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Abstract. Two closely related stochastic models of parasitic infection are investigated: a
non-linear model, where density dependent constraints are included, and a linear model ap-
propriate to theinitial behaviour of an epidemic. Host-mortality isincluded in both models.
These models are appropriate to transmission between homogeneously mixing hosts, where
the amount of infection which is transferred from one host to ancther at a single contact
depends on the number of parasites in the infecting host. In both models, the basic repro-
duction ratio Ry can be defined to be the lifetime expected number of offspring of an adult
parasite under ideal conditions, but it does not necessarily contain the information needed
to separate growth from extinction of infection. In fact we find three regions for a certain
parameter where different combinations of parameters determine the behavior of themodels.
The proofsinvolve martingale and coupling methods.

1. Introduction

In Barbour and Kafetzaki (1993) [BK], amodel for the spread of aparasitic disease
was introduced. The aim was to generate the highly over-dispersed distribution of
numbers of parasites per host observed in schistosomiasis data. This goal was not
to be achieved through heterogeneity in host susceptibility or through random (and
over-dispersed) numbers of parasites acquired per infection, with the associated
distribution being chosen so as to fit the data as well as possible. The drawback
of such approaches is the danger that the resulting models may not adequately
reflect what happens if parameter values change, since the distributions involved
are chosen ad hoc, rather than being derived from an underlying biological mecha-
nism. In [BK] the aim was to see how much variability in individual parasite loads
can be achieved from chance interaction phenomena alone, without sacrificing the
assumption of a population of homogeneous individuals.

The desired variability in parasite burden was achieved in the [BK]-model.
However another important result emerged, namely that for some parameter val-
ues the natural candidate for the basic reproduction ratio Ry does not necessarily
contain the information needed to separate growth from extinction of infection.
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This result was further studied in Barbour (1994) [B2], where a linear model, ap-
proximating the initial behaviour of the original model in large populations, was
investigated; the same phenomenawere present there, too. Neither model included
mortality of hosts, which however could be expected to have asubstantial influence
on the behaviour. In this paper, it is shown that in this case there are three separate
ranges of parameters, in which different combinations of parametersare critical for
separating growth from extinction.

2. Themodelsand their behavior

We first consider a non-linear model with a fixed number M of individuals, each
of which may carry parasites. Let x™) be an infinite dimensional Markov process
on aprobability space (22, 7, P)

M (w, 1)1 2 x [0, 00) — {[0,1] N M~17}>°,

inwhich x;M)(t),j > 0, denotes the proportion of individualsat timez, ¢ > 0, that

are infected with j parasites, so that ijox;.M)(O) =1land xﬁ.M)(O) >0,j>0.
We suppress theindex M whenever possible. The parasites have independent life-
times, exponentialy distributed with mean 1/u. Each infected individual makes
contacts with other individuals with rate A; but only those contacts that are with
an uninfected individual lead to anew infection (concomitant immunity). If thein-
fecting individual has j parasites, then the result of acontact isto establish anewly
infected individual with arandom number S; of parasites, where S; == Y"/_, ¥;
and the Y; are independent and identically distributed with mean 6 and variance
0? < co. We define pj; := P[S; = k], and s0

> pjx=1foreschjand > kpji = jb. (2.1)
k>0 k>1

We assume that individuals have independent lifetimes, exponentially distributed
with mean 1/«, no matter how high the parasite burden is. All parasitesdieif their
host dies. We allow the possibility of having x = 0, meaning that people live for
an infinite length of time, asin [BK] and [B2].

In this non-linear model, we replace an individual that dies by an uninfected
individual. The rates with which x changes are then as follows:

x> x+MYej_1—ej)araejMux;; j =1,
X = x4+ M_l(ek —ep) a rateAMxon;p;k; k>1, (2.2
I1>1
X — x+ Mﬁl(eo —earaeMxk; r>1,
where ¢; denotes the i-th co-ordinate vector in R*. We call this model N; this
stands for Non-linear. We introduce a notation for the sigma-algebras too: 7 =

o{x(u),0 < u < s}. At this point it is convenient to explain why we have these
rates: there are jMx; parasites in individuals with j parasites and they all die at
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arate of w. If such a parasite dies, the proportion of individuals with j parasites
decreasesby 1/ M and the proportion of individualswith (j — 1) parasitesincreases
by 1/M. This explains the first transition-rate. The second transition is an infec-
tion: there are x; M individuals with [ parasites who make contacts according to a
Poisson process of rate A. But only those contacts that take place with uninfected
individuals are infective. So the rate must be decreased by multiplying with the
proportion of uninfected people xg. Then we must include the probability that such
an infection leads to an infection with k parasites, hence the probability p;;. The
last rate describes a death of a person: there are Mx, individuals with r parasites
and they die at arate of «.

Thereason for modelling thelifetime of individualsand parasiteswith an expo-
nential distribution is purely for mathematical simplicity. Careful study of schistos-
omiasis incidence data, led to the following conclusions for the infection process
(Barbour (1977) [B1]): if individuals get infected, then they are not infected serv-
eral times per year, but once every few years. On the other hand, children at the
age of 12 may well have alarge number of parasitesin their body. So we presume
that there is group infection. Then S; is generated such that each of the j parasites
in the body of the infecting individual independently produces a random number
Y;,1 < i < j, of offspring in the newly infected host. The exact distribution of
S; would therefore have to be cal culated as a convolution of the Y;'s, but this will
never be necessary explicitly. Additionally we assume concomitant immunity in
humans, meaning that people get infected and then areimmuneto further infections
until they have fully recovered (see Bradley and McCullough (1973) [BM]).

Thelinear model, useful in modelling theinitia phase of an epidemic outbreak,
is defined asfollows. Let X be an infinite dimensional Markov process

X(w,1): Q2 x [0, 00) — {[0, 00) N Z},

where X;(¢), j > 1, denotes the number of individuals at time ¢, + > 0, that
are infected with j parasites. We assume that 0 < Z/zl X;j(0) =M < ooand
X;(0) =0, j = L Therates at which X changes are asfollows:

X—> X+ (ej_1—ej)atrate juX;; j=>2,
X—> X—earaeuXs;, (j=1),

X = X + e atrate)\ZX,p,k; k> 1, (2.3)
>1
X—> X—e araeX,«; r > 1.

