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Abstract. The permanence and global attractivity for two-species dif-
ference systems of Lotka}Volterra type are considered. It is proved
that a cooperative system cannot be permanent. For a permanent
competitive system, the explicit expression of the permanent set E is
obtained and su$cient conditions are given to guarantee the global
attractivity of the positive equilibrium of the system.
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1. Introduction

The question of whether all species in a multispecies community can be
permanent is very important in the theoretical ecology. There have
been many mathematical studies for the permanence of models govern-
ed by di!erential equations in the literature (see [6}11] and the
references cited therein). It is known that some ecological factors do
not a!ect the conditions of the permanence of species, but others are
indeed the reasons of extinction of populations. For di!erential equa-
tion models, for examples, time delays are harmless for the permanence
of prey- predator system of Lotka}Volterra type [7] and two species
competition model of Lotka}Volterra type [6], but delays destroy the



permanence of cooperative systems [11] and pery-predator system
with functional response [9]. In contrast, studies for the di!erence
population models are mostly related to the local stability of equilibria
or the existence of strange attractors. Few papers concern with the
collapse of permanence of population models governed by di!erence
systems. In this paper, we consider the following discrete population
model
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One objective of this paper is to consider the permanence of
system (1). System (1) is said to be permanent if there is a compact set
E in the interior of R2

`
such that for each positive initial position, the

orbit of system (1) through this initial position eventually enters and
remains in E. To facilitate comparisons, let us consider the counterpart
of system (1) in the continuous case.
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Hence, su$ciently small statistical #uctuations can lead to extinction
of any species. Note that one species is permanent in the absence of
the other one, it implies that an invasion of a cooperative species
may be deteriorative to the permanence of populations governed by
di!erence equations.

The second purpose of this paper is to obtain permanent region of
system (1) in competition case, which is formulated in terms of param-
eters of the system. In practice, one can choose the parameters
according to the formulae so that the numbers of the two species
eventually lie in desired region. For example, controlling the para-
meters such that eventual numbers of the species are greater than those
for mating and searching food together. We are also interested in the
global attractivity of positive equilibrium of system (1) in competition
case. We will show that strong density-dependent coe$cients of the
two species imply the global attractivity of positive equilibrium of the
system.

The organization of this paper is as follows. In next section, we
show that system (1) in cooperative case can not be permanent in any
case. Section 3 derives explict permanent region for (1) in competition
case. In Sect. 4, we establish su$cient conditions for the global attrac-
tivity of positive equilibrium of (1) in competition case. A concluding
remark follows at Sect. 5.

2. Cooperative system

Let us consider system (1) in cooperative case, i.e.,
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bounded orbits. In this section, by using the technique of [4], we can
prove following general result for system (3).

Theorem 1. System (3) is not permanent.

Proof. For convenience, we rewrite system (3) into the following form
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De"ne continuous function <(x, y) by
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Following [4], we consider the regions
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Hence, su$ciently small statistical #uctuations can lead to extinction
of any species. This means that the two species take the great risk of
extinction in practice although they are cooperative and each one can
be permanent in the absence of the other one.

3. Competitive system

Let us consider the competitive case, i.e.,
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The purpose of Theorem 2 below is to obtain the eventual upper
bound and lower bound for positive solutions of (11), and hence to give
a suitable set E (in De"nition 1) explicitly.
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in which positive constant H
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As a result of (17), we conclude z(n
1
#2) must be above the curve ¸

1
.

Finally, by induction we can conclude that z (n) lies above the curve
¸
1
for all n7n

1
. Similarly, we can show that there is a n

2
'p such that

z(n) lies in the right of the curve ¸
2

for all n'n
2
. Consequently, the

orbit eventually enters and remains in the region E. The proof of the
Theorem 2 is completed. K

Example. Let us consider

x
n`1

"x
n
expM0.5!x

n
!0.5y

n
N

y
n`1

"y
n
expM0.5!0.5x

n
!y

n
N,

By direct calculations, we see that any positive solution of this model
satis"es

0.0308956lim inf
n?=

x
n
, lim sup

n?=
x
n
60.824361

0.0308956lim inf
n?=

y
n
, lim sup

n?=
y
n
60.824361

Here, we obtain an explicit estimate on eventual lower bound and
eventual upper bound of the species.

4. Global attractivity
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Proof. By the transformation
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!e

x*#x
nk

6

x*#x
nk`1

x*#x
nk

"exp[!r
1
(x

nk
#k

1
y
nk
)]

(expM!r
1
[<

x
!e#k

1
(!<

y
!e)]N.

Let e"0, we have

x*#;
x

x*#k
1
<
y

6exp[!r
1
<
x
#r

1
k
1
<
y
]. (25)

Similarly, by considering a subsequence y
nl

of My
n
N with y

nl
7y

nl`1
and

y
nl`1

"!<
y

as n
l
"R, we have

y*!<
y

y*!k
2
;
x

7exp[!r
2
k
2
;

x
#r

2
<
y
]. (26)

Since k
1
(1 and k

2
(1 and r is small enough, it follows from (24) and

(25) in [6] that both (25) and (26) hold if and only if ;
x
";

y
"0, and

therefore, ;
y
"<

x
"0.

