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Abstract. Two closely related stochastic models of parasitic infection are investigated: a
non-linear model, where density dependent constraints are included, and a linear model ap-
propriate to the initial behaviour of an epidemic. Host-mortality is included in both models.
These models are appropriate to transmission between homogeneously mixing hosts, where
the amount of infection which is transferred from one host to another at a single contact
depends on the number of parasites in the infecting host. In both models, the basic repro-
duction ratio R0 can be defined to be the lifetime expected number of offspring of an adult
parasite under ideal conditions, but it does not necessarily contain the information needed
to separate growth from extinction of infection. In fact we find three regions for a certain
parameter where different combinations of parameters determine the behavior of the models.
The proofs involve martingale and coupling methods.

1. Introduction

In Barbour and Kafetzaki (1993) [BK], a model for the spread of a parasitic disease
was introduced. The aim was to generate the highly over-dispersed distribution of
numbers of parasites per host observed in schistosomiasis data. This goal was not
to be achieved through heterogeneity in host susceptibility or through random (and
over-dispersed) numbers of parasites acquired per infection, with the associated
distribution being chosen so as to fit the data as well as possible. The drawback
of such approaches is the danger that the resulting models may not adequately
reflect what happens if parameter values change, since the distributions involved
are chosen ad hoc, rather than being derived from an underlying biological mecha-
nism. In [BK] the aim was to see how much variability in individual parasite loads
can be achieved from chance interaction phenomena alone, without sacrificing the
assumption of a population of homogeneous individuals.

The desired variability in parasite burden was achieved in the [BK]-model.
However another important result emerged, namely that for some parameter val-
ues the natural candidate for the basic reproduction ratio R0 does not necessarily
contain the information needed to separate growth from extinction of infection.
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This result was further studied in Barbour (1994) [B2], where a linear model, ap-
proximating the initial behaviour of the original model in large populations, was
investigated; the same phenomena were present there, too. Neither model included
mortality of hosts, which however could be expected to have a substantial influence
on the behaviour. In this paper, it is shown that in this case there are three separate
ranges of parameters, in which different combinations of parameters are critical for
separating growth from extinction.

2. The models and their behavior

We first consider a non-linear model with a fixed number M of individuals, each
of which may carry parasites. Let x(M) be an infinite dimensional Markov process
on a probability space (�,F,�)

x(M)(ω, t) : �× [0,∞) → {[0, 1] ∩M−1�}∞,

in which x(M)
j (t), j ≥ 0, denotes the proportion of individuals at time t , t ≥ 0, that

are infected with j parasites, so that
∑

j≥0 x
(M)
j (0) = 1 and x(M)

j (0) ≥ 0, j ≥ 0.
We suppress the index M whenever possible. The parasites have independent life-
times, exponentially distributed with mean 1/µ. Each infected individual makes
contacts with other individuals with rate λ; but only those contacts that are with
an uninfected individual lead to a new infection (concomitant immunity). If the in-
fecting individual has j parasites, then the result of a contact is to establish a newly
infected individual with a random number Sj of parasites, where Sj := ∑j

i=1 Yi
and the Yi are independent and identically distributed with mean θ and variance
σ 2 < ∞. We define pjk := �[Sj = k], and so∑

k≥0

pjk = 1 for each j and
∑
k≥1

kpjk = jθ. (2.1)

We assume that individuals have independent lifetimes, exponentially distributed
with mean 1/κ , no matter how high the parasite burden is. All parasites die if their
host dies. We allow the possibility of having κ = 0, meaning that people live for
an infinite length of time, as in [BK] and [B2].

In this non-linear model, we replace an individual that dies by an uninfected
individual. The rates with which x changes are then as follows:

x → x +M−1(ej−1 − ej ) at rate jMµxj ; j ≥ 1,

x → x +M−1(ek − e0) at rate λMx0

∑
l≥1

xlplk; k ≥ 1, (2.2)

x → x +M−1(e0 − er) at rate Mxrκ; r ≥ 1,

where ei denotes the i-th co-ordinate vector in �∞. We call this model N; this
stands for Non-linear. We introduce a notation for the sigma-algebras too: Fs :=
σ {x(u), 0 ≤ u ≤ s}. At this point it is convenient to explain why we have these
rates: there are jMxj parasites in individuals with j parasites and they all die at
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a rate of µ. If such a parasite dies, the proportion of individuals with j parasites
decreases by 1/M and the proportion of individuals with (j−1) parasites increases
by 1/M . This explains the first transition-rate. The second transition is an infec-
tion: there are xlM individuals with l parasites who make contacts according to a
Poisson process of rate λ. But only those contacts that take place with uninfected
individuals are infective. So the rate must be decreased by multiplying with the
proportion of uninfected people x0. Then we must include the probability that such
an infection leads to an infection with k parasites, hence the probability plk . The
last rate describes a death of a person: there are Mxr individuals with r parasites
and they die at a rate of κ .

The reason for modelling the lifetime of individuals and parasites with an expo-
nential distribution is purely for mathematical simplicity. Careful study of schistos-
omiasis incidence data, led to the following conclusions for the infection process
(Barbour (1977) [B1]): if individuals get infected, then they are not infected serv-
eral times per year, but once every few years. On the other hand, children at the
age of 12 may well have a large number of parasites in their body. So we presume
that there is group infection. Then Sj is generated such that each of the j parasites
in the body of the infecting individual independently produces a random number
Yi, 1 ≤ i ≤ j, of offspring in the newly infected host. The exact distribution of
Sj would therefore have to be calculated as a convolution of the Yi’s, but this will
never be necessary explicitly. Additionally we assume concomitant immunity in
humans, meaning that people get infected and then are immune to further infections
until they have fully recovered (see Bradley and McCullough (1973) [BM]).

The linear model, useful in modelling the initial phase of an epidemic outbreak,
is defined as follows. Let X be an infinite dimensional Markov process

X(ω, t) : �× [0,∞) → {[0,∞) ∩ �}∞,

where Xj(t), j ≥ 1, denotes the number of individuals at time t , t ≥ 0, that
are infected with j parasites. We assume that 0 <

∑
j≥1 Xj(0) = M < ∞ and

Xj(0) ≥ 0, j ≥ 1. The rates at which X changes are as follows:

X → X + (ej−1 − ej ) at rate jµXj ; j ≥ 2,

X → X − e1 at rate µX1; (j = 1),

X → X + ek at rate λ
∑
l≥1

Xlplk; k ≥ 1, (2.3)

X → X − er at rate Xrκ; r ≥ 1.

