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Abstract. In this paper, known results on optimal intervention policies
for the general stochastic epidemic model are extended to epidemic
models with more general infection and removal rate functions. We
consider "rst policies allowing for the isolation of any number of
infectives from the susceptible population at any time, secondly pol-
icies allowing for the immunisation of the entire susceptible population
at any time, and "nally policies allowing for either of these interven-
tions. In each case the costs of infection, isolation and immunisation
are assumed to have a particular, rather simple, form. Su$cient condi-
tions are given on the infection and removal rate functions of the model
for the optimal policies to take the same simple form as in the case of
the general stochastic epidemic model. More general costs are brie#y
discussed, and some numerical examples given. Finally, we discuss
possible directions for further work.
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1. Introduction

One of the main reasons for studying mathematical models of disease
spread is the hope that improved understanding of the transmission
mechanism may lead to more e!ective control strategies. However, in
the stochastic epidemic modelling literature surprisingly little attention
seems to have been paid to the explicit evaluation of alternative
intervention policies. Wickwire (1977) provides a review of applica-
tions of mathematical control theory to disease models up to 1976,



and more recent contributions include Lefèvre (1981), Greenhalgh
(1986a, b, 1987, 1988) and Cai and Luo (1994).

The control theoretic approach assigns costs to both intervention
and infection, the optimal policy being that which minimises their total
combined cost. Most simply, the cost of infection may be taken to be
proportional to the number of infections which occur. The cost of
intervention will depend upon the speci"c type of intervention under
consideration, which may involve controlling epidemic parameters
such as the rate at which individuals make contact with each other, or
instantaneously changing the states of some individuals (impulse con-
trol). In this paper we look at impulse controls, the possible interven-
tions being either to isolate infective individuals from the susceptible
population or to immunise susceptibles. The various costs involved are
assumed to have quite speci"c simple forms, more general cost func-
tions being considered brie#y in Sect. 5.

The most widely studied continuous time stochastic epidemic
model is that known as the general stochastic epidemic (see, for
example, Bailey, 1975, chapter 6). We suppose that we have a closed,
homogeneously mixing population divided into susceptible, infective
and removed individuals, and denote by X(t),> (t), Z (t) the numbers of
susceptible, infective and removed individuals in the population at time
t. Since the population is closed, X(t)#>(t)#Z(t) remains constant
for all t70, so that provided we know the total number of individuals
present initially, X(0)#> (0)#Z(0), the epidemic is completely de-
scribed by the process M(X (t), > (t)), t70N, which is assumed to be
a continuous-time Markov process with transition probabilities

Pr((X(t#dt), >(t#dt))"(x!1, y#1) D(X(t), >(t))"(x, y))

"bxy dt#o(dt),

Pr((X(t#dt), >(t#dt))"(x, y!1) D(X(t), >(t))"(x, y))

"cy dt#o(dt),

e
g
g
f
g
g
h

(1.1)

all other transitions having probability o(dt), and the parameters b'0,
c'0 being known as the infection rate and removal rate, respectively.
The process terminates when the number of infectives becomes zero,
which will almost surely happen within "nite time.

One way in which this model can be extended is to allow di!er-
ent infection and removal rate functions than those given by (1.1),
replacing the constant parameters b and c by appropriate functions
b
xy

and c
xy

. For instance, Severo (1969) took b
xy
"bx~bya~1, c

xy
"cyc,

with b, c, a, b, c constant. Another possibility would be to take
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b
xy
"b/(x#y)a, c

xy
"c for constants a, b, c. Taking a"1 gives the

model considered by Gleissner (1988) and Ball and O'Neill (1993),
while when a"0 the model reduces to the general stochastic epidemic
model. The cases a"0, 0.5, 1 were studied in a discrete-time setting by
Saunders (1980a, b). More generally, Saunders (1980a, b) allowed b

xy
to

be any function of (x#y), and the continuous-time version of this
model was analysed by O'Neill (1997).

For the general stochastic epidemic model, Abakuks (1972, 1973,
1974) studied intervention policies involving either isolation of infec-
tive individuals from the susceptible population, immunisation of
susceptible individuals, or both. The cost of an individual becoming
infected was regarded as "xed and equal to the unit of cost, relative to
which the costs of isolation and immunisation were de"ned. Dynamic
programming was then used to investigate the form of the optimal
policy. The aim of this paper is to see how far results such as those of
Abakuks (1972, 1973, 1974) can be extended to models with more
general infection and removal rate functions, and what conditions on
the rate functions are necessary for such results to remain valid. An
optimal control problem for a model with general infection rate func-
tion, but in which infectives which have recovered do not become
immune but instead return to the susceptible state, was investigated by
Lefèvre (1981). The form of intervention considered involved control of
the infection rate and recovery rate parameters of the process, in
contrast to the impulse control with which we concern ourselves.

2. Isolation policies

2.1. Optimality equations and the cost of an uncontrolled epidemic.

Consider the model given by (1.1) with b and c each allowed to depend
upon x and y. We assume that b

xy
'0 for all (x, y) with x71, y71,

and that c
xy
'0 for all (x, y) with x70, y71. De"ning

p
xy
"

b
xy

xy
b
xy

xy#c
xy

y
, q

xy
"

c
xy

y
b
xy

xy#c
xy

y
,

then the embedded jump chain of the epidemic process has transitions

(X, >)P(X!1, >#1) with probability p
XY

,

(X, >)P(X, >!1) with probability q
XY

.

