
J. Math. Biol. (1999) 38: 359—375

Model and analysis of chemotactic bacterial patterns
in a liquid medium

Rebecca Tyson1, S. R. Lubkin2, J. D. Murray3

1Department of Applied Mathematics, Box 352420, University of Washington, Seattle,
WA 98195-2420, USA (rebecca@amath.washington.edu)
2Biomathematics Program, Box 8203, North Carolina State University, Raleigh,
NC 27695-8203, USA (lubkin@eos.ncsu.edu)
3Department of Applied Mathematics, Box 352420, University of Washington, Seattle,
WA 98195-2420, USA (murrayjd@amath.washington.edu).

Received: 10 March 1998 /Revised version: 7 June 1998

Abstract. A variety of spatial patterns are formed chemotactically by
the bacteria Escherichia coli and Salmonella typhimurium. We focus in
this paper on patterns formed by E. coli and S. typhimurium in liquid
medium experiments. The dynamics of the bacteria, nutrient and
chemoattractant are modeled mathematically and give rise to a nonlin-
ear partial differential equation system.

We present a simple and intuitively revealing analysis of the pat-
terns generated by our model. Patterns arise from disturbances to
a spatially uniform solution state. A linear analysis gives rise to
a second order ordinary differential equation for the amplitude of each
mode present in the initial disturbance. An exact solution to this
equation can be obtained, but a more intuitive understanding of the
solutions can be obtained by considering the rate of growth of indi-
vidual modes over small time intervals.
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Introduction

In this paper we present a simple and intuitively revealing mathemat-
ical analysis of transient solutions to a chemotaxis model involving
partial differential equations. Our model equations are motivated by
experiments performed by Budrene and Berg [3], in which they



observed patterns formed by Escherichia coli and Salmonella
typhimurium. When placed in a liquid medium and exposed to inter-
mediates of the tricarboxylic acid (TCA) cycle, the bacteria arrange
themselves into high density aggregates. The patterns appear, rear-
range and eventually fade on a time scale which is short compared with
the generation time of the bacteria.

The simplest patterns are produced when the liquid medium con-
tains a uniform distribution of bacteria and TCA cycle intermediate. Of
the latter, succinate and fumarate produced the strongest effect. Only
a small amount is necessary, as the bacteria are merely exposed to the
TCA cycle intermediate as a stimulant, and do not rely on it as
a carbon source. The initially uniform distribution of bacteria begins to
form a stranded pattern of higher-density regions. Subsequently, the
pattern resolves into discrete clumps of roughly uniform size over the
entire surface of the liquid, though the pattern often starts in one
general area and spreads from there. Over time the aggregates coalesce,
thus becoming larger and decreasing in number. Ultimately the pattern
dissipates and cannot be induced to re-form.

Fluid dynamic convection cells are not believed to be responsible
for these patterns (H. C. Berg, personal communication); we hypothe-
size instead a primarily chemotactic mechanism. It is known that the
bacteria secrete aspartate, a potent chemoattractant, in response to the
stimulant. A chemoattractant is a chemical which the cells seek, in
the sense that they move up gradients of that chemical. This process
tends to increase the local cell density, while diffusion tends to do the
opposite. The competition between the two processes is the driving
force behind the patterns observed. Thus the main players in the
experiments are the cells, the stimulant (succinate or fumarate) and the
chemoattractant (aspartate).

The disappearance of the pattern is thought to be due to saturation
of the chemotactic response. Since cellular production of chemoattrac-
tant is not countered by any form of chemoattractant degradation (or
inhibition), the amount of chemoattractant in the dish increases con-
tinuously. As a result, the chemotactic response eventually saturates,
and diffusion dominates.

We represent the experiments mathematically as a reaction-
diffusion chemotaxis model. The numerical and analytic solutions of
the equations verify our interpretation of the experimental results.

1 The model: a perturbation approach

Careful study of these experiments [3] has revealed that the biological
processes most crucial in the formation of these bacterial patterns are
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random migration and chemotaxis of bacteria. Also playing an impor-
tant role is production of chemoattractant. There is no growth or death
of cells over the brief time course of the liquid experiments, nor is there
any uptake of aspartate by the cells as the liquid medium contains
sufficient nutrient for the cells from other sources (E. O. Budrene,
personal communication). We thus formulate a model consisting of
two conservation equations
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The variables n, c and s represent cell density, chemoattractant concen-
tration, and nutrient concentration respectively. There is no equation
for the nutrient in these experiments since so little of the nutrient is
consumed. Thus, s is a parameter in this study. The terms on the right
hand side represent, in order left to right and top to bottom, random
and chemotactic cellular motion, chemoattractant diffusion, and
chemoattractant production.