We call this model L; this stands for Linear. We introduce a notation for the sigma-
algebras too: Gs := σ {X(u), 0 ≤ u ≤ s}. The difference between model N and L
is the following: in model L the contact rate is λ and there is no limiting factor in
the model. In model N the contact rate is altered from λ to λx0, because only those
infectious contacts that are with an uninfected individual lead to a new infection.
In the remainder of this section we outline the behaviour of the two models; the
proofs are deferred to section 3.
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2.1. The basic reproduction ratios

Let us define R0 := λθ/(µ + κ), R1 := (λe log θ)/(µθ
κ
µ ) and R2 := λ/κ . These

are quantities which emerge as being critical in determining the behavior of the
models as is seen in Theorems 2.1 and 2.3. R0 is what would usually be called the
basic reproduction ratio, because it denotes the average number of offspring of a
single parasite during his whole lifetime in the absence of density dependent con-
straints. This can be seen in the following way. Since a parasite also dies if its host
dies, a parasite has an exponentially distributed lifetime with parameter µ+ κ , and
hence its expected lifetime is (µ + κ)−1. During its life, it makes contacts at rate
λ per unit time, and on average these contacts result in infections with θ parasites.
We do not have an obvious interpretation for R1, but the reader is referred to [B2]
for an interpretation if κ = 0. For R2 > 1, R−1

2 denotes the probability that a pure
birth and death process with contact rate λ and death rate κ dies out, beginning with
one initial infected. As is seen later on, R2 becomes critical when θ is ‘large’. It
seems that then the bulk of infected hosts die before they recover because they are
infected with very large numbers of parasites. Therefore, in that case, if we are only
interested whether the infection dies out or not, we almost have the same behaviour
as in a pure birth and death process.

The (linear) system is essentially more complicated than the multitype branch-
ing process with finite number of types and it does not seem possible to simply
characterise the growth rates in terms of Perron-Frobenius eigenvalues.

By the expression ‘threshold behavior’ we denote general statements of the
following kind: if R0 > 1 the epidemic has a positive probability to develop and if
R0 ≤ 1 the epidemic dies out almost surely. As we see in what follows, the situation
in our models is far more complex than that stated above.

Theorem 2.1. Suppose X(0) = y(0) in model L such that 0 <
∑

j≥1 y
(0)
j < ∞

where y(0) is fixed. Then the following results hold:

(1): log θ ≤ (1 + κ/µ)−1. Then �[limt→∞
∑

j≥1 Xj(t) = 0] = 1 if and only if
R0 ≤ 1.

(2): (1 + κ/µ)−1 < log θ ≤ µ/κ . Then �[limt→∞
∑

j≥1 Xj(t) = 0] = 1 if and
only if R1 ≤ 1.

(3): µ/κ < log θ . Then �[limt→∞
∑

j≥1 Xj(t) = 0] = 1 if and only if R2 ≤ 1.

In addition, the expected number of parasites in L grows with an exponential rate
(λθ − µ− κ):

�

∑
j≥1

jXj (t)

 =
∑
j≥1

jy
(0)
j

 e(λθ−µ−κ)t . (2.4)

Remarks. 1) If κ = 0, these results stay true with the following adjustments: the
third region for θ is shifted away to infinity. So we have only two regions for θ if
κ = 0, namely: θ < e and θ ≥ e, and the basic reproduction ratios simplify to
R0 = λθ/µ and R1 = λe log θ/µ. Then Theorem 2.1 is Theorem 2.1 in [B2].
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2) The deterministic analogue is Remark 1) to Theorem 3.1 and equation (3.3) in
[Ld].
3) Suppose µ/κ ≥ log θ > (1 + κ/µ)−1, R0 > 1 and R1 < 1 (which is possible!).
This implies that the epidemic dies out with probability one in model L; but it
means too that the expected number of parasites tends to infinity.

If an epidemic outbreak is not in the initial phase anymore, the non-linear mod-
el is more appropriate. The following theorem shows that in the non-linear cases
the epidemic eventually dies out with probability one, no matter what values the
parameters take.

Theorem 2.2. In the non-linear model N the infection dies out with probability one,
that is, for all M , 1 ≤ M < ∞,

�
[

lim
t→∞ x(t)(M) = e0

]
= 1.

Remark. There is no deterministic analogue of Theorem 2.2, however, the reader
should observe Theorem 3.7 in [Ld] as a contrast.

Looking at Theorem 2.2, we see that in model N the epidemic finally dies out
almost surely, no matter what values the parameters take. But the behavior of the
non-linear model in finite time (and with M large) is quite different, depending on
whether Ri , i ∈ {0, 1, 2} is greater or smaller than one. This is made more precise
in

Theorem 2.3. Fix y ∈ (� ∪ {0})∞, such that 0 < Y := ∑
j≥1 yj < ∞, and

suppose that for each M > Y we have x(M)
j (0) = yj /M for all j ≥ 1, x(M)

0 (0) =
1 − Y/M . Then in model N we have the following threshold behavior:
Case 1): log θ ≤ (1 + κ/µ)−1. Then

lim
t→∞ lim

M→∞
�

∑
j≥1

x
(M)
j (t) = 0

 = 1 if and only if R0 ≤ 1.

Case 2): (1 + κ/µ)−1 < log θ ≤ µ/κ . Then

lim
t→∞ lim

M→∞
�

∑
j≥1

x
(M)
j (t) = 0

 = 1 if and only if R1 ≤ 1.

Case 3): log θ > µ/κ . Then

lim
t→∞ lim

M→∞
�

∑
j≥1

x
(M)
j (t) = 0

 = 1 if and only if R2 ≤ 1.
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Remarks. 1) We let M tend to ∞ first (with t fixed). In the linear models the con-
tact rate λ stays the same no matter how many individuals are infected. But in the
non-linear model this contact rate is altered by multiplying it with the proportion of
uninfected λx(M)

0 . As we increase M , we only increase the initial number of unin-

fected individuals: Mx
(M)
0 (0) = M − Y , the initial number of infected individuals

stays constant and equal to Y . Since the initial proportion x
(M)
0 (0) of uninfected

tends to 1 as M tends to infinity, we almost have a linear model in the initial phase.
So it is not too surprising that we have results analogous to those in Theorem 2.1.
Note that it is vital to let M converge to infinity first and then let t converge to
infinity, because of Theorem 2.2.
2) Again, as in Theorem 2.1, if κ = 0, these results stay true, with the interpretation
that the third region for θ is shifted away to infinity.
3) The deterministic analogue is Theorem 3.7 in [Ld].

3. Proofs

We first have to be sure that the linear process is ‘regular’, in the sense that it makes
only finitely many transitions in any finite time interval [0,T], almost surely. This
is shown in the following

Lemma 3.1. The process X that evolves according to L is regular.

Proof of Lemma 3.1. If there are infinitely many transitions in a finite time interval
[0,T], there must be infinitely many infections too in [0,T]. But this is impossible,
as can be seen by comparison with a pure birth process of rate λ. ��

Proof of Theorem 2.1. The case where κ = 0 was shown in [B2] as Theorem
2.1, except for equation (2.4). Therefore we may assume that κ > 0 except for the
proof of (2.4). For the proof of Theorem 2.1 we first need four technical lemmas
(Lemmas 3.2, 3.3, 3.4 and 3.5).

Lemma 3.2. a) If log θ ≤ (1 + κ/µ)−1 and R0 > 1, or if R1 > 1, then R2 > 1.
b) If log θ ≤ (1+κ/µ)−1 andR0 > 1; or ifR1 > 1; or ifµ/κ < log θ andR2 > 1,
then inf(0<α≤1) λθ

α/(µα + κ) > 1.