Suppose that the cost of an individual being infected is "xed, and
take this as the unit of cost. We consider policies which at any time
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allow us to isolate any number of infectives, each at a cost ¸'0. In
fact, if the epidemic is in state (x, y), we need only decide whether to
isolate a single infective, or do nothing until the next transition occurs,
since isolation of several infectives can be achieved by repeatedly
choosing to isolate single infectives. De"ning <

L
(x, y) to be the ex-

pected future cost of adopting an optimal policy when the epidemic is
in state (x, y), and=

L
(x, y) to be the expected future cost of waiting for

one transition to occur naturally and adopting an optimal policy from
then onwards, then

<
L
(x, 0)"0 for x70, <

L
(0, y)"0 for y70,

=
L
(x, y)"p

xy
(1#<

L
(x!1, y#1))#q

xy
<
L
(x, y!1) forx, y71,

(2.1)

<
L
(x, y)"minM=

L
(x, y), ¸#<

L
(x, y!1)N for x, y71. (2.2)

In any state (x, y) with x, y71, if =
L
(x, y)(¸#<

L
(x, y!1)

the optimal policy is to do nothing, if =
L
(x, y)'¸#<

L
(x, y!1)

the optimal policy is to isolate an infective, and if =
L
(x, y)"

¸#<
L
(x, y!1) then we can equally well do either. We shall adopt the

convention that if =
L
(x, y)"¸#<

L
(x, y!1), we isolate an infective

at (x, y).
For any given region in the (x, y) plane with x#y6M, equations

(2.1) and (2.2) may be solved recursively by ordering the states (1, 1),
(1, 2),2, (1, M!1), (2, 1), (2, 2),2, (2, M!2),2, (M!1, 1).

As well as the cost of an optimal policy, we will also be interested in
the cost of an uncontrolled epidemic. If we de"ne C(x, y) to be the
expected future cost of an epidemic starting from (x, y) under a policy
of never intervening, then C(x, y) is given by

C(x, 0)"0 for x70, C (0, y)"0 for y70,

C(x, y)"p
xy

(1#C (x!1, y#1))#q
xy

C(x, y!1) for x, y71.

Since C (x, y) is the expected number of susceptibles ever to become
infected, starting with x susceptibles, and there is a positive probability
that not all of the susceptibles become infected (in fact, with probability
<y

j/1
q
xj
'0 no susceptible ever becomes infected), then

<
L
(x, y)6C (x, y)(x.

2.2. Structure of the cost function and form of the optimal policy

In order to investigate the form of the optimal policy, we need to look
at the structure of the optimal expected cost function <

L
(x, y). We "rst
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show that increasing the number of infectives present can never result
in a decrease in expected cost under the optimal isolation policy.

Lemma 2.1. <
L
(x, y#1)7<

L
(x, y) for x, y70.

Proof. For x"0, y70, we have <
L
(0, y#1)"<

L
(0, y)"0, so the

result holds for x"0. Suppose inductively that for some "xed x71,
<
L
(x!1, y) is a non-decreasing function of y. Then <

L
(x, 1)70"

<
L
(x, 0), so now suppose inductively that for some "xed y71 we have

<
L
(x, y)7<

L
(x, y!1). From (2.1),

=
L
(x, y#1)!=

L
(x, y)

"p
xy

(<
L
(x!1, y#2)!<

L
(x!1, y#1))#q

xy
(<

L
(x, y)!<

L
(x, y!1))

#(p
x,y`1

!p
xy

)(1#<
L
(x!1, y#2)!<

L
(x, y))

7(p
x,y`1

!p
xy

) (1#<
L
(x!1, y#2)!<

L
(x, y)), (2.3)

by the inductive hypotheses. But from (2.1) we also have

=
L
(x, y#1)!<

L
(x, y)"p

x,y`1
(1#<

L
(x!1, y#2)!<

L
(x, y)). (2.4)

Multiplying (2.3) by p
x,y`1

and substituting from (2.4) gives

p
x,y`1

(=
L
(x, y#1)!=

L
(x, y))7(p

x,y`1
!p

xy
) (=

L
(x, y#1)!<

L
(x, y))

p
xy

(=
L
(x, y#1)!<

L
(x, y))7p

x,y`1
(=

L
(x, y)!<

L
(x, y))

N=
L
(x, y#1)!<

L
(x, y)70,

since from (2.2) we know that <
L
(x, y)6=

L
(x, y) and we assumed that

p
xy
'0 for x, y71. Hence

<
L
(x, y#1)"minM=

L
(x, y#1), ¸#<

L
(x, y)N7<

L
(x, y), (2.5)

and by induction on y and then on x the result follows. K

Using Lemma 2.1 we can now establish the following result.

Theorem 2.2. Provided p
x,y`1

6p
xy

for x, y71, then for each x70
there exists an integer s(x)70 such that the optimal isolation policy is
to isolate all infectives if 16y6s(x), but to isolate none otherwise.
Furthermore, for x71, s(x)(x/¸.

Proof. For x"0, take s(0)"0. For x, y71 we have from (2.1) that

=
L
(x, y#1)!=

L
(x, y)

"p
x,y`1

(<
L
(x!1, y#2)!<

L
(x!1, y#1))

#q
x,y`1

(<
L
(x, y)!<

L
(x, y!1))

#(p
x,y`1

!p
xy

)(1#<
L
(x!1, y#1)!<

L
(x, y!1)). (2.6)
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From (2.2) and Lemma 2.1, =
L
(x, y)7<

L
(x, y)7<

L
(x, y!1), and

substituting into (2.1) gives

p
xy

(1#<
L
(x!1, y#1))#q

xy
<
L
(x, y!1)7<

L
(x, y!1)

N1#<
L
(x!1, y#1)!<

L
(x, y!1)70, (2.7)

since p
xy
'0.

Also, (2.2) implies that <
L
(x!1, y#2)6¸#<

L
(x!1, y#1).

Substituting this inequality together with (2.7) into (2.6) (and recalling
our assumption that p

x,y`1
6p

xy
),

=
L
(x, y#1)!=

L
(x, y) 6p

x,y`1
¸#q

x,y`1
(<

L
(x, y)!<

L
(x, y!1)).

Now suppose that at (x, y), the optimal policy does not isolate any
infectives. Then <

L
(x, y)"=

L
(x, y)(¸#<

L
(x, y!1), so that

=
L
(x, y#1)!<

L
(x, y)(p

x,y`1
¸#q

x,y`1
¸"¸,

which implies that at (x, y#1) the optimal policy again does not
isolate any infectives.