Case 3. Suppose x
n
70 (or x

n
60) for all large n, but y

n
oscillates

about 0, i.e., for any n, there are y
m

and y
l
with m'n, l'n such that

y
m
'0 and y

l
(0.

We only consider the case x
n
70, the other case being similar.

Set

;
x
"lim sup x

n
, <

x
"lim inf x

n
,

;
y
"lim sup y

n
, !<

y
"lim inf y

n
.

By a similar procedure as in Case 2, we can obtain four inequalities

x*#;
x

x*#k
1
<
y

6exp[!r
1
<
x
#r

1
k
1
<
y
], (27)

x*#<
x

x*!k
1
;
y

7exp[!r
1
;

x
!r

1
k
1
;
y
], (28)

y*#;
y

y*!k
2
<
x

6exp[!r
2
k
2
<
x
#r

2
<
y
], (29)

y*!<
y

y*!k
2
;

x

7exp[!r
2
k
2
;
x
!r

2
;

y
]. (30)
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(i) If ;
x
7;

y
, by (27) and (30) we have

x*#;
x

x*#k
1
<
y

6exp[r
1
k
1
<
y
], (31)

y*!<
y

y*!k
2
;

x

7exp[!r
2
(k

2
#1) ;

x
]. (32)

(ii) If ;
x
6;

y
, then (29) and (30) lead to

y*#;
x
6y* exp[r

2
<
y
], (33)

y*!<
y

y*!k
2
;

y

7exp[!r
2
(k

2
#1) ;

y
]. (34)

Since both (31), (32) and (33), (34) take the form of (25), (26), we can
prove ;

x
";

y
"<

x
"<

y
"0 as in the Case 2.

Case 4. Suppose that both x
n
and y

n
oscillate about 0. In this case, let

us set

;
x
"lim supx

n
, <

x
"!lim infx

n
,

;
y
"lim sup y

n
, <

y
"!lim inf y

n
.

Similarly, we can obtain four inequalities

x*#;
x

x*#k
1
<
y

6exp[r
1
(<

x
#k

1
<
y
)], (35)

y*#;
y

y*#k
2
<
x

6exp[r
2
(k

2
<
x
#<

y
)], (36)

x*!<
x

x*!k
1
;
y

7exp[!r
1
(;

x
#k

1
;
y
)], (37)

y*!<
y

y*!k
2
;

x

7exp[!r
2
(k

2
;

x
#;

y
)]. (38)

(i) If <
x
6<

y
and ;

x
6;

y
, by (36) and (38) we have

x*#;
y

x*#k
2
<
y

6exp[r
2
(1#k

2
) <

y
], (39)

y*!<
y

y*!k
2
;

y

7exp[!r
2
(1#k

2
) ;

y
]. (40)
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(ii) If <
x
6<

y
and ;

x
7;

y
, by (35) and (38) we have

x*#;
x

x*#k
1
<
y

6exp[r
1
(1#k

1
) <

y
], (41)

y*!<
y

y*!k
2
;
x

7exp[!r
2
(1#k

2
) ;

x
]. (42)

Since both (39), (40) and (41), (42) take the form of (25) and (26), we can
obtain ;

x
";

y
"<

x
"<

y
"0 as in the Case 2. This completes the

proof of Theorem 3.

5. Concluding remark

We have shown that discrete cooperative di!erence system (1) cannot
be permanent in any case although the counterpart in the continuous
case can be permanent for a large range of parameters. Especially, in
the case that each species can be permanent and the intra-speci"c
competitions of two species are greater than their cooperative strength
(a

11
a
22
'a

12
a
21

), we proved that there is a set of initial values with
positive measure such that positive orbits of (1) starting from this set
approach x-axis and y-axis , in an oscillating way, as n approaches R.
This is something similar to that in [12] where the orbits of system of
three competing species approach the boundary of R3

`
in a spiral way.

This result indicates that an invasion of a cooperative species may
produce negative e!ect on the original one. For a permanent competi-
tive system (18), it is proved that if the growth rates r

1
and r

2
are small

enough, then the positive equilibrium is a global attractor. If system (1)
is a prey-predator one, we can write it into the following form

x
n`1

"x
n
exp[r

1
(1!x

n
!k

1
y
n
)],

y
n`1

"y
n
exp[r

2
(d#k

2
x
n
!y

n
)], (43)

where r
1
, r

2
, k

1
and k

2
are positive, d"1 or !1, or 0.

The method for proving the global attractivity of competitive
system (18) seems applicable to prey-predator system (43) in the case of
k
1
k
2
(1. Namely, the smallness of r

1
and r

2
implies the global attrac-

tivity for the positive equilibrium of (43), provided that the system is
permanent.

In general, for a Lotka}Volterra di!erence system, the permanence
and global attractivity are very di!erent. In our case, the region of
parameter space where global attractivity holds is a very small subset
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of that where permanence holds. Namely, we need r
i
in (18) to be small

to ensure the global attractivity. If r
i
, i"1, 2, are large, it may be

expected that the dynamical behavior will be complicated, perhaps
leading to chaos, although the system is still permanent. In fact,
Dohtani's result [2] implies that for permanent system (18), if r

1
("r

2
)

is large enough (r
1
73.13) , then the system yields chaos in the sense of

Diamond [1].
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