We call thismodel L; thisstandsfor Linear. We introduce a notation for the sigma-
algebrastoo: ¥4, := o{X (1), 0 < u < s}. The difference between model N and L
isthe following: in model L the contact rate is A and there is no limiting factor in
the model. In model N the contact rate is altered from A to Axg, because only those
infectious contacts that are with an uninfected individual lead to a new infection.
In the remainder of this section we outline the behaviour of the two models; the
proofs are deferred to section 3.
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2.1. Thebasic reproduction ratios

Let us define Ro := A0/ (i + k), Ry = (relog0)/(ud#) and Ry := A/k. These
are quantities which emerge as being critical in determining the behavior of the
models asis seen in Theorems 2.1 and 2.3. Rp iswhat would usually be called the
basic reproduction ratio, because it denotes the average number of offspring of a
single parasite during his whole lifetime in the absence of density dependent con-
straints. This can be seen in the following way. Since a parasite aso diesif its host
dies, aparasite has an exponentialy distributed lifetime with parameter 1« + «, and
hence its expected lifetime is (v + «) 1. During its life, it makes contacts at rate
A per unit time, and on average these contacts result in infections with 6 parasites.
We do not have an obvious interpretation for Rq, but the reader isreferred to [B2]
for aninterpretation if « = 0. For R, > 1, R, ! denotes the probability that a pure
birth and death process with contact rate A and death rate « dies out, beginning with
one initia infected. Asis seen later on, R, becomes critical when 6 is ‘large’. It
seems that then the bulk of infected hosts die before they recover because they are
infected with very large numbers of parasites. Therefore, inthat case, if weare only
interested whether theinfection dies out or not, we almost have the same behaviour
asin apure birth and death process.

The (linear) system is essentially more complicated than the multitype branch-
ing process with finite number of types and it does not seem possible to simply
characterise the growth rates in terms of Perron-Frobenius eigenval ues.

By the expression ‘threshold behavior’ we denote general statements of the
following kind: if Rg > 1 the epidemic has a positive probability to develop and if
Ro < 1theepidemicdiesout almost surely. Aswe seeinwhat follows, the situation
in our modelsis far more complex than that stated above.

Theorem 2.1. Suppose X (0) = y© in model L such that 0 < ijlyj(o) < 00
where y(©@ isfixed. Then the following results hold:

(D): logh < (1 + «/w)~L. Then P[lim;_ o0 Zj>1Xj(t) = 0] = 1if and only if
Ro <1 -

(2: A+x/w)t <logh < /K. Then Pllim, 0o Y59 X;(1) = 0] = 1ifand
onlyif Ry < 1. '

(3): u/k <log6. Then P[lim,_ ijl Xijt)=0]=1lifandonlyif R < 1.

In addition, the expected number of parasitesin L grows with an exponential rate
A0 — u—k):

E |:Z ]XJ(I):| _ (Z jy;O)) eO—n—it (2.4)

j=1 j=1

Remarks. 1) If k = 0, these results stay true with the following adjustments: the
third region for 6 is shifted away to infinity. So we have only two regions for 6 if
k = 0, namely: & < e and 6 > e, and the basic reproduction ratios simplify to
Ro =216/ and R1 = Aelogf/u. Then Theorem 2.1 is Theorem 2.1 in [B2].
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2) The deterministic analogue is Remark 1) to Theorem 3.1 and equation (3.3) in
[Ld].

3) Suppose i /k > logh > (L+k/m)~%, Rop > 1and Ry < 1 (whichispossible!).
This implies that the epidemic dies out with probability one in model L; but it
means too that the expected number of parasites tends to infinity.

If an epidemic outbreak isnot in theinitial phase anymore, the non-linear mod-
el is more appropriate. The following theorem shows that in the non-linear cases
the epidemic eventually dies out with probability one, no matter what values the
parameters take.

Theorem 2.2. Inthenon-linear model N theinfection diesout with probability one,
thatis, for all M,1 < M < oo,

P [ lim x(n)™ = eo] =1
11— 00

Remark. Thereis no deterministic analogue of Theorem 2.2, however, the reader
should observe Theorem 3.7 in [Ld] as a contrast.

Looking at Theorem 2.2, we see that in model N the epidemic finally dies out
almost surely, no matter what values the parameters take. But the behavior of the
non-linear model in finite time (and with M large) is quite different, depending on
whether R;, i € {0, 1, 2} is greater or smaller than one. Thisis made more precise
in

Theorem 23. Fix y € (NU{0h*>, suchthat 0 < ¥ := > ;.1 y; < oo, and

suppose that for each M > Y we havex;.M) 0)=y;/Mforall j>1, x((JM)(O) =
1-Y/M. Thenin model N we have the following threshold behavior:
Case1): logf < (14 «/w)~L. Then

lim lim P {ZXJ(.M)(;) — o} = 1if and only if Rp < 1.

t—00 M— o0
j=1

Case?2): (14 «/m)~t <logh < /. Then
t—>00 M—o00
j=1

lim lim P {ij“)(t) = o} = 1if and only if Ry < 1.

Case 3): logf > wu/k. Then

. . (M) . o .
lim MI|_|:noo|]3> |:2;xj (t) = 0} = 1if andonly if Ry < 1.
J=
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Remarks. 1) Welet M tend to oo first (with ¢ fixed). In the linear models the con-
tact rate A stays the same no matter how many individuals are infected. But in the
non-linear model this contact rateisaltered by multiplying it with the proportion of
uninfected AxéM ). Asweincrease M, we only increase the initial number of unin-

fected individuals: Mx§" (0) = M — v, theinitial number of infected individuals

stays constant and equal to Y. Since the initial proportion x{"" (0) of uninfected

tendsto 1 as M tendsto infinity, we almost have alinear model in theinitial phase.
So it is not too surprising that we have results analogous to those in Theorem 2.1.
Note that it is vital to let M converge to infinity first and then let ¢ converge to
infinity, because of Theorem 2.2.

2) Again, asin Theorem 2.1, if « = 0O, theseresults stay true, with theinterpretation
that the third region for 6 is shifted away to infinity.

3) The deterministic analogueis Theorem 3.7 in [Ld].

