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Abstract. We adapt a simple two-component model of a plankton
ecosystem to account for the life spans of individual predatory organ-
isms. We investigate the system’s short-term dynamics, in particular its
excitability, and its long-term dynamics, and show how both can be
highly sensitive to initial conditions. We discover that this effect is
enhanced by imposing age structure on the system.
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1. Introduction

It is well-known that plankton ecosystems can sometimes exhibit the
behaviour characteristic of excitable media. The populations which
comprise such ecosystems can exist at relatively stable levels; however,
small changes in the environment have been observed to induce sud-
den population explosions. Typically, the phytoplankton population
increases by a factor of 10 to 20 and stays in this range for several
weeks before diminishing rapidly to its original order of magnitude.
Sudden, large excursions from an equilibrium, followed after a time
lapse by a return to that (usually unique) equilibrium are characteristic
of excitable systems. When in its excitable state, the system may, given
a suitable small perturbation, exhibit a large and rapid response.
However, in the absence of further perturbations, the system will return
to its equilibrium state and remain there undisturbed (see, for example,
[13]). This seems to be a very common mechanism in mathematical
biology: it occurs widely in physiology, governing, for example, the
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function of cardiac muscle or nerve fibres, and in cell biology, for
example in dichtostelium. The form of behaviour of phytoplankton
and zooplankton populations during many blooms suggests a similar
mechanism, which was proposed in [21]. Interestingly, excitability
turned out to be only one of a range of different forms of dynamical
behaviour which manifested themselves as the model parameters were
varied. Of the other dynamics which were observed, two types in
particular appeared to predominate: bistability, in which the system
tended to one of two coexisting stable equilibria, and periodicity, in
which the system oscillated around a single unstable equilibrium. This
raised the pertinent question: which, if any, of the three mathematical
phenomena comes close to modelling the biological phenomenon of
phytoplankton blooms?

From a mathematician’s point of view, a sensible approach is to
investigate the robustness of the behaviour to improvements in the
model, in other words, to add extra features to the model and then to
assess their effect on its dynamical properties. This strategy suggests
several different approaches: for example, nutrient upwelling has been
investigated by Edwards [6, 7], spatial patchiness by Matthews [10]
and species diversity by Pitchford [ 14, 15]. By scrutinising the effect of
each of these features on the qualitative behaviour of the system, these
authors drew various conclusions relating to the robustness of the
mechanisms present in the general model. Their inferences are sum-
marised very briefly in Table 1.

Perhaps the most obvious omission in this body of work is the
consideration of physiological heterogeneity within a population. Spe-
cifically, only a limited (and variable) proportion of the biomass of any
population is available for reproduction at any one time. The models
summarised in Table 1 all rest on the assumption that the birth rate of
each population is independent of its composition. However, during
a plankton bloom, which takes place over a relatively short time scale

Table 1. Previous extensions of the excitable model

Nutrient upwelling Nutrient feedback loop induces stable limit cycles and
chaotic attractors in a limited region of parameter space.
Bistability is suppressed.

Species diversity Interaction between populations of organisms of differ-
ent sizes induces bistability. The domains of excitability
and periodicity are modified.

Spatial heterogeneity =~ Can be promoted by different relative motion of P and
Z in a shear flow. Excitability can enhance patchiness.
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(comparable to the life span of the organisms present), the composition
of each population may be expected to vary considerably (see, for
example [3]). This may well have a significant effect on the dynamics of
the population during and after the bloom: the main goal of this article
is to establish precisely how physiological structure can affect the
mechanisms that drive these dynamics.

One way to account for physiological heterogeneity is to introduce
a delay into the system, representing the time lapse C between the birth
of an organism and its onset of fertility. At a given time, the birth rate
of the population is determined by its total biomass C days earlier. This
method has been employed in [20]. Its main advantage lies in the
large body of analytical tools and numerical techniques available
for studying delay equations. On the other hand, it suffers from the
disadvantage of inflexibility. While a delay system can account for
physiological features which depend on the age of an individual, the
connection between individual biology and population behaviour is
often obscured.

In earlier work, the excitable behaviour of plankton ecosystems has
been explained by assuming that the rate at which zooplankton con-
vert biomass consumed into biomass of new organisms is very low. In
[21], for example, it is assumed that 0.05 units of zooplankton are
produced for every unit of phytoplankton that is consumed. This
assumption does not account for the fact that reproductive capacity is
an age-dependent phenomenon. A typical zooplankton organism can
reproduce only after passing a certain stage in its life-cycle. After this
stage, it may be expected to produce new organisms with greater
efficiency than has previously been accounted for. However, such
behaviour is difficult to simulate using classical type population mod-
els, which make the highly restrictive assumption that each population
is a homogeneous collection of identical individuals.

It is not possible, or even desirable, to create a model which
accounts for all possible variations amongst all individuals within each
population. Nevertheless, a model which specifies even a small number
of characteristics and identifies them as purely age-dependent will be
more realistic than the unstructured model, while at the same time it
will retain the capacity to pinpoint those factors which significantly
affect the behaviour of the system.

2. A review of an unstructured model

The phenomenon of excitability is captured neatly by an unstructured
two-component model of Truscott and Brindley [21], which simulates
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the evolution of the total phytoplankton biomass P and the total
zooplankton biomass Z. The model is based on the logistic phyto-
plankton growth rate

F(P) = rP<1 - %) (2.1)

with maximum growth rate r and carrying capacity K, the Holling
type-III functional response
P2
G(P) =

" P 22

with maximum specific grazing rate R,,, and either linear or quadratic
zooplankton mortality:

0. Z or 0,Z% (2.3)
The governing equations of the system take the form
dpP
T F(P)— G(P)Z :=f(P, 2), (2.4a)
dz
i I'G(P)Z — 0Z™ := g(P, Z), (2.4b)

with the choice of m determining the linear or quadratic nature of
zooplankton mortality.
Since both the mortality 6 and the conversion efficiency

r— Rate at which new biomass is produced
" Rate at which biomass is consumed

(2.5)

are significantly lower than one, the variables P and Z evolve accord-
ing to different time scales, despite their mutual dependence. This
implies that Z is slow to respond to any sudden change in the dynamics
of P, which is one of the crucial factors in the excitability of the model.

Another crucial factor is the relative behaviour of the functional
response G and the logistic growth curve F, as this determines the
shape of the P-nullcline (P, Z) = 0. Because the P-nullcline admits
a sigmoidal shape, the sign of f (P, Z) can change repeatedly as P varies
whilst Z (which evolves on a slower time scale) remains within a nar-
row interval. In certain cases, this means that P can be forced out of the
local basin of attraction of a stable steady state (P, Z). If the slower
dynamics of Z eventually cause P to return to (P, Z) after occupying
a different region of phase space, the system is classified as excitable.
A typical example is illustrated in Fig. 1.

Any steady state (P, Z) must lie at a point of intersection of the
P-nullcline and the Z-nullcline g(P, Z) = 0. In the linear case, the slow
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The Phase Plane
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Fig. 1. The nullclines in the linear unstructured case

variation of Z suggests that its stability depends on the gradient of the
P-nullcline: if it is negative at (P, Z) then the steady state is stable and
conversely. This may be inferred from a close examination of Fig. 1.