These equations are discussed in detail in [11]. We summarize the
main points here. E. coli and S. typhimurium have been studied in detail
and experimental results are available to aid in the selection of func-
tional forms for the terms in equation (1). Diffusion coefficients for the
random migration of cells [1, 2, 10] and chemotactic flux [5—7] have
been measured by a number of researchers. For aspartate production,
succinate is necessary, and the amount produced increases with the
amount of succinate present [4]. Analysis of the parent model to the
current one [11] shows that the production of aspartate must increase
sufficiently quickly at low succinate concentrations. It must also satu-
rate however, since the cells do not have unlimited capacity to produce
aspartate, Thus, guided by the experimental data, we arrive at the
mathematical model (in dimensionless form)
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where u, v and w represent cell density, chemoattractant concentration
and succinate concentration respectively. In this paper we focus on the
experiments where succinate is initially uniformly distributed and not
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consumed. In this case w is constant. For our model analysis, presented
below, we consider the one-dimensional situation, and generalise to
two dimensions numerically. Zero flux boundary conditions are used
throughout, in order to make the analysis and simulations consistent
with the experiment.

The absence of growth and death in the cell population (over the
time course of the experiment) gives the conservation equation

P
l

0

u (x, t) dx"u
0
l"l,

where u
o
is the average initial nondimensional cell density. The param-

eter values are listed in Table 1 (dimensional) and Table 2 (dimensiona-
less). The parameter k is unknown to us. The ratio of dimensionless
time to dimensional time is unknown, by the Buckingham Pi theorem.
The initial conditions of the experiment are uniform nonzero cell
density and zero concentration of chemoattractant. So, from the non-
dimensionalization we have

u(x, 0)" 1 and v(x, 0)"0.

Table 1. Known and estimated dimensional parameter values used in equations (1)

Parameter Value Source

k
1

3.9]10~9Mcm2s~1 Dahlquist, Lovely and Koshland, 1972
k
2

5]10~6M Dahlquist, Lovely and Koshland, 1972
k
3

Unknown
k
4

Unknown
k
9

Unknown
D

n
2—4]10~6 cm2 s~1 Berg and Turner, 1990; Berg, 1983 p93

D
c

8.9]10~6 cm2 s~1 Berg 1983
D

s
+9]10~6 cm2 s~1 Berg 1983

n
0

108 cellsml~1 Budrene and Berg, 1991
s
0

1—3]10~3M Budrene and Berg, 1995

Table 2. Known and estimated values for the dimensionless variables and parameters
used in the study of the E. coli and S. typhimurium model, equations (2)

Variable Initial value Parameter Value

u
0

1.0 a 80—90
w
0

1.0 d
u

0.25—0.5
v
0

0.0 k Unknown
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We wish to find solutions of (2) which are oscillatory in space, and in
time grow and then decay. This reflects the experimentally observed
behaviour where, additionally, the observed wavenumbers decrease
over time as the number of aggregates decreases. For simplicity we
carry out the analysis for a one dimensional domain and then extrapo-
late the results to two dimensions.

A traditional linear analysis starts with a spatially and temporally
uniform solution. From the equations it is clear that there is no such
solution for which u

0
90. There is however, a spatially uniform solu-

tion which has the chemoattractant concentration increasing linearly
with time,

u*(x, t)"1
(3)

v*(x, t)"
1

k#1
t,

with v (x, 0),0 being the initial concentration of chemoattractant.
If we suppose that the initial conditions for (2) are small random

perturbations about the initial cell density, we can look for solutions in
the form

u (x, t)"1#e +
k

f (t ; k) eikx

(4)

v (x, t)"
1

k#1
t#e +

k

g (t ; k) eikx .