3. Proofs

Wefirst haveto be surethat the linear processis‘regular’, in the sense that it makes
only finitely many transitions in any finite time interval [0,T], amost surely. This
is shown in the following

Lemma 3.1. The process X that evolves according to L isregular.

Proof of Lemma 3.1. If thereareinfinitely many transitionsin afinitetimeinterval
[0, T], there must be infinitely many infectionstoo in [0,T]. But thisisimpossible,
as can be seen by comparison with a pure birth process of rate A. ]

Proof of Theorem 2.1. The case where x = 0 was shown in [B2] as Theorem
2.1, except for equation (2.4). Therefore we may assume that « > 0 except for the
proof of (2.4). For the proof of Theorem 2.1 we first need four technical lemmas
(Lemmas 3.2, 3.3, 3.4 and 3.5).

Lemma3.2.a)Ifloghd < (1+«/u)"tand Rg > 1, or if Ry > 1, then R > 1.
b) Iflogd < (14+«/u)"tandRg > 1; orif Ry > 1; orif u/k < logh and Ry > 1,
then il’lf(0<a51) A0Y ) (ua + k) > 1.

Proof of Lemma 3.2. a) Thisfollows from part b) because
A r0¢ . r0¢
> f

Ry =— = > In .
K Mo+ K |y—g (O<a<l) po + K

We do not use part a) to prove part b).
b) In the first region we havelogd < (1+ «/w)~tand A0 > u + k. We want
to show that for o € (0, 1] we have A0% > po + k. We have

0% = 2001 > (w4 k)e* L

and therefore it is enough to show that (1 + )0%~1 > pa + k. We definea :=
1+ «/pwandb:=1—« > 0andthen al we haveto show isthat a0 =" > a — b
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if & < ea. We have finished this proof if we can show that @ > (a — b)es . But
thisis obvious since dividing by a on both sides and choosing x := b/a we need
(1—x) < e~ whichistrue. Inthe second casewe have Ae log6 > uﬂﬁ.Wewant
to show that for o € (0, 1] we have A0% > po + «. We have

Meﬁ"l‘ol
elogo

9% >

and therefore we only have to show that

Meﬁ-i-a

elogé Z pot k.
We definea := o + «/un and then al we have to show isthat ¢ > aelog6. We
define b := alog# and so we need to show that ¢” > eb which is true for all b.
In the third region we have log6é > u/x and A > k. We want to show that for
a € (0,1] we have L0% > ua + k. We have A0% > k6% and therefore we only
havetoshowthat 6% > (u/x)a+1.1f wedefinea ;= (u/k)a anduselogf > u/k
we only have to show that ¢ > a + 1 whichistrue. ]

For the following lemmas we definefor § > 0

o 1
g1(j) = Yy o
()= L |
82\J) -= 1+8jot(j)

and

1 ifj <K;
D=1 d-a (1- k)" ity >k,

where0 < a, < 1/6 and o, ismade smaller if necessary later on; in what follows,
§ isawayssmallerthan 1 and K > e"s, even if we do not mention it every time.

Lemma 3.3. [[B2], page 108]. a(x) and g2 have the following properties:

a) a(x)log(x) increases with x.
b) a(x) decreases with x.
C) g2(x) decreaseswith x.

d) For x > K,
2
0<—ad(x)< ————.
xlogxloglog K
e) Forc,x > 1,
1> xot(cx)—oz(x) >1— 2(c—-1 )
- loglog K

f) There exists a constant k > 2 such that

gy (x) < ksx¥® =2,

uniformlyinx >0, § <land K > e
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Lemma 3.4. a) For j > 0 thefollowing inequality holds:

8j6 so2
1— E[ey(S)] = LA
82571 = 1+5j9{ 9(1+319)}

b) For j6 < K,k asinLemma 3.3f) and § < k/(2K) we have

1 Elga(s)] =~ {1—

~ 1+5j6

k%02
et

c) For §(j0)*U? < 1, k asin Lemma3.3f) and s (k) aconstant suchthat s (k)k > 8
and (1 — /2/s(k)k)? > 3/s(k) we have

8(jO)2U?) { _ks(k)oz}

[g2( /)] = 1+5(j9)06(19) 92j

d) Suppose § is chosen so small that, if j satisfies §(j0)*U? > 1, then a(j) <
2a, < 1/3 must be satisfied too (see the definition of « () for a definition of o).
Then, for j such that §(j0)*U? > 1 is satisfied we have

5(i0)2l?
1 Hga($) = /0

7103,
+5(j0) )

Remark. Lemma 3.4 allows us to replace E[g(S;)] by g(j#) with only small
impact.

Proof of Lemma 3.4. See [B2], pages 107 ff.). There was a printing error in b)
(k instead of k2) and in d) it is possible to have O (j~%/3) instead of O(j~1/3)
following exactly the same line of proof. O

Define Mg (1) := Y ;-1 j# X ;(1);

cp(X) = juX (G =D =Py +2 3 Y X okl — i Y7 0K,
izl k=1 j>1 j>1

and
t

Wg(t) = Mﬁ(l)—Mﬁ(O)—/c; cg(X(u))du.

Lemma 3.5. For 0 < g < 1andwiththenotation above, Wg(¢) isa%;-martingale
where 9, .= o{X(u), 0 < u < s}, whatever thevalue of « > 0.

Proof of Lemma 3.5. We can apply Theorem 2 in Hamza and Klebaner (1995)
[HK], version for general state space. Choose f (z) := ijl jﬁzj andc = 2u+
A0 + k), then |L|f(z) < c¢(1V |f(z)]) is satisfied, where L is the infinitesimal
generator of the Markov process X. |

Proof of Theorem 2.1. In part A) we prove extinction in al three cases 1) to 3) if
therelevant R; < 1. In part B) we prove that there is a positive probability that the
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epidemic develops in al three cases 1) to 3) if the relevant R; > 1. In part C) we
prove the fourth result.

