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Abstract. A reaction-diffusion model for the evolution of dispersal rates is considered in
which there is both spatial heterogeneity and temporal periodicity. The model is restrict-
ed to two phenotypes because of technical difficulties, but a wide range of mathematical
techniques and computational effort are needed to obtain useful answers. We find that the
question of selectionisagreat deal richer than in the autonomous case, where the phenotype
with the lowest diffusion is selected for. In the current model either the lower or higher
diffuser rate may be selected, or there may be coexistence of phenotypes. The paper raises
several open questions and suggestsin particular that a mutati on-sel ection multi-phenotypic
model would repay study.

1. Introduction

It has now become well accepted that it is essential to include the spatial environ-
ment in ecological, evolutionary and/or genetic models (see [24,36] for a variety
of perspectives and references). However, as soon as a spatial component is intro-
duced into the analysis, it becomes important to understand dispersal within the
environment and in particular the mechanisms for the evolution of dispersal rates.
Within the biological literature one can find the following claims:

1. Spatia heterogeneities occur at all scales of the environment [20].

2. Spatial variation that is temporally constant tends to reduce dispersal rates [4,
18,25].

3. Temporal changes in the environment tend to lead to higher dispersal rates [4,
18,37].

4. If habitats fluctuate both spatially and temporally, then the interaction between
the two determinesthe optimal dispersal rate[4]; alternatively thereistheclaim
that it can lead to coexistence of phenotypes with differing dispersal rates[25].
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The most direct way of incorporating the first point, and the path that we shall fol-
low, isto view space as acontinuous variable. Having made this choice, the purpose
of this paper isto present a mathematically tractable model which permits precise
formulations of claims 2-4, and then to examine to what extent they are valid.

Up to this point we have been deliberately vague asto our definition of dispers-
al. Obviously organisms have developed a wide variety of dispersal mechanisms
and no single model will be able to capture all of them. Since we wish to under-
stand as clearly as possible the mechanism behind the evolution of dispersal rates
we have chosen the ssimplest dispersal model consistent with a continuous spatial
variable, namely diffusion. Furthermore, since our goal isto understand how spatial
and temporal heterogeneity in and of themselves have an evolutionary impact we
have used a haploid model of a species where the only phenotypic differenceisthe
diffusion rate. Finally, we assume that the evolution is driven by competition and
that the local fitnessis density dependent.

With this in mind, consider 2 phenotypes of a species with densities u(x, t)
and v(x, t) at the point x in the smooth bounded domain 2 c R” at timet. The
phenotypes u and v have diffusion rates .« and v respectively where it is assumed
that

O<u=<v.

Thus, u aways represents the phenotype with the slower dispersal rate. Since the
phenotypes are taken to be identical in all other aspects, they both experience the
same per-capita rate of increase a(x, t) though « is alowed to change smoothly
in space and time. For the sake of simplicity of exposition we assume a logistic
growth function and, of course, intraspecific competition. Thus, the set of equations
we will consider take the form

d

i = uAu + (a(x,t) —u —v)u,

ot (1 1)
ov )
E:vAv+(a(x,t)—u—v)v, xeQ, t>0.

Again, to avoid the introduction of extraneous events we impose Neumann bound-
ary conditions

8—”:0, 8_1):0 ona, r > 0, 1.2
on on
where n isthe unit outward normal to 9<2; this corresponds to the assumption that
there is no migration across the physical boundary of the region.

We begin by returning to the first claim that spatial heterogeneities occur on
all levels. In particular, weinterpret thisin two ways. Given afixed spatial domain
thereis either no minimal size on which the environment should be viewed as ho-
mogeneous; or, perhaps more reasonably, the size of the homogeneous regionsis
small as compared to the size of the entire domain. In the first case, a continuous
model is necessary, and in the second, the continuous model should be viewed
as an approximation to a high dimensional system consisting of many different
homogeneous regions.
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A considerable body of literature on the evolution of dispersal has appeared in
thelast few years. A significant portion of the theoretical work that |ed to the above
mentioned claims are based on patch models, and an extensive list of references
may be found in the reviews[18,4, 8] and in the papers [6, 17,25, 37] for example.
We therefore wish to enquire to what extent this class of model is related to the
reaction-diffusion model (1.1). In the setting of a patch model, the environment
is essentially viewed as a collection of distinct patches and dispersal is taken to
be movement between the patches. This leads to a system of ordinary differential
equations, or more typically to a system of maps (perhaps because the latter are
more tractable numerically) discrete in both space and time. These models are no-
torioudly intractable analytically, and in our view this makes it difficult to obtain
convincing results concerning the effect of variation in the parameters and indeed
the structure of the models themselves. Furthermore, in our view the patch models
are quite different from (1.1). Indeed, it is well known that the approximation of
continuous evolution equations via discretization in time and/or spaceis adelicate
issue. In particular, it isnot uncommon for acoarse discretization, e.g. apatch mod-
el with few patches, to exhibit more solutions than the limiting system, in our case
the reaction diffusion system. Perhaps the simplest example of this phenomenais
thelogistic map x — ax (1 — x) which can be obtained via a coarse Euler approx-
imation to the corresponding differential equation x = x(1 — x). For appropriate
values of a the map exhibits chaotic dynamics, thus an infinite number of distinct
solutions, while the dynamics of the differential equation istrivial.

Unfortunately, just choosing more patches does not necessarily overcome this
problem. High dimensional systems provide better approximations only if the mi-
gration matrix incorporates appropriate scalings in space and time (see [27] for
such an analysis in the context of genetics). Because such scalings rapidly lead to
mathematically intractable systems, thisis often not done, in which case the spatial
structure of the problem is not explicitly represented in the limiting system (see[1]
for amore complete discussion).

Given the above mentioned difficulty of studying high dimensional patch sys-
tems which approximate spatially explicit models, one cannot expect that the cor-
responding partial differential equations should be easy to anayze. Fortunately
though the reaction diffusion system (1.1). is sufficiently tractable to allow us to
investigate rigoroudly the effect of simultaneous spatial and temporal fluctuations
in the habitat on dispersal rates. Our main aim is then to make a contribution to the
study of the rather difficult issues raised in Claim 4, and we outline our approach
and some of our main resultsin Subsection 1.3. However, wefirst consider Claims
2 and 3 as these are important limiting cases which provide perspective on our
results. To simplify the discussion we will assume that the initial conditions for
solutions to (1.1) are continuous nonnegative functions, that is

u(-,0) =ug, v(-,0) =g 1.3

where (ug, vg) € C(£2) x C() and ug, vg > 0.
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1.1. Spatially heterogeneous but temporally homogeneous

When the environment is time independent, that isa(x) = a(x, t) foral ¢t € R,
rather strong results may be proved [11,5], see Appendix A for details. However,
here we shall outline the principal conclusion in biological terms. It is the case
that in a very strong sense, and under very clear conditions,¢he phenotype
with the slowest dispersal rate will be select&gecifically, coexistence between
phenotypes of differing diffusion ratesisimpossible, and if two phenotypes of dif-
fering diffusion rates are present, then the phenotype with the faster diffusion rate
isdriven to extinction. Thisisin agreement with Claim 2.

Itistempting to arguethat thisresult followsfrom thefact that through diffusion
individua s are, in effect, moving into areasin which their fitnessis reduced. In our
view thisargument ison itsown rather unconvincing, and we are not ableto provide
aproof of the result along these lines. This is unfortunate, since it is conceivable
that such an argument could be applied to understanding the global dynamics of an
arbitrary number of phenotypes differentiated only by their diffusion rate.

On the mathematical side, the above assertion, formulated precisely in The-
orem 7.1, rests on two important points. The first is that in the time independent
case, the principle eigenval ue (which isthe one that determines stability) isamono-
tone function of the diffusion rate. The second isthat with only two phenotypesthe
system ismonotone and therefore the global dynamics can be ascertained. Unfortu-
nately, this monotonicity islost for systems representing three or more phenotypes
and so it remains an open question whether Theorem 7.1 can be extended.

1.2. Spatially homogeneous but temporally heterogeneous

Thesimplestinterpretation of thethird claimisthat temporal heterogeneity can have
an effect on dispersal rates even when the environment is spatially homogeneous.
Thisis certainly possible as is shown by the interesting Hamilton, May, Commins
patch model discussed in detail in [18]. However, it is probable that often Claim
3isimplicitly rather that a small spatially heterogeneous perturbation imposed on
the temporal heterogeneity causes an increase in dispersal rate.

Let us start investigating the situation when the environment is periodic but
spatialy constant, that is a(x, t) = a(z) for al x € Q. The periodicity of a is
assumed for the sake of simplicity, but note that the much more general class of
amost periodic functions can be dealt with in asimilar manner. We refer the reader
to Appendix A for additional remarks about this point and for the precise statement
of atheorem on which the following is based. With the environment as assumed
above, for any nonnegative initial conditiong, vo, the solution(u, v) of (1.1)
-(1.3)) tends to a spatially homogeneous solutiet(z), v*(t)) ast — oco. One
can also show that each such limit solution (u*(¢), v*(¢)) is stable, hence spatial-
ly heterogeneous perturbations die out. This is in contrast with patch models [1]
which permit solutions in which different patches support different numbers of
individuals at a given time instant.