More generally, the stability of (P, Z) is determined by the eigen-
values of the stability matrix

p—|F (P) - G(P)Z — G(P)
- I'G'(P)Z I'G(P) —mézZm~* |
which reduces to
D F'(P)— G'(P)Z — G(P)
B IrG'(P)Z — (m — HI'G(P)
since g(P, Z) = 0. The determinant of D is given by
F(P)—-GP)Z 1

detD = — I'G(P) G(P)2 I

b

which implies that the real parts of the eigenvalues have the same sign
if and only if
(m — 1)(F'(P) — G(P)2) — G(P)Z < 0.
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The Nullclines
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Fig. 2. The nullclines in the quadratic unstructured case

In the case of linear zooplankton mortality (m = 1), this condition
necessarily holds, and the stability of (P, Z) is determined by the sign of

trace D = F'(P) — G'(P)Z. (2.6)

In accord with geometrical intuition, this agrees with the sign of the
gradient of the P-nullcline.

In both the linear and quadratic cases, it is clear that the qualitative
behaviour of the system is very sensitive to the position and shape of
the Z-nullcline. Since this depends to a great extent on the ratio I'/4, it
makes sense to analyse the system using ¢ as a bifurcation parameter.

2.1. Linear mortality

The case m = 1 is straightforward: the equilibrium equations give

=7
Il
~

G(P)

’Tj

(P
(P

N
Il

B

Q



Excitability of an age-structured plankton ecosystem 383

and bifurcations occur at the two roots of the equation

- d (F(P)  ud (o F(P) s s
G(P)E<WP)>P=P—F(P)—G(P)G(ﬁ)—F(P) G(P)Z =0, (2.7)

which correspond to the turning points of the P-nullcline.
At each bifurcation point, the eigenvalues of D satisfy the equation

)2 + TG(P)G'(P)Z = 0.

Since (P, Z) is a non-trivial equilibrium, the roots of this equation form
a non-zero complex conjugate pair with zero real part. Therefore both
bifurcations are Hopf bifurcations. If 6; < §, denote the bifurcation
points, then the system is excitable in the region (0, 6;], and admits
a stable periodic orbit in the region (d4, J5).

2.2. Quadratic mortality

In the case m = 2, one of the two eigenvalues crosses between the left
and right half planes when the equation
. . F(P . L
F'(P) — 2G'(P) GE 13; = F'(P)—2G'(P)2 =0 (2.8)

is satisfied. As we shall see in Sect. 7, this coincides with the appearance
of two further equilibria, which arise when the Z-nullcline first meets
a portion of the P-nullcline. In addition, it is possible (though not
inevitable) that, in some point of parameter space, detD > 0 and
trace D = 0, indicating the presence of a Hopf bifurcation. Clearly, this
can only happen if

F'(P) — 2G'(P)Z < 0 = trace D = F'(P) — (6 + G'(P))Z,
which imposes the draconian constraint d < G'(P).
To summarise, the dynamics of the system are determined by the
parameter
o, = F'(P)— G'(P)Z
in the case of linear mortality, and by the parameters
a, = F(P) — 2G'(P)Z,
p.=G(P)— (6 + G(P)Z

in the case of quadratic mortality.

This analysis demonstrates that we have considerable analytical
control over equations (2.4). Given their lack of biological sophistica-
tion, this is only to be expected. The relevance of the model lies in the
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fact that it clearly exhibits dynamics which have been observed in
ocean plankton populations. This provides evidence (and no more
than evidence) that the quantitative mechanism of excitability could be
the underlying mechanism of spring blooms and red tides. The next
step is to test the robustness of the model by modifying or discarding
its simplifying assumptions.

By introducing age structure into the model, one can begin to
address the assumption of homogeneity. The dynamics of any system
are determined by individual interactions, and unstructured models do
not allow for variation among members of a single population. An
age-structured model is only a partial improvement, though: while an
individual’s age affects its behaviour, which in turn affects the environ-
ment, the environment cannot have any effect on the aging rate of its
resident organisms! Thus, assuming that individual behaviour is solely
dependent on age is still an oversimplification.

On the other hand, it is possible to gain considerable analytical
control over an age-structured model, even though it is infinite-
dimensional. In fact, the results that follow lead to the unexpected
conclusion that the stability properties of the plankton model persist
when fertility is delayed by a fixed time interval.

3. The age-structured model

One of the most obvious limitations of the model represented by
equations (2.4) is the requirement of a low value of the conversion
efficiency I' in order to achieve excitability. Experiments on individual
organisms suggest a value between 0.3 and 0.8, as opposed to the value
of 0.05 used in [21]. However, this is not a fatal flaw, as only a small
proportion of the zooplankton population is available for reproduc-
tion. Hence, if the definition (2.5) is interpreted on the population level
(or the p-level), rather than the individual level (the i-level), the value
0.05 may not be unfeasibly low.

In order to resolve the ambiguity in the definition of I' it is
necessary to distinguish between the p-level and the i-level. The p-level
parameter is defined as

__Total rate of production of new zooplankton biomass
P Total rate of consumption of phytoplankton biomass ’

(3.1)

while the i-level parameter is defined, for an individual organism w, by

Rate at which w produces new biomass
Rate at which @ consumes phytoplankton biomass

yi(w) := (3-2)
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If every newborn organism has equal biomass, an equivalent definition
of i-level conversion efficiency is

Rate at which @w produces new born individuals

b(w) := (3.3)

~ Rate at which @ consumes phytoplankton biomass’

This is an individual-based parameter, and since the paradigm of
structured population theory involves monitoring individual inter-
actions and then lifting the results to the population level, h(w) is more
of a natural choice than y;(w). The two are related by the expression

y:(w) = b(w) x mass of a newborn individual. (3.4)

In an age-structured model, age is the only characteristic which distin-
guishes between individuals, so each individual w is identified with its
age a. In particular, the i-level parameters y;(w) and b(w) may be
realised as mathematical functions a — y;(a) and a — b(a) respectively.

If y; is not a constant function then, since the age distribution of the
population may fluctuate over time, the p-level parameter I, can no
longer be assumed to be constant in time. In fact, when phenomena
such as excitability and periodicity are being investigated, one expects
to see considerable changes in the populations over a short time scale,
which may profoundly affect the value of I',. Were this not the case,
there would be little point in imposing age structure on the original
model, as its properties would persist vacuously!

Delayed zooplankton fertility is the only new feature that will be
introduced into the unstructured model. Consequently, while the
phytoplankton population need not be structured, it is necessary to use
a time-dependent distribution p to monitor the age profile of the
zooplankton population.

At any given time t, p(-, t) is an integrable function on the half line
(0, o0) which describes the population in the sense that

e for any interval (ay, a,) = (0, o),

J " (@, da

a;

_ number of members of the population whose ages lie
~ between a; and a,;

e the boundary value p(0, t) satisfies
p(0, t) = total birth rate of the population.

As has already been observed, the variable Z is a measure not of
number of organisms, but rather of total biomass. Therefore to
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translate from p to Z it is necessary to integrate against a time-
invariant weight function m. That is,

Z = Joom(a)p(a, t) da,

where m(a) represents the biomass of a single organism of age a. At this
point, the major shortcoming of the age-structured approach becomes
clear. The weight function m is time-invariant, which means that the
growth rate of every individual is independent of the environment. This
is a manifestation of the one-way interaction between age profile and
environment alluded to at the end of Sect. 2.