A) Inthefirst part of A) we assume that Ro < 1. For 8 = 1 (we suppress the
“1” in the next few steps) we can argue as follows (W (0) = 0):

t
M(t) = W(t) + M(0) +f c(X (u))du. (3.2
0
Because W isamartingale, we therefore havefor 0 < s < ¢:

t
E[M(®)]9] = W(s) + M(0) + E [/ C(X(u))dul%} ,
0

and so finally by using again the definition of W (s):
E[M1)|%;] = M(s) + E [/t c(X(u))du|%} . (3.3)
But ¢(X (1)) = (A0 — u — k)M (u), and so we can derive
E[M(1)|%] = M(s) + /St(xe — = K)E[MW)|%]du.

So E[M(1)|%9;] < M(s) for 0 < s < t if Rgp < 1 which means that M is a
nonnegative supermartingale.

Now we observe that each X € N°\{0}*° is transient. The communication
structure of aMarkov process dividesthe set of statesinto equivalence-classes. If a
classisnot closed, itisautomatically transient. Herethe set N°°\ {0}*° isan equiva-
lence-class and isnot closed (one can leave it by going to {0}°°, which isaseparate
absorbing class), and so each X € N°°\{0}*° istransient. But for each K the set
{X € N\ {0}>] Z/zleJ' < K}isfiniteand transient, and henceis only visited
finitely often a.s.. Hence it follows that lim;_, ijlej(t) =1lim, oo M(t)is
almost surely either 0 or oco.

Now, by the nonnegative (super)-martingale convergence theorem (see Revuz
and Yor (1991) [RY], Corollary 2.11, § 2, Chapter |1 for example), we can conclude
that M converges almost surely towards an a.sfinite random variable which there-
fore must be 0, implying P[lim;_, ijl X;j(t) =0] = 1if Rp < 1 no matter
what value 6 has. This finishes the first direction (Rg < 1) of the proof of 1) and
those situations of 2) and 3) where Rp < 1.

In the second part of A) we can therefore assume that Rg > 1. We start with
equation (3.3). Now S8 becomes vital for the proof and the reader can easily check
that for any 8 € (0, 1] the calculations run through until equation (3.3). So we have

t
E[Mp()|%s] = Mp(s) +E [/ Cﬂ(X(u))dul%] .

Now we provethat for each 8 € (0, 1] wehavecg(X) < (0P — B — k) Mg. This
goes asfollows:
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Thefunction f(y) := y? isconcaveif g € [0, 1]. So for y1, y» we have

fO < fO2) + f2)(1 = y2)
If wechoosey1 = j — 1, y2 = j wetherefore get
G- =Py =—Bj",
and so we can derive

DinXidG =0 =Py <ud X, BiPH < —uB Y iPX;.

j=1 j>1 j=1

Using Jensen’s inequality for concave functionswe have Y, pjil? < (j6)?. So

WY Y XipilP =2 X; > palf <a0P > X,

=1 j>1 j=1 =1 Jj=1

and so looking at the definition of ¢4 we can conclude

cp(X) <16 — Bu—10) Y jPX;.
j=1

We are free to choose 8 € (0, 1). We want to argue just as we did in the first part
of A) mutatis mutandis, for which it is enough to show that (A6# — ug — k) <0
under the constraints of the theorem in cases 2) and 3) for suitably chosen 8. Once
accomplished, the proof of part A) is complete.

For case 2) we choose 8 = Bo := (1/log0)log(n/(rlogh)). Elementary
computations show that as Rg > 1, R1 < 1and (1 +«/u)~t < logd < u/k,
we have o € (0, 1) and 100 — Bou — k < 0. So this ends the proof of the first
direction (R < 1) of 2).

Case 3) iseven simpler: u/k < log6 and therefore & > 1. Besides that we
have . < k. Wehavetofindapg € (0, 1) such that A0# — B — k < 0. But thisis
clear (8 — O finally makesit). This ends the proof of thefirst direction (Ry < 1)
of 3).

B) This proof consists of three parts. In part one (B1)) we derive the general
strategy; in B2) we treat the case where § < 1, and in B3) we treat the remaining
case (6 > 1).

B1) We think in terms of a discrete generation branching process with types
Jj = 1,2,.... At each generation, each individual dies, an individual of type j
being replaced either by one of type j — 1 (death of a parasite) with probability
ju/(A + ju + k), or by one of type j and another of type k (infection) with
probability Apji/(x + ju 4 «), or not replaced at all (death of an individual) with
probability « /(A + ju + x) and type O individuals are not counted.

Then, if

¢ (j) := P[extinction by generation n |X (0) = e;],
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consideration of the first generation shows that ¢*+t9 = T4 where we have
(Tf)(0) = 1and

THG =L/ A+ ju+OLfG =D+ A/ G+ ju+ 0l f (DEL(S)]
Hr/ A+ ju+0l j=1,

where S isdefined just before equation (2.1). Clearly, ¢ (0) = 1and¢©(j) = 0
for j > 1,and

g™ (j) 1 q(j) := P[eventua extinction |X (0) = ¢;].

Wewishtoshowthat g (j) < 1for j > 1under the conditions stated in thetheorem.

First observethat, if f > h inthe sensethat f(j) > h(j) foral j > 0, then
T"f > T"h for dl n > 1 also. Hence, if we can find any f such that f > ¢©
andTf < f,itfollowsthat f > ¢ aso. If, inaddition, f(j) < 1foral j > 1, the
same must be true of ¢. The remainder of the proof consists of finding a suitable
function f.

But rather that looking for such an f directly, we look for a transformation
of f. The heuristic idea is as that, for j very large, the probability ¢(j) must be
approximately « /1. That is, if we start with only one infected individual having a
huge parasite burden, al infected individualsin theinitial stageshavelarge parasite
burdens, and the only way that they then lose infectiousnessis through death, since
it takes much too long for the parasites to all die. Then the initial stages are well
described by a pure birth and death process with birth rate A and death rate «, for
which the probability of extinction is «x/A. Lemma 3.2 a) guarantees us that this
ratio is always smaller than 1 (in those cases relevant to usin part B) of the proof).
So we expect that

. K
lim q(j) = —.
j—o00 A

For smaller valuesof j weexpect valuesfor ¢ (j) whicharelarger, becausethereare
initially fewer parasitesin the process, and for j = 0 we must even have ¢(0) = 1.
Welook for an f whichisalmost 1if j issmall and then decreasesto thefinal limit
K/ as j tendsto infinity. So define

Fiy=(1-2) s+

and look for a g suchthat ¢g(0) = 1 and g(;) for j > 1 decreases slowly to 0.

