temporal scales, the
picture may be very complex.

A particularly interesting issue is that of determining how selection operates
when there are several phenotypes and mutation. For the autonomous case it is
known [5] that the slowest phenotype is selected; in this special sense we shall
say that the lowest rate is ‘optimal’. Further, of course a stable polymorphism is
impossible. The periodic, multi-phenotype model is a great deal more difficult to
analyze. However, it is clear from the 2-phenotype case that the situation is more
complex. For our model, coexistence is certainly possible, as proved in Section 4,
and in other circumstances either the lower or higher rate may be optimal. For a
multi-phenotype model with mutation, one might expect that under some circum-
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Fig. 3. Here a(x, t) = 1 + 0.1 cosπx(0.1 + sin πt + 3.2 sin 24πt), µ = 0.5, ν = 2.0.
λ = λ(a − ũ, ν) is obtained from (3.5); for large ω it is positive. Note that there are two
intervals of ω for which λ is negative.

stances there would be an optimal rate whilst under others a polymorphism would
be obtained. The point of view taken in adaptive dynamics might be useful here,
see [6] and [28] for a discussion of a related model. With the theoretical knowledge
currently available, several of the questions in this area would probably have to be
tackled numerically.

We close with a few remarks concerning the mathematical side of the investi-
gation. The paper raises a number of interesting open questions. Even for the scalar
periodic-parabolic eigenfunction problem, see Section 2, although a great deal is
known, there remain questions about basic issues such as the broad qualitative
behavior of λ(h, ρ) to which answers are not available. For example, how does
it behave as a function of ω? Turning next to the coexistence solutions (Section
4), we know that these occur for a wide range of cases, but can there be multiple
coexistence solutions? Global questions (Section 5) are often difficult to analyze
and we point to some of the issues raised which would repay further study.

7. Appendix A

We give here theorems referred to in the introduction. The first one is concerned
with temporally homogeneous equations, as discussed in Subsection 1.2.

Theorem 7.1. Assumea is sufficiently smooth and independent oft : a(x, t) = a(x).
Further assume that either

(i) a(x) > 0 for all x ∈ �, or
(ii) for somex0 ∈ �, a(x0) > 0 and0 < µ < ν are sufficiently small.

Then, there are exactly three nonnegative equilibria for (1.1), (1.2) which take the
form:

(0, 0), (Ũ (x), 0) and (0, Ṽ (x)).
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Furthermore,(Ũ(x), 0) is the global attractor for all solutions of (1.1)–(1.3) with
positive initial conditionsu0, v0.

The asymptotic stability of the semitrivial equilibrium (Ũ(x), 0) is proved in
[11]. The above is a consequence of [5] where n phenotypes and mutation are
considered. Further discussion of the literature may be found in these references.

We next consider spatially homogeneous but temporally heterogeneous equa-
tions, as discussed in Subsection 1.3. It is reasonable to assume that the temporal
change in the environment is bounded and recurrent, though not necessarily pe-
riodic. A mathematically tractable but much less restrictive assumption on a than
periodicity is almost periodicity, which for completeness we now define. A subset
U of R is said to be relatively dense if there is anL > 0 such that [s, s+L]∩U �= ∅
for every s ∈ R. Let

T (a, ε) = {s : |a(t + s) − a(t)| < ε for all t ∈ R}.
Then, a is almost periodic if for every ε > 0, T (a, ε) is relatively dense. It should
be noted, especially if one allows for errors in measurements, over any finite time
period it is essentially impossible to distinguish an almost periodic and a stochastic
fluctuation in the environment.

Under this hypothesis (1.1) reduces to

∂u

∂t
= µ�u + (a(t) − u − v)u,

∂v

∂t
= ν�v + (a(t) − u − v)v, x ∈ �, t > 0.

(7.1)

Using a result of G. Hetzer and W. Shen [16, Theorem C] the global dynamics of
this system can be described.