To approximate the actual experimental situation, where the initial
concentration of chemoattractant is exactly zero, we set g(0)"0.
We may assume without loss of generality, f (0)"1. The parameter
e (which is a measure of the size of the perturbation) satisfies 0(e@1
and so we are looking for spatially varying solutions superimposed on
the temporally growing solution.

The wavenumber k and mode m of the solution are related by

k"
mn
l

(5)

where l is the length of the domain in dimensionless units. Substituting
(4) into (2) and linearising (in e) in the usual way we obtain, for each k,
the O(e) equations

dF(q)
dq

"!d
u
k2F(q)#a (k#1)2
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q2
G(q) (6)

dG(q)
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where q"k#1#t (note that q
0
"k#1'0) and for a given k,

F(q),f (t ; k), G(q),g(t ; k). The coefficient of the second term on the
right hand side of (6) is the only one which depends on the chemotaxis
parameter a.

It is clear from (6) that as qPR the coefficient of G (q) tends to
zero, and the solution for F(q) reduces to a decaying exponential. Once
this happens, the solution of (7) also gives a decaying exponential. So,
with the forms (4) the mechanism accounts for ultimate pattern dis-
appearance with time. This is also consistent with the original equa-
tions (2). Since the cells do not die (no death term in the first equation)
and since the chemoattractant is produced but never degraded (no
degradation term in the second equation), the chemoattractant concen-
tration should continually increase. Thus, since the chemotaxis term is
only large when v, the chemoattractant concentration, is small, the
effect of chemotaxis will continually decrease until diffusion dominates.
Let us now consider the temporary growth of spatial pattern from the
initial disturbance.

For q near q
0

more insight can be gained by combining equations
(6) and (7) to create a single second order differential equation for the
amplitude of the cell density pattern, F(q):
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This equation has an exact solution in terms of hypergeometric
functions
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The special functions H
U

and H
1F1

are the confluent hypergeometric
function and the Kummer confluent hypergeometric function respec-
tively. This exact solution is not intuitively revealing, and so we use
other approaches to obtain a clear understanding of the solution F(q).
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2 An analytic approximation

To begin the analysis, we make the assumption that the coefficients of
the second order ordinary differential equation (8) change much less
rapidly than the function itself and its derivatives. This lets us compare
(8) to a constant coefficient second order equation over small intervals
of q. Denoting the coefficients of (8) by D (q) and N(q) we obtain

d2F
dq2

#D(q)
dF
dq

#N (q) F"0 (9)

where

N(q)"k2Aduk2#
2d
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!

2ak
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D(q)"k2 A(du#1)#
2
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The last term in the bracketed expression in (10) is the only one in
which a appears. The parameter k appears explicitly only in that same
term, but is also contained in the expression for q and so its effect is not
so easily isolated. Note that D(q) is positive for all times q greater than
q
0
, while N(q) can be positive, negative or zero for q near q

0
. For all

q sufficiently large, N(q)'0. Considering N(q) and D (q) constant for
the moment, the solution of (9) over any sufficiently small q intervals is
of the form

FI (q)"k
1
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Since D(q)'0 ∀q, we have Re(j
~

)(0 ∀q. The sign of Re(j
`
) can

vary however, and depends on the sign of N(q). When N(q)(0 for
some k2, Re(j

`
)'0 and the amplitude of that mode grows.

We focus our attention on how the chemotaxis coefficient a and the
wavenumber k alter the solutions. If a is sufficiently large then N(q)
will be negative for small values of q, including q

0
. As q increases, N(q)

will increase through zero and become positive. The effect on j
`

is to
make the real part of the eigenvalue positive for small q and negative
for large q. The point q

#3*5
at which j

`
passes through zero is the same

point at whichN(q) becomes zero. Thus, for small q, one component of
FI is a growing exponential, while for larger q both exponentials are
decaying. We predict then, that a has a destabilising influence, that is,
the growth of pattern becomes more likely as a increases.
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For sufficiently large k2, N(q) becomes positive for all q, resulting in
solutions which are strictly decaying. Thus we would not expect to see
wavenumbers larger than K, where

K2"
2

d
u
(1#k) A

ak
1#k

!d
uB (13)

is found by solving N (q
0
)"0. As time advances, fewer and fewer

modes remain unstable, and as qPR, the only unstable modes are
those in a diminishing neighbourhood of 0. We can determine the
fastest-growing wavenumber, K

'308
, at any time by setting

j
`
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which decreases with time. Thus we would not expect any wavenumber
larger than K

'308
to dominate the solution.