Proof of Lemma 3.2. a) This follows from part b) because

R2 = λ

κ
= λθα

µα + κ

∣∣∣∣
α=0

≥ inf
(0<α≤1)

λθα

µα + κ
.

We do not use part a) to prove part b).
b) In the first region we have log θ ≤ (1 + κ/µ)−1 and λθ > µ+ κ . We want

to show that for α ∈ (0, 1] we have λθα > µα + κ . We have

λθα = λθθα−1 > (µ+ κ)θα−1

and therefore it is enough to show that (µ + κ)θα−1 ≥ µα + κ . We define a :=
1 + κ/µ and b := 1 − α ≥ 0 and then all we have to show is that aθ−b ≥ a − b
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if θ ≤ e
1
a . We have finished this proof if we can show that a ≥ (a − b)e

b
a . But

this is obvious since dividing by a on both sides and choosing x := b/a we need
(1 −x) ≤ e−x which is true. In the second case we have λe log θ > µθ

κ
µ . We want

to show that for α ∈ (0, 1] we have λθα > µα + κ . We have

λθα >
µθ

κ
µ

+α

e log θ

and therefore we only have to show that

µθ
κ
µ

+α

e log θ
≥ µα + κ.

We define a := α + κ/µ and then all we have to show is that θa ≥ ae log θ . We
define b := a log θ and so we need to show that eb ≥ eb which is true for all b.
In the third region we have log θ > µ/κ and λ > κ . We want to show that for
α ∈ (0, 1] we have λθα > µα + κ . We have λθα > κθα and therefore we only
have to show that θα > (µ/κ)α+1. If we define a := (µ/κ)α and use log θ > µ/κ

we only have to show that ea ≥ a + 1 which is true. ��

For the following lemmas we define for δ > 0

g1(j) := 1

1 + δj
(3.1)

g2(j) := 1

1 + δjα(j)

and

α(j) :=
{

1 if j ≤ K;
1 − (1 − α∗)

(
1 − log logK

log log j

)2
if j > K,

where 0 < α∗ < 1/6 and α∗ is made smaller if necessary later on; in what follows,
δ is always smaller than 1 and K ≥ ee

3
, even if we do not mention it every time.

Lemma 3.3. [[B2], page 108]. α(x) and g2 have the following properties:

a) α(x) log(x) increases with x.
b) α(x) decreases with x.
c) g2(x) decreases with x.
d) For x ≥ K ,

0 ≤ −α′(x) ≤ 2

x log x log logK
.

e) For c, x > 1,

1 ≥ xα(cx)−α(x) ≥ 1 − 2(c − 1)

log logK
.

f) There exists a constant k > 2 such that

g′′
2 (x) ≤ kδxα(x)−2,

uniformly in x > 0, δ ≤ 1 and K ≥ ee
3
.
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Lemma 3.4. a) For j ≥ 0 the following inequality holds:

1 − �[g1(Sj )] ≥ δjθ

1 + δjθ

{
1 − δσ 2

θ(1 + δjθ)

}
.

b) For jθ ≤ K , k as in Lemma 3.3 f) and δ ≤ k/(2K) we have

1 − �[g2(Sj )] ≥ δjθ

1 + δjθ

{
1 − k2σ 2

θK

}
.

c) For δ(jθ)α(jθ) ≤ 1, k as in Lemma 3.3 f) and s(k) a constant such that s(k)k ≥ 8
and (1 − √

2/s(k)k)2 ≥ 3/s(k) we have

1 − �[g2(Sj )] ≥ δ(jθ)α(jθ)

1 + δ(jθ)α(jθ)

{
1 − ks(k)σ 2

θ2j

}
.

d) Suppose δ is chosen so small that, if j satisfies δ(jθ)α(jθ) > 1, then α(j) ≤
2α∗ < 1/3 must be satisfied too (see the definition of α(j) for a definition of α∗).
Then, for j such that δ(jθ)α(jθ) > 1 is satisfied we have

1 − �[g2(Sj )] ≥ δ(jθ)α(jθ)

1 + δ(jθ)α(jθ)

{
1 −O(j−2/3)

}
.

Remark. Lemma 3.4 allows us to replace �[g(Sj )] by g(jθ) with only small
impact.

Proof of Lemma 3.4. See [B2], pages 107 ff.). There was a printing error in b)
(k instead of k2) and in d) it is possible to have O(j−2/3) instead of O(j−1/3)

following exactly the same line of proof. ��

Define Mβ(t) := ∑
j≥1 j

βXj (t);

cβ(X) :=
∑
j≥1

jµXj {(j − 1)β − jβ} + λ
∑
k≥1

∑
j≥1

Xjpjkk
β − κ

∑
j≥1

jβXj

and

Wβ(t) := Mβ(t)−Mβ(0)−
∫ t

0
cβ(X(u))du.

Lemma 3.5. For 0 < β ≤ 1 and with the notation above,Wβ(t) is aGt -martingale
where Gs := σ {X(u), 0 ≤ u ≤ s}, whatever the value of κ ≥ 0.

Proof of Lemma 3.5. We can apply Theorem 2 in Hamza and Klebaner (1995)
[HK], version for general state space. Choose f (z) := ∑

j≥1 j
βzj and c := (2µ+

λθ + κ), then |L|f (z) ≤ c(1 ∨ |f (z)|) is satisfied, where L is the infinitesimal
generator of the Markov process X. ��

Proof of Theorem 2.1. In part A) we prove extinction in all three cases 1) to 3) if
the relevant Ri ≤ 1. In part B) we prove that there is a positive probability that the
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epidemic develops in all three cases 1) to 3) if the relevant Ri > 1. In part C) we
prove the fourth result.

A) In the first part of A) we assume that R0 ≤ 1. For β = 1 (we suppress the
“1” in the next few steps) we can argue as follows (W(0) = 0):

M(t) = W(t)+M(0)+
∫ t

0
c(X(u))du. (3.2)

Because W is a martingale, we therefore have for 0 < s < t :

�[M(t)|Gs] = W(s)+M(0)+ �

[∫ t

0
c(X(u))du|Gs

]
,

and so finally by using again the definition of W(s):

�[M(t)|Gs] = M(s)+ �

[∫ t

s

c(X(u))du|Gs

]
. (3.3)

But c(X(u)) = (λθ − µ− κ)M(u), and so we can derive

�[M(t)|Gs] = M(s)+
∫ t

s

(λθ − µ− κ)�[M(u)|Gs]du.

So �[M(t)|Gs] ≤ M(s) for 0 < s < t if R0 ≤ 1 which means that M is a
nonnegative supermartingale.