For x71, de"ne s(x)"maxMy : isolate at (x, y)N, and de"ne
s(x)"0 if there is no y for which it is optimal to isolate at (x, y). Then
we have shown that the optimal isolation policy is to isolate all
infectives if 16y6s(x), at a cost of ¸y, but to isolate none otherwise.
But <

L
(x, y)(x, so <

L
(x, s (x))"¸s(x)(x, and s(x)(x/¸, as

claimed. K

The condition p
x,y`1

6p
xy

means that adding one infective to the
population increases the chance that the next transition will be a re-
moval rather than an infection. One would expect that increasing the
number of infectives present would increase both the rate at which new
infections occur and the rate at which removals occur. However,
whereas the infection process depends upon both susceptibles and
infectives, the removal process could plausibly be expected to depend
only upon the number of infectives present, so it seems reasonable that
the addition of an infective has more e!ect upon the removal rate than
upon the infection rate. In the case of the general stochastic epidemic
model, p

x,y`1
"bx/(bx#c)."p

xy
for x, y71, and Theorem 2.2 ap-

plies. A fuller discussion of the condition for validity of Theorem 2.2
appears in Section 2.3.

Having demonstrated the existence of the isolation boundary s(x)
(under certain conditions on Mp

xy
N), we would like to know the shape of

this boundary. The following property of the expected cost function
<
L
(x, y) is useful in this regard.
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Lemma 2.3. Provided p
x`1,y

7p
xy

for x, y71 then <
L
(x#1, y)

7<
L
(x, y) for x, y70.

Proof. For x"0, y70, we have<
L
(1, y)70"<

L
(0, y). Fix x71 and

suppose inductively that <
L
(x, y)7<

L
(x!1, y) for y70. For y"0,

<
L
(x#1, 0)"<

L
(x, 0)"0. Fix y71 and suppose inductively that

<
L
(x#1, y!1)7<

L
(x, y!1). Then from (2.1),

=
L
(x#1, y)!=

L
(x, y)"p

xy
(<

L
(x, y#1)!<

L
(x!1, y#1))

#q
xy

(<
L
(x#1, y!1)!<

L
(x, y!1))

#(p
x`1,y

!p
xy

)(1#<
L
(x, y#1)

!<
L
(x#1, y!1))

7(p
x`1,y

!p
xy

)(1#<
L
(x, y#1)

!<
L
(x#1, y!1)) (2.8)

by our inductive hypotheses. Replacing x by x#1 in (2.7) and substi-
tuting into (2.8), together with the assumption that p

x`1,y
7p

xy
, gives

=
L
(x#1, y)!=

L
(x, y)70.

Substituting this into (2.2), together with the inductive hypothesis that
<
L
(x#1, y!1)7<

L
(x, y!1), gives <

L
(x#1, y)7<

L
(x, y). By in-

duction on y and x, the result follows. K

We can apply Lemma 2.3 to show that under appropriate condi-
tions on Mp

xy
N the isolation boundary s(x) is non-decreasing in x.

Theorem 2.4. Provided that p
x,y`1

6p
xy
6p

x`1,y
for x, y71, then

s(x#1)7s(x) for x70.

Proof. At (x, s(x)) the optimal policy is to isolate all infectives, so
<
L
(x, s(x))"¸s(x). From Lemma 2.3, <

L
(x#1, s(x))7<

L
(x, s(x))"

¸s(x). But a policy of isolating all infectives at (x#1, s (x)) has cost
¸s(x), so that the optimal policy cannot cost more than this, so
<
L
(x#1, s(x))"¸s(x) and the optimal policy at (x#1, s (x)) is to

isolate all infectives. Hence s(x)6s(x#1). K

For s (x) to be non-decreasing in x means that the amount of e!ort
worth putting in to protect any given number of susceptibles x from
infection (the cost ¸s(x)) is at least as great as the e!ort worth putting
in to protect any smaller number of susceptibles.
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The condition p
xy
6p

x`1,y
means that adding one susceptible to

the population increases the chance that the next transition will be an
infection rather than a removal. It seems likely that for most realistic
models, increasing the number of susceptibles present will increase the
rate at which new infections occur while having no e!ect upon the rate
at which infectives are removed, so that the condition will indeed be
satis"ed. In the case of the general stochastic epidemic model,
p
xy
(p

x`1,y
for x, y71 and Theorem 2.4 applies. Further discussion of the

condition appears in Sect. 2.3.
For an epidemic starting from a state (x, y) with y6s(x), the

optimal isolation policy is to immediately terminate the epidemic by
isolation of all infectives. If an epidemic starts with y's (x), then we
allow the epidemic to proceed uninterrupted until >

t
6s(X

t
) for the

"rst time and then terminate the process by isolating all infectives. If
s()) is non-decreasing then it follows that >

t
"s(X

t
) when the process

"rst crosses the isolation boundary.
One "nal property of the expected cost function <

L
(x, y) which we

will need later is the following.

Lemma 2.5. Provided that +=
y/1

p
xy
"R for all x71, then for each

x70 we have <
L
(x, y)Px as yPR.

Proof. First note that as <
L
(x, y)(x and <

L
(x, y#1)7<

L
(x, y) by

Lemma 2.1, lim
y?=
<
L
(x, y) certainly exists.

Since <
L
(0, y)"0 for y70, the result holds for x"0. Fix x71,

and suppose inductively that <
L
(x!1, y)Px!1 as yPR.

If <
L
(x, y)"¸#<

L
(x, y!1) for in"nitely many y values, then

<
L
(x, y)PR as yPR, but since <

L
(x, y)(x for all y, this cannot

happen. Recalling (2.2), it follows that there exists y
0

with <
L
(x, y)"

=
L
(x, y) for all y7y

0
. Thus from (2.1), for y7y

0
,

<
L
(x, y)"p

xy
(1#<

L
(x!1, y#1))#q

xy
<
L
(x, y!1). (2.9)

We have assumed inductively that <
L
(x!1, y)Px!1 as yPR,

so for any e'0 there exists y
1
7y

0
such that for y7y

1
,

<
L
(x!1, y)7x!1!e. Thus for y7y

1
!1, (2.9) implies

<
L
(x, y)7p

xy
(x!e)#q

xy
<
L
(x, y!1).