The equations of the age-structured system are now easily ob-
tained. Assuming that an individual of age a consumes phytoplankton
at a rate of G(P)m(a) units per day and summing over individuals of all
ages gives

dP
— =F(P)— G(P) rm(a)p(a, t)yda
dt 0
= F(P) — G(P)Z, (3.5)

as in the unstructured case. For the zooplankton population, it is
necessary to derive an internal continuity equation and a condition
specifying the boundary value p(0, t). The latter is derived by appealing
to the definition of b and summing as before:

o0

p(0.1) = G(P) J b(@m(ap(a, 1)da

0
.= G(P)Z,, (3.6)

For the continuity equation, a short heuristic argument suffices. As
time progresses from t to t + h, the age-band [a, a + da) evolves to
(@ + h,a+ h + da), and the number of organisms lying within this
age-band decreases due to predation. The magnitude of this decrease
may be obtained by viewing predation as a Poisson process with
probability 6Z™~*:

pla+ h t+ hyda— p(a,tyda = — 6Z™ *p(a, t)-hda + o(h da).

Dividing this equation by hda, and letting h and da tend to zero
independently, gives

op  0p _ me1
o= =2 . (3.7)
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The system, then, is defined explicitly by the equations

P _ ripy—Gp1z (3.8)
dt
dp , dp _ m-1
p(0, 1) = G(P)Zy, (3.8¢)

where Z and Z, are integrals of the distribution p(a, t), weighted
against the functions m(a) and b(a)m(a) respectively. The precise form
of the functions b(a) and m(a) is more of a biological consideration than
a mathematical one, although the modeller’s desire for analytical
tractability motivates the choice of piecewise linear or constant
functions.

Fertility is assumed to begin at a fixed age C. After this age, growth
ceases and biomass remains at a constant level M, while reproduction
occurs in proportion to the biomass of phytoplankton consumed. If
B denotes the constant of proportionality, this gives

m(a)=M and b(a)=B forae[C, ).

Up until the threshold age, C, there is no reproduction and growth is
linear from 0 to M. Hence b and m have the forms

0 for a€(0,C),
b(a) = {B for ae[C,o0) (39)

and

m(a) = {Ma/C for ae (0, C);

M for ae[C, x0) (3.10)

respectively. In particular, in the limiting case C = 0, b and m reduce to
constant functions on (0, o) and the model itself reduces to the
unstructured model (2.4) with I' = BM.

The formulation of an age-structured population model in terms of
a partial differential equation dates back to Lieutenant-Colonel A. G.
McKendrick. In his 1926 paper [ 11], McKendrick turned his attention
to a single population and considered the linear case, in which the birth
and mortality terms were both linear functions of the state variable: the
instantaneous distribution of the population. Later on, Gurtin and
MacCamy [8] worked on the semilinear case, in which the birth rate
was still linear but the mortality rate was dependent on the dynamic
states of the populations involved. This generalisation provided the
scope for age-structured models to represent systems of competing or
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cooperating populations. If the total magnitude of one population
affected the survival rate of another, the Gurtin/MacCamy model
could be used to analyse the situation.

Biologically, it is a simple and natural step to move from the idea of
population interactions affecting death rates to that of population
interactions affecting birth rates. Mathematically, this is still possible
even when the birth function is linear. However, the range of interac-
tions that can be described using linear birth rates is limited, and falls
well short of covering the current example. Unfortunately, as the birth
function appears in the boundary condition of the PDE formulation
(equation (3.8c) in this case), nonlinear birth rates introduce technical
problems that are not present in the semilinear case. These problems
are of a mathematical nature. While they hinder the rigorous verifica-
tion of stability criteria, they do not stand in the way of the formal
analysis that will be the subject of this paper. The primary goal will be
to derive expressions for the stability matrices in the linear and quad-
ratic cases, and to test the resulting bifurcation diagrams using a nu-
merical integration scheme. It should be emphasised that the analysis,
while formally correct, is by no means rigorous. We avoid potentially
hazardous questions about the space of functions we are working in
(a finite number of individuals of identical ages, for example, cannot
be represented as an L'-function), and concentrate instead on the
local behaviour of the terms that define the system, such as the birth
function

(P, p)— G(P)mep

and the mortality function
p— 62" 1p.

The question of mathematical rigour is one that will be addressed in
a later paper: recent developments in the theory of nonlinear age-
dependent population dynamics (see [4]) have laid a framework within
which the difficulties associated with the boundary condition (3.8c)
may be circumvented. The ultimate aim is to obtain a general math-
ematical theory which fails only when its concrete interpretation ceases
to make biological sense. This paper constitutes a preliminary first step
in this direction. If, under certain conditions, the formal approach to
stability analysis fails, this may be detected numerically, helping to lead
to an appreciation of the most critical mathematical and biological
issues.

Each bifurcation diagram will admit two free parameters and two
classes of curves. One class of curves will specify the positions of the
equilibria, while the other will mark the stability boundaries of the
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system. The former will be derived in the next section; the latter in
the following sections.

4. Location of equilibria

At equilibrium, the distribution p(-,t) and the variables P, Z and
Z, are given by the time-independent quantities

p(-.0)=¢
P=P,
Z=7
and
Zb:Zb'

Since ¢ is time-independent, the differential operator d/da + /0t re-
duces to the age derivative and equation (3.8b) becomes an ordinary
differential equation. Thus the state of the system at equilibrium is
given by the equations

F(P)— G(P)Z =0 (4.1a)
b s

PR (4.1b)
$(0) = G(P)Zy. d.1c)

From the differential equation (4.1b) and the boundary condition
(4.1c), the form of ¢ is given by

$(a) = $(0) exp(—5Z™ 'a)
= G(P)Z, exp(— 62" 'a), (4.2)

which means that the values of P, Z and Z, are enough to specify the
state of the system at equilibrium.

Integrating both sides of equation (4.2) against the weight m(a)
gives
Z= G(P)ZA,JJ m(a) exp(—9Z™ a)da

0

_ MG((P)Z

b S 1 —exp[—dZ" ' (C]
= EQOZ™ 1C)' .
5zm—1

oZm=1C
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Rearranging this expression yields the equation

—exp[ — 02" 1(C]
oZm1C ’

) 1
82" = MG(P)Z, (4.3)

which determines Z, uniquely in terms of P and Z.
On the other hand, integrating both sides of equation (4.2) against
the weight b(a)m(a) gives

Zy, = G(P)ijmb(a)m(a) exp(—362" 'a)da,

0

which reduces to

1= BG(ﬁ)J M exp(—362""'a) da
C

BG(P) o
=WMCXP(—5Z 1C),
and may be rearranged to give the equation
0Z™~ ' = M BG(P) exp(—92Z™~1C). (4.4)

Together with equation (4.1a), equation (4.4) gives finitely many values
of the pair (P, Z), each of which determines a unique equilibrium state.

5. Formal stability analysis

An equilibrium (P,¢) is stable if there is a neighbourhood in phase
space within which every set of initial conditions (P, ¢o) leads to
dynamics converging to (P, ¢). The notion of convergence can, of
course, only make sense once the phase space has been defined and
equipped with a suitable norm. In the context of age-structured popu-
lation biology, a common choice is the Banach space

B =R x LY0, ),

endowed with the norm

1P, )5 = |P| + Looqu)(x)ldx.