Returning to the question of dispersal rates, consider any spatially homoge-
neous solution u™*(¢) /v*(¢) with v*(0) # 0. From (1.1) wethen obtaindw/dt = O,
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where w(r) = u*(t)/v*(¢). That is, the ratio of u* to v* is constant in time, and
there is no selection on the dispersal rate.

On the other hand, suppose an additional spatial perturbation is imposed on
the environment. Then the analysisin Section 3.2, in particular (3.5), suggests that
theremay be selection for either lower or higher dispersal rate. We summarizethese
observations as follows.

Conclusion 1. Temporal variability in the absence of spatial heterogeneity does
not select for or against dispersal. However, an additional small spatio-temporal
change in the environment may cause either selection for or against dispersal.

It is worth speculating why this conclusion is at odds with the perceptions of
the biological community. Another way of stating this conclusion is that temporal
variability has a neutral effect on dispersal rates. Thus, small perturbations to the
model could lead to dramatic changesin the asymptotic states and hence the selec-
tion for faster or ower diffusion. In many of the models which examine dispersal
rates against fluctuations in the environment the populations have distinguishing
features beyond just their dispersal rates; for further discussion see for example
[18,6,26,7,21,8]. It is conceivable that it is the interaction of these distinguishing
features and the time variability that has raised the idea that temporal changeslead
to higher dispersal rates. After al, aswill be made clear in this paper, theinteraction
between temporal and spatial variability can lead to a variety of outcomes.

In conclusion, it isworth noting in view of what follows that the above shows
that spatial homogeneity isasomewhat degenerate assumption in the context of our
model. For thereis afamily of homogeneous periodic solutions (u*, v*) with pos-
itive components which attracts all solutions (u, v) with positiveinitia conditions.
Thusfor any non-trivial initial conditions one gets coexistence asymptotically. This
contrasts with the situation described in section 1.1 and with that which follows.

1.3. Spatially and temporally heterogeneous

In this subsection we summarize the main body of our investigation, which is the
analysisof system (1.1) when a isallowed to have an arbitrary dependence on space
but is periodic in time. We remark that if more generally an arbitrary dependence
on timeisallowed, the analysisis likely to be considerably more difficult.

Thus we will recast (1.1) in the form

0
& uAu + (a(x, wt) —u — v)u,
gf) (1.4)
o =VvAv+ (a(x,wt) —u—v)v, x€,t>0

where w > 0 represents the frequency of the periodic oscillation. Rescaling the

time variable of (1.4) leadsto

du
= uAu+ (a(x,t) —u — v)u,
(1.5

0 —
ot
av

wg:vAv—i-(a(x,t)—u—v)v, xeQ, t>0.



506 V. Hutson et al.

We impose the following assumption which is a standing hypothesis for the re-
mainder of this paper:

(H) a is a continuous function on  x R and it is 1-periodic in ¢. Furthermore,
w>0and0 < u < v (usuadly, itisassumed that u < v).

Before continuing we make afew remarks on the mathematical setting of the prob-
lem. We make it a standing convention that Neumann boundary conditions are
imposed on solutions of all parabolic equations considered in the paper. Theinitial
conditionsfor problem (1.5) areassumedtoliein X := C(Q) x C(2). By solutions
of (1.5), (1.2), we understand mild solutions, that is solutions of the corresponding
variation of constant formula(see[12,23]). If a isHoIder continuous, then theseare
classical solutions. When referring to periodic solutions of (1.5), we mean, unless
stated otherwise, solutions that are 1-periodicin ¢.

It iswithin the context of this model that we have investigated the relationship
between dispersal rates and spatial and temporal heterogeneity, and been able to
draw the following conclusions for our model with two phenotypes.

Conclusion 2. For a given spatio-temporal heterogeneous environment, there need
not be an optimal dispersal rate (‘optimal’ being used here in the sense of ‘selected
for’).

Asisshown in Section 4 under certain conditionson a(x, ¢) and u sufficiently
small we are able to prove the existence of an asymptoticaly stable periodic so-
lution in which both variables u and v are positive. Furthermore, our numerical
investigations suggest that this is a fairly common phenomenon. We discuss this
issue further in Section 6.

As is pointed out in the review article of Gaines and Johnson [18] there are
few empirical tests for the evolution of dispersal. However, this conclusion adds
yet another difficulty to such an undertaking. Measuring precise dispersal ratesof a
population is extremely difficult. Sincein our model we are assuming that the only
phenotypic difference between individuals are their dispersal rates it is difficult
to imagine how an experimentalist would be able to distinguish between individ-
uals with different dispersal rates and errors in measuring the rate. In particular,
this result suggests that averaging of measurements between different individuals
requires justification.

Conclusion 3. A given spatio-temporal heterogeneous environment can select for
the higher dispersal rate.

Given theresultsin the settings of only spatial variability or only temporal vari-
ability, thisresult is somewhat surprising since it indicates that interaction between
spatia and temporal changes can completely reverse the effects of spatial heteroge-
neity alone. In particular, Theorem 5.2 statesthat under certain conditionsthe global
attractor for the set of positiveinitial conditionsisaperiodic solution (0, v*(x, 1)).
Thus the phenotype with the slower diffusion rate is driven to extinction.

Conclusion 4. Given any spatio temporal heterogeneous environment, if the fre-
guency of oscillatiomw is too large or too small then the phenotype displaying the
higher dispersal rate is driven to extinction.
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The precise formulation of this conclusion can be found in Theorem 5.3, how-
ever the point that needs to be made is that this reinforces our feeling that the
assertion that temporal variability selects for dispersal must be used cautioudly.
In fact, our numerical simulations suggest that given afixed a(x, ¢) if thereisa
range of frequencies w for which either one has coexistence of both phenotypes
or one has selection of the faster diffuser, then it is rather narrow; there is what
might tentatively be described asa ‘tuning’ in operation. We return to this point in
Section 6.

1.4. Outline of contents

Sections2-5 consist of atheoretical and numerical examination of asymptotic (large
time) behavior of the system (1.6), with the aim of discovering the conditions under
which one or the other of the phenotypes is selected or coexistence of phenotypes
holds. Since the periodic-parabolic problem is considerably more difficult than the
corresponding problem considered in [5], awide range of mathematical techniques
needs to be used. For example, in order to resolve the large v behavior, we employ
(an extension of) a shadow-system lemmain [9], and to understand the dynamics
when o — oo we rely on the method of averaging. We aso construct a num-
ber of classes of examples to show that certain types of behavior can arise. The
investigation throws up a number of open problems.

In Section 2 we examine the principal eigenvalue of ascalar periodic-parabolic
problem, focusing on its dependence on the diffusion coefficient. We also make
some remarks on its dependence on frequency. Both theoretical and computational
results are obtained, which extend the discussion in [13] and make a contribution
towards obtaining a broader view of the behavior of the periodic-parabolic eigen-
value. In Section 3, we consider semitrivial periodic solutions, by which we mean
time-periodic solutions (u, v) of (1.5) withu > 0, v > 0 and with exactly one of
the components identically equal to zero. We discuss stability properties of such
solutions under various assumptions on the parameters. For easy reference, these
results are summarized in atable at the end of the section.

In Section 4, we address the problem of coexistence. Thus we dea with the
guestion whether a stable periodic solution with both components positive may ex-
ist. We give sufficient conditions for this to happen. Using an explicit example, we
also indicate how a coexistence solution can appear and disappear viabifurcations
at semitrivial periodic solutions.

In Section 5, we describe the global dynamics of (1.4). At present we are only
ableto do thisin afew special cases, where the global attractor turns out to be one
of the semitrivial periodic solutions. We indicate basic problems that one has to
face when attempting more general results.

Finaly, in Section 6, we pick out anumber of particular pointsof interest which
have arisen during this investigation and discuss some of the biological implica-
tions.
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2. Theprincipal eigenvalue

A central notion in our investigation is that of the principal eigenvalue of alinear
periodic-parabolic operator. In this section we recall some of its basic properties
which are used throughout the paper. We then study in some detail the dependence
of the eilgenval ue on the diffusion coefficient. The main result saysthat, in contrast
to the time-independent problem, the principal eigenvalue may not be monotone
in the diffusion coefficient. This observation will help us to construct examples
of problems (1.5) demonstrating interesting phenomena that do not occur in au-
tonomous equations. We conclude with some remarks on the dependence of the
eigenvalue on the frequency . This section is crucia for an understanding of the
later analysis. However, in order not to interrupt the outline of the investigation,
we put the proofs of technical resultsin Appendix B.
Consider the eigenvalue problem

w%—?—pAd}—h(x,t)qﬁ:kqﬁ, xeQ,telR 2.1

where w, p are positive constants and % is a continuous function that is 1-periodic
inz. Recall, that by our standing convention, a zero Neumann boundary condition
isimposed on ¢.