Iterating this inequality, we have that for y7y
1
,

<
L
(x, y)7p

xy
(x!e)#q

xy
(p

x,y~1
(x!e)#q

x,y~1
<
L
(x, y!2))

"(p
xy
#q

xy
p
x,y~1

)(x!e)#q
xy

q
x,y~1

<
L
(x, y!2).
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Repeated iteration now gives

<
L
(x, y)7(p

xy
#q

xy
p
x,y~1

#2#q
xy

q
x,y~12

q
x,yÇ`1

p
xyÇ

)(x!e)

#A
y
<
j/yÇ

q
xyB<L (x, y

1
!1)

"A1!
y

<
j/yÇ

q
xyB(x!e)#A

y
<
j/yÇ

q
xyB<L (x, y

1
!1). (2.10)

Letting y tend to in"nity in (2.10), and noting that the condition
+=

y/1
p
xy
"R is equivalent to <=

y/1
q
xy
"0 (see Williams, 1991, p. 40),

we have lim
y?=
<
L
(x, y)7x!e. But <

L
(x, y)(x, so lim

y?=
<
L
(x, y)"x,

and by induction on x the result follows. K

A rather simpler proof of Lemma 2.5, along the lines of Lemma 2.1
of Abakuks (1973), is possible if we assume that for all x71, lim

y?=
p
xy

exists and is non-zero. However, for some of the models which we
consider, for instance when b

xy
"b/(x#y). and c

xy
"c, although

lim
y?=

p
xy
"0 our condition on Mp

xy
N is satis"ed.

2.3. Discussion of the conditions

In order that Theorems 2.2 and 2.4 apply to a particular epidemic
model, we require p

x,y`1
6p

xy
6p

x`1,y
for x, y71. In terms of the

transition rate functions b
xy

, c
xy

these conditions become

b
x,y`1

c
x,y`1

6

b
xy

c
xy

6

(x#1)b
x`1,y

xc
xy

.

In the case of Lemma 2.5, the condition +=
y/1

p
xy
"R is equivalent to

+=
y/1

(b
xy

/c
xy

.)"R.
For the model of Severo (1969), with b

xy
"bx~bya~1, c

xy
"cyc,

then it is straightforward to show that Theorem 2.2 applies if
a6c#1. When c"0, so that the rate at which removals occur is
simply proportional to the number of infectives present, we thus
require a61, meaning that the rate at which infections occur increases
no faster than linearly with the number of infectives present. If a'1, it
may not be true that each extra infective added to the population
causes less of an increase in risk to the susceptibles than the previous
infective. Even if at (x, y) the isolation of an infective is not worth the
cost ¸, it may nevertheless be optimal at (x, y#1) to isolate an
infective, and so Theorem 2.2 does not apply. For Theorem 2.4 we
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additionally require b61. This means that the rate at which infections
occur does not actually decrease as the number of susceptibles
present increases, which certainly seems a natural condition. Provided
this is the case, Theorem 2.4 tells us that the number of infec-
tives which it is worthwhile to remove in order to protect the suscep-
tibles does not decrease as the number of susceptibles present
increases. The condition for Lemma 2.5 to hold for this model is
that a7c.

For the model with b
xy
"b/(x#y)a, c

xy
"c, Theorem 2.2 holds

provided that a70. That is, the rate at which infections occur in-
creases no faster than linearly with the numbers of infectives and
susceptibles present. Theorem 2.4 further requires a61, so that the
rate at which infections occur does not decrease as the numbers of
susceptibles or infectives present increase. For Lemma 2.5 we require
a61. Provided 06a61, Theorems 2.2 and 2.4 and Lemma 2.5 all
apply. The extreme cases a"0 and a"1 give, respectively, the general
stochastic epidemic model and the model of Gleissner (1988) and
Ball and O'Neill (1993), with a"0.5 giving the model of Saunders
(1980a, b).

More generally, consider the model of O'Neill (1997), in which
individuals change their behaviour in response to perceived epidemic
spread (measured by the number of removals to have occurred), so that
b
xy
"b

x`y
, c

xy
"c. The condition for Theorem 2.2 now becomes

simply b
x`y`1

6b
x`y

for x, y71. For a model with basic infection
rate bxy, as the epidemic spreads and (x#y) decreases we would
expect b to decrease also, re#ecting increased awareness of risk, so that
b
x`y

would be a non-decreasing function of (x#y). In this case,
Theorem 2.2 is not applicable (unless b

x`y
is constant). However, if

the basic infection rate is some other function such as bxy/(x#y),
with the parameter b decreasing in response to disease spread, then
Theorem 2.2 may apply. For Theorem 2.4, we additionally require
b
x`y

6(x#y)b
x`y`1

/(x#y!1) for x, y71.
Although the conditions for Theorems 2.2 and 2.4 may not be the

least restrictive possible, it can be seen that they are not particularly
restrictive. That conditions of some sort are necessary is shown by
numerical examples in Sect. 6. The condition for Lemma 2.5 seems
least restrictive of our conditions, and in fact is a necessary as well as
a su$cient condition. To see this, recall "rst that <

L
(x, y)6C (x, y).

Now C(x, y) is the expected number of initial susceptibles ever to
become infected, and with probability <y

j/1
q
xj

no susceptible ever
becomes infected, so that C(x, y)6x(1!<y

j/1
q
xj

). Hence if
<=

j/1
q
xj
'0 then lim

y?=
C (x, y)(x.
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2.4. An alternative method for computing the isolation boundary

Having shown that if p
x,y`1

6p
xy
6p

x`1,y
for x, y71 then the opti-

mal isolation policy is in fact an optimal stopping rule, and that the
isolation boundary s()) is non-decreasing, then provided our epidemic
model satis"es a certain technical condition (2.11) below we can apply
a result of Clancy (1999) to give an alternative way of computing s(x).
From Theorem 2.2 of Clancy (1999), we have the following.

Theorem 2.6. Suppose there exist functions P()), Q())'0 such that

p
xy

P(x)"q
xy

Q(x#y) for x, y71, (2.11)

with P(1), P(2),2 all distinct.
For r())70 some non-decreasing function, de,ne the stopping time

¹ by
¹"infMt70 :>

t
6r(X

t
)N. (2.12)

¹hen for an epidemic starting from state (x, y) with y7r (x), for any
function l ()),

E[l (X
T
) D(x, y)]"

x
+
n/0
GGI n

x`y~n
<

i/r(n)`1

q
niN

x~n
<
i/1
A1!

P(n#i)
P(n) BH

where GI
0
, GI

1
,2 are de,ned recursively by the triangular system of

linear equations

m
+
n/0
GGI n

m`r(m)~n
<

i/r(n)`1

q
niN

m~n
<
i/1
A1!