Theorem 7.2. Let u0 and v0 be non-negative continuous functions on�̄ and let
(u, v) be a solution of (7.1), (1.2), (1.3). Then, there exists a non-negative spatially
homogeneous solution(u∗(t), v∗(t)), of (7.1), (1.2) such that

lim
t→∞ ||u(x, t) − u∗(t)|| = 0 lim

t→∞ ||v(x, t) − v∗(t)|| = 0.

Here ‖ · ‖ stands for the supremum norm.

8. Appendix B

In this appendix we give the proofs of Lemmas 2.3, 2.4.

Proof of Lemma 2.3. Since exp(−λ(h, ρ)) is a simple eigenvalue of the period
map of (2.2), it depends smoothly on ρ, and also the corresponding eigenfunctions,
φρ(·, 0), ψρ(·, 0), normalized as in (2.5), (2.6), are smooth C(�̄)-valued functions
of ρ (see [22]). Consequently, by standard regularity results (see [12]), ρ �→ φρ is
a smooth C1(�̄× [0, 1])-valued map and its derivative φ′ := Dρφρ is a 1-periodic
solution of

ωφ′
t − ρ�φ′ − (h + λ)φ′ = �φ + λ′φ, (8.1)
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where
λ′ = Dρλ(h, ρ).

Multiplying (8.1) by ψρ(x, t), integrating over �̄ × [0, 1] and rearranging, we
obtain (omitting the subscript ρ)∫ 1

0

∫
�̄

{
ωφ′

tψ − ρ�φ′ψ − hφ′ψ
} =

∫ ∫
�φψ + λ′

∫ ∫
φψ.

Integrating by parts and using (2.3), one obtains (2.4). �
Proof of Lemma 2.4. Divide (2.1) by (the positive function) φ and integrate over
� × (0, 1) to obtain

λ(h, ρ) = −ρ

∫ 1

0

∫
�

|∇φ|2
φ2

−
∫ 1

0

∫
�

h(x, t).

This implies (a) (note that ∇φ �≡ 0 if h is not spatially homogeneous).
We prove (b). By the maximum principle, there is a uniform lower bound on

λ(h, ρ), hence, by (a), λ(h, ρ) stays bounded as ρ → ∞.
We normalize φ:

1

|�|
∫ ∫

φ2 = 1,

with the integral over (0, 1) × �.
Multiplying (2.1) by φ and integrating, we obtain the equation

ρ

∫ ∫
|∇φ|2 −

∫ ∫
(h + λ(h, ρ))φ2 = 0, (8.2)

and it follows that for some constant c1 independent of ρ,∫ ∫
|∇φ|2 ≤ c1

ρ
. (8.3)

Let C = φ − φ̄. Then
∫
�
C = 0 and, by Poincaré’s inequality, there is a constant

k > 0 depending only on � such that
∫
�

|∇C|2 ≥ k
∫
�
C2. With ∇φ = ∇C, (8.3)

therefore gives ∫ ∫
|C|2 ≤ c1

kρ
. (8.4)

Now, integrating (2.1) over � and substituting φ = φ̄ + C, we obtain

ωφ̄t = (h̄ + λ)φ̄ + gρ(t),

where, by (8.4),
∫ 1

0 |gρ(t)|dt = O(1/ρ) as ρ → ∞. Using the integrating factor
in this first order differential equation, we find that

e− 1
ω

∫ t
0 (h̄+λ)φ̄(t) = φ̄(0) + O(1/ρ). (8.5)

As φ̄(1) = φ̄(0), we must have either (h̄ + λ)ˆ → 0 or φ̄(0) → 0, when ρ → ∞.
The former gives assertion (b). We show that the latter is impossible. Suppose it
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holds. Then, by (8.5), also φ̄(t) → 0, uniformly in t ∈ [0, 1]. But this and (8.3)
imply, again by Poincaré’s inequality, that∫ ∫

φ2 → 0,

in contradiction to the normalization of φ.
We now prove (c). Rewrite (2.1) in the form

ω
∂φ

∂t
− ρ�φ − (h + λ0)φ = (λ − λ0)φ,

where λ0 is a constant. If ĥ is not constant, we may choose λ0 such that

− max
x∈�̄

ĥ < λ0 < −ˆ̄h.