Theprincipal eigenvaluef (2.1) isareal number A suchthat (2.1) hasapositive
1-periodic solution. It is known (see [13]) that such avalue exists, that it is unique
and that the corresponding 1-periodic solution ¢ is unique up to ascalar multiple.
Theeigenvaluesof (2.1) can equivalently be discussed in terms of the period-1 map
(that is, the Poincaré map) I1 : C(2) — C () of the equation

w%—pAqﬁ—h(x,t)qb:O, xe, t>0. (2.2
In particular, if A isthe principal eigenvalue of (2.1), then e~* isan eigenvalue of I1
with a positive eigenfunction. By the Krein-Rutman theorem, it is an algebraically
simple eigenvalue, it is greater than the modulus of any other eigenvalue, and no
other eigenvalue has a nonnegative eigenfunction. Furthermore, e~ is an eigen-
value of the adjoint operator IT* whose eigenvector isanonnegative functional. As
aconseguence one deducesthat A isthe principal eigenvalue of the adjoint problem

Y

_wg_pAl/,_h(x,m//:)hw, xeQ, teR. (23)

(Notethat upon time reversal, this becomes aregular periodic-parabolic equation.)
See [13] for more details on principal eigenvalues.

We denote by A(h, p) the principal eigenvalue of (2.1). By standard results
on perturbation of simple eigenvalues (see [22]), A(h, p) is a smooth function of
pe(0,00)andh € C(Q x [0, 1]).

We next examine monotonicity properties of p +— A(h, p). There appears to
be asignificant difference, crucial in our study, between autonomous and time-pe-
riodic equations. When & is independent of ¢, A(h, p) isincreasing in p, but this
may no longer be true in the time periodic case. We state the results precisely.
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Theorem 2.1. If & is independent of and it is not constant thep +— A (%, p) is
an increasing function:

Dyi(h, p) >0 (p € (0, 00)),
whereD, denotes the partial derivative with respectdo

In the next theorem and at other places below we frequently use the following
notation for the temporal and spatial averages of afunction’ : 2 x R — R.

1
h(x) =/ h(x, t)dt
0

- 1
h(t) = @/ﬁh(x,t)dx.

We say that a function A (x, t) is spatially homogeneous (or spatialy constant) if
h(x,t) = h(y,t) forany x, y, t.

Theorem 2.2. Leth(x,t) = h(x) + yH(x, 1), wherey € R (and H = 0), and
suppose thak lies in one of the following classes of functions.

(a) h is constant, and is not spatially homogeneous.
(b) h(x) <0 (x € Q), [i max, g H(x,1)dt > 0, andy is large.

Then the following two statements hold.

(i) DoA(h, p) < Ofor somep > 0,
(i) A(h, p1) = A(h, p2) for some0 < p1 < p2.

In the autonomous case, A(h, p) is the principal eigenvalue of a formally
self-adjoint elliptic operator, hence one can use its variational characterization.
This can be employed to prove the monotonicity property stated in Theorem 2.1
(see [5]). Alternatively, one can compute the derivative directly using Lemma 2.3
below. Anintriguing observation [15] which complements (b) above is that, under
weak conditionson i, A(h, p) < A(h, p). That is, effectively independent of the
environment, the principal periodic-parabolic eigenvalue is less than the principal
eigenvalue for the elliptic problem.

The time-periodic problem does not have a variationa structure. Although
A(h, p) can be shown to be monotone with respect to 4, as in the autonomous
case, it may in general fail to be monotonein p. In fact, Theorem 2.2 shows that it
is not monotone for alarge class of functions. Figure 1 illustrates thisin a special
case.

We proceed by stating two preparatory results; their proofs are given in Appen-
dix B. In the first one we compute the derivative of A (%, p).

Lemma2.3. One has

1
Dpk(h,p)zf /V(l)p(x,t)-Vl//p(x,t)dxdt, (2.4)
0 JQ
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0.2

12

—1

Fig. 1. The eigenvalue A(h, p) as a function of pY/? for h(x,t) = 4sin2ntcosmx and
w = 0.25.

whereg, (x, t) is the positive solution df.1) (with & = A(h, p)) with normaliza
tion

1
@/Qqsg(.,m =1, (25)

andv,(x, ) is the positive 1-periodic solution ¢2.3) with normalization

/Q o (x, O, (x, O)dx = 1. (2.6)

This lemma easily implies the conclusion of Theorem 2.1. Indeed, if & isin-
dependent of ¢, the adjoint eigenfunction  is a positive scalar multiple of ¢ (and
they are both independent of 7). Hence (2.4) gives D,A(k, p) > 0. Below, we shall
use Lemma 2.3 again when discussing the dependence of the principal eigenvalue
on w.

Lemma 2.4. The following statements hold

@ Ak, p) < —li (p € (0, 00)) with strict inequality ifz is not spatially homo-
geneous.
() limy— 00 A(h, p) = —h.

(© limp—oA(h, p) = —max_ g h(x).

Proof of Theorem 2.2 (a) Clearly from Lemma 2.4(b),(c)
lim A(h, p) = —h = lim Ak, p).
p—0 p—>00

The result follows from Lemma 2.4(a).
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0.1 0.2 0.3 0.4 0.5
(O]

Fig. 2. The eigenvalue A(%, p) plotted against w for h(x,t) = 2sin2xtcosnwx and p =
0.05.

(b) Theideaisto use[13, Lemma 15.4]; the reader iswarned of possible confu-
sionresulting from thedifferent role played by A there. Also, 2 must beincorporated
in the elliptic operator A4 [13, pp. 34, 38] by putting ag = —h(x).

Fix some pp > 0. Then by the lemma referred to above we may choose y so
largethat A (%, po) < 0. By Lemma 2.4, A(h, po) has nonnegative limitsasp — 0
and p — oo, and the result follows. O

An interesting question, both for its own sake and also for itsimplications in
the biological problem, concerns the role of the frequency » and we conclude the
section with some remarks on it.

Supposethat aformal expansion of the principal el genvaluein negative powers
of w is carried out; the details are somewhat tedious and we shall omit them here.
For the case A = 0, with / not spatially homogeneous, one finds that to order
w1, V¢ = —V. It then follows from Lemma 2.3 that for any fixed p and large
enough w, D,A(h, p) < 0. This provides another range of examples for which the
conclusions of Theorem 2.2 hold. It does not appear to be easy to obtain further
analytical results of thisnature. Some numerical calculations have been carried out
for a case where i = 0, and these suggest that A(h, p) is an increasing function
of w and tends to afinite negative limit as w — 0, see Fig. 2. This conclusion is
supported for A(eh, p) when e issmall by using an expansion technique. However,
aproof of the general result is not available.

3. Semitrivial periodic solutions and their stability

In this section we examine the semitrivial periodic solutions of (1.5), i.e. those
1-periodic solutions with one of the components u, v equal to zero and the other
component positive. Obvioudly, the nonzero component of a semitrivial periodic
solution is a solution of a scalar logistic equation. We examine that equation in
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Subsection 3.1. In Subsections 3.2 and 3.3, we separately consider the stability of
the slow diffuserand fast diffuserby which we mean semitrivial periodic solutions
of theform (u, 0) and (O, v), respectively.

In the whole of this section we assume the standing hypotheses given in the
introduction (€2 isasmooth bounded domain, a (x, t) isacontinuousfunctionthatis
1-periodicin ¢t and zero Neumann boundary conditions are assumed with parabolic
equations throughout).

We use the notion of linear stability of periodic solutions asin [13]: aperiodic
solution (u, v) of (1.5) islinearly stableif all eigenvalues of the period map of the
linear variational equation

2
o2 = A+ (a(x, 1) — 1 — V)il — u(ii + D),

ot

o (3.1)
a)a:UA17+(a(x,t)—u—v)ﬁ—v(ﬁ+17), xeQ,t>0,

(under Neumann boundary conditions) have modulus less than 1. If at least one
eigenvalue has modulus greater than 1, the periodic solution (u, v) issaid to belin-
early unstableWe remark that the period mapsthat we discuss are always compact
(since €2 is bounded) and therefore their spectrum consists entirely of eigenvalues
and the point 0. For different types of equation, the linear stability is understood in
an analogous way. Of course, when the principal eigenvalue of the linearizationis
defined, its sign determines the linear stability. This appliesin particular to scalar
equations to be discussed in the Subsection 3.1.

If aperiodic solution (u, v) islinearly stable, then it isasymptotically stablen
the sensethat (u(-, 0), v(-, 0)) isan asymptotically stable fixed point of the period
map F : X > X of (1.5) (recall that X = C(Q) x C(Q)).

Conversely, alinearly unstable periodic solution is not stable. For a semitrivial
periodic solution (u, v) this can be made more specific. If it is linearly unstable,
then (u(-, 0), v(-, 0)) isan unstablefixed point for therestriction F | x+ of the period
map to the positively invariant cone X = {(u, v) : u > 0, v > 0}. Thisfollows
from the competitive structure of (1.5) (see[13, Sect. IV.33] for details).