P (n#i)
P (n) BH"l(m) (m"0, 1,2).

For the general stochastic epidemic, (2.11) may be satis"ed by taking
P(x)"1/bx, Q(x#y)"1/c. When b

xy
"bx~bya~1, c

xy
"cyc, then

provided a"c#1 and b91 we can take P(x)"xb~1,
Q(x#y)"b/c. For b

xy
"b/(x#y)a, c

xy
"c, take P(x)"c/bx,

Q(x#y)"1/(x#y)a.
If p

x,y`1
6p

xy
6p

x`1,y
for x, y71 then our optimal isolation

policy is to stop the epidemic by isolating all infectives at the time
¹ de"ned by (2.12) with s( ' ) in place of r( ' ). Since s ( ' ) is non-
decreasing, then provided y7s(x) initially we will have >

T
"s (X

T
),

and the total cost of the epidemic will be x!X
T
#¸>

T
"x!X

T
#

¸s (X
T
). Thus the expected total cost is given by <

L
(x, y)"

x!E[l(X
T
) D (x, y)] with l (m)"m!¸s(m). Once we know the values

of s(1), s(2),2, s(x) we can use Theorem 2.6 to compute the value
of <

L
(x, y), or indeed the expectation of any function of the cost.

Furthermore, since the distribution of X
T

is discrete, the total cost
x!X

T
#¸s (X

T
) is also a discrete random variable. So long as (2.11)
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holds, the probability mass function of X
T
, and hence of total cost, may

be computed using equations (2.5) of Clancy (1999), a triangular system
of linear equations in the "nal state probabilities Pr(X

T
"u),

u"0, 1, 2,2, x.
Theorem 2.6 can also be used to determine the values of s (1),

s(2),2 recursively. The same argument used by Abakuks (1973) for
the general stochastic epidemic model shows that if we take
GI

0
"s(0)"0 then we can "nd s(1), GI

1
, s(2), GI

2
,2 by alternately

applying the two formulae

s(x)"minGy7s(x!1) : p
x,y`1

(x!¸y)

!

x~1
+
n/1
G(qn,x`y`1~n

!q
x,y`1

)GI
n

x`y~n
<

i/s(n)`1

q
niN

x~n
<
i/1
A1!

P(n#i)
P(n) BH(¸H,

GI
x
"x!¸s(x)!

x~1
+
n/1
GGI n

x`s(x)~n
<

i/s(n)`1

q
niN

x~n
<
i/1
A1!

P(n#i)
P(n) BH.

Whether for computation of the isolation boundary or analysis of the
distribution of cost, the formulae above are chie#y of theoretical
interest, since for numerical computation they are no better than direct
application of equations such as (2.1) and (2.2).

3. Total immunisation policies

A complementary problem to that of Sect. 2 is to consider policies
which at any time allow us to immunise any number of susceptibles.
For the general stochastic epidemic model, this problem was investi-
gated by Abakuks (1972). Equations corresponding to (2.1) and (2.2)
can easily be written down, and solved numerically for any speci"c
parameter values. However, the optimal policies found in this way
have a rather more complicated form than the optimal isolation policy,
and thus are harder to treat analytically. Furthermore, the optimal
policy may in some cases involve periods of non-intervention separ-
ated by immunisations of single susceptibles, which is unlikely to be
a practical policy to implement. So for reasons of both mathematical
tractibility and practical implementation, we follow Abakuks (1974) in
restricting attention to total immunisation policies, which at any time
allow us to either immunise all of the susceptibles present, thereby
terminating the epidemic, or do nothing.

Suppose that the cost of immunising x susceptibles is A#Kx,
where A, K70 and A#K'0. We may think of A as the initial cost
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of setting up an immunisation programme, and K the additional cost
per immunisation. De"ning <

A,K
(x, y) to be the expected future cost of

adopting an optimal policy when the epidemic is in state (x, y), and
=

A,K
(x, y) to be the expected future cost of waiting for one transition

to occur and adopting an optimal policy from then onwards, then
corresponding to equations (2.1) and (2.2) we have

<
A,K

(x, 0)"0 for x70, <
A,K

(0, y)"0 for y70,

=
A,K

(x, y)"p
xy

(1#<
A,K

(x!1, y#1))

#q
xy
<
A,K

(x, y!1) for x, y71, (3.1)

V
A,K

(x, y)"minM=
A,K

(x, y), A#KxN for x, y71. (3.2)

In any state (x, y) with x, y71, if =
A,K

(x, y)(A#Kx the
optimal policy is to do nothing, if =

A,K
(x, y)'A#Kx the optimal

policy is to immunise all of the x susceptibles present, and if
=

A,K
(x, y)"A#Kx then we can equally well do either. We shall

adopt the convention that if =
A,K

(x, y)"A#Kx, we immunise the
susceptibles at (x, y).

Exactly as for isolation policies, we have <
A,K

(x, y)6C(x, y)(x
for x71, so if K71 then <

A,K
(x, y)(A#Kx for x71 and the

optimal policy never immunises. We shall assume from now on that
K(1.

Corresponding to Lemma 2.1, we have the following.

Lemma 3.1. <
A,K

(x, y#1)7<
A,K

(x, y) for x, y70.

Proof. Identical to the proof of Lemma 2.1, except that now (2.5)
becomes

<
A,K

(x, y#1)"minM=
A,K

(x, y#1), A#KxN7<
A,K

(x, y). K

Corresponding to Theorem 2.2, we can now demonstrate the exist-
ence of an immunisation boundary as follows.

Theorem 3.2. For each x70 there exists an integer t (x), 06t (x)6R,
such that the optimal policy is to immunise the susceptibles if y't (x), but
not otherwise.

Proof. For x"0, take t(0)"R. Suppose that at (x, y) it is optimal to
immunise (x71), so <

A,K
(x, y)"A#Kx. Then by Lemma 3.1,

<
A,K

(x, y#1)7<
A,K

(x, y)"A#Kx. But from (3.2), <
A,K

(x, y#1)6
A#Kx, so <

A,K
(x, y#1)"A#Kx and at (x, y#1) it is again opti-

mal to immunise. The result follows. K

As for isolation policies, we would like to know the shape of the
immunisation boundary, and to this end we have the following.
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Theorem 3.3. Suppose +=
y/1

p
xy
"R for x71. De,ning

R"minMx3Z :x'A/(1!K)N, (3.3)

then t(x)"R for 06x(R, but t(x)(R for x7R.