What constraints must g satisfy in order that f should satisfy the conditions
we asked for above? Let T operate on f successively, and define £ 1= T" f; set
f® =@ —k/A)g™ +k/r. Theng® = T"g, where

ju

~ K
N RN S
g(j) MFJ.MJFKg(J )+X+jM+Kg(J)
b Ee(S)] + — K e()Ee(S). = 1
A+ ju+tk 81 A+ju+/<g] gl g =+

We must be surethat if wefind a g such that for al j > 1 the three conditions
g@=1 g()<L andTg=<g
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are satisfied, then the corresponding conditions aretrue for f. Thefirst two condi-
tions are clearly satisfied: f(0) = 1and f(j) < 1for j > 1. The third condition
is satisfied because

Tf=0Q-«/MNTg+k/A<A—x/Ng+K/h=Ff

As aconclusion of part B1) of the proof we now see that we have to find a (hon-
negative) ¢ such that for all j > 1 the following conditions

@=L g()<L andTg=<g
are satisfied. The third condition can be explicitly rewritten as follows:

JjuE(G =D —g()+x@Q—-g()) < A—-EgS)D «k — gl +2rg(j)),
(3.4
andif wetalk about a g satisfying condition (3.4), wemeanthat g satisfiesg(0) = 1
and g(j) < 1for j > 1too.
The computations that follow in B2) and B3) are awkward because we want
to replace the expression E[g(S;)] in (3.4) by g(6;). Thisisjustified up to asmall
error, but we therefore have to keep the error under control.

B2) In this part of the proof we suppose that & < 1. We now have to find a
(nonnegative) g such that condition (3.4) is satisfied. Wetry g1(j) := (14 8;)71,
as defined in (3.1), for § > O to be chosen later. With this choice of g and using
Lemma 3.4 @) we seethat (3.4) is satisfied if

% 0 sc2
- tKk= — 11— .
1+6(j -1 1+48j0 0(1+468j0)

is satisfied. This equation is equivalent to

1+ 556 { 802 }
Iz . 1- .
1+6(j -1 0(1+45j9)

Sa2 -1
14sii1——27 U _gs5il < 0.
e @0y ){ 9(1+319)} T =

} (kéj +A)

-1

As Rgp > 1 wecan definec := A0 — u — k > 0. Then the above inequality is
equivalent to

-1

144856 { so2 }
n : -~ : —n
1+8( —1) 0(1+06)0)
il @+8j0) |1 i 05; <
K - — —Kk<c
/ 9(1+4j6) J =

which isin turn equivalent to
(0 +02—5802) + j(6%2 — 0 + 025 + 862) + j2(56° — 562)
(0 — 802 — 80 + 6202) + j (802 + 80 — 0262 — §202) + 20282
2 . 2
30
T 00T (35)
0+ 8j62 — 802

1o

+Ké
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We now examine the first term of the left side of (3.5). As6 < 1 we have (562 —
862) < 0 (third term in the numerator). Now we choose § < min((8 — 62)/(6% +
02),0/(c? + 6)). With this choice, 62 — 6 + 028 + 802 (second term in the nu-
merator) is smaller than or equal to 0 and each term in the denominator is positive
for al j > 1. Sothefirst term of the left side of (3.5) is smaller than or equal to

0+ 02— 802
0 — 802 — 86 + §202°

ué

Thisterm does not depend on j and so it is easily seen that § can be made so small
that the following inequality is satisfied

0+ 02— 802
0 — 802 — 86 + 8202

8 C
<=
H 2

Proceeding to the second part, choosing 8 < 6/252 we have

02+ js60? - o1+ 2j80) _c
52T Jovo glrraev) ¢
0 +58j0%2 — 802 ~ 0(1+2j80) — 2

foral j > 1if wechooses < c0/4ko?2.
Combined, (3.5) issatisfied for al j > 1 which ends the proof of part B2).

B3) In this part of the proof we suppose that & > 1. Again, we have to find a
(nonnegative) g such that condition (3.4) is satisfied.

In this part we cannot choose the simplefunction g1, asbefore, because (3.4) is
not satisfied for all j no matter how we choose §. Instead we choose g2 (see (3.1)
for adefinition of g1 and g»).

The construction of g with an «(j) as exponent in aterm of the denominator
leadsto ag withthe samedecay asg; aslongas j < K andthenthedecay issmall-
er. Heuristically spoken g5 is(in comparisonto g1) somehow “lifted” over acritical
region until it finally decaysto O at amuch slower ratethan g1. But thereader should
be aware of the fact that for all j > 0 we nevertheless have g2(j) < g2(j — 1), as
shown in Lemma 3.3.

With this choice of g we seethat (3.4) is satisfied if

[gz(j - 1} + 8% < (1 - E[g(SHD (k8 + 1) (3.6)

g2(j)
is satisfied. Again, if wetalk about a g satisfying condition (3.6), we mean that g
satisfies g(0) = 1and g(j) < 1for j > 1too.
We introduce three regions for j and so B3) consists of 3 partsitself:

B3.1) Herewe presumethat 1 < j < K/6. Thenas6 > 1 wearein aregion
where g» and g1 areidentical («(j) = 1) and so we have

(-1
82(Jj)

1<56;

= U,
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using Lemma 3.4 b), it is enough to show that

22
{1—2}(,(5]'“) 3.7)

<
m+ K 0K

T 1+4j6
for (3.6) to be satisfied. Until now, weneed § < §1 := min(1, k/(2K)). Inall three
regionswe have Ry > 1 and so we can definec := A0 — u — x > 0. (3.7) isthen
equivalent to

ko2k?8j  ro2k?

B + ——— + —— <. (3.8)

With the choices § < 8> := min(81, ¢/(3K 1), (c0)/(Bkk?c?)) and K > K1 :=
max((3k2021) /c, ) equation (3.8) is satisfied which ends the proof of B3.1).