3.1. The logistic equation

Let (u, v) be asemitrivial periodic solution of (1.5). For definiteness assume that
v = 0, the other case can be treated in a similar way. Then i is a solution of the
equation

9
wa_”t‘ = uAu+ (@, 1) —wu, xeQ,t>0. (3.2)

From the previous section werecall that A.(h, p) isthe principal eigenvalueof (2.1).
Withh = a and p = u, (2.1) isthe linearization of (3.2) around u = 0. Thus the
conditions A.(a, u) < 0inthefollowing proposition means that the trivial solution
of (3.2) islinearly unstable. A sufficient, but by no means necessary, condition for
thisisa > 0, see Lemma 2.4.
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Proposition 3.1. A positive 1-periodic solutior of (3.2) exists if and only if
ra, u) < 0. If the solution exists then it is unique, linearly stable, that is,
Ala — 2u, ) > 0, and globally attractive, that is, any positive solutirof (3.2)
satisfies

(-, 1) — i (-, [)||Loo(gz) — Qast — oo.

See [13, Sect. 111.28] for the proof.

Proposition 3.1 in particular impliesthat i (-, 0) is anondegenerate fixed point
of the period-1 map of (3.2). Therefore, by the implicit function theorem, i (-, 0)
depends smoothly on the parameters in the equation. This statement will be made
more precise when needed.

We next characterize the stability of semitrivial periodic solutions relative to
system (1.5).

Lemma 3.2. Assume.(a, 1) < 0so thatthere exists a unique semi-trivial periodic
solution (i, 0) of (1.5). Then this periodic solution is linearly stable, respectively
linearly unstable ifx(a — u, v) > 0, respectivelyr(a — i, v) < 0. Analogous
statements hold for the semitrivial periodic soluti@ v) if A(a, v) > 0.
Proof. For (u, v) = (u, 0), thelinearization (3.1) simplifiesto thetriangul ar system
9ii
L = uAi + [alx, 1) — 2ilid — @b,
ot (33)
®— =VAU + [a(x,t) — u]v.
at
Let IT be the period map of this system. It is easy to see that if y isan eigenvalue
of I then it is either an eigenval ue of the period map of the second equation (if the
eigenfunction has a nonzero v-component) or an eigenvalue of the period map of

0
® a_f = uAii + [a(x, t) — 2ili. (34)

Equation (3.4) is the linearization of the logistic equation at its positive solution,
hence, by Proposition 3.1, all eigenvalues of the period map of (3.4) lieinside the
unit circle. The linear stability of (i, 0) is therefore determined by the principal
eigenvalue of the second equation and we obtain the linear stability and instability
criteriaasin the lemma O

3.2. Slow diffuser

In this subsection we give various conditions on the stability and instability of the
semitrivial periodic solution (iz, 0), provided it exists. For the sake of simplicity, we
usually make the assumptiona > 0 which guaranteesthat both semitrivial periodic
solutionsexist for al values of the parameters. In several cases this assumption can
be relaxed, but we will not consider this question here.

Thereader may find it instructive to look at the following special examplefirst.
Take the one-dimensional domain 2 = (0, 1) and let

a(x,t)y =14+€q(x,1),
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where ¢ can be expanded in the double Fourier series

o0

qg(x,1) = Z CcoSm x (amy COS2w Nt + by, SN 27w 0t).
m,n=0,m~+n#0

Then one can show formally, that for small ¢,

2_2) M . m? 2
Ma—it,v) = (v — p)eme] — ———a
( )==w ZVle(l+,um27r2)2 mo

+}5§ m?(uvm*n? — 4n°w?) (a2, + b2,)
4 [r2v2m* 4+ 4n202][(1 + um2w2)2 4 4n2n202?]

m,n>1

+0(3). (35)

Of course, we recover A(a — v, i) by interchanging i and v. From this formula
one can find several relations between the parameters that give A(a — i, v) > 0
or A(a — u,v) < 0. It turns out that the estimates of 1 give afairly reliable guide
to the general case in many circumstances, even for ¢ as large as 1 or 2. We give
rigorous proofs of the stability results is some limit situations, assuming that one
of the parametersis small or large. Other cases will be treated numerically.

In the assertions bel ow the parameters not explicitly mentioned are assumed to
be fixed and may enter the indicated estimates. For example, the statement “a con-
dition holdsfor w small enough” should be interpreted as saying that the condition
holdsfor w < C where the constant C may depend on a, u and v.

Lemma 3.3. Assume that > 0, so that the semitrivial periodic solutiofi, 0)
exists for any0 < 4 < v andw > 0. Further assume that is not constant. Then
ra —u,v) > 0, thatis(it, 0) is linearly stable, in each of the following cases:

(@ a(@) > 0(r €[0,1)]), ais of classC! andw is small enough,
(b) w is large enough,

(c) v is large enough,

(d) sup, , la(x, t) — a(x)| is small enough.

Proof. (a) Consider the family of elliptic problems obtained formally by setting
w=0in(3.2)
0=puAu+ (alx,t) —u)u, x €, (3.6)

(as aways we assume Neumann boundary conditions). One can view (3.6) as the
stationary equation for the following autonomous logistic equation with artificial
time s and parameter ¢:

0
a_u =puAu—+ (a(x,t) —uw)u, xe,s>0. 3.7
s

Theassumptiona(t) > Oimpliesthat for any ¢, equation (3.7) hasapositivelinear-
ly stable periodic solution ug(-, ¢). Thisperiodic solution isunique, by Lemma3.1,
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hence, by the periodicity of a, ug(x, r) is 1-periodic in ¢. It follows (see [34]) that
for w sufficiently small, there existsalinearly stable 1-periodic solution u,, of (3.2)
that satisfies

e — MO”LOO(QX(O’]_)) — Qasw — 0. (38)

Thisproperty in particular impliesthat u,, ispositivefor small w, hence, by unique-
NEss, u, = u.

Wenext claimthat A(a —ug, v) > 0, which, combined with (3.8) and continuity
of A(h,v)inh € C(Q x [0, 1]), impliesthat A(a — u, v) > 0 for small .

To prove the claim, let A(z) and ¥o(-, t) > 0O be the principal eigenvalue and
L2-normalized eigenfunction of the elliptic eigenvalue problem

vAw + (a(x, 1) —ug(x,t) + AH)w = 0. (3.9

Clearly, A(t) and ¥o(-, t) are 1-periodicin¢. Thesign of A(¢) determinesthelinear
stability of the slow diffuser (1o, 0) of the artificial system

d
a)—u = uAu+ (a(x,t) —u — v)u,
gf) (3.10)
a)a— =vAv+ (a(x,t) —u—v)v, xe€, s>0,
s

(cf. Lemma 3.2). Since this system is autonomous for each ¢, we have A(t) > O as
proved in [5]. By continuity and periodicity, inf; A(z) > 0.

Now, weareassuming that a isof classCL. Thusugisof classC?, by theimplicit
function theorem, and consequently, yo(-, ¢) is of class C. Further, w = (-, 1)
satisfies

ow; — VvAw — (a(x,t) —ug(x, 1)) w = ow; + A(t)w.
If w is sufficiently small, the right-hand side of this equation is positive. Since the
equation has a positive 1-periodic solution vo(-, t), the principal eigenvalue of the
operator on the left-hand side is necessarily positive, that is, A(a — ug, v) > 0 (see
[13, Theorem 16.6 and Remark 16.7]). This completes the proof of (a).

(b) The result is based on the method of averaging (see [10] and references
therein for a general background). We first compare the logistic equation in the
following rescaled form

0
3—1: = uAu+ (a(x,wt) —w)u, xe€Q,t>0, (311
with the corresponding averaged equation
u R
Frie uAu + (a(x) —uwu, xe,t>0. (312

As a is assumed positive, (3.12) has a unique positive periodic solution g and
this periodic solution is linearly stable. Therefore, for w sufficiently large thereis
al/w-periodic solution u,, of (3.11) such that

Sup fluw (-, 1) — uollLe@) - 0asw — oo (313
t
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(see [12, Exercise 2, Sect. 7.5]). Thisin particular implies that for large w, u,, is
the unique positive solution of (3.11).
We next consider the linear equation

vy = VAV — (a(x, wt) —uy(x,wt))v x € Q, t >0, (3.19)

which determines the stability of the fast diffuser (see Lemma 3.2), and compare
it with the following autonomous equation

vy =VvAv — (a(x) —ug(x))v xe€Q, t>0. (3.15)

By (3.13), fi, — ugin C(R). Further,

1 1
/ (a(x, wt) —a(x))dt — 0, / (uep(x, wt) —ug(x))dt — 0
0 0

inC(Q) asw — oo. Therefore[12, Theorem 7.5.2] appliesin the present situation
(cf. [12, Sect. 7.5, Example 1]) and it asserts that the evolution operators of (3.14)
and (3.15) are close to one ancther, uniformly on compact time intervals, if o suf-
ficiently large. Now, thereisan r > 0 such that for any = > 0, the eigenvalues
of the time-t map of the autonomous equation (3.15) are contained in the circle
of radius e™"" (the slow diffuser (ug, 0) is linearly stable in the autonomous case
by [5]). Hence the same is true of the time-t map of (3.14), uniformly for = in
any compact interval in (0, c0), if w is large enough. This clearly implies the
assertion (b).