Now we observe that each X ∈ �∞\{0}∞ is transient. The communication
structure of a Markov process divides the set of states into equivalence-classes. If a
class is not closed, it is automatically transient. Here the set �∞\{0}∞ is an equiva-
lence-class and is not closed (one can leave it by going to {0}∞, which is a separate
absorbing class), and so each X ∈ �∞\{0}∞ is transient. But for each K the set
{X ∈ �∞\{0}∞|∑j≥1 jXj ≤ K} is finite and transient, and hence is only visited
finitely often a.s.. Hence it follows that limt→∞

∑
j≥1 jXj (t) = limt→∞ M(t) is

almost surely either 0 or ∞.
Now, by the nonnegative (super)-martingale convergence theorem (see Revuz

and Yor (1991) [RY], Corollary 2.11, § 2, Chapter II for example), we can conclude
that M converges almost surely towards an a.s finite random variable which there-
fore must be 0, implying �[limt→∞

∑
j≥1 Xj(t) = 0] = 1 if R0 ≤ 1 no matter

what value θ has. This finishes the first direction (R0 ≤ 1) of the proof of 1) and
those situations of 2) and 3) where R0 ≤ 1.

In the second part of A) we can therefore assume that R0 > 1. We start with
equation (3.3). Now β becomes vital for the proof and the reader can easily check
that for any β ∈ (0, 1] the calculations run through until equation (3.3). So we have

�[Mβ(t)|Gs] = Mβ(s)+ �

[∫ t

s

cβ(X(u))du|Gs

]
.

Now we prove that for each β ∈ (0, 1] we have cβ(X) ≤ (λθβ −βµ−κ)Mβ . This
goes as follows:
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The function f (y) := yβ is concave if β ∈ [0, 1]. So for y1, y2 we have

f (y1) ≤ f (y2)+ f ′(y2)(y1 − y2).

If we choose y1 = j − 1, y2 = j we therefore get

{(j − 1)β − jβ} ≤ −βjβ−1,

and so we can derive∑
j≥1

jµXj {(j − 1)β − jβ} ≤ µ
∑
j≥1

jXj (−βjβ−1) ≤ −µβ
∑
j≥1

jβXj .

Using Jensen’s inequality for concave functions we have
∑

l≥0 pjll
β ≤ (jθ)β . So

λ
∑
l≥1

∑
j≥1

Xjpjll
β = λ

∑
j≥1

Xj

∑
l≥1

pjll
β ≤ λθβ

∑
j≤1

jβXj ,

and so looking at the definition of cβ we can conclude

cβ(X) ≤ (λθβ − βµ− κ)
∑
j≥1

jβXj .

We are free to choose β ∈ (0, 1). We want to argue just as we did in the first part
of A) mutatis mutandis, for which it is enough to show that (λθβ − µβ − κ) ≤ 0
under the constraints of the theorem in cases 2) and 3) for suitably chosen β. Once
accomplished, the proof of part A) is complete.

For case 2) we choose β = β0 := (1/ log θ) log(µ/(λ log θ)). Elementary
computations show that as R0 > 1, R1 ≤ 1 and (1 + κ/µ)−1 < log θ ≤ µ/κ ,
we have β0 ∈ (0, 1) and λθβ0 − β0µ − κ < 0. So this ends the proof of the first
direction (R1 ≤ 1) of 2).

Case 3) is even simpler: µ/κ < log θ and therefore θ > 1. Besides that we
have λ < κ . We have to find a β ∈ (0, 1) such that λθβ − βµ− κ < 0. But this is
clear (β → 0 finally makes it). This ends the proof of the first direction (R2 ≤ 1)
of 3).

B) This proof consists of three parts. In part one (B1)) we derive the general
strategy; in B2) we treat the case where θ ≤ 1, and in B3) we treat the remaining
case (θ > 1).

B1) We think in terms of a discrete generation branching process with types
j = 1, 2, . . .. At each generation, each individual dies, an individual of type j

being replaced either by one of type j − 1 (death of a parasite) with probability
jµ/(λ + jµ + κ) , or by one of type j and another of type k (infection) with
probability λpjk/(λ+ jµ+ κ), or not replaced at all (death of an individual) with
probability κ/(λ+ jµ+ κ) and type 0 individuals are not counted.

Then, if

q(n)(j) := �[extinction by generation n |X(0) = ej ],
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consideration of the first generation shows that q(n+1) = T q(n), where we have
(Tf )(0) = 1 and

(Tf )(j) = [jµ/(λ+ jµ+ κ)]f (j − 1)+ [λ/(λ+ jµ+ κ)]f (j)�[f (Sj )]

+[κ/(λ+ jµ+ κ)], j ≥ 1,

where Sj is defined just before equation (2.1). Clearly, q(0)(0) = 1 and q(0)(j) = 0
for j ≥ 1, and

q(n)(j) ↑ q(j) := �[eventual extinction |X(0) = ej ].

We wish to show that q(j) < 1 for j ≥ 1 under the conditions stated in the theorem.
First observe that, if f ≥ h in the sense that f (j) ≥ h(j) for all j ≥ 0, then

T nf ≥ T nh for all n ≥ 1 also. Hence, if we can find any f such that f ≥ q(0)

and Tf ≤ f , it follows that f ≥ q also. If, in addition, f (j) < 1 for all j ≥ 1, the
same must be true of q. The remainder of the proof consists of finding a suitable
function f .

But rather that looking for such an f directly, we look for a transformation
of f . The heuristic idea is as that, for j very large, the probability q(j) must be
approximately κ/λ. That is, if we start with only one infected individual having a
huge parasite burden, all infected individuals in the initial stages have large parasite
burdens, and the only way that they then lose infectiousness is through death, since
it takes much too long for the parasites to all die. Then the initial stages are well
described by a pure birth and death process with birth rate λ and death rate κ , for
which the probability of extinction is κ/λ. Lemma 3.2 a) guarantees us that this
ratio is always smaller than 1 (in those cases relevant to us in part B) of the proof).
So we expect that

lim
j→∞

q(j) = κ

λ
.

For smaller values of j we expect values for q(j)which are larger, because there are
initially fewer parasites in the process, and for j = 0 we must even have q(0) = 1.
We look for an f which is almost 1 if j is small and then decreases to the final limit
κ/λ as j tends to infinity. So define

f (j) :=
(

1 − κ

λ

)
g(j)+ κ

λ

and look for a g such that g(0) = 1 and g(j) for j ≥ 1 decreases slowly to 0.
What constraints must g satisfy in order that f should satisfy the conditions

we asked for above? Let T operate on f successively, and define f (n) := T nf ; set
f (n) = (1 − κ/λ)g(n) + κ/λ. Then g(n) = T̃ ng, where

T̃ g(j) = jµ

λ+ jµ+ κ
g(j − 1)+ κ

λ+ jµ+ κ
g(j)

+ κ

λ+ jµ+ κ
�[g(Sj )] + λ− κ

λ+ jµ+ κ
g(j)�[g(Sj )], j ≥ 1.

We must be sure that if we find a g such that for all j ≥ 1 the three conditions

g(0) = 1; g(j) < 1; and T̃ g ≤ g



Stochastic models of a parasitic infection 543

are satisfied, then the corresponding conditions are true for f . The first two condi-
tions are clearly satisfied: f (0) = 1 and f (j) < 1 for j ≥ 1. The third condition
is satisfied because

Tf = (1 − κ/λ)T̃ g + κ/λ ≤ (1 − κ/λ)g + κ/λ = f.