Within this setting, it is possible to define the solution operators. For
any t > 0, the solution operator S(t): B — B is defined by

solution of equations (3.8) with initial conditions

S@)(Po, Po) = P(0) = Py, p(*,0) = ¢y, evaluated at time ¢,
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with 2(S(t)) = B+, the positive cone in B defined by
B, :={(P,¢)eB:P=0and ¢ 20 ae.}

By checking regularity conditions, it is a straightforward exercise to
demonstrate that the family of operators S(t), t = 0, forms a Cy-semi-
group on B, . This means that

1. for every t > 0, S(¢) is a continuous map from B into B.;

2. S(0) acts as the identity on B ;

3. for any ® € B, and any ty,t, =0, S(t; + t,)® = S(t1)S(t,) P;

4. for each fixed @ € B, the mapping ¢ — S(¢)® is continuous from
[0, o) into B..

The generator T of the semigroup {S(f)};>0, is an operator on B,
defined as
h® — @
T:D+— limL

h—0 h ’

whose domain consists of all those elements of B, for which this limit
exists.

The significance of the generator is that it can be used to recast the
system as an abstract ODE, in which context formal linear stability
analysis can proceed naturally. Given an initial value @, = (P, ¢)
lying in the domain of T, the dynamics of the subsequent state
& = (P, ¢) are given simply by the equation

d
SO=T"0. (5.1)

In this formulation, the stability of an equilibrium is usually addressed
in terms of the Fréchet derivative of T at that equilibrium. By defini-
tion, T is Fréchet differentiable at & := (P, cj;) if there is a linear
functional T': B — B such that

T(® + K)=T(®) + T(P)K + O(|K|3)

for every K € 2(T) — & lying in some neighbourhood of zero. Clearly,
the Fréchet differentiability of T is dependent not only on its action
close to @, but also on the regularity of its domain. The linear operator
T'(®) will have its own domain: a linear space embedded inside
9(T) — ®. This highlights the potential problems associated with the
Fréchet derivative: there is no guarantee that %(T) is a linear space.
Hence there is no guarantee that the domain of T'(®) is non-trivial,
regardless of the smoothness of the action of T close to &.
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Motivated by these observations, we relax the definition of T'(®):
instead of requiring that its domain be embedded inside Z(T) — ®, we
stipulate only that its domain approach Z(T) — & asymptotically at
zero. That is, T'(®) is defined as the unique linear operator satisfying

T(® + K) = T() + T(D)(K + 04(|KI|3) + O(IK||3)

for every K € Z(T) — & lying in some neighbourhood of zero. The
functions O, and O, are continuous and vanish at the origin, and the
equation carries the implicit requirement that K + O,(||K|/3) lies in
the domain of T'(®).
Given this weaker definition of T'(®), the linearisation of equation
(5.1) is given by
d

o K=T@K, (5.2)

which is the starting point in our linear stability analysis.

Without further analysis, it cannot be proved that the location of
the spectrum of T'(®) establishes an exponential dichotomy on the
linearised system. Hence it cannot be assumed that the stability of
@ depends on the spectrum of T'(®). Nevertheless, since this section
constitutes a formal procedure rather than watertight mathematical
theory, we shall make just this assumption and go on to calculate 7"(®)
and search for its spectrum.

To follow this procedure, we must first find the infinitesimal gener-
ator T. Noting that the solution operator S(t) may be split up into two
components:

e S,(?), the phytoplankton component and
® S,(t), the zooplankton component.

we see that, given a point @ = (P, ¢) € Z(T), the first component T {(®P)
of T(®) is given by

T,(@) = lim 2 WP =P PE+ D = PO _dP _

h—0 h h—0 h T dt F(P)—G(P)Z,

and the second component T, is given by evaluating T,(®) at a point a:

@) = tim 20010~ 900

_ i 529 (@) — Sa(h(a + h) + Sxh(a + h) — ¢la)

h—0 h
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— lbm Sa(h)p(a+h)—S,(h)p(a) T fim Sa>(h)p(a+ h)—p(a)

h—>0 h h—0 h

¢, o
— ¢ ( +&y>

= — ¢'(a) — 0Z" ' ¢(a).

It remains to determine the domain of T. For T,(®) to exist and lie
in LY(0, o0), it is necessary that ¢ be absolutely continuous and ¢’ be
integrable over (0, oo). Further, since continuous functions which con-
verge in L' must also converge pointwise, and since each S,(h)¢
satisfies the boundary condition

S2(M¢(0) = G(P(t + h)Zyt + h),

it is also necessary for ¢ to satisfy the boundary condition
¢(0) = G(P)Z,,. (5.3)

Conversely, given any & = (P,¢)e B, which satisfies the
conditions

¢ e AC[0, «0), ¢ e L0, ), ¢(0) = G(P)Z,,

the limit X
L Sal)g — ¢

h—0 h

exists in L', and so @ € Z(T).
It is necessary to find T'(®) now that the operator

T) = {(P, $) € B, : ¢ € AC[0, 0), ¢’ € L'(0, o0),
$(0) = G(P)Z,} (5-4a)
T:(P, $) > (F(P) — G(P)Z, — ¢' — 5Z" 1), (5.4b)

has been identified. To do this, let (P, ¢) = (P+p, ¢+ ) be a point in
a neighbourhood of (P, qb) sothat Z = Z + zand Z, = Z, + z,, where

z= me(a)t//(a)da and z, = Jwb(a)m(a)lﬁ(a)da.
0 0
Then, for every point (p, y) inside the domain of T"(®),
T'(®)(p, ) = (F(P)p — G(P)Zp — G(P)z,
— Y = 82" W — (m — 1)0Z™ 2z ¢)).
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To find the domain of T'(®), notice that, for any K = (p, y) € Z(T"(d)),
- e
T(@K = lim T(® + hK + O(h?)) — T ()

h—0 h ’

s0 Y must be absolutely continuous and i’ must be integrable; more-
over, ® + hK + O(h?*) must lie in Z(T) for all h > 0. But this implies
that

G(P)Z, + hp(0) + O(h*)(0) = (¢ + hyy + O(h*))(0)
=G(P + hp + O(h®)(Zy + hz, + O(h?))
= G(P)Zy, + (G'(P)Zyp + G(P)zy)h + O (h?).

Subtracting G(P)Z, from both sides, dividing by h and taking the limit
as h tends to zero gives the boundary condition

¥(0) = G(P)Zyp + G(P)z.
Conversely, if K = (p, ) € B satisfies the conditions
Y eAC[0, 0), Y eL'0,0),  ¥(0)=G(P)Zyp + G(P)z,

then there is a function O : R — B, which is continuous and vanishes at
the origin, such that the limit

i T(® + hK + O(h?) — T(P)

h—0 h

b

exists. Hence K lies in the domain of T"(®).
Consequently, the linearised operator T'(®) is given by

A(T(®) = {(p. ) € B:y e AC[0, 0), '€ L'(0, o),

¥ (0) = G'(P)Zyp + G(P)z,), (5.5a)
T'(®)(p. ) = (F(P)p — G'(P)Zp — G(P)z,
— ) = 82" N — (m — 1)0Z™ 2z9). (5.5b)

The location of its spectrum, which consists entirely of its eigenvalues,
involves laborious but straightforward computation. This is carried
out in Appendix A.