(c) The (positive) function iz satisfies (3.2). Divide that equation by u and inte-
grate over  x (0, 1) obtaining

Livil?
(a—u)y =—n — < 0.
QJo u

The assertion now follows from Lemma 2.4 ontaking h = a — i.

(d) The autonomous equation (3.12) has a unique solution «g and this solution
isahyperbolic equilibrium. With sup, , |a(x, t) —a(x)| smal, (3.1) isasmall per-
turbation of (3.12), henceits unique positive periodic solution i iscloseto ug. This
further impliesthat A(a — i, v) isclose to the principal eigenvalue of

wv; = VAV + (a(x) — ug(x))v + Av.

The latter being positive (the slow diffuser is linearly stable in the autonomous
case), weobtain A(a — i1, v) > 0. O

The situation that occurs under any of the above conditions (a)-(d) is similar
to that in the autonomous case, where the slow diffuser is always stable. However,
under certain other conditions, which we now consider, the stability is reversed
with (, 0) unstable



Dispersal rates in a heterogeneous time-periodic environment 517

Lemma 3.4. Assumer € C2(Q2 x [0, 1]), a(x) > 0 (x € Q) and

3
“;x”) —0 (x €99, 1 [0, 1]). (3.16)
n
Further assume that
ax, 1) # c(x)e®® +d(r) (3.17)

for any functions:(x), d(¢). Then foru sufficiently smallx(a — i, v) < O.

The assumptionsa € C%( x [0, 1]) and (3.16) can be relaxed, but this would
only burden the proof with additional technicalities.

Proof. Consider the formal limit of (3.2) when © — O:

a)?}—b: = (a(x,t) — u)u. (3.18)
The assumption @ > 0 implies that for each x € Q there is a unique positive and
linearly stable 1-periodic solution p(x, t) of the ODE (3.18). Asa is of class C?,
S0is p(x, ).
We claim that for each n sufficiently small, the positive solution u = u,, of
(3.2) exists and satisfies

luy — pllrc@x©,1) = 0asu N 0. (3.19)

Assume for the moment that the claim is true. Then A(v, a — u,,) approaches
A(v, a—p),asu \ 0. Theassertion of thelemmafollowsbecause A (v, a— p) < 0,
aswe now show. Let ¢ be a positive eigenfunction, corresponding to the principal
eigenvalue A = A(v, a — p), of the problem

oy —vAY — (a(x, 1) — p(x, )Y = Ay (3.20)
Dividing this equation by v and integrating by parts we obtain

A(v ) v/l vy [* /l/( )
,a—p)=— — a—p).
u 0 Jo V2 0 Ja u

By (3.18) and the periodicity of p,

1 1
[Leen- L2
0 JQ QJo P

Further we have Vi £ 0 for otherwise (3.20) impliesthat « — p is spatially ho-
mogeneous and then (3.18) leads to a contradiction with (3.17). We conclude that,
indeed, A(v,a — p) < 0.

It remainsto provetheclaim. Since p islinearly stable, an application of theim-
plicit function theorem showsthat thereisadp > 0 such that for any § € (—6o, do)
and x e Q there exist linearly stable 1-periodic solutions pai of the equations

a)?}—l;t =u(a(x,t) —u) £6. (3.2
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Strictly speaking, when applying theimplicit function theorem, one only obtainsa
8o depending on x, but using acompactness argument it is easy to seethat it can be
chosen independent of x. Clearly, pgt(x, 1) areof class C2inx, 1, § and we have

lps — pllLe@x©01 — 0asé — 0. (3.22)

In particular, pgt are positive (by choice of §o smaller if necessary). We next verify

the following properties:

(A) % =00n0%,

(B) ps < p;' if § >0,

(C) Forany § € (0, §p) there exists an mg = mo(8) such that for 0 < u < mg the
function p; (x, #) isasubsolution and p; (x, ¢) isasupersolution of (3.2).

To verify (A), we differentiate (3.21) with respect to x, in the normal direction.
Using (3.16), we obtain the following equation for v = apgt/an at any point
x € 082

wv; = (a(x, 1) — 2p§t(x, ))v. (3.23)

Since thisis the linearization of (3.21) along the linearly stable solution pg'(x, 1),
itsonly 1-periodic solutionisv = 0. Thisimplies (A).

Differentiating (3.21) with respect to §, we obtain a linear nonhomogeneous
equation for D; p;. This equation and the periodicity of p; yields Dsp;” > 0.
Since p3 = p, (B) follows.

Finally, for afixed § > 0 we have

w—= —/LAp;_ —(a(x,t) — p;')p;' = ,uAp;_ +48, xeQ,telR.

The right-hand side is positive if 1 is small enough, hence p;_ is a supersolution.
Similarly one showsthat p; is asubsolution.

Using (A) — (C) one proves, employing the monotonicity method for compet-
itive systems (see [13]), that there exists a periodic solution u of (3.2) satisfying
0<py <uc< p;_. By uniqueness, this periodic solution coincides with u,,.
Property (3.19) now follows from (3.22). O

Lemma 3.5. There exist a smooth functiom(x, t), 1-periodic inz, with the

following property. For some:. > 0 the positive solutior of (3.2) exists, and
Dyi(a — i, v)|y=, < O.In particular, A(a — i, v) < O for v sufficiently close to
wu (and greater thanu).

Proof. Choose i and p such that statement (i) of Theorem 2.2 holds. Without af-
fecting this property, we may assume, replacing i by i + const, if necessary, that
A(h, p) = 0. Let ¢ > 0 be the corresponding eigenfunction of (2.1). Set u = p,
and a(x,t) = h(x,t) + ¢(x,t). Then u = ¢ is a positive solution of the lo-
gistic equation (3.2), and for any v we have A(a — it, v) = A(h, v). Thisimplies
Dyi(a—ii, v)|y=, < 0.Nextobservethat A(a —u, u) = O(indeed, withh = a—u
and p = u, u is apositive eigenfunction of (2.1) with eigenvalue A = 0). Hence,
AMa —u,v) <O0forv > u,v~pu. |
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Lemma 3.4 shows that, for alarge class of a, (i, 0) is unstable for © small.
Lemma 3.5 has a different flavor and proves that an a exists such that (iZ, 0) is
unstable even for u very near v with u < v. We remark that thereis another set of
conditions ensuring this, which is suggested by the large w expansion discussed at
the end of Section 2, namely that @ = 0 and w is large enough.

3.3. Fast diffuser

We next examine the stability of the fast diffuser (0, v), v > 0. Again, in the
statements bel ow parameters not mentioned explicitly are assumed to be fixed.

In the autonomous case, the fast diffuser is always unstable. The next lemma
gives afew other conditions for thisto be the case.

Lemma 3.6. Assume thai > 0 and thata is not constant. TheR(a — ¥, ) < 0,
thatis , (0, v) is linearly unstable, in each of the following cases

(@ a(r) > 0(r € [0, 1]), a is of classC* andw is small enough,
(b) w is large enough,

(c) v is large enough,

(d) sup, ; la(x, 1) — a(x)| is small enough.

If w, v anda are fixed such thatax, . (a — v)"(x) > 0 (this condition does not
involvew), theni(a — v, u) < 0 also in the case

(e) w is sufficiently small.
The hypothesimax .5 (a — v)"(x) > Ois satisfied ifv is sufficiently large.

The proofs of (&), (b) and (d) are analogous to the proofs of the corresponding
statements of Lemma 3.3 and are omitted.

For the proof of (c) we need the following preliminary result on the behavior of
the fast diffuser when v — oo. For future purposes, we state amore general result
dealing with any periodic solution.

Lemma3.7. Assume thai > 0. Lety; > O be a sequence approaching and
let (uy, vr) be an periodic solution af1.5) with v = v such thatu; > 0, v > 0.
Then the sequendéuy, vy)} is relatively compact i€ (€2 x [0, 1]) and the limit of
any of its convergent subsequences is a 1-periodic sol@titn™*) of the shadow
system:

wuy = uAu+ (a(x,t) —u —¢u,

wl =@—u—2¢)¢ x e, t>0. (3.24)

Proof. The result is essentialy proved in [9], however a few modifications are
necessary. We give some details. For v > w let A, denote the unbounded closed
operator on Y = C(R2) defined by

)
D(A) = {u e [ W2P() : 8—” —0,0n0Q, AuecY)
p=1 "
Ayu =vAu (u € D(A))).
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Then A, generates an analytic semigroup e4** on Y and we have the following
estimate (see [23, Sect. 3.1.5])

~1/2

e ullyre < Mt=Y2|ully, @ eY,t>0). (3.25)

Here Y'1/2 stands for a Banach space (a fractional power space) compactly imbed-
dedinY, and M isaconstant independent of v (one chooses a constant for v =
and scalestimeto find a v-independent constant). Moreover, on the invariant space

Yt:={ueYy:a=0}

the spectrum of A, consistsof positive eigenval ues, therefore we havethe estimates
(see[12,23))

leA wlly < Ke " ||wlly, (weYtt>0),

3.26
leMwlye < Ke Y2 wlly, (we Yt 1> 0), (326

where K, r > 0 areindependent of v (using the scaling of ¢ again). Now, asin [5],
the maximum principle implies that the periodic solutions (uy, v;) are uniformly
boundedin X =Y x Y:

max {[luvllzoe(@x 0,1, o e @x 0,10} = MaX a(x, ). (3.27)

Thus along the solutions (i, vy) the nonlinearitiesin (1.5) are uniformly bound-
ed in X. By (3.25), a standard estimate using the variation of constants implies
that (ug (-, 1), vk (-, 1)) (which isthe same as (u (-, 0), vk (-, 0)), by periodicity) is
bounded in Y1/2 x Y1/2, hencerelatively compact in X. The assertion can now be
proved using the estimates (3.26) and the estimatesin Lemma 1 of [9]. O

Proof of Lemma 3.6 (c) (dit followsfrom Lemma3.7 that asv — oo, the semitriv-
ia periodic solution (O, v) approaches the function (0, ¢), where ¢ isa 1-periodic
solution of the equation
wl = (a—1¢)¢.