As a conclusion of part B1) of the proof we now see that we have to find a (non-
negative) g such that for all j ≥ 1 the following conditions

g(0) = 1; g(j) < 1; and T̃ g ≤ g

are satisfied. The third condition can be explicitly rewritten as follows:

jµ (g(j − 1)− g(j))+ κ (1 − g(j)) ≤ (1 − �[g(Sj )]) (κ − g(j)κ + λg(j)) ,

(3.4)
and if we talk about a g satisfying condition (3.4), we mean that g satisfies g(0) = 1
and g(j) < 1 for j ≥ 1 too.

The computations that follow in B2) and B3) are awkward because we want
to replace the expression �[g(Sj )] in (3.4) by g(θj). This is justified up to a small
error, but we therefore have to keep the error under control.

B2) In this part of the proof we suppose that θ ≤ 1. We now have to find a
(nonnegative) g such that condition (3.4) is satisfied. We try g1(j) := (1 + δj)−1,
as defined in (3.1), for δ > 0 to be chosen later. With this choice of g and using
Lemma 3.4 a) we see that (3.4) is satisfied if

µ

1 + δ(j − 1)
+ κ ≤ θ

1 + δjθ

{
1 − δσ 2

θ(1 + δjθ)

}
(κδj + λ)

is satisfied. This equation is equivalent to

µ
1 + δjθ

1 + δ(j − 1)

{
1 − δσ 2

θ(1 + δjθ)

}−1

+κ
{
(1 + δjθ)

{
1 − δσ 2

θ(1 + δjθ)

}−1

− θδj

}
≤ λθ.

As R0 > 1 we can define c := λθ − µ − κ > 0. Then the above inequality is
equivalent to

µ
1 + δjθ

1 + δ(j − 1)

{
1 − δσ 2

θ(1 + δjθ)

}−1

− µ

+κ
{
(1 + δjθ)

{
1 − δσ 2

θ(1 + δjθ)

}−1

− θδj

}
− κ ≤ c

which is in turn equivalent to

µδ
(θ + σ 2 − δσ 2)+ j (θ2 − θ + σ 2δ + δθ2)+ j2(δθ3 − δθ2)

(θ − δσ 2 − δθ + δ2σ 2)+ j (δθ2 + δθ − σ 2δ2 − δ2θ2)+ j2θ2δ2

+κδ σ 2 + jδθσ 2

θ + δjθ2 − δσ 2
≤ c. (3.5)
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We now examine the first term of the left side of (3.5). As θ ≤ 1 we have (δθ3 −
δθ2) ≤ 0 (third term in the numerator). Now we choose δ < min((θ − θ2)/(θ2 +
σ 2), θ/(σ 2 + θ)). With this choice, θ2 − θ + σ 2δ + δθ2 (second term in the nu-
merator) is smaller than or equal to 0 and each term in the denominator is positive
for all j ≥ 1. So the first term of the left side of (3.5) is smaller than or equal to

µδ
θ + σ 2 − δσ 2

θ − δσ 2 − δθ + δ2σ 2
.

This term does not depend on j and so it is easily seen that δ can be made so small
that the following inequality is satisfied

µδ
θ + σ 2 − δσ 2

θ − δσ 2 − δθ + δ2σ 2
<

c

2
.

Proceeding to the second part, choosing δ ≤ θ/2σ 2 we have

κδ
σ 2 + jδθσ 2

θ + δjθ2 − δσ 2
≤ 2κδ

σ 2(1 + 2jδθ)

θ(1 + 2jδθ)
≤ c

2

for all j ≥ 1 if we choose δ ≤ cθ/4κσ 2.
Combined, (3.5) is satisfied for all j ≥ 1 which ends the proof of part B2).

B3) In this part of the proof we suppose that θ > 1. Again, we have to find a
(nonnegative) g such that condition (3.4) is satisfied.

In this part we cannot choose the simple function g1, as before, because (3.4) is
not satisfied for all j no matter how we choose δ. Instead we choose g2 (see (3.1)
for a definition of g1 and g2).

The construction of g2 with an α(j) as exponent in a term of the denominator
leads to a g with the same decay as g1 as long as j ≤ K and then the decay is small-
er. Heuristically spoken g2 is (in comparison to g1) somehow “lifted” over a critical
region until it finally decays to 0 at a much slower rate than g1. But the reader should
be aware of the fact that for all j ≥ 0 we nevertheless have g2(j) < g2(j − 1), as
shown in Lemma 3.3.

With this choice of g we see that (3.4) is satisfied if

jµ

[
g2(j − 1)

g2(j)
− 1

]
+ κδjα(j) ≤ (1 − �[g(Sj )])(κδj

α(j) + λ) (3.6)

is satisfied. Again, if we talk about a g satisfying condition (3.6), we mean that g
satisfies g(0) = 1 and g(j) < 1 for j ≥ 1 too.

We introduce three regions for j and so B3) consists of 3 parts itself:

B3.1) Here we presume that 1 ≤ j ≤ K/θ . Then as θ > 1 we are in a region
where g2 and g1 are identical (α(j) = 1) and so we have

g2(j − 1)

g2(j)
− 1 ≤ δ;
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using Lemma 3.4 b), it is enough to show that

µ+ κ ≤ θ

1 + δjθ

{
1 − k2σ 2

θK

}
(κδj + λ) (3.7)

for (3.6) to be satisfied. Until now, we need δ < δ1 := min(1, k/(2K)). In all three
regions we have R0 > 1 and so we can define c := λθ − µ − κ > 0. (3.7) is then
equivalent to

µδjθ + κσ 2k2δj

K
+ λσ 2k2

K
≤ c. (3.8)

With the choices δ < δ2 := min(δ1, c/(3Kµ), (cθ)/(3κk2σ 2)) and K ≥ K1 :=
max((3k2σ 2λ)/c, ee

3
) equation (3.8) is satisfied which ends the proof of B3.1).

B3.2) Here we presume that K/θ < j ≤ J + 1, with J := J (K) such that
α(J ) ≤ 2α∗. Elementary calculations show that

g2(j − 1)

g2(j)
− 1 ≤ δ

(
jα(j) − (j − 1)α(j−1)

)
≤ δα(j − 1)(j − 1)α(j−1)−1. (3.9)

We choose δ < δ3 := min(δ2, (KJθ)−1). Then Lemma 3.4 c) can be applied. As
δ < (KJθ)−1 we can incorporate the denominator 1 + δ(jθ)α(jθ) of the right side
of Lemma 3.4 c) in the correction term (1 − O(K−1)) which allows us to rewrite
this lemma in the following way:

1 − �[g2(Sj )] ≥ δ(jθ)α(jθ)(1 −O(K−1)).