B3.2) Here we presumerthat K/60 < j < J + 1, with J := J(K) such that
a(J) < 2a,. Elementary calculations show that

g2(j—1

= 1260 = (j -1V ™) = da(j - - UV (39)
82(j)

We choose § < 83 := min(82, (K J6)~1). Then Lemma 3.4 c) can be applied. As
8 < (K J6)~1 we can incorporate the denominator 1+ §(j0)*V? of theright side
of Lemma 3.4 ¢) in the correction term (1 — O (K —1)) which allows us to rewrite
thislemmain the following way:

1— E[g2(S)] = 8(jH)*YV (L — ok ™H).
Together with (3.9) we see that (3.6) is satisfied if

is satisfied. Theterm «8j%() on theright sideis of order O (K ~1) and so we skip
it, we do not need it. We therefore have to show that

jpa(j — 1 — DD 4 @0 <2 (o) VD1 - 0(k7)  (3.10)
is satisfied. If we can show that
A(j0)*V (1 - 0(K~1)) o weY

jra(j =1 —DeU-D=1 4k jel) = pa(j) +«
> 1, (3.11)

(1— 0((loglog K)™1))

then (3.10) is satisfied. Thelast inequality of (3.11) issurely true by Lemma 3.2 b)
for @l K large enough and so we can concentrate on the first inequality. The first
inequality istrueif we can show that the following two inequalities hold:

(NGO (A - oK™ty
> 0" (1— 0((loglog K) ™M) ja(j — D(j — H*V~D~1 (312

and

(O~ 0(K™1) = 62U (1 - 0((loglog K) ™)) j4). (3.13)
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Equation (3.12) is satisfied because the following three relations (3.14), (3.15) and
(3.16) hold. Because of Lemma 3.3 d), we have

a(j) . S
-1 - 1—(a(j =D —a())) P
1- 2 (3.14)
7 a(j -1 - Dlog(j — 1)loglog K- '
Then, again by Lemma 3.3 d), we have
6D~ = exp([a(j6) — ()] 10g6)
. . 2j(® —1)
> 1+ [a(jO) —a(j)]logd > 1 — |OQQW-
(3.15)
Finally, again by Lemma 3.3 d) we can derive
(jO)—1
J . a(j0)—a(j—1)
(j—DeU-b-1 =G -D% :
= exp(log(j — D[e(jo) —e(j — D))
> 1+1log(j — D[e(jo) —a(j — 1)]
> 1-log(j — 1)— 22 +/O D) (3.16)

(j —Dlog(j — 1) loglogK "

Therefore (3.12) is satisfied. Furthermore, (3.15) and Lemma 3.3 €) show immedi-
ately that (3.13) is satisfied, which finishes the proof of B3.2)

B3.3) Finally we presumethat j > J + 1. By looking at the derivative of j*()
and using Lemma 3.3 b) we immediately gain

920 =1 _1<( 3(j = U )a(j—l)

g2(j) 1+8G -0V ] (-1

For j > J + 1, wefirst have §(j6)*/%) < 1 and then we get into the area where
8(j6)*U9 > 1. But the inequality of Lemma 3.4 d) is weaker than the inequality
of Lemma 3.4 c). So, after making & even smaller if necessary, we may use

5(j0)°U

1—E[g2(5))] = 1+6(j6) 0D

[1-0G723)

during the whole part of B3.3). Again, for the last time we want inequality (3.6) to
be satisfied. All we need to show istherefore that

i — 1)eU-D i—1 .
i (J : ) — Ol(.J ) + Kja(")
1+68(—DUD ] (j =1
(j6)*)
= 14 8(j6)°0

{1— O(j_2/3)] (82D 4 1) (3.17)
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We want to get rid of the denominators. Equation (3.17) is equivalent to the fol-
lowing long expression:

in( =D Pa(j =1 + ju( = D Va(j - sV
+ Kja(j)(j -1+ Kja(j)S(j _ l)ﬂt(j—l)'i-l + Kja(j)+0t(j9)590t(j9)(j —1)
+ Kja(j)+a(j€)(j _ 1)0!(]'*1)+18290!(j9)

< (1 _ O(j_2/3)) (Kjd(j)-l-ﬁt(j@)(ggﬁt(je)(j —D+ (- :I_)jﬂt(j@)gol(j@))L
kR0 q)a=Dr1g2g0(0) 4 i) gu(io); (j 1)a(j—1>+15>_

Thisisequivalent to
inG =D Pa(j =1+ ju( = D*Va(j — 18060
-I—Kja(j)(j -1+ Kja(j)5(j _ 1)Dt(j*1)+1
= (1-0G7) (G - D60
4 jel0ge(o; (j - 1)01(,-71”18)
—0(j~3 (Kja<j>+a(j9)59a(j9)(j —1
+Kja(j)+ﬂl(j0) (] _ 1)Ot(j—1)+1829(x(j9)> ) (318)
Thisinequality is satisfied if the following two inequalities are satisfied:
jua(j =1 jU000 4 cjeD(j — 1)
= (1= 0G723) (j2U6*05( - 1))
_O(j—2/3)Kj0l(./)+ot(j9)(j _ 1)390109)’ (3.19)
(we have divided by §(j — 1)*¢~D) and
jnG =0V Va( -1+ VG -1
= (1-0G7%3) (G - nj*6°0?5)
_0(j—2/3)Kj0l(./')+06(j9)5901(]9)(j — 1. (3.20)

The separation of inequality (3.18) is such that in inequality (3.19) we have all
terms with a j to the power of “1 plustwo «’s’ except in the last term where we
have“1plusthreea’s’; ininequality (3.20) we have all termswith a j to the power
of “1 plusone «” except in the last term where we have “ 1 plustwo «’s”.

We first show that (3.19) is satisfied. We divide inequality (3.19) by j1*¢(). Then
it is enough to show that the following inequality is satisfied:

pa(j — DU 4
< (1 - O(j*2/3)) (j“(jﬂ)*a(j)ga(je)k(l _ O(jfl))>
_O(J—2/3)KJ01(]9)890!(/0) ]
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We can apply Lemma 3.3 €) to theright hand side, showing that it isenough to have
pa(j — eI + i
= (1-0G7%) (@ - 0@/10glog K))6“UVr1— 0(j 1)
_O(j*2/3),(j0t(j9)590!(j9)
Asa(J) < 2a, < 1/3, thelast term tends to 0. On the other hand, wehave A > «.
So, up to asymptoticsin j, we only need to ensure that
pa(j — 1e*U? 4 < 29209

forj > J+1.As6 > 1,weonly haveto makew, small enough; thentheinequality
above is satisfied, and hence (3.19) is satisfied also.