It is easy to see that v cannot converge to O (since there is a uniform subsolution),
hence ¢(r) > 0. The last equation then gives (4 — )™ = 0. Asa is not spatially
constant, Lemma 2.4(a) impliesthat A(a — ¢, 1) < 0. Therefore, by continuity of
A in the first argument, we also have A(a — v, n) < 0if v islarge enough. This
proves (c).

Next note that under the hypothesis max .. (a — ©)"(x) > 0, the inequality
Ala — v, u) < O follows directly from Lemma 2.4(c). To see that the hypothesis
is satisfied for large v, we use the property (@ — )™ = 0 again. Since a is not
spatially constant, it clearly impliesthat a(x) — ¢ > O for some x. Therefore, also
(a — 0)"(x) > Ofor thisvalue of x if v islarge enough. O

In the following lemmas the stability of the fast diffuser is opposite to that in
the autonomous case.

Lemma 3.8. Assume thafi = 0 but a is not spatially homogeneous. Then, the
semitrivial periodic solution0, v) exists (for anyu) and for u sufficiently small
one has\(a — v, u) > 0, that is, (0, v) is linearly stable.
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Proof. We have A(a, v) < 0 by Lemma 2.4(a), thus the semitrivial periodic solu-

tion exists. Take h = a — © and note that ~2(x) = —v < O for every x € Q. The
result follows from Lemma 2.4(c). O

Lemma 3.9. Leta(x, t) be as in Lemma 3.5. Then, there is a positive congtagnt
such that ifu < v are both sufficiently close tpg then systengl.5) has both
semitrivial periodic solutions and

AMa—1u,v) <0, Aa-—7v,u)>0. (3.28)
Proof. Let a(x, ) beasin Lemma3.5. For any u > O let iz, denote the positive
periodic solution of (3.2), if it exists. By the implicit function theorem, i, exists

for an open set of values of 1, and it depends smoothly, in the supremum norm, on
. Consider the smooth function

B, v) = Aa —iiy,v).
By Lemma 3.5, thereis a i such that
Dyi(a — iy, V) lv=po < 0. (3.29)
It was noted in the proof of Lemma 3.5 that the function 8 vanisheson the diagonal
Aa — iy, v) =0forpu =v.

By (3.29) and the implicit function theorem, the diagonal contains all solutions of
B(u, v) = 0near (o, (o), hence B takes opposite signs on the different sides of
the diagonal. Thistogether with (3.29) imply (3.28). O

3.4. Stability table

The following table summarizes some of the stability and instability results proved
in this section. We indicate by + and — the linear stability and instability, re-
spectively, of the semitrivial periodic solutions and indicate the lemma where the
corresponding result is proved. In all cases, it isassumedthat 4 < vanda > 0

Table 1.
a(x,t): W, v, . Slow diffuser  Fast diffuser
Va #£0,
la — a| small + (L 3.3) — (L 36)
Va #0 o large + (L 3.3) — (L 3.6)
Va#0,a>0 o small + (L 3.3) — (L 36)
Va#0 v large + (L 3.3) — (L 3.6)
Examples of a(x, t) W, VR o —(L 3.9 + (L 3.9)
a > 0and vlarge u < wo(v)
additional conditions  with wo(v) small — (L 3.4) — (L 3.6)
4=0,Va#0 w small ? —(L38)




522 V. Hutson et al.

(so that both semitrivia periodic solutions exist). For simplicity we also assume
a € Ctora e C? where needed (see the lemmas for the precise assumptions).

The most interesting cases are those of simultaneous instability, which will be
used to prove coexistence, and of a stable fast diffuser and unstable slow diffuser,
which is opposite to the stability in the autonomous case.

4. Coexistence

In this section we discuss coexistence periodic solutioms (1.5), that is periodic
solutions with both components positive. We first show that under certain condi-
tionsona(x, ) there existsastable coexistence periodic solutioniif  issufficiently
small. The proof isbased on the observation that both semitrivial periodic solutions
are unstabl e together with a monotonicity argument. It does not appear to be very
easy to obtain more general conditions under which the existence of a stable coex-
istence periodic solution may be proved. However, formula (3.5) for A in a small
perturbation case suggests that this existence is very common. This is confirmed
(without the small perturbation assumption) by computation, asample set of results
being shown in the table below.

We also give an interesting example of a global bifurcation. With the function
a depending on a parameter y, we find a branch of coexistence periodic solutions
connecting the fast diffuser (for  =0) with the slow diffuser (for y =1).

Theorem 4.1. Leta be as in Lemma 3.4. Then there ase> 0,0 < u < v such
that (1.5) has an asymptotically stable coexistence periodic solution.

Proof. Note that a function a satisfying the hypotheses of Lemma 3.4 aso satis-
fies the hypotheses of Lemma 3.6. By these two lemmas (more specificaly, from
Lemma 3.6 weuse (€) and thelast statement), we can choose w, ., v such that both
semitrivial periodic solutions exist and are linearly unstable. Monotonicity method
for competitive systems now yields a stable periodic solution (i, v.) satisfying

O<uc(x,t) <i(x,t) O<wvelx,t) <v(x,t),

see [13, Sect. 1V.33]. We prove that this stable periodic solution is actually as-
ymptotically stable. It is sufficient to show that (1°, v%) = (u.(-, 0), ve(-, 0) is

c’ e

Table2. a(x,t) = 1.0+ (0.25+ 0.5sin27¢) cosmx. Parametersw = 0.25, v = 0.1. Both
semitrivial periodic solutions appear to be unstablefor all valuesof . Hencethereisalways
a stable coexistence periodic solution.

2 Ma —u,v) Ma — v, )
0.01 —0.0079 —0.037
0.05 —0.00030 —0.0039
0.075 —0.00046 —0.0011
0.095 —0.00016 —0.00018

0.0975 —0.000082 —0.000087
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an isolated fixed point of the period map IT of (1.5); its asymptotic stability then
follows from awell-know result on monotone maps (see [2], for example).

We employ thefact that IT isareal-analytic map on X (cf.[12]). Using aLyapu-
nov-Schmidt reduction and continuation one can show that if (the stablefixed point)
2, v2) is not an isolated fixed point, then there is an unbounded curve of fixed
points. See[19,32,38] for results of thistype that are easily adapted to the present
setting. Now, the existence of an unbounded curve of fixed points is ruled out by
an L apriori bound on periodic solutions of (1.5). This shows that (u?, v0) is
isolated and therefore asymptotically stable. O

Theorem 4.2. There exists a smooth functietx, 7, y) ofx € Q,1 € R,y € [0, 1]
that is 1-periodic inr and is such that the systefh.5) witha = a(-, -, y) has a
periodic solution(u,,, v,,) with the following properties:

(i) y > (uy,vy) 1 [0,1] - C(Q) x C(R) is continuous,
(i) u,, > Ofory € (0, 1], v, > Ofory € [0, 1),
(iii) up =0, v1 = 0.
Proof. Let h and p1 < p2 be asin statement (ii) of Theorem 2.2, that is 1 =

A(h, p1) = A(h, p2). Then there are positive 1-periodic solutions &, n of the equa-
tions

w& = p1AE + (h(x, 1) + 1)E,
wn; = p2An+ (h(x,t) + M)n.

These solutions are smooth by parabolic regularity. Set

H=p1, V=p2
alx,t,y)=h(x,t) +Ar+yE+ A —y)n,
u, =y& v, =0—-yn.

Itiseasy to verify that these functions have all the properties stated in the theorem.
0

5. Global dynamics. examples

In the autonomous case, the fact that there are no coexistence periodic solutions
combined with the competitive structure of (1.5) leads to the conclusion that the
slow diffuser, if it exists, isthe global attractor for solutionsin the positive cone

Xy i={(u,v)eC(Q) xCQ):u>07v>0

(see[5]). Thesituation is quite different in the time-periodic case. Indeed, we have
seen above that coexistence periodic solutions may occur. The question of how
solutions of (1.5) behave for large ¢ is certainly an interesting one, but it will not
be addressed here in general. We only give two theorems describing the global
dynamicsin special cases. In thefirst one, we show that the dynamics can be“ com-
pletely opposite” to that in the autonomous case; specifically, the fast diffuser is
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the global attractor. Then we consider two situations where the slow diffuser isthe
global attractor. By [5], thisis easily seen to be the case when a(x, t) is a small
perturbation of anonconstant autonomous function. In Theorem 5.3 we discussthe
moreinteresting cases of large w and large v. In the former case the proof relieson
the method of averaging, in the latter case the shadow system is employed.