Proof. For x"0, we know that t (0)"R.
For 16x(R, y70, we have <

A,K
(x, y)(x6A#Kx, so that at

(x, y) the optimal policy is not to immunise. That is, t(x)"R for
16x(R.

For x"R, y6t (R), the optimal policy is not to immunise, and
since it is also optimal not to immunise for x(R, it is not possible for
an epidemic starting from one of these states to reach a state where it is
optimal to immunise. Hence <

A,K
(R, y)"C(R, y) for y6t(R). But

under the assumption that +=
y/1

p
xy
"R for x71, a slightly simpler

form of the proof of Lemma 2.5 shows that lim
y?=

C(x, y)"x for
x70, so that in particular lim

y?=
C(R, y)"R'A#KR. On the

other hand, <
A,K

(R, y)6A#KR, so it cannot be true that
<
A,K

(R, y)"C(R, y) for all y71, and we must have t (R)(R.
Now "x x'R and suppose that t (x!1)(R, but that t(x)"R.

For y7t (x!1),

<
A,K

(x, y)"=
A,K

(x, y)

"p
xy

(1#<
A,K

(x!1, y#1))#q
xy
<
A,K

(x, y!1)

"p
xy

(1#A#K(x!1))#q
xy
<
A,K

(x, y!1).

Repeated iteration of this relationship, as in the proof of Lemma 2.5,
gives

<
A,K

(x, y)"A1!
y

<
j/t(x~1)`1

q
xjB (A#Kx#1!K)

#A
y
<

j/t(x~1)`1

q
xyB<A,K

(x, t (x!1))

PA#Kx#1!K as yPR,

since we have assumed +=
y/1

p
xy
"R, so that <=

y/1
q
xy
"0.

But A#Kx#1!K'A#Kx, and <
A,K

(x, y)6A#Kx, so we
have a contradiction. Thus if t (x!1)(R we must have t (x)(R, and
the result follows. K

In the case of total immunisation policies for the general stochastic
epidemic model Abakuks (1974) conjectured that the immunisation
boundary t (x) is non-increasing in x, but was only able to prove this for
certain parameter values. For our more general model it need not be
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the case that t (x) be non-increasing (see Sect. 6 for a numerical
example).

4. Isolation or total immunisation policies

Having considered isolation policies and total immunisation policies
separately, suppose now that both options are available. That is, at any
time we may isolate any number of infectives, each at cost ¸, immunise
the entire susceptible population, at cost A#Kx, or do nothing. We
assume as before that ¸'0, A70, 06K(1, and A#K'0. Writ-
ing <

L,A,K
(x, y) for the expected future cost of adopting an optimal

policy starting from state (x, y) and=
L,A,K

for the expected future cost
of waiting for one transition to occur and adopting an optimal policy
from then onwards, then

<
L,A,K

(x, 0)"0 for x70, <
L,A,K

(0, y)"0 for y70,

=
L,A,K

(x, y)"p
xy

(1#<
L,A,K

(x!1, y#1))

#q
xy
<
L,A,K

(x, y!1) for x, y71,

<
L,A,K

(x, y)"minM=
L,A,K

(x, y), ¸#<
L,A,K

(x, y!1),

A#KxN for x, y71.

In any state (x, y), if=
L,A,K

(x, y)(minM¸#<
L,A,K

(x, y!1), A#KxN
we do nothing, if ¸#<

L,A,K
(x, y)(A#Kx and ¸#<

L,A,K
(x, y)6

=
L,A,K

(x, y) we isolate an infective, and if A#Kx6minM=
L,A,K

(x, y),
¸#<

L,A,K
(x, y!1)N we immunise all of the susceptibles.

Properties of the optimal policy can be established using similar
arguments to those of Sects. 2 and 3, and are collected together as
follows.

Theorem 4.1.

(i) <
L,A,K

(x, y#1)7<
L,A,K

(x, y) for x, y70.
(ii) For each x70 there exists an integer ¹(x), t (x)6¹(x)6R, such

that the optimal policy immunises the susceptibles if y'¹(x), but
not otherwise.

(iii) =ith R de,ned by (3.3), then provided +=
y/1

p
xy
"R for x71 we

have ¹(x)"R for 06x(R, but ¹(x)(R for x7R.
(iv) Provided p

x,y`1
6p

xy
for x, y71, then for each x70 there exists

an integer S (x), 06S (x)6minMs(x), ¹(x)N, such that the optimal
policy isolates all infectives if 16y6S (x), but isolates none other-
wise.
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(v) For x71, de,ning /(x)"maxMy3Z :y((A#Kx)/¸N, then S(x)6
/(x)6¹ (x).

(vi) Provided p
x`1,y

7p
xy

for x, y71 then <
L,A,K

(x#1, y)7
<
L,A,K

(x, y) for x, y70.
(vii) Provided p

x,y`1
6p

xy
6p

x`1,y
for x, y71, then S (x#1)7S (x)

for x70.

Proof.

(i) As Lemmas 2.1 and 3.1.
(ii) The proof that ¹ (x) exists is as for Theorem 3.2. To see that

¹(x)7t(x), note that the class of policies now under conside-
ration includes the total immunisation policies of Sect. 3, so
that <

L,A,K
(x, y)6<

A,K
(x, y) for x, y70. If ¹(x)"R then

¹(x)7t(x), so suppose now ¹(x) (R for some x71.
Since <

A,K
(x, ¹(x)#1)7<

L,A,K
(x, ¹ (x)#1)"A#Kx, then

<
A,K

(x, ¹(x)#1)"A#Kx, the optimal total immunisation
policy at (x, ¹(x)#1) is to immunise, and t (x)6¹(x).

(iii) The proof that ¹(x)"R for 06x(R and ¹(R)(R is as for
Theorem 3.3, but with <

L
(x, y) in place of C(x, y). For x'R,

observe that since <
L,A,K

(x, y)(x we can have <
L,A,K

(x, y)"
¸#<

L,A,K
(x, y!1) for at most "nitely many y values, so that if

¹ (x)"R then<
L,A,K

(x, y)"=
L,A,K

(x, y) for all su$ciently large
y. Exactly as in the proof of Theorem 3.3, a contradiction follows,
so that ¹(x) (R for x'R.