Together with (3.9) we see that (3.6) is satisfied if

jµα(j − 1)(j − 1)α(j−1)−1 + κjα(j) ≤ (jθ)α(jθ)(1 −O(K−1))(κδjα(j) + λ)

is satisfied. The term κδjα(j) on the right side is of order O(K−1) and so we skip
it, we do not need it. We therefore have to show that

jµα(j − 1)(j − 1)α(j−1)−1 + κjα(j) ≤ λ(jθ)α(jθ)(1 −O(K−1)) (3.10)

is satisfied. If we can show that

λ(jθ)α(jθ)(1 −O(K−1))

jµα(j − 1)(j − 1)α(j−1)−1 + κjα(j)
≥ λθα(j)

µα(j)+ κ
(1 −O((log logK)−1))

≥ 1, (3.11)

then (3.10) is satisfied. The last inequality of (3.11) is surely true by Lemma 3.2 b)
for all K large enough and so we can concentrate on the first inequality. The first
inequality is true if we can show that the following two inequalities hold:

α(j)(jθ)α(jθ)(1 −O(K−1))

≥ θα(j)(1 −O((log logK)−1))jα(j − 1)(j − 1)α(j−1)−1 (3.12)

and

(jθ)α(jθ)(1 −O(K−1)) ≥ θα(j)(1 −O((log logK)−1))jα(j). (3.13)
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Equation (3.12) is satisfied because the following three relations (3.14), (3.15) and
(3.16) hold. Because of Lemma 3.3 d), we have

α(j)

α(j − 1)
= 1 − (α(j − 1)− α(j))

1

α(j − 1)

≥ 1 − 2

α(j − 1)(j − 1) log(j − 1) log logK
. (3.14)

Then, again by Lemma 3.3 d), we have

θα(jθ)−α(j) = exp([α(jθ)− α(j)] log θ)

≥ 1 + [α(jθ)− α(j)] log θ ≥ 1 − log θ
2j (θ − 1)

j log j log logK
.

(3.15)

Finally, again by Lemma 3.3 d) we can derive

jα(jθ)−1

(j − 1)α(j−1)−1
≥ (j − 1)α(jθ)−α(j−1)

= exp (log(j − 1)[α(jθ)− α(j − 1)])

≥ 1 + log(j − 1)[α(jθ)− α(j − 1)]

≥ 1 − log(j − 1)
2(1 + j (θ − 1))

(j − 1) log(j − 1) log logK
. (3.16)

Therefore (3.12) is satisfied. Furthermore, (3.15) and Lemma 3.3 e) show immedi-
ately that (3.13) is satisfied, which finishes the proof of B3.2)

B3.3) Finally we presume that j > J + 1. By looking at the derivative of jα(j)

and using Lemma 3.3 b) we immediately gain

g2(j − 1)

g2(j)
− 1 ≤

(
δ(j − 1)α(j−1)

1 + δ(j − 1)α(j−1)

)
α(j − 1)

(j − 1)
.

For j > J + 1, we first have δ(jθ)α(jθ) ≤ 1 and then we get into the area where
δ(jθ)α(jθ) > 1. But the inequality of Lemma 3.4 d) is weaker than the inequality
of Lemma 3.4 c). So, after making δ even smaller if necessary, we may use

1 − �[g2(Sj )] ≥ δ(jθ)α(jθ)

1 + δ(jθ)α(jθ)

{
1 −O(j−2/3)

}
during the whole part of B3.3). Again, for the last time we want inequality (3.6) to
be satisfied. All we need to show is therefore that

jµ

(
(j − 1)α(j−1)

1 + δ(j − 1)α(j−1)

)
α(j − 1)

(j − 1)
+ κjα(j)

≤ (jθ)α(jθ)

1 + δ(jθ)α(jθ)

{
1 −O(j−2/3)

}
(κδjα(j) + λ) (3.17)



Stochastic models of a parasitic infection 547

We want to get rid of the denominators: Equation (3.17) is equivalent to the fol-
lowing long expression:

jµ(j − 1)α(j−1)α(j − 1)+ jµ(j − 1)α(j−1)α(j − 1)δjα(jθ)θα(jθ)

+ κjα(j)(j − 1)+ κjα(j)δ(j − 1)α(j−1)+1 + κjα(j)+α(jθ)δθα(jθ)(j − 1)

+ κjα(j)+α(jθ)(j − 1)α(j−1)+1δ2θα(jθ)

≤
(

1 −O(j−2/3)
)(

κjα(j)+α(jθ)δθα(jθ)(j − 1)+ (j − 1)jα(jθ)θα(jθ)λ

+ κjα(j)+α(jθ)(j − 1)α(j−1)+1δ2θα(jθ) + jα(jθ)θα(jθ)λ(j − 1)α(j−1)+1δ

)
.

This is equivalent to

jµ(j − 1)α(j−1)α(j − 1)+ jµ(j − 1)α(j−1)α(j − 1)δjα(jθ)θα(jθ)

+κjα(j)(j − 1)+ κjα(j)δ(j − 1)α(j−1)+1

≤
(

1 −O(j−2/3)
) (

(j − 1)jα(jθ)θα(jθ)λ

+ jα(jθ)θα(jθ)λ(j − 1)α(j−1)+1δ
)

−O(j−2/3)
(
κjα(j)+α(jθ)δθα(jθ)(j − 1)

+ κjα(j)+α(jθ)(j − 1)α(j−1)+1δ2θα(jθ)
)
. (3.18)

This inequality is satisfied if the following two inequalities are satisfied:

jµα(j − 1)jα(jθ)θα(jθ) + κjα(j)(j − 1)

≤
(

1 −O(j−2/3)
) (

jα(jθ)θα(jθ)λ(j − 1)
)

−O(j−2/3)κjα(j)+α(jθ)(j − 1)δθα(jθ), (3.19)

(we have divided by δ(j − 1)α(j−1)) and

jµ(j − 1)α(j−1)α(j − 1)+ κjα(j)(j − 1)

≤
(

1 −O(j−2/3)
) (

(j − 1)jα(jθ)θα(jθ)λ
)

−O(j−2/3)κjα(j)+α(jθ)δθα(jθ)(j − 1). (3.20)

The separation of inequality (3.18) is such that in inequality (3.19) we have all
terms with a j to the power of “1 plus two α’s” except in the last term where we
have “1 plus three α’s”; in inequality (3.20) we have all terms with a j to the power
of “1 plus one α” except in the last term where we have “1 plus two α’s”.
We first show that (3.19) is satisfied. We divide inequality (3.19) by j1+α(j). Then
it is enough to show that the following inequality is satisfied:

µα(j − 1)θα(jθ) + κ

≤
(

1 −O(j−2/3)
) (

jα(jθ)−α(j)θα(jθ)λ(1 −O(j−1))
)

−O(j−2/3)κjα(jθ)δθα(jθ).
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We can apply Lemma 3.3 e) to the right hand side, showing that it is enough to have

µα(j − 1)θα(jθ) + κ

≤
(

1 −O(j−2/3)
) (

(1 −O(1/ log logK))θα(jθ)λ(1 −O(j−1))
)

−O(j−2/3)κjα(jθ)δθα(jθ)

As α(J ) ≤ 2α∗ < 1/3, the last term tends to 0. On the other hand, we have λ > κ .
So, up to asymptotics in j , we only need to ensure that

µα(j − 1)θα(jθ) + κ < λθα(jθ)

for j > J+1. As θ > 1, we only have to make α∗ small enough; then the inequality
above is satisfied, and hence (3.19) is satisfied also.
We now have to show that (3.20) is satisfied too. But (3.20) is almost the same as
(3.19); it is enough to show that, for large j , we have

(j − 1)α(j−1) ≤ jα(jθ)θα(jθ).