We use the following standard result on competitive systems (see Section V.34
in[13]).

Lemma 5.1. Assume thafl.5) has both semitrivial periodic solutions, one of them,
say (uy, vy), linearly stable, the other one linearly unstable. Further assume that
(1.5) has no coexistence periodic solution. Then the linearly stable semitrivial peri-
odic solution(uy, vs) is the global attractor inX .. In other words, for any solution

(u, v) € X4 of (1.5) one has

lu(, 1) —us -, )L = 0, lv(-, 1) — vs (-, D)l L) — 0ast — oo.

Theorem 5.2. Leta be as in Lemma 3.5, that is, for some> 0 the positive pe-
riodic solutionz of (3.2) exists, andD,A(a — i, v)|,=, < 0. Then, forv > u
sufficiently close ta both semitrivial periodic solution@z, 0), (0, v) of (1.5) exist
and the fast diffusef0, v) is the global attractor inX ...

Proof. By assumption, thereisa s > 0 such that the condition
DyA(h,v) <0 (v e[u,pn+d]) (5.1

holdstruefor i = a — . Since A(h, v) isasmooth function of v and 4, there exists
aneighborhood U of ¢ — 2 in C(2 x [0, 1]) such that (5.1) holdsforany # € U.
Now consider system (1.5) withv =

a)a—u = uAu+ (a(x,t) —u — v)u,
gf; (5.2)
w m = uAv+ (a(x,t) —u —v)v.
Adding the equations, we seethat u + v satisfiesthelogistic equation (3.2). There-
fore if (u,v) # 0 is any periodic solution of (5.2) withu > 0, v > 0, then
necessarily u + v = . Substituting thisin the first equation, we further see that if
u # Othen iz and also u are positive eigenfunctions of the same periodic-parabolic
eigenvalue problem. Simplicity of the principal eigenvalue impliesthat u is scalar
multiple of & and, consequently, also v is a scalar multiple of &. We conclude that
all nonzero periodic solutions of (5.2) with nonnegative components are contained
on the curve

J={(va, A=y :y €[0,1]}.

The converseis obvious: any element of J isanonzero periodic solution of (5.2).

We now consider (1.5) with v ~ p asa small perturbation of (5.2). We show
that if v > u is sufficiently close to u, then (1.5) has no coexistence periodic
solution.
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Suppose on the contrary, that for a sequence of values v N\ u there exists a
coexistence periodic solution (u,,, v,) of (1.5). By the maximum principle, thereis
auniform L°-bound on (u,, v,), see (3.27). Using the compactness of the period
map, we conclude, passing to a subsequence, if necessary, that («,,, v,) converges,
asv \{ i, to aperiodic solution of (5.2). From the structure of periodic solutions
of (5.2) it then follows that u,, + v, convergesto i or to 0.

In the former case, wefindav > u socloseto u thata — u, — v, € U, and
hence (5.1) holdsfor h = a — u,, — v,. In particular,

Aa —uy — vy, n) < Aa—uy — vy, v).

On the other hand, since u,, u,, are both positive, by (1.5) we have
Aa —uy — vy, u) =rla —u, —vy,v) =0,

acontradiction.

In the latter case, u, + v, — 0, we still have A(a — u, — v,, u) = 0 (by
(1.5)), hence, taking the limit, A(a, u) = 0. But this contradicts the existence of
the positive periodic solution i, see Proposition 3.1.

These contradictions show that (1.5) has no coexistence periodic solution if v
isclose enough to . We also know by Lemma 3.9 that if v isclose enoughto i the
fast diffuser is stable and the slow diffuser is unstable. The assertion now follows
from Lemma5.1. O

Theorem 5.3. Assume thai > 0and thata is not constant. Then, both semitrivial
periodic solutions exist and the slow diffugér 0) is the global attractor inX ;. in
each of the following cases:

(@) v is large enough,
(b) w is large enough.

(As above, parameters not mentioned are assumed to be fixed.)

Proof. In both cases, the slow diffuser is linearly stable and the fast diffuser is
linearly unstable (see Lemmas 3.3, 3.6). By Lemma 5.1, we only need to rule out
coexistence periodic solutions.

Consider (a). Assume that there is a sequence vy — oo such that (1.5) with
v = v hasacoexistence periodic solution (uy, vi). Asinthe proof of Theorem 5.2,
this means that

Ma —up —vg, ) = AMa — up — vg, vg) = 0. (5.3

Now by Lemma 3.7, we may assume (passing to a subsequence, if necessary) that
(ur, vr) convergesin C(2 x [0, 1]) to a 1-periodic solution («*, ¢) of the shadow
system (3.24). It iseasy to check that « — u* — ¢ cannot be spatially homogeneous,
for thefirst equationin (3.24) would imply that «* and, consequently a, are spatially
homogeneous. Therefore, by Lemma 2.4(a), we have

Ma—ut—C,u)<—(@—u*—2).
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Using Remark 1 and the continuity of A(-,-) we now conclude that for large
enough k

Aa —up — v, ) < Aa — ug — Vi, Vi),
contradicting (5.3).

Now consider (b). We again proceed by contradiction. Assume (ug, vy) isa
sequence of coexistence periodic solutions of (1.5) with w = wy — oo. By the
maximum principle, there is a uniform L a priori bound on (ug, vr). Using the
rescaled equation (1.4), the periodicity of uy, v, and standard a priori estimates
(see for example [23, Section 4.4.3]), we further see that u; and vy, are uniformly
bounded in the Holder space ct5 (€2 x [0, 1]) for some 6 > 0. Therefore passing
to subsequences, if necessary, we have

Up —> Uso aNd vy — Vo
in C (2, [0, 1]) for some uo, vse. Moreover, multiplying the first equation in (1.5)
by atest function ¢ € H&(Q) and integrating over Q x (11, f2), we obtain

/ (ur(x, t2) — ur(x, 11))p(x)dx — 0aswy — oo.
Q

Hence
fQ (oo (¥, 12) — oo (¥, 1)) (x) dx = O

foranyr,rpand g € Hg(Q), whichimpliesthat u, isindependent of z. Similarly,
Voo I1SiNdependent of 7.

Wenow comparethefollowing twolinear problems (assuming Neumann bound-
ary conditions as always).

ad
a_f = pAE +[a(x) — U (x) — Voo (¥)]E, (5.4)
and 5
8_;7 = pAn +[a(x, wkt) — ur(x, wrt) — v (x, wrt)]n. (5.5)

Applying [12, Theorem 7.5.2], as in the proof of Lemma 3.3, one shows that, as
k — oo, the evolution operator of (5.5) convergesin the operator norm of C(Q) to
the evolution operator of (5.4), uniformly on compact time intervals. In particular,
if IT;, denotesthe period map of the w—lk—periodic problem (5.5) and 1, isthetime-1
map of (5.4) then

mit/ed -, (5.6)

where [1/wy] isthe integer part of 1/wy. Since (ug, vy) 1S a coexistence periodic
solution, we see that for p = w and p = v, the principal eigenvalue of T1; isequa
to 1. Of course, the principal eigenvalue of l‘IEcl/ “l isthen also equal to 1 and from
(5.6) we conclude that the principal eigenvalue of I, isequal to 1 for both p =
and p = v. However, by Theorem 2.1, the principal eigenvalue of the autonomous
problem (5.4) isincreasing in p (notethat @ — us — v iSOt constant, otherwise
both 1, and v, are constant, consequently « is constant in x). This contradiction
rules out coexistence periodic solutions of (1.5) for large w. O
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We finish the section with a few remarks on interesting problems concerning
the global dynamics of (1.5).

First we discuss the typical behavior of solutions. As aconsequence of abstract
results on strongly monotone dynamical systems (see[29, 30] or [35]), one obtains
the following property. There is an open and dense subset G of X, such that any
solution of (1.5) emanating from G approaches a solution (i, v) that is k-periodic
in ¢, for some positive integer k, and that is at least linearly neutrally stable. Here
“at least linearly neutrally stable” means that the Poincaré map of the (k-periodic)
linearized problem (3.1) has all eigenvaluesinside or on the unit circle. If the min-
imal period of a k-solution is greater than 1, it is called a subharmonic solution
Thus stable 1-periodic solutions and subharmonic solutions determine the large
time behavior of most solutionsin X .

The problem of the existence of stable subharmonic solutionsis of fundamental
importance in the study of time-periodic equations that define amonotone dynami-
cal system. In various situationsit has been resolved. See[14] for conditionsruling
out stable subharmonics and [33,34,3,31] for examples (including time-periodic
reaction-diffusion equations) where such solutions do occur. Whether or not (1.5)
can have stable subharmonic solutionsfor some function «, is certainly an interest-
ing nontrivial problem worth further investigation.