(iv) From part (iii) we know that the optimal policy immunises the
susceptibles for y'¹(x), but not for y6¹(x). For y(¹(x) we
proceed as in the proof of Theorem 2.2 to show that if the optimal
policy does not isolate any infectives at (x, y), then it does not
isolate at (x, y#1), and the existence of S (x) follows. Since the
optimal policy for y'¹(x) is to immunise and not to isolate then
S (x)6¹ (x). To show that S (x)6s (x), note that the class of
policies now under consideration includes the isolation policies of
Sect. 2, so that <

L,A,K
(x, y)6<

L
(x, y) for x, y70. For x70,

since <
L
(x, S(x))7<

L,A,K
(x, S(x))"¸S(x), then <

A,K
(x, S (x))"

¸S(x), the optimal isolation policy at (x, S (x)) is to isolate all
infectives, and s(x)7S (x).

(v) Fix x71. For y6/(x) we have ¸y(A#Kx, so that it is
cheaper to isolate all infectives than to immunise the susceptibles,
the optimal policy certainly does not immunise, and so ¹ (x)7
/ (x). For y'/(x), on the other hand, to immunise is no more
expensive than to isolate all infectives, and the optimal policy
cannot be to isolate, so S (x)6/(x).

(vi) As Lemma 2.3.
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(vii) As in the proof of Theorem 2.4 we have <
L,A,K

(x#1,S(x))"
¸S(x) so that the optimal policy at (x#1, S (x)) is either to isolate
all infectives or to immunise all susceptibles. Since S (x)6/(x)6
/ (x#1)6¹(x#1), the optimal policy does not immunise at
(x#1, S (x)), so it must isolate, hence S (x#1)7S(x). K

Provided p
x,y`1

6p
xy

for x, y71, then the (x, y) plane is divided
into three regions by the boundaries S (x), ¹(x), where
06S (x)6¹(x)6R. For y6S(x), the optimal policy is to isolate all
infectives. For S (x)(y6¹(x), we allow the epidemic to proceed
uninterrupted. For y'¹(x), we immunise the entire susceptible popu-
lation.

In the case of the general stochastic epidemic Abakuks (1974) was
able to show that S (x)"¹(x)"/ (x) for all su$ciently large x. For
our more general model it seems that this need no longer be the case.
An example in which ¹(x)!S (x) increases with x is given in Sect. 6.

5. More general costs

The particular forms of costs which we have considered so far, while
reasonably plausible, are motivated as much by mathematical conveni-
ence as realism. Both the cost of disease and the cost of intervention
could well take some more complicated form. For more complicated
cost functions, determining the structure of the optimal policy will in
general be far harder, but a few results along the lines of Sects. 2, 3 and
4 can be obtained, as outlined below.

First of all, consider the cost of infection. In general, the problem of
"nding an optimal intervention policy for more complicated infection
costs will be far less tractable than the simple case of unit cost per
infection. However, in the particular case when an individual with
infectious period of length I generates cost u#vI for constants u, v70
with u#v'0, these individual costs being summed to give the overall
infection cost, then the problem can be reduced to that of unit cost per
infection provided c

xy
"c, constant, for x70, y71. The condition

that c be constant means that whenever an individual becomes infected
it remains so for a random time which is Exponentially distributed
with mean 1/c, independent of the behaviour of the rest of the popula-
tion. The argument is the same as that given for the general stochastic
epidemic in Abakuks (1973).

Turning to intervention costs, if we consider only policies which at
any time allow us to either terminate the epidemic or do nothing, then
in general the cost of terminating the epidemic when in state (x, y) will
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be some function k(x, y)70. Denoting by <
k( ', ')

(x, y) the expected
future cost of an optimal policy starting from state (x, y) then we can
immediately write down optimality equations corresponding to (3.1)
and (3.2). Provided that k(x, y#1)7k(x, y) for x, y71 then exactly
as for Lemma 3.1 we can show that<

k(', ')
(x, y) is non-decreasing in y. If

p
x`1,y

7p
xy

for x, y71 and k(x#1, y)7k(x, y) for x, y71 then
<
k(', ')

(x, y) is also non-decreasing in x, the proof being as for
Lemma 2.3.

In the case of a total immunisation policy with cost k(x) then
Theorem 3.2 still applies, the proof being as before. That is, an im-
munisation boundary t (x) exists such that the optimal policy is to
terminate the epidemic by immunisation if and only if y't(x), where
06t (x)6R for x70. Furthermore, de"ning R"minMx3Z :
x'k (x)N (with R"R if x6k(x) for all x) then provided
k(x#1)(k(x)#1 for x70 (so that x'k(x) for all x7R) and
+=

y/1
p
xy
"R for x71 we have t (x)"R for 16x(R but

t(x)(R for x7R (proof as Theorem 3.3).

6. Numerical examples

Figure 1 shows some typical optimal policies when both isolation of
infectives and immunisation of the entire susceptible population are
allowed (costs being as in Sect. 4). In each case the conditions for
Theorems 2.2 and 2.4 (or parts (iv) and (vii) of Theorem 4.1) are
satis"ed, so the isolation boundary S (x) exists and is non-decreasing in
x. The upper, dark grey, area shows those states (x, y) where it is
optimal to immunise (y'¹ (x)), the lower, paler grey area shows
where it is optimal to isolate (16y6S (x)), and the white area shows
where the optimal policy is to do nothing (S(x)(y6¹ (x)). In the
cases of Fig. 1(i) (the general stochastic epidemic) and 1(ii) (b

xy
"

b/Jx#y, c
xy
"c), then if the only intervention allowed is total im-

munisation, the immunisation boundary t (x) is non-increasing in the
region of the (x, y) plane shown, as Abakuks (1974) conjectured would
always be the case for the general stochastic epidemic. For the general
stochastic epidemic Abakuks (1974) has shown that ¹(x)"S (x) for
su$ciently large x. In Fig. 1(ii), the boundaries ¹(x) and S (x) do seem
to come together as x increases, but even computing the optimal policy
as far as x, y6250 we still "nd ¹ (x)!S (x)"1, though for such large
x, y values numerical errors may a!ect our results. In Fig. 1(iii)
(b

xy
"b/(x#y), c

xy
"c) and in Fig. 1(iv) (b

xy
"b/Jxy , c

xy
"c) the

immunisation boundary ¹(x) is increasing, and in fact if the only

326 D. Clancy



Fig. 1. Optimal isolation-or-total-immunisation policies. Dark grey area indicates
states (x, y) where it is optimal to immunise the susceptible population, pale grey area
where it is optimal to isolate an infective, white area where it is optimal not to
intervene. Costs as in Section 4.
(i) b

xy
"b, c

xy
"c, with c/b"20, A"5, K"0.5, ¸"1.5.