We have

jα(j−1)−α(jθ) = exp(log j [α(j − 1)− α(jθ)])

≤ exp

(
2 log j (1 + j (θ − 1))

(j − 1) log(j − 1) log logK

)
which is near 1 for K large and is therefore finally smaller than θα(jθ). This shows
that (3.20) is satisfied too. This ends the proof of B3.3) and therefore the proof of
part B).

C) Observe that the following part runs through with κ = 0 too. We can use
equation (3.2) (β = 1) and take the expectation, giving

�[M(t)] = M(0)+
∫ t

0
�[c(x(u))]du.

As c(X(u)) = (λθ − µ− κ)M(u) we have the integral equation

y(t) = M(0)+
∫ t

0
(λθ − µ− κ)y(u)du

where y(t) = �[M(t)]. But this immediately leads to (2.4) completing the proof
of Theorem 2.1. ��

Proof of Theorem 2.2. The proof where κ = 0 was made in [BK, Theorem 2.3].
We may therefore assume that κ > 0.

First we find a lower bound for the probability that the epidemic dies out in an
arbitrary, single time-interval of length 1, given that it has not died out yet. The prob-
ability that a given person dies in the next time interval and that the new-born does
not have any infectious contacts at all in this interval is at least (1 − e−κ)e−λ > 0.
The probability that this happens to allM individuals in the same time-interval is at
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least [(1−e−κ)e−λ]M . So the probability that the infection dies out in the next time-
interval (given that it has not died out before) is at least pM := [(1 − e−κ)e−λ]M .
There are other ways that it can die out too, but we already have enough.

Let Bn be the event that the epidemic dies out in the time-interval [0, n + 1)
for n ≥ 0. Let us define the set A := {limt→∞ x(t) = e0} = ∪n≥0Bn. We have
Bn ⊆ Bn+1. Let us look at �[Bc

n]. We have to prove that �[Bc
n] converges to 0 as

n → ∞ to show the first part of Theorem 2.2. We have

�[Bc
n] = �[Bc

n|Bn−1]�[Bn−1] + �[Bc
n|Bc

n−1]�[Bc
n−1]

= �[Bc
n|Bc

n−1]�[Bc
n−1] ≤ (1 − pM)�[Bc

n−1].

As a consequence, �[Bc
n] ≤ (1 − pM)

n → 0 as n → ∞, completing the proof. ��

Remark to Theorem 2.2. As a particular consequence of Theorem 2.2, the process
N is ‘regular’.

Proof of Theorem 2.3. The idea of the proof is to show that for fixed M there
exists a linear process X/M which is in all components larger than our original
x(M), and such that, the larger we choose M , the more x(M) behaves like X/M .
Then we use Theorem 2.1. Note that the proof works with κ = 0 too.

1. First we have to find that linear process X. For this we define a trivariate
Markov process (X(nl)(t),X(r)(t),R′(t)). “nl” stands for non-linear, “r” stands for
residual and the meaning ofR′ is explained later. In fact, each of the components in
(X(nl), X(r)) are themselves infinite dimensional: the first component is an infinite
vector (X(nl)

j (t))j≥0 and the second component is an infinite vector (X(r)
k (t))k≥1.

We assume thatX(nl)
j (t) ∈ �0 andX(r)

k (t) ∈ �0 for all t, j, k. We choose the initial

values to be such thatX(nl)
0 (0) = M−Y ,X(nl)

j (0) = yj for j ≥ 1 andX(r)
k (0) = 0

for k ≥ 1. Our aim is to construct X(nl) and X(r) such that Xj := X
(nl)
j + X

(r)
j

behaves like L for j ≥ 1. We define the univariate, random process R′(t) to have
values on the nonnegative integers and to have initial value R′(0) = 0. We let these
processes develop according to the following rates:(

X(nl), X(r), R′
)

→
(
X(nl) + (ej−1 − ej ),X

(r), R′
)

at rate jµX(nl)
j ; j ≥ 1, (death of a parasite in the non-linear process)(

X(nl), X(r), R′
)

→
(
X(nl) + (ek − e0),X

(r), R′
)

at rate λ(X(nl)
0 /M)

∑
u≥1 X

(nl)
u puk; k ≥ 1, (infection in the non-linear process)(

X(nl), X(r), R′
)

→
(
X(nl) + (e0 − ev),X

(r), R′
)

at rate κX(nl)
v ; v ≥ 1, (death of an individual in the non-linear process)(

X(nl), X(r), R′
)

→
(
X(nl), X(r) + (ej−1 − ej ), R

′
)
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at rate jµX(r)
j ; j ≥ 2, (death of a parasite in the residual process)(

X(nl), X(r), R′
)

→
(
X(nl), X(r) − e1, R

′
)

at rate µX(r)
1 , (death of a parasite in the residual process when j = 1)(

X(nl), X(r), R′
)

→
(
X(nl), X(r) − ev, R

′
)

at rate µX(r)
v ; v ≥ 1, (death of an individual in the residual process). As can be

seen, non of the above events change the state of R′.
Let us first motivate the rates to come. Define R(u) := ∑

j≥1 X
(r)
j (u), and

N(u) := ∑
j≥1 X

(nl)
j (u). Then we define τ := inf{u : N(u) > a} for a a (usually

large) positive number to be chosen later. Our aim is to define a time-homogeneous
Poisson process R′ such that almost surely the following relation holds:

R′(u) ≥ I [R(u) > 0]I [u < τ ]. (3.21)

As we construct X(r) such that X develops according to L, we already know that
the total rate at which infections take place in X(r) (and so in R) must be

λ
∑
k≥1

∑
j≥1

X
(r)
j (u)pjk + (1 −X

(nl)
0 (u)/M)

∑
j≥1

X
(nl)
j (u)pjk

 .

But in (3.21), the right side is 0 at time 0 and as long as u < τ increases to 1 as
soon as a first infection takes place in X(r). This happens at rate

λ(1 −X
(nl)
0 (u)/M)

∑
k≥1

∑
j≥1

X
(nl)
j (u)pjk

as until then R = 0. Let us have a closer look at this rate, as long as u < τ :

λ(1 −X
(nl)
0 (u)/M)

∑
k≥1

∑
j≥1

X
(nl)
j (u)pjk ≤ λ(1 −X

(nl)
0 (u)/M)

∑
j≥1

X
(nl)
j (u)

≤ λ

(
1 − M − a

M

)
a = λa2/M

So we define a time-homogeneous Poisson process R′ of rate λa2/M coupled to
the development of R in the following way:

Define

b(u) := a2/M −
∑
k≥1

∑
j≥1

X
(r)
j (u)pjk + (1 −X

(nl)
0 (u)/M)

∑
j≥1

X
(nl)
j (u)pjk

 .