A similarly interesting problemisthe one of multiplicity of coexistence periodic
solutions.

6. Concluding remarks

We comment finally on some points raised by the theoretical and numerical in-
vestigation. Thefirst point concerns the rather difficult question of obtaining some
intuitive insight into the reason for the difference between the autonomous and
periodic cases. One might specul ate that the faster phenotype (that is, the one with
the higher diffusion coefficient) could be selected as the organism would move
more rapidly to spatial regions which are better at any given time. Although this
is the most obvious argument, it is open to objection; certainly caution is needed
as the slower phenotype is selected both for small and large frequencies. From a
mathematical point of view, Fig. 1 suggests that there is ‘tuning’ of the diffusion
coefficient to frequency for the eigenvalue of the scalar problem. This leads, as
is confirmed by (3.5), to asimilar effect for the two phenotype problem. Figure 3
shows that in a more realistic situation, where there are two temporal scales, the
picture may be very complex.

A particularly interesting issue is that of determining how selection operates
when there are several phenotypes and mutation. For the autonomous case it is
known [5] that the slowest phenotype is selected; in this special sense we shall
say that the lowest rate is ‘optimal’. Further, of course a stable polymorphism is
impossible. The periodic, multi-phenotype model is a great deal more difficult to
analyze. However, it is clear from the 2-phenotype case that the situation is more
complex. For our model, coexistenceis certainly possible, as proved in Section 4,
and in other circumstances either the lower or higher rate may be optimal. For a
multi-phenotype model with mutation, one might expect that under some circum-
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Fig. 3. Herea(x,t) = 1+ 0.1cosnx(0.1 + sinnwt + 3.2sin24xt), u = 0.5, v = 2.0.
A = A(a — a1, v) is obtained from (3.5); for large w it is positive. Note that there are two
intervals of w for which A is negative.

stances there would be an optimal rate whilst under others a polymorphism would
be obtained. The point of view taken in adaptive dynamics might be useful here,
see[6] and [28] for adiscussion of arelated model. With the theoretical knowledge
currently available, several of the questionsin this areawould probably haveto be
tackled numerically.

We close with a few remarks concerning the mathematical side of the investi-
gation. The paper raises anumber of interesting open questions. Even for the scalar
periodic-parabolic eigenfunction problem, see Section 2, although a great deal is
known, there remain questions about basic issues such as the broad qualitative
behavior of A(k, p) to which answers are not available. For example, how does
it behave as a function of »? Turning next to the coexistence solutions (Section
4), we know that these occur for a wide range of cases, but can there be multiple
coexistence solutions? Global questions (Section 5) are often difficult to analyze
and we point to some of the issues raised which would repay further study.

7. Appendix A

We give here theorems referred to in the introduction. The first one is concerned
with temporally homogeneous equations, as discussed in Subsection 1.2.

Theorem 7.1. Assumae is sufficiently smooth and independentef(x, t) = a(x).
Further assume that either

(i) a(x) > Oforall x € 2, or
(i) for somexg € 2, a(xg) > 0and0 < u < v are sufficiently small.

Then, there are exactly three nonnegative equilibria for (1.1), (1.2) which take the
form:

0,0, (U(x),00 and (0, V(x)).
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Furthermore,(U (x), 0) is the global attractor for all solutions of (1.1)—(1.3) with
positive initial conditions:g, vo.

The asymptotic stability of the semitrivial equilibrium (U(x),0) is proved in
[11]. The above is a consequence of [5] where n phenotypes and mutation are
considered. Further discussion of the literature may be found in these references.

We next consider spatially homogeneous but temporally heterogeneous equa-
tions, as discussed in Subsection 1.3. It is reasonable to assume that the temporal
change in the environment is bounded and recurrent, though not necessarily pe-
riodic. A mathematically tractable but much less restrictive assumption on a than
periodicity is almost periodicity, which for completeness we now define. A subset
U of Rissaidtoberelatively denseif thereisan L > Osuchthat[s, s+L]NU # @
for every s € R. Let

T(a,e)={s:|lat+s)—a()| <e foral r eR}.

Then, a isalmost periodic if for every € > 0, T (a, €) isrelatively dense. It should
be noted, especially if one allows for errors in measurements, over any finite time
perioditisessentially impossibleto distinguish an almost periodic and astochastic
fluctuation in the environment.

Under this hypothesis (1.1) reducesto

ou
—_— = MAM + (a(t) —u— v)uﬂ
dt (7.1)

av
E:vAv—i—(a(z)—u—v)v, xe, t>0.

Using aresult of G. Hetzer and W. Shen [16, Theorem C] the global dynamics of
this system can be described.

Theorem 7.2. Let up and vg be non-negative continuous functions @rand let
(u, v) be a solution of (7.1), (1.2), (1.3). Then, there exists a non-negative spatially
homogeneous solutiqa*(r), v*(¢)), of (7.1), (1.2) such that

lim [lu(x,t) —u*@®)|| =0 lim ||v(x, 1) —v*@®)|| = 0.
—00 —>0o0
Here | - || stands for the supremum norm.

8. Appendix B

In this appendix we give the proofs of Lemmas 2.3, 2.4.

Proof of Lemma 2.3Since exp(—A(h, p)) is a simple eigenvalue of the period
map of (2.2), it depends smoothly on p, and al so the corresponding eigenfunctions,
®,(-,0), ¥, (-, 0), normalized asin (2.5), (2.6), are smooth C(2)-valued functions
of p (see[22]). Consequently, by standard regularity results (see[12]), p — ¢, is
asmooth C1(Q2 x [0, 1])-valued map and its derivative ¢’ := D, ¢, isal-periodic
solution of

o — pAY — (h+ 1) = A + 19, (81
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where
X = DyA(h, p).

Multiplying (8.1) by v, (x, 1), integrating over Q x [0, 1] and rearranging, we
obtain (omitting the subscript p)

1
/O/S_z{wqﬁh/f—pm’w—hqs’w}=//A¢w+x’f Y.

Integrating by parts and using (2.3), one obtains (2.4). O

Proof of Lemma 2.4Divide (2.1) by (the positive function) ¢ and integrate over
Q x (0, 1) to obtain

Ah, p) =— /1 |V¢|2—fl/h(xt)
= po o ¢? o Jo 7

Thisimplies (a) (notethat V¢ # 0 if h isnot spatially homogeneous).
We prove (b). By the maximum principle, there is a uniform lower bound on
A(h, p), hence, by (), A(h, p) staysbounded as p — oc.

We normalize ¢:
alle
- =1,
2] ¢

with theintegral over (0, 1) x Q.
Multiplying (2.1) by ¢ and integrating, we obtain the equation

p / / Vg2 - f (h + A(h, p))¢? = O, (82)

and it follows that for some constant ¢1 independent of p,

// V|2 < % (8.3)

Let ® = ¢ — ¢. Then Jo ® = Oand, by Poincaré's inequality, there is a constant
k > 0 depending only on @ suchthat [, [V®|? > k [, 2. With V¢ = V&, (8.3)

therefore gives
// B2 < ;—;. (8.4)

Now, integrating (2.1) over Q and substituting ¢ = ¢ + &, we obtain

wpr = (h + 0 + g,(1),

where, by (8.4), fol lgp()|dt = O(1/p) as p — oo. Using the integrating factor
inthisfirst order differential equation, we find that

e oGy = $(0) + 0(1/p). (8.5)

As¢(1) = ¢(0), we must have either (2 + A)” — 0 or ¢(0) — 0, when p — oo.
The former gives assertion (b). We show that the latter is impossible. Suppose it
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holds. Then, by (8.5), dso ¢(r) — 0, uniformly in¢ < [0, 1]. But this and (8.3)
imply, again by Poincar€’s inequality, that

f ¢ — 0,

in contradiction to the normalization of ¢.
We now prove (c). Rewrite (2.1) in the form

0
wa_f — pAG — (h+ A0 = (h — 20),

where A is aconstant. If / is not constant, we may choose Ag such that

—maxh < Ao < —h.
xXeQ

For any such Ao we have (h + A0) < 0 and

xe

1
/ max(h + Ag) > max(h + Ag)” > 0.
0 xeR

Under these conditions, one has A (h, p) — Ao < 0 for small enough p, asshownin
[13, p. 54, Example 17.2]. Thisimplies

limsupA(h, p) < — maxh.
p—0 xe

If / is constant, the same relation follows from (a).

On the other hand, choosing any 1o < —max, g h, we have (h + 1g)" < Ofor
al x. Soby [13, Prop. 17.3], A(h, p) — A0 > O for small enough p.

A combination of the above inequalities proves the resullt. O

Remark 1 An inspection of the proof of Lemma 2.4(b) reveals that the following
stronger statement holds: Assumethat for large p, /1, (x, 7) isacontinuous function
on 2 x [O, 1] such that ||hp — h||L°°(Q><(O,l)) — 0asp — oo. Then

~

lim A(h,, p) = —h.
pP—>00
Thisisused in the proof of Theorem 5.3.
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