We now have to show that (3.20) is satisfied too. But (3.20) is amost the same as
(3.19); it is enough to show that, for large j, we have

(j— 1)01(1'*1) < ja(j9)90!(j9).
We have

jUUTHTAUN = exp(log jla(j — 1) — a(O)])
. ( 2logj (14 j(® —1)) )
- (j—1Dlog(j — 1 loglog K

whichisnear 1 for K large and is therefore finally smaller than 6%9), This shows
that (3.20) is satisfied too. This ends the proof of B3.3) and therefore the proof of
part B).

C) Observe that the following part runs through with « = 0 too. We can use
equation (3.2) (8 = 1) and take the expectation, giving

t
E[M ()] = M(0) + / Efe(x(u))]du.
0

Asc(X(u)) = (A0 — u — k)M (1) we have the integral equation

t
¥(t) = M(0) + fo (A0 — 1t — )y (w)du

where y(t) = E[M(¢)]. But this immediately leads to (2.4) completing the proof
of Theorem 2.1. O

Proof of Theorem 2.2. The proof where « = 0 was made in [BK, Theorem 2.3].
We may therefore assumethat « > O.

First we find alower bound for the probability that the epidemic diesout in an
arbitrary, singletime-interval of length 1, giventhat it hasnot died out yet. The prob-
ability that agiven person diesin the next timeinterval and that the new-born does
not have any infectious contacts at all in thisinterval isat least (1 — e *)e™ > 0.
The probability that thishappensto all M individualsinthe sametime-interval isat
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least [(1—e~*)e~*]¥ . Sothe probability that theinfection diesout in the next time-
interval (given that it has not died out before) isat least py 1= [(1 — e )e M.
There are other ways that it can die out too, but we already have enough.

Let B, be the event that the epidemic dies out in the time-interval [0, n + 1)
forn > 0. Let usdefinetheset A = {lim;_, 0 x(¢) = eo} = Up>0B,. We have
B, € Bpy1. Letuslook at P[B5]. We have to prove that P[ B<] convergesto O as
n — oo to show thefirst part of Theorem 2.2. We have

P[B,] = P[B;;|By—1]P[B,—1] + P[B;| B, _11P[B;_4]
= P[B;|B;,_{]P[B;_;] < (1— pm)P[B;_4].

Asaconsequence, P[BS] < (1 — py)" — 0asn — oo, completing the proof. O

Remark to Theorem 2.2. Asaparticular consequenceof Theorem 2.2, the process
N is‘regular.

Proof of Theorem 2.3. The idea of the proof is to show that for fixed M there
exists a linear process X/M which is in all components larger than our original
x™ and such that, the larger we choose M, the more x™) behaves like X/ M.
Then we use Theorem 2.1. Note that the proof works with « = 0 too.

1. First we have to find that linear process X. For this we define a trivariate

Markov process (X D (1), X (¢), R'(t)). “nl” standsfor non-linear, “r” standsfor
residual and the meaning of R’ isexplained |ater. Infact, each of the componentsin
(x| X)) are themselves infinite dimensional: the first component is an infinite

vector (X;”l) (1)) j=0 and the second component is an infinite vector (X,E’) ()k>1-
We assumethat Xﬁ.”l)(t) € Ngand X,({’)(t) e Npforall ¢, j, k. Wechoosetheinitial
valuestobesuchthat X" (0) = M —, XE."I)(O) =yjforj>1andx(0) =0
for k > 1. Our aim is to construct X ™) and X such that X; := Xﬁ."” + Xﬁ.’)
behaves like L for j > 1. We define the univariate, random process R’ (¢) to have

values on the nonnegative integers and to haveinitial value R’(0) = 0. We et these
processes devel op according to the following rates:

(X0, X0, R) = (X + (e -1 — ), X, R')
a ratequE"l); j > 1, (death of a parasite in the non-linear process)
(X0, X0, R) = (X + (e — o), X, R')
at rate )»(Xé””/M) Yous1 XU p; k > 1, (infection in the non-linear process)
(X0, X0, R) = (X + (e — e), X, R')
at rate KX§”1); v > 1, (death of an individual in the non-linear process)

(X0, X0, R) = (X, X0 4 (-1 —¢)), R
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atrate juX 5.’); j > 2, (death of a parasite in the residual process)
(X(”l), X, R’) N (XW), X0 ey, R’)

atrate uX Y), (death of aparasitein theresidual processwhen j = 1)
(X(”l), x®, R’) N (X("l), X0 e, R’)

a rate ;LXI(,’); v > 1, (death of an individua in the residual process). As can be
seen, non of the above events change the state of R’.
Let us first motivate the rates to come. Define R(u) = ijl XE’)(u), and

N@) =Y ;o1 X" (u). Then we define 7 := inf{u : N(u) > a} for a a(usually
large) positive number to be chosen later. Our aim isto define atime-homogeneous
Poisson process R’ such that almost surely the following relation holds:

R'(u) > I[R(u) > OlI[u < 1]. (3.21)

Aswe construct X" such that X develops according to L, we already know that
the total rate at which infections take placein X (and so in R) must be

P X @i+ @ x§ w0 Y X wpy

k=1 \j=1 Jj=1

But in (3.21), theright sideisO at time O and aslong asu < 7 increasesto 1 as
soon as afirst infection takes placein X ). This happens at rate

23— X80/ DS X wyp
k>1j>1
asuntil then R = 0. Let us have acloser look at thisrate, aslongasu < t:
NEED CONLDIHIP ¢RI OTIEPYED OV DD IS S ()

k>1j>1 j=1

M_
5x<1— a>a — ra?/M
M

So we define a time-homogeneous Poisson process R’ of rate 1a?/M coupled to
the development of R in the following way:
Define

b(u) == a®/M =) (Z XV wpje+@—xg" @My X§"’><u>pjk) :

k>1 \j>1 j=1

Note that we have just shown that b(u) > 0 until the first infection takes place in
theresidual processand aslongasu < t. Then, if b(u) > 0we havethefollowing
rates