For any such λ0 we have (h + λ0 )̂̄ < 0 and

∫ 1

0
max
x∈�

(h + λ0) ≥ max
x∈�

(h + λ0)ˆ > 0.

Under these conditions, one has λ(h, ρ)− λ0 < 0 for small enough ρ, as shown in
[13, p. 54, Example 17.2]. This implies

lim sup
ρ→0

λ(h, ρ) ≤ − max
x∈�̄

ĥ.

If ĥ is constant, the same relation follows from (a).
On the other hand, choosing any λ0 < − maxx∈�̄ ĥ, we have (h+ λ0)ˆ < 0 for

all x. So by [13, Prop. 17.3], λ(h, ρ) − λ0 > 0 for small enough ρ.
A combination of the above inequalities proves the result. �

Remark 1.An inspection of the proof of Lemma 2.4(b) reveals that the following
stronger statement holds: Assume that for large ρ, hρ(x, t) is a continuous function
on �̄ × [0, 1] such that ‖hρ − h‖L∞(�×(0,1)) → 0 as ρ → ∞. Then

lim
ρ→∞ λ(hρ, ρ) = −ˆ̄h.

This is used in the proof of Theorem 5.3.

Acknowledgements.V. H. and K. M. are grateful to the Erwin Schrödinger Institute, Vienna
for its generous hospitality during a protracted stay. They also express their gratitude to
Chris Cosner (University of Miami) and Glenn Vickers (University of Sheffield) for helpful
discussions. This work was started while V. H. and P. P. were enjoying the warm hospitality
of the Center for Dynamical Systems and School of Mathematics at Georgia Institute of
Technology.



532 V. Hutson et al.

References

[1] Chesson, P.: General theory of competitive coexistence in spatially-varying environ-
ments, Theor. Pop. Bio. 58, 211–237 (2000)

[2] Dancer, E.N.: Upper and lower stability and index theory for positive mappings and
applications, Nonlinear Anal., Theory Methods Appl., 17(3), 205–217 (1991)

[3] Dancer, E.N., Hess, P.: Stable subharmonic solutions in periodic reaction-diffusion
equations, J. Differential Equations., 108(1), 190–200 (1994)

[4] Dieckman, U., O’Hara, B., Weisser, W.: The evolutionary ecology of dispersal, Trends
Ecol. Evol. 14(3), 88–90 (1999)

[5] Dockery, J., Hutson, V., Mischaikow, K., Pernarowski, M.: The evolution of slow
dispersal rates: a reaction-diffusion model, J. Math. Biol., 37(1), 61–83 (1998)

[6] Doebeli, M., Ruxton, G.: Evolution of dispersal rates in metapopulation models:
branching and cyclic dynamics in phenotype space, Evolution, 51(6), 1730–1741
(1997)

[7] Durrett, R., Levin, S.: Spatial aspects of interspecific competition, Theoretical Popu-
lation Biology 53, 30–43 (1998)

[8] Ferriere, R., Belthoff, J., Olivieri, I., Krackow, S.: Evolving dispersal: where to go
next? Trends Ecol. Evol., 15(1), 5–7 (2000)

[9] Hale, J.K., Sakamoto, K.: Shadow systems and attractors in reaction-diffusion equa-
tions, Appl. Anal., 32(3-4), 287–303 (1989)

[10] Hale, J.K., Verduyn Lunel, S.M.: Averaging in infinite dimensions, J. Integral Equa-
tions., 2(4), 463–494 (1990)

[11] Hastings, A.: Can spatial variation alone lead to selection for dispersal? Theor. Pop.
Biol., 24, 244–251 (1983)

[12] Henry, D.: Geometric theory of semilinear parabolic equations, Springer, New York,
(1981)

[13] Hess, P.: Periodic-parabolic boundary value problems and positivity, Longman Scien-
tific & Technical, Harlow, (1991)
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