Note that we have just shown that b(u) ≥ 0 until the first infection takes place in
the residual process and as long as u < τ . Then, if b(u) ≥ 0 we have the following
rates (

X(nl), X(r), R′
)

→
(
X(nl), X(r) + ek, R

′ + 1
)
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at rate

λ
∑
l≥1

X
(r)
l plk + λ

(
1 − X

(nl)
0

M

)∑
u≥1

X(nl)
u puk; k ≥ 1,

this is an infection in the residual process. Additionally, we have the following
changes (

X(nl), X(r), R′
)

→
(
X(nl), X(r), R′ + 1

)
at rate

λa2/M −
∑
k≥1

λ∑
l≥1

X
(r)
l plk + λ

(
1 − X

(nl)
0

M

)∑
u≥1

X(nl)
u puk

 .

Now if b < 0, we have the following rates(
X(nl), X(r), R′

)
→

(
X(nl), X(r) + ek, R

′
)

at rate

λ
∑
l≥1

X
(r)
l plk + λ

(
1 − X

(nl)
0

M

)∑
u≥1

X(nl)
u puk; k ≥ 1,

this is again an infection in the residual process. Additionally, we have the following
changes (

X(nl), X(r), R′
)

→
(
X(nl), X(r), R′ + 1

)
at rate λa2/M. With this construction (3.21) holds almost surely for the following
reasons: we showed that b ≥ 0 until the first infection, R′ increases too at the first
infection but does not decrease any more, additionally, note that we look at I{R>0}
and notR in (3.21).R′ is a time-homogeneous Poisson process of rate λa2/M . The
reader can easily check that X(nl)/M behaves according to N. Let us look at the
sum Xj := (X(nl) + X(r))j for j ≥ 1. The development of X is that of L and is
the same for all M , as the rates involving M cancel. M also appears in the initial
values, but there it only appears in the initial number of uninfected individuals;
since X does not include the zero co-ordinate, it remains the same for all M .

2. We now have to examine the limit

lim
M→∞

�

∑
j≥1

x
(M)
j (t) = 0

 .

For all fixed M we introduce the notation L(u) := ∑
j≥1 Xj(u), where we still

have N(u) := ∑
j≥1 X

(nl)
j (u) and R(u) := ∑

j≥1 X
(r)
j (u).

Now we fix t and define L := L(t), N := N(t) and R := R(t). Note that while the
distributions of N(u) and R(u) vary with M , the distribution of L(u) is the same
for all M . We have

�

∑
j≥1

x
(M)
j (t) = 0

 = �

∑
j≥1

X
(nl)
j (t) = 0

 = � [N = 0] . (3.22)
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As L = N + R we have

� [N = 0] = � [L− R = 0]

= � [L− R = 0|R = 0] � [R = 0]

+� [L− R = 0|R > 0] � [R > 0]

= � [L = 0] + � [L− R = 0|R > 0] � [R > 0] . (3.23)

The last equality holds because if L = 0 then R = 0 too.
The next step is to show that �

[
R > 0

]
tends to 0 as M tends to infinity. Define

a bivariate Markov process (X,B) such that X is the L process and behaves as
before. Additionally we add a univariate random variable B ≥ 0. The initial values
are Xj(0) = yj for j ≥ 1 and B(0) = 0 and let us recall that Y := ∑

j≥1 yj . The
vector (X,B) changes according to the following rates:

(X,B) → (
X + (ej−1 − ej ), B

)
at rate jµXj ; j ≥ 2,

(X,B) → (X − e1, B + 1) at rate µX1 ; (j = 1),

(X,B) → (X + ek, B) at rate λ
∑
u≥1

Xupuk ; k ≥ 1,

(X,B) → (X − eu, B + 1) at rate κXu ; u ≥ 1,

(X,B) → (X,B + 1) at rate λB + λ
∑
u≥1

Xupu0.

As is easily seen, X is still our linear process constructed in step 1. B cancels al-
most surely every loss of an infected individual in the linear process X: an infected
individual drops out of the system if a parasite dies in an individual with only one
parasite and additionally B cancels infections with zero parasites in the linear pro-
cess X through adding that rate in the fifth line of our rates. Hence, if we define
L̃ := L+ B, then L̃ is almost surely a pure birth process of rate λ. If L increases,
L̃ increases too, but L̃ does not decrease when L decreases; more, the growing part
B of the sum L̃ = L+ B contributes increasingly to the growth of L̃.

We can now argue as follows: for positive a, to be chosen later (the reader
should think of a being much larger than Y ), we have the following relations:

� [N > a] ≤ �
[
L̃ > a

]
≤ 1

a
�
[
L̃
]

= 1

a
Yeλt .

If we choose a such that a−1Yeλt < ε, for an arbitrary ε > 0, we can continue as
follows: as τ := inf{u : N(u) > a} ≤ ∞,

� [R > 0] = �
[
RI{t<τ } + RI{t≥τ } > 0

]
≤ �

[
RI{t<τ } > 0

] + �
[
RI{t≥τ } > 0

]
≤ �

[
RI{t<τ } > 0

] + �
[
I{t≥τ } > 0

]
≤ �

[
RI{t<τ } > 0

] + ε. (3.24)

In the last inequality we used that N is dominated by L̃. We now have to show that
�
[
RI{t<τ } > 0

]
tends to 0 as M tends to infinity. But by (3.21)

�
[
RI{t<τ } > 0

] = �
[
I{R>0}I{t<τ } > 0

] ≤ �
[
R′ > 0

] = 1 − exp(−tλa2/M),
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as the probability that there is no event in the Poisson process until time t is
exp(−tλa2/M). So, letting M tend to infinity, we have in (3.24), as ε > 0 was
chosen arbitrarily, that limM→∞ �[R > 0] = 0. Hence, from (3.22) and (3.23) we
have

lim
M→∞

�

∑
j≥1

x
(M)
j (t) = 0

 = � [L(t) = 0] .

3. We now have to examine the expression

lim
t→∞ � [L(t) = 0]

to finish the proof.
The first directions (log θ ≤ 1/(1 + κ/µ)−1 and R0 ≤ 1 or 1/(1 + κ/µ)−1 <

log θ ≤ µ/κ and R1 ≤ 1 or log θ > µ/κ and R2 ≤ 1) follow immediately: we
can use Theorem 2.1 because convergence to 0 a.s. implies convergence to 0 in
probability (note that {L(t) = 0} = {L(t) > 1/2}c).

The inverse directions (log θ ≤ 1/(1+κ/µ)−1 andR0 > 1 or 1/(1+κ/µ)−1 <

log θ ≤ µ/κ andR1 > 1 or log θ > µ/κ andR2 > 1) need the following reasoning:
let us define the random process I (t) in the following way:

I (t) :=
{

1 if L(t) > 0
0 if L(t) = 0.

As I (t)(ω) is a decreasing function in t for each ω, limt→∞ I (t) exists a.s. and so
we can define a.s. the limit-function I∞ as follows:

I∞(ω) := lim
t→∞ I (t)(ω).

By Theorem 2.1 we have � [I∞ = 0] =: q < 1 under the above constraints. But
as I (t) is a decreasing function, we have �[I (t) = 0] ≤ �[I∞ = 0] = q < 1
completing the proof. ��
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