6. Linear zooplankton mortality

In the case of linear zooplankton mortality (m = 1), equation (A.6)
shows that the spectrum coincides precisely with the set of zeroes of the
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determinant
F(P)—G((P)Z -,  —G(P) 0
1 _e-rocC ] _e-GtoC
A(2) =MG(P)Ly—————— —0—4 MGP)—————
1) Pz 5e A MR —m5e
MBe “9¢G(P)Z, 0 Se ¢ —1)—2
Note that, in the limiting case C = 0, organisms are eﬂectively born with
mass M, so I', = BM, and the equilibrium equations give Z, = BZ and
MBG(P) = 6. Consequently, the determinant 4,(/) reduces to
F'(P) G'(P A)Z . —G(P) 0
AP = G(P)Z) —6—4 MG(P)
MBG (P)Z, 0 —
F(P)—G((P)Z—-) —G(P) 0
- MBG'(P\Z — 06—/ MG(P)
0 BOo+72) —0—21
F(P)—G(P)Z—-) —G(P) 0
- I,G(P)Z — ) MG(P)
0 0 —0—1
F(P)—G((P)Z—-) —G(P)
=—0+1 PN
R I 1Y |
whose zeroes agree, modulo the root 4= — 9, with those of the

stability matrix associated with the unstructured model. Since the extra
root — J necessarily lies in the left half-plane C, , it can have no effect
on the stability of the system and may safely be ignored. Hence the
stability matrix 4,(4) behaves as should be expected when the delay
between birth and onset of fertility is excluded from the model.

In the general case, the equilibrium @ is locally asymptotically
stable when all of the zeroes of 4,(4) lie in the left half-plane C;, and
unstable when 4,(1) admits any zeroes in the right half-plane Cg.
Furthermore, by virtue of the equations

F(P)=G(P)Z
9e’C = MBG(P),

(6.1a)
(6.1b)

the equilibrium (P, Z) exists uniquely and is continuously dependent
on the parameters that specify the system. Consequently the matrix
A4(2) varies continuously with each of the parameters, and the stability
boundaries of the system coincide with purely imaginary roots A = iw
of A;.
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This fact can be exploited to calculate the stability boundaries: by
taking the real and imaginary parts of the equation

Ay(iw) = 0 (6.2)

and solving them simultaneously for two free parameters, one obtains
a single point on a boundary. Other points are then obtained by
varying the initial choice of w, and the boundary is thus established
constructively.

There is one initial choice of @ for which this procedure breaks
down, however: when @ = 0, the stability matrix evaluates to

F'(P)— G(P)Z — G(P) 0
. 1—e°C 1 —e €
MBe °°G'(P)Z, 0 0

= — M?Be (1 — e~ °)G'(P)G(P)*Z,
<0,

which clearly has no roots. In other words, the stability of the system
can only change when a non-zero complex conjugate pair of eigen-
values crosses the imaginary axis: every possible bifurcation of the
system is a Hopf bifurcation!

In the unstructured case C = 0, the full range of dynamics of the
system is obtained by varying the mortality parameter ¢. As was
illustrated in Sect. 2, the critical value o, of § occurs precisely when the
parameter

o« := F'(P) — G'(P\Z (6.3)
vanishes. Stable limit cycles appear when o is positive, in contrast to
the stable steady state that dominates the system when « is negative.
This phenomenon has a biological interpretation, as noted by De Roos
et al. [3]. As P increases in a neighbourhood of its equilibrium value P,
both F(P) and G(P) increase in response. If the rate if increase of
reproduction F'(P) exceeds the rate of increase of predation G'(P)Z,
then the phytoplankton can escape zooplankton control close to
(P, Z). The name coined for this process is the prey escape mechanism; it
is the only destabilising mechanism in the unstructured system. Thus, if
F'(P) is smaller in magnitude than G'(P)Z, the steady state (P, Z) must
be stable, as the prey escape mechanism can no longer take hold.

In order to understand which other mechanisms take effect when
zooplankton fertility is delayed, it is worth investigating the unstruc-
tured model in greater depth. Following Truscott and Brindley [21],
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the values of P and Z are non-dimensionalised by setting

ﬁ=§, z=§,
which is equivalent to setting K = 1. Adopting the fixed parameters
K =1, (6.4a)
v =0.053, (6.4b)
R,, =0.7day !, (6.4c)
r=0.6day 1, (6.4d)
I' = BM = 0.05, (6.4¢)

(see equations (2.1), (2.2) and (2.4)), it is a straightforward matter to find

~

the critical value .. Since Z is given uniquely in terms of P by the
relation R .
F(P)— G(P)Z =0,
0. is found by solving the equation R
o . F(P
F'(P) — G'(P) % =0
for P and substituting the resulting value into the expression
I'G(P) = 6.
This leads to a value (correct to six decimal places) of
0. = 0.018543. (6.5)

By the Hopf Bifurcation Theorem, the direction of the bifurcation
at J. is determined by the quadratic component J, of the function

&> 0%(e),
which admits the following properties:

(P1) 6* is even;
(P2) 0%(0) = 0
(P3) when 6 = 6*(e), there is a periodic solution [ P,, Z,] of the system

satisfying
Ps _ iwot pc
[ZJ =e&R <e Lj) + o(¢), (6.6)

where [ p,, z.]T is an eigenvector of the matrix

o 0 —G(P)
Dy:= |:FG’(I3)Z 0 } (67)

corresponding to the purely imaginary eigenvalue iw,.
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The formula for §,, and the results of the MAPLE code the authors
used to calculate it, are given in Appendix B. Since its computed value
is positive, it follows that the local direction of the Hopf bifurcation
0. 1s supercritical. That is, stable periodic solutions of the system
bifurcate away from J. in the same direction as the branch of unstable
equilibria that starts at J..

However, the fact that the local direction of ¢, is supercritical is no
guarantee that the branch of bifurcating solutions will not change
direction somewhere to the right of §, and then return to the subcritical
region to the left of .. Such behaviour could give rise to the coexistence
of stable equilibria and stable periodic orbits in the subcritical region.
To investigate this possibility, the numerical path-following package
AUTO was used. As illustrated in Fig. 8, it confirmed the most
believable hypothesis: that no such change of direction takes place.

An immediate consequence of this analysis is that, regardless of
initial conditions, the value of 6 determines the long-term behaviour of
the system uniquely. Below J,, the system approaches its steady state
(P, Z). Depending on the starting conditions, it may or may not begin
with an excursion characteristic of excitable media; however, the con-
vergence to (P,Z) is inevitable. Above J,, the system approaches
a stable periodic orbit. Once again, no starting conditions can be
chosen in order to avoid this behaviour. The prey escape mechanism
cannot be overridden.

This is illustrated numerically from two separate standpoints. First
of all, the critical value J, is located graphically by plotting the curves

I'G(P)=9o
and
0 = 4P (iw)]

on the same set of axes, as illustrated in Fig. 3. This is, of course, not
strictly necessary, as the value of ¢, is already known. However, it is
done for the sake of completeness, since it is the only technique
available for locating . in the unstructured case.