(ii) b
xy
"b/Jx#y, c

xy
"c, with c/b"5, A"0, K"0.8, ¸"0.8.

(iii) b
xy
"b/(x#y), c

xy
"c, with c/b"20, A"0, K"0.05, ¸"0.02.

(iv) b
xy
"b/Jxy, c

xy
"c, with c/b"20, A"0, K"0.1, ¸"0.1.

intervention allowed is total immunisation the boundary t(x) is also
increasing. It appears that now the two boundaries S (x) and ¹(x) move
apart as x increases rather than coming together, that is, ¹(x)!S (x)
increases with x.

Figure 2 shows that, while the conditions for Theorems 2.2 and 2.4
may not be the least restrictive possible, some conditions are necessary.
The graphs show computed isolation policies in the case when isola-
tion of infectives is the only intervention permitted, with costs as in
Sect. 2. The grey area indicates those states (x, y) where it is optimal to
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Fig. 2. Optimal isolation policies. Grey area indicates states (x, y) where it is optimal to isolate an
infective, white area where it is optimal not to intervene. Costs as in Section 2.
(i) b

xy
"by, c

xy
"c, with c/b"50, ¸"1.

(ii) b
xy
"b/(x#y)2, c

xy
"c, with c/b"1, ¸"0.02.

isolate an infective, the white area those states where it is optimal not
to intervene. In the case of Fig. 2(i) (b

xy
"by, c

xy
"c), Theorem 2.2

does not apply, and there exist states (x, y) where it is optimal to isolate
some but not all of the infectives present. Fig. 2(ii) (b

xy
"b/(x#y)2,

c
xy
"c) shows an example where Theorem 2.2 applies but Theorem 2.4

does not, so that the isolation boundary s (x) can decrease as x
increases.

7. Discussion

In this paper, we have found conditions under which the particularly
simple forms of optimal intervention policy found by Abakuks (1973,
1974) for the general stochastic epidemic model apply to models with
less standard infection and removal rate functions. There are many
directions in which it would be desirable to extend this work.

Firstly, the model itself is somewhat restrictive. The assumption of
a closed population amounts to an assumption that the time scale over
which the epidemic occurs is su$ciently short that births, deaths due to
other causes than the disease under consideration, immigration and
emigration may be neglected. The homogeneous mixing assumption
will become less tenable as population size increases, so that we
are e!ectively assuming the population is reasonably small. Thus while
our model may provide a reasonable description of the spread of
disease through a small population over a short period of time, larger
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populations or longer time scales require more complicated models,
which are likely to be less mathematically tractable.

Another limitation of our model is the assumption that once an
individual has had the disease, it necessarily becomes immune to
further infection. In practice some (or all) individuals may well return
to the susceptible state. Furthermore, we have not distinguished be-
tween those who recover from the disease, becoming immune to further
infection, and those who die from their illness. This is particularly
relevant since our intervention consists of transferring individuals from
either the susceptible or the infective state to the &removed' state. If
naturally &removed' individuals are in fact dead, then we may wish to
distinguish between these and the individuals removed by our inter-
vention. Although for some animal diseases arti"cially &removed' indi-
viduals may indeed be killed, this will not usually be the case. A model
which distinguishes between individuals who have recovered and are
immune to further infection on the one hand, and individuals who have
died from the disease on the other, is the subject of Picard and Lefèvre
(1993) and Lefèvre and Picard (1993).

For an epidemic spreading in a small population over a short
period of time, when our model may provide a reasonable description
of the process, we still have the problem that in order to implement our
optimal intervention strategy we require perfect information on the
current state of the population. In practice, perfect information is
unlikely to be instantaneously (or even eventually) available to us. Any
information which we do have is likely to carry some "nancial cost, so
that ideally we should extend out optimization problem to incorporate
the cost of gathering information, to be balanced against the cost of
implementing a sub-optimal policy due to ignorance of the true state of
the population. Similarly, we are unlikely to know exactly either the
functional form of b

xy
and c

xy
, or the true values of any numerical

parameters such as, in the case of the general stochastic epidemic,
b and c. If we want to compute the boundaries s (x), t (x), S (x) or ¹(x),
then we need perfect information about these transition rate functions.
However, the main objective throughout this paper has been to de-
scribe the optimal policies qualitatively, and for this we only need to be
satis"ed that conditions such as p

x,y`1
6p

xy
6p

x`1,y
hold true.

As far as allowable intervention is concerned, we have made the
simplifying assumption that both immunisation of susceptibles and
isolation of infectives can be carried out instantaneously with 100%
e!ectiveness. Suppose now that each isolation is successful with prob-
ability o(1, independently of all other events. Then the number of
isolation attempts need to successfully isolate one individual will be
a Geometrically distributed random variable with mean 1/o. If each
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isolation attempt has cost ¸, the expected cost of one successful
isolation is therefore ¸/o, and the results of Sect. 2 on isolation policies
apply as before with ¸ replaced by ¸/o. This assumes that having tried
and failed to isolate an individual, the probability that the next attem-
pted isolation will be successful is unaltered. More generally, we can
simply take ¸ to be the expected cost of successfully isolating one
individual, however many attempts this may take, and apply the results
of Sect. 2 as before. A similar argument can be applied to immunisa-
tion costs if immunisation is not always 100% e!ective. Of course, we
still have to assume that we know the expected cost of a successful
intervention, and that we can tell whether or not an intervention has
been successful.
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