(X(nl),X(r), R/) N (X("l)’ X(”) + e, R/—i-l)
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at rate

(nl)
X
2 X pu+ A ( 1(\)/1 ) DX purs k= 1,

>1 u>1
this is an infection in the residual process. Additionally, we have the following
changes
(X(nl)’ X(r)’ R’) N (X(nl)’ X(r)’ R + 1)

at rate

(nl)
X
wa?/M ="YX puc+ <1— %) 3 X0 puk

k>1 >1 u>1

Now if b < 0, we have the following rates
(X(”[), X, R/) - (XW), X0 4 e, R/>

at rate

(nl)
X
)&ZX(r)Plk +)\< #)innl)puk; k>1,
>1 u>1

thisisagain aninfectionintheresidual process. Additionally, we havethefollowing
changes

(XW), X, R/) - (X<”’>, X0 R+ 1)

at rate Aa2/ M. With this construction (3.21) holds almost surely for the following
reasons. we showed that 4 > O until thefirst infection, R’ increasestoo at the first
infection but does not decrease any more, additionally, note that we look at 7{z~.o
andnot R in (3.21). R’ isatime-homogeneous Poisson process of rate Aa®/ M. The
reader can easily check that X ) /M behaves according to N. Let us look at the
sum X; = (X"D 4+ X)), for j > 1. The development of X is that of L and is
the same for al M, asthe ratesinvolving M cancel. M aso appears in the initia
values, but there it only appears in the initial number of uninfected individuals;
since X does not include the zero co-ordinate, it remains the same for all M.
2. We now have to examine the limit

lim P My =0
M—o00 ZX] (t)
j=1
For all fixed M we introduce the notation L(u) = 2/21 X j(u), where we till

have N(u) := Y >1X("l)(u) andR(u) ==Y >1x§”(u)

Now wefix ¢ and deﬂneL =L(),N = N(t) and R := R(¢). Notethat whilethe
distributions of N (u) and R(u) vary with M, the distribution of L(u) is the same
for all M. We have

Y axn=0l=r|Y x"n=0|=P[N=0. (3.22)

j=1 j=1
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AsL = N + R wehave
PI[N=0]=P[L—-R=0(]
=P[L—R=0R=0]P[R=0]
+P[L—-—R=0R>0]P[R > (]
=P[L=0+P[L-R=0R>0P[R>0]. (323
The last equality holds becauseif L = Othen R = 0 too.
The next stepisto show that P[R > 0] tendsto 0 as M tendsto infinity. Define
a bivariate Markov process (X, B) such that X is the L process and behaves as
before. Additionally we add aunivariate random variable B > 0. Theinitial values
aeX;(0) =y;forj>1land B(0) =0andletusrecal that Y := .., y;. The
vector (X, B) changes according to the following rates:
(X,B) = (X +(ej_1—¢j), B) atrate juX;; j =2,
(X,B) > (X —e;, B+ 1) atraeuXy; (j=1),
(X.B) > (X + e, B) drater ) Xupu k=1,

u>1
(X,B) > (X —e,,B+1) aratexX,; u=>1,
(X.B) > (X, B+1) arae A\B+1 Y _ X,puwo.
u>1
Asiseasily seen, X isstill our linear process constructed in step 1. B cancels al-
most surely every loss of an infected individual inthelinear process X: an infected
individual drops out of the system if a parasite diesin an individual with only one
parasite and additionally B cancelsinfectionswith zero parasitesin the linear pro-
cess X through adding that rate in the fifth line of our rates. Hence, if we define
L := L + B, then L isalmost surely a pure birth process of rate A. If L increases,
L increasestoo, but L does not decrease when L decreases; more, the growing part
B of thesum L = L + B contributesincreasingly to the growth of L.
We can now argue as follows. for positive a, to be chosen later (the reader

should think of a being much larger than Y), we have the following relations:

~ 1 r- 15
P[N > 4] SP[L >a] < —[E[L] = -Ye*.
a a
If we choose a such that a—1Ye* < ¢, for an arbitrary € > 0, we can continue as
follows: ast :=inf{u : N(u) > a} < oo,
P[R > 0] =P [RIj<x) + Rly=7, > 0]
[R {t<t} > 0] + P [RI{[ZT} > 0]
[R {t<t} > 0] —+ Ip [I{IZ‘E} > O]
< U:D [R[{,<1—} > 0] + €. (3.24)

In the last inequality we used that N is dominated by L. We now have to show that
P[RI};<y > 0] tendsto 0 as M tendsto infinity. But by (3.21)

P[RIjj<z) > 0] = P[[{g=0)Ij1<z) > 0] < P[R' > 0] = 1 — exp(—t2ra?/M),
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as the probability that there is no event in the Poisson process until time ¢ is
exp(—tra?/M). So, letting M tend to infinity, we have in (3.24), ase > 0 was
chosen arbitrarily, that limy;_, o P[R > 0] = 0. Hence, from (3.22) and (3.23) we
have

Jim P M@ =0 =P[L0) =0].
j=1

3. We now have to examine the expression
lim P[L(r) = 0]
1—>00

to finish the proof.

Thefirst directions (logf < 1/(1+«/w)"tand Ry < Lor 1/ (1 +« /)"t <
logf < u/k and Ry < 1orlogh > u/x and Ry < 1) follow immediately: we
can use Theorem 2.1 because convergence to 0 a.s. implies convergence to 0 in
probability (notethat {L(¢) = 0} = {L(¢) > 1/2}°).

Theinversedirections(logd < 1/(14+«/p) tand Rg > 1or1/(14+«/u)~t <
logf < u/kandRy > lorlog® > w/x and R2 > 1) needthefollowing reasoning:
let us define the random process I (¢) in the following way:

{1 ifL®) >0
’(”'—{o if L(1) = 0.

As I (t)(w) isadecreasing functionin ¢ for each w, lim;_, o I (¢) existsa.s. and so
we can define a.s. the limit-function I, asfollows:

Ino(w) == tl_l)rgo 1(t)(w).

By Theorem 2.1 we have P [I, = 0] =: ¢ < 1 under the above constraints. But
as I (r) is a decreasing function, we have P[I(t) = 0] < P[loc =0 =¢ < 1
completing the proof. |
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