The other line of investigation is numerical integration of the
system. This is done using the Escalator Boxcar Train (or EBT) pack-
age [2], which was developed precisely for the purpose of integrating
general systems of physiologically structured populations. The inde-
pendence of the system’s long-term dynamics from its initial conditions
is illustrated well using this tool. Figure 4 shows results obtained with
various initial conditions when ¢ takes the value 0.018540 (marginally
less than o.), and Fig. 5 shows results obtained when ¢ takes the value
0.018546 (marginally greater).
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Fig. 3. The stability boundary in the linear unstructured case

By contrast, the structured case exhibits richer dynamics. Setting
the threshold age C to the reasonable value of 20 days offers scope to
increase the value of BM from 0.05 to 0.25. Hence, in the structured
case, the fixed parameters are given by

K=1, (6.8a)
v = 0.053, (6.8b)
R, = 0.7 day™ !, (6.8¢)
r=006day ’, (6.8d)
B =0.25, (6.8e)
M = 1.0, (6.8f)
C =20 days. (6.82)

In order to obtain the curves

MBG(P) = 6¢°¢
and
0 = [A(iw)],

a predictor-corrector method (using a tangent predictor and a
Newton-like corrector) was employed. A close view of the point of
intersection of the resulting curves (see Fig. 6) reveals that the critical
value 0, lies between 0.0382 and 0.0384.
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Whereas the long-term behaviour of the unstructured system was
independent of its initial state, the structured system allows a stable
limit cycle to coexist with a stable steady state for values of 0 just below

P(0) = 0.05, Z(0) = 0.07

1.0

0.0 | T T |
0 200 400 600 800 1000

P0)=0.15, Z(0)=0.3

1.0
0.8
0.6
0.4

02

0.0 | | | T |

0 200 400 600 800 1000
Fig. 4. Dynamics of the linear unstructured system with 6 = 0.018540 Solid lines
represent phytoplankton biomass, broken lines represent zooplankton biomass.
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P(0) =0.07, Z(0) =0.07
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Fig. 4. (continued)

0.. This can be seen by observing Fig. 7, which shows the results of two
EBT simulations with 6 = 0.0382. In each case, the initial zooplankton
population was concentrated into a single cohort of 30-day old
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individuals; hence Z,, the initial value of Z, represented the total
biomass within this cohort.

Although the only difference between the systems lies in their initial
conditions, they display notably different dynamics. The most likely

P(0) = 0.05, Z(0) = 0.09

1.07

0.8+

0.6

0.4

"

0.0 | a
0 1500 2000

P(0)=0.1, Z(0) =0.09

1407

0‘8—\

0.6 \

0.4

s VI
0 500 1000 1500 2000

Fig. 5. Dynamics of the linear unstructured system with J = 0.018546
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P(0) = 0.09, Z(0) = 0.07
LOT

0.8

0.6

0.4

;yyyyt

T 1
0 500 1000 1500 2000

P(0) =0.07, Z(0)=0.1
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Fig. 5. (continued)

explanation for this behaviour is a change in the direction of the
bifurcation J,, induced by the delay in zooplankton fertility. There are,
in fact, techniques available for calculating the local direction of J,;
however, it is not necessary to employ them in this case. The crucial
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Fig. 6. The stability boundary in the linear structured case

issue is the coexistence of stable limit cycles with a stable equilibrium in
the subcritical region, in contrast to the unique dynamics characteristic
of the unstructured system. The consequent dependence of the dynam-
ics on initial conditions is in accord with the experience of field
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P(0) =0.07, Z(0)=0.1
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Fig. 7. Dynamics of the linear structured system with 6 = 0.0382

biologists, who stress the importance of the “overwintering popula-
tions” of phytoplankton and zooplankton in determining the average
plankton concentrations (and, by implication, the fish stocks) during
the coming year.
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Fig. 8. The supercritical Hopf bifurcation in the linear unstructured case

7. Quadratic zooplankton mortality

To a great extent, the analysis of the previous section relied upon
the uniqueness of the equilibrium (P, Z) once the set of parameters
had been specified. In the case of quadratic zooplankton mortality,
this uniqueness is foregone. It is easiest to see this in the unstructured
case, where equilibria occur at the points of intersection of the
nullclines

F(P)— G(P)Z =0 (7.1a)
rG(P)— 6Z =0. (7.1b)

As the parameter ¢ is varied, the Z-nullcline (7.1b) is dilated vertically
about the P-axis while the sigmoidal P-nullcline (7.1a) remains invari-
ant. Under relatively mild conditions on the fixed parameters, this
implies that there will be two critical values of 6 between which the
system admits three equilibria, and outside which it admits only one.
This is easily seen on consulting Fig. 2.

Given the algebraic representation of the P-nullcline (7.1a), it is
plain to see that each value of P corresponds to at most one
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equilibrium (P, Z). In other words, each equilibrium (P, Z) is character-
ised uniquely by the value of P, and the response of the system to the
variable parameter J is best illustrated by varying P and plotting it
against the value of § given by equations (7.1).

On the same set of axes, the stability boundary may be constructed,
as in the linear case, by calculating the roots of the equation

Ay(iw) =0 (7.2)

for a range of values of w in the positive real line. The resulting curves

will define an interval of instability on the P-axis, which may be

compared qualitatively in the structured and unstructured cases.
From Appendix A, the characteristic equation 4,(A) is given by

411 412 413
0=454):= 921 4d22 423
d31 432 {433
with
d11 = F’(ﬁ) - GI(P)Z — 4
di2 = — G(P)
q13=0
L 1— e—(x+52)c
421 = G'(P)Z,M {m}
3G(P)ZyM ([1—e HH0DC)  j 467 (1 —e %€ 5
Gar = _ _ - ~ —0Z — A
2 A+ 02)C o7 0ZC
R 1 — e~ (2FoDC
923 = G(F) { (. +02)C }

q31 = G’(p)ZbMBe_(Héz)C

=

132 = ) 57

5G(P)Z, MB — <e_w A+ 52)
g3z =0Z(e " —1)— A

The unstructured case C = 0 is of particular interest. In this case, as
before, MZ, = MBZ = I',Z and, in view of the equilibrium condition
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6Z =T pG(P), the determinant 4,(4) reduces to

F(P)—G((PZ -/ —G(P) 0
AP = MG'(P)Z, —20Z — ) MG(P)
M(P)BZ, — 0BZ —
F(P)—G(P)Z—)  —G(P) 0
= I,G(P)Z —20Z -4  MG(P)
0 O0BZ + B —08Z —
F(P)—G((P)Z—-) —G(P) 0
= I,G'(P)Z 0Z —J)  MG(P)
0 0 —0Z — 2

. F'(P)—G(P)Z -2 —G(P)
A B ) Y 57 — Al

Its zeroes are, as expected, identical to those of the unstructured model
provided the superfluous (and, from the point of view of linear stability
analysis, irrelevant) root 2 = — 6Z is disregarded.

One special property of this degenerate case is that the stability
switch, which occurs when a zero of 45(1) crosses the imaginary axis,
coincides exactly with the appearance of two extra equilibria. In other
words, the interval of instability begins and ends at the turning points
of the equilibrium curve (at which the slope of the curve is vertical).

To see this, observe that the turning points of the equilibrium curve
occur when ¢, determined as a function of P, passes through a station-
ary value. From equations (7.1), the function which determines ¢ is
given by

6 = TG(P)*/F(P),

and its stationary points occur at the zeroes of the derivative
do GP)\*[ ., ~ _ F(P)
- = — F ——— F, P - 2G, P N AN
ap (F(P)) [ B =200 55 |

which comprise the bifurcation points, as defined by equation (2.8).

The coincidence of the stability switch and the appearance of extra
equilibria does not survive the introduction of delayed fertility. Never-
theless, in most practical cases the deviation from this behaviour is
almost imperceptible. With the parameters given by

K =1, (7.3a)
v = 0.053, (7.3b)
R, =0.7day !, (7.3¢)
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r=0.6day 1, (7.3d)
B =0.25, (7.3e)
M = 1.0, (7.3f)
C = 20 days, (7.3g)

Fig. 9 shows that the system is very slightly destabilised: the interval of
instability extends beyond the turning points of the equilibrium curve.
However, the magnitude of this destabilisation is negligibly small.

Although the change in the value of C did not appear to affect the
global stability properties of the quadratic system, it should be empha-
sised that the simultaneous presence of two stable equilibria automati-
cally implies dependence on initial conditions. Interestingly, the region
of coexistence of stable equilibria spans a narrower interval of o-values
in the structured case than in the unstructured case. This does not
imply that delayed fertility reduces dependence on initial conditions, as
the shape of the equilibrium curve

02¢%”C = MBG(P) (7.4)

is altered not only by changes in C, but also by corresponding changes
in B. Increasing the value of C narrows the region of coexistence;
increasing the value of B stretches it.
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Fig. 9. The phase plane in the quadratic structured case
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8. Summary

The research contained in this paper has demonstrated that the central
concept of excitability, focused on explicitly in the earlier papers by
Truscott and Brindley [21, 22], but implicit in many earlier models for
plankton populations [17, 18], readily survives the important exten-
sion from uniform to age-structured zooplankton populations. Estab-
lishment of the existence and especially the stability of static or dy-
namic equilibria in the multi-dimensional age-structured model is
a non-trivial mathematical problem, and we have adopted a construc-
tive procedure rather than attempting a fully rigorous proof of our
results. Our investigations have been based on a simple model for the
evolution of Z in which each individual grows linearly to a certain size
M (at age C), after which it reproduces at a steady rate until its death,
which is determined at the population level by a Poisson process.
The principal conclusions may be summarised as

e The qualitative phenomenon of excitability survives as C varies from
zero upwards.

e The stringent conditions on the net conversion rate required for
excitability are relaxed (since a large fraction of this population is
not reproductive).

e Regions of parameter space exist for which stable limit cycles occur,
as well as those in which a single stable equilibrium dominates.

e When the Z-mortaility is assumed to be linear, there is a region of
parameter space in the age-structured model for which stable steady
states coexist with stable limit cycles. Thus, depending on initial
conditions, two quite different final states may be reached. This
phenomenon is absent in the earlier unstructured model, in which
the long-term dynamics of the system were independent of its initial
state.

e When the Z-mortality is assumed to be quadratic, there are regions
of parameter space in both the structured and unstructured models
for which two stable steady states coexist. This automatically implies
dependence of the long-term dynamics on initial conditions, as
observed in the linear age-structured model.

The final results emphasise the sensitivity of the behaviour shown
by the model to initial conditions. Not only is the occurrence of an
initial bloom, but, in some cases, also the long-term state of the
population, dependent on small differences in initial state. It is signifi-
cant that the (often very small) size of the overwintering populations
has long been known by marine biologists to be of crucial importance
in determining productivity in the following season, which can vary by
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an order of magnitude from year to year in apparently very similar
physical conditions.
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Appendix A: Location of the spectrum

For convenience of notation, let 7" denote the linear operator T'(®). Its
spectrum consists of all values of 4 for which the operator

A —T =1 —T(d)

fails to have an inverse.

Given elements
K M
K==[5K} and A4==[5M}

of B, necessary and sufficient conditions for the relationship
(AU —-T)K=M (A.1)
to hold are given by those determined by the action of AI — T,
Ap® — (a1 p* — 0,2%) = pM (A.2a)
@) + ¥ (@) + ooy (@) + 2z Pla) = yM@),  (A2b)
together with those determined by its domain:
Y 0) = B1p* + Bazb (A.2¢)
YX¥e AC[0, ov) and X e LY0, ). (A.2d)

The coeflicients o; and ff;, 1 i< 4,1 <j < 2, are given in terms of
the equilibrium @ by
o = F(P)— G(P)Z

%> = G(P)
O3y = 52’"71
oty = (m — 1)0Zm 2
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pr = ( A
B2 =

Equations (A.2b) and (A.2c) comprise an inhomogeneous linear first
order ODE with a linear boundary condition. They may be solved
analytically to yield an expression for y* which is linear in pX, z¥, z&
and y™. By integrating this expression against the weights m(a) and
m(a)b(a) respectively, expressions for zX and zX may be derived. From
these, it will be possible to obtain the spectrum of T" as the set roots of
a determinant.

Multiplying both sides of equation (A.2b) by the integrating factor

exp[(4 + as3)a] gives

d% {exp [(4 + o<3)6¥]l//K(a)} = — g exp[(4 + az)a] p(a)2* + Y™(a),

which may be integrated from O to a. In view of the boundary condition
(A.2c), this yields

Y¥a) = Bip® exp[ — (2 + a3)al + Pozi exp[ — (4 + a3)d]

oK exp[ — (4 + %a)a] f explli + 2)1B(0)

n J exp[ — (2 + az)(a — O™ dC

However, since q§( ) = B5 exp[ — a3(], where 3 = G(P)Z,, this in turn
reduces to

Y¥a) = B1p" exp[ — (2 + az)a] + Pozi exp[ — (4 + a3)a]

— ouﬁ;z exp[ —oaza] + 4'83 exp[— (A + a3)d]
i f exp[ — (; + ) (a — QMO dL. (A3)

This is an equivalent representation of the conditions (A.2), which are,
in turn, equivalent to equation (A.1).
Integrating equation (A.3) against the weight m(a) gives

K = B~ f : m(@)expl — (1 + xs)alda

+ ﬂzzl’ffw m(a)exp[ — (A + a3)a]da

0
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_ OC“ﬂ;ZK f: m(a)exp[ — aza]

+ 252 [ @ expl -+ a9
0

f f exp[— (i + aa)la — YY) dC da

= Bpk M )1 —exp[—(4+ a3)C]
= PP )»"1‘0(3 (/1+O(3)C

M {l—exp[—(i + og)C]}
A+ oz A+ a3)C

B o4f3z" M 1 —exp[—a3C]
A oy o3C

aafsz® M (1 —exp[—(4 + a3)C]
i ;L + o3 (i + OC3)C

+ Bazh

T j " m(a) j "exp[— (4 + 23)(a — DY) dC da,
0 0

and integrating it against b(a)m(a) gives

— B fb(a)m(a) exp[— (1 + az)alda

+ ﬁzzfjoob(a)m(a) exp[ — (4 + az)a] da
0

_ oc4[13z Loob(a)m(a) exp[ —osa]

4 om/iszK Jwb(a)m(a) exp[— (4 + o3)a]
4 0

T f “baym(a) j exp[ — (i + 2s)(a — QMO dC da

IZ exp[— (4 + a3)C]

MB
p, exp[— (4 + a3)C]
3
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K MB
_ b MB e
}v OC3

OC4B3ZK MB
), i + o3

exp[— (4 + a3)C]

n f “b(a) m(@) f "expl — (2 + a)(a — OTWM(O) dL da.

0 0

These two expressions may be rearranged to give

l—exp[— (4 + og)C]} K
() + 43)C b

" a3 M <{1 —exp[— (4 + “3)C]}
A (/1 + OC3)C

At {1 —exp[—oc3C]}>ZK

(A +a3)zX = ﬁlM{

o3 O(3C

1—exp[— (2 + %)q}z,(

+ﬁ2M{ L+ 23)C b

L+ ) f :mm) f exp[ — (4 a3)(a—OTWM(0) dL da,

(A4)
and

(A+a3)ziy = p1MBexp[—( + o3)C]p®

MB
n 054/%1

A+ OC3>ZK

o3

exp[ —o3C] (exp[—iC] —

+ BoaMBexp[—(A + az)C]zh

o0

+(A+O€3)f

0

b(@)m(a) f exp[— (4 2s) (a—OTWM(0) dC da,

(A.5)
respectively.
Taking stock, equations (A.2a), (A.4) and (A.5) may be expressed as
a linear system

d11 4912 {413 PK p
d21 422 (23 K=|2M|,
q31 432 (433 zh Zp
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where the entries of the characteristic matric Q := [¢;;]3 « 3 are given by

i1 =0y — A
qi2 = — U
q13=0
B 1—exp[—( + a3)C]
‘Z21—ﬂ1M{ (. + 03)C }
_aafsM ({1 —exp[ — (4 + 3)C]
422 == G+ ) C
A+ oos {1—exp[—ofsc]}>
_ — oy — A
o3 a3C
B 1 —exp[— (4 + a3)C]
23 = ﬁzM{ (}v + OC3)C
g31 = f1MBexp[ —(/ + 23)C]
043 MB A+
32 =4ﬁ3Texp[—<x3C] <exp[—/1C:|— . 3>
3

433 = fo2MBexp[ —(4 + a3)C] — a3 — 4

and the entries M and Z}! of the right-hand vector are given by

o0

A+ og)f

(0]

m(a) j exp[— (i + 23)(a — O]WM(0) d da

and

(i + ) j :b(a)m(a) f exp[ — (4 + a3)(a — OO dC da

respectively.
If Q is singular then, given a nonzero element [p, z, z,]" of its
nullspace, the nonzero distribution

Y(a) = pip exp[— (4 +az)al + Bz, exp[— (4 + a3)a]

 04fsz 4ﬁ3
A

exp[ —uaza] + ——exp[ — (4 + a3)a]

satisfies equations (A.2) with M = 0. Hence the nullspace of AI — T" is
nonzero and A lies in the spectrum of T".
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Conversely, if Q is invertible, then, for any nonzero M € B, the

vector [ p¥X, zX, zK]7, given by
K M
)4 )4
ZK — Q -1 Z~M ,
zy !

defines a distribution
YyXa) = pip® exp[— (4 + az)al + Baziy exp[—(4 + oz)a]
Ba

054ﬂ3
)\/

exp[ — asa] + exp[— (A + a3)a]

+fexp[ U + a3)(a — OO de
0

lying in the domain of T’, for which

(I — T)K := (I — T [f/ﬂ = [l’;ﬂ = M.

That is, AI — T is invertible and A lies outside the spectrum of T".
This demonstrates that the spectrum of T’ consists solely of its
eigenvalues, which are precisely the roots of the determinant
A(2) := det(Q).
In the case of linear zooplankton mortality, the characteristic
matrix Q simplifies considerably, as the coefficient o, vanishes. The
characteristic equation acquires the form

F(P)—G((P)Z -1 —G(P) 0
A l_ef(l+5)C 1 e —(1+0)C
=4,(0):=| MG (P\Z) —————— MP4
MBe *T9C¢G(P)Z, 0 Se™—1)— 21
(A.6)

by virtue of the identity de’C = MBG(P).
In the case of quadratic zooplankton mortality, the entries of the
characteristic matrix Q take the form

4111:F,(p)_Gl(p)Z_;L
412:_G(p)

q13=0
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A 1 — e—(/1+52)c
g1 = G,(P)ZbM{ }

(A+d2)C
OG(P)ZyM [ (1 —e~GHDCY ) 4 67 (1 —e 9%C .
922 = ; > - —= - — 67 — )
). (A + 62)C kY4 0ZC
R 1_e—u+62)c
923 = G(P) { (2 +02)C }

A

31 = G'(P)Z,MBe~ D)€
Gas = 5G(P)Z,MB o-o7c <e—ﬂc B LgZ)
) 0Z
Gs3 = 0Z( ™ —1)— 2,
and the characteristic equation is then given by
0 = A,(4) := det[g;;]. (A.7)

Given these characteristic equations, it is now possible to create bi-
furcation diagrams using standard continuation algorithms.

Appendix B: The direction of the bifurcation

The formula for ¢,, the quadratic compenent of the even function 6%*, is
given in terms of an eigenvector [p., z.]* of the matrix

_[F@y-c@zZ —-G@)| [ o — G(P)
b '_[ I'G'(P) 0 }_ [FG’(P) } (B-1)

corresponding to the eigenvalue iw, (wo > 0), and an eigenvector
[ p¥, z¥] of the transposed matrix D{. Provided the relation

*
[’Z’C]B;J = pept + 27t = (B2)

is satisfied, there is no restriction on the choices of [p,, z.]" and
[p¥, z¥1".
Notice that D, is a representation of the first derivative f*)(P, Z) of

the function
[P] T[F®P) —GPZ
f: [z} ~ [FG(P)Z 7| (B3
evaluated at (P, Z). It isAloAgical that the position of the bifurcation
. should depend on fV)(P, Z), as this represents the linearisation of the
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original system about (P, Z). However, to obtain the direction of J,,
which is closely related to the curvature of the branch of bifurcating

solutions, one would expect to have to compute higher derivatives of f.
In fact, the formula for d,, as derived in a set of exercises in [4],

takes the form
-1
[ﬂ)] R,  (B4)
o=0o,| Ze¢

_ pd i W(p 7
5, = [nqu} = 10(P.2)

where the complex number c is defined by

L pEL cays (| Pe || Pe]| | Pe

SR )
o[l a( o[22 ) 2])
Afglreaonsrena D)

(B.5)

If the eigenvectors [p,, z.]T and [p¥*, z*]" are set to

pe| 1
z. | in/FG’(P)Z

2 1/2 |
zF | FG’(IA’)Z/Zia)Og

repectively, then the necessary relation (B.2) is satisfied and, since

and

0 PN 0 0 |
(1) _
sl B2 [o —1)

it follows that the first factor of 0, evaluates to

_ [SR <[§§:} %f(l)(ﬁ, Z) o [l;j)}_l = — [%(—zcz;")}_l

== R}

=2.

The value of the second factor, $R(c), was calculated using a MAPLE
routine which may be obtained on request from the first author. To six



Excitability of an age-structured plankton ecosystem 419

significant figures, the computed value of R(c) was 1275.69, which, in
turn, gave

S, = 2551.38. (B.6)
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