If our constant coefficient assumption is approximately correct
over small but finite intervals of q, then a series of solutions FI com-
puted in sequential intervals *q could give rise to a solution which
increases to a maximum and then decreases for all subsequent q. The
increasing portion would occur while j

`
is positive. When we compute

a numerical solution of the equation, we obtain the expected behaviour
(Fig. 1). To obtain the numerical solution, we used the NAG stiff ODE
solver D02NBF with set up routines D02NSF and D02NVF. The
latter is the integrator set-up routine for Backward Differentiation
Formulae.

We now construct an approximate analytic form for F(q). The true
location q"q

#3*5
of the maximum value of F(q), F

.!9
, may be close to

q8
#3*5

, where

N (q8
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)"0 8 q8
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"

!1#J1#2akd
u
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k2
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We compare q8
#3*5

with q
#3*5

obtained numerically; the results are shown
in Fig. 2. The dotted line corresponds to q8

#3*5
which we can compute for

continuous values of k2. The circles correspond to the numerically
computed q

#3*5
at various values of k2. The comparison is very close,

and improves as k2 and a increase.
The difference between q8

#3*5
and q

#3*5
gives an indication of the size of

d2F/dq2 at q
#3*5

. By definition, q
#3*5

is the time at which dF/dq"0 and
so (9) reduces to

d2F
dq2 K q#3*5"!N (q

#3*5
)F.
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Fig. 1. The amplitude F(q) of the k"1.6 perturbation of the initial uniform cell
density. The other parameter values are: d

u
"0.33, a"80, k"1, u

0
"1, w"1 and

l"10

Fig. 2. Comparison of q
#3*5

(circles) and q8
#3*5

(predicted q
#3*5

) (dotted line) plotted against
wavenumber. Parameter values are a"80, d

u
"0.33, k"1, u

0
"1, w"1 and l"10

Since the second derivative of a function is always less than zero at
a maximum we know that N (q

#3*5
) is positive. Thus q has already

increased past the point where N (q) changes sign, and q8
#3*5

gives us
a minimum estimate for q

#3*5
. From Fig. 2 we see that q8

#3*5
and q

#3*5
are

reasonably close, which suggests that N(q
#3*5

) may be close to zero. In
turn, this indicates that d2F/dq2 may be numerically small at the
maximum, F

.!9
.
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We are thus encouraged to solve equation (9) with the second
derivative term omitted, and compare the approximate solution with
the numerical one. After some straightforward algebra we find the
solution of the first order ordinary differential equation to be

F
1
(q)"C

(d
u
#1)k2q

0
#2

(d
u
#1)k2q#2 D

2akk2
2

!2du(du`1~2)
(du`1)2

C
q
q
0
D

2akk2
2

e du
du`1 k2(q0~q). (15)

Plots of the first order and second order equation solutions F(q) and
F
1
(q) are shown in Fig. 3. For this figure a was set to 30, since the two

curves have such disparity in magnitude for a"80 that they cannot be
viewed on the same coordinate grid. The observations below apply
equally however, for the larger value of a.

At first glance we notice the marked difference in the height of the
two functions. Apart from this difference however, the two functions
have many similarities: (1) the peaks occur at approximately the same
value of q, (2) the peak interval, defined as the time during which
F(q)'F (q

0
), is about the same, especially for the lower frequencies,

and (3) the two curves appear to be similarly skewed to the left.
Increasing a results in a large increase in both F

.!9
and F

1.!9
, but

doesn’t change the slope. The two solutions are also similar with
respect to the behaviour of the different modes investigated. The larger
the value of k2, the earlier q

#3*5
is reached, and the shorter the interval

over which F or F
1

is larger than the initial value F
0
.

If we normalise the data for F(q) and F
1
(q) so that it lies in the

interval [0, 1] we see that the two solutions map almost directly on top
of each other (Fig. 4). The main difference therefore, between the
approximate solution and the exact solution (obtained numerically) is

Fig. 3. F (q) (solid line) and F
1
(q) (dotted line) plotted together against q for a"30 and

various values of k. The other parameter values are as listed in Fig. 2
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Fig. 4. The solutions F(q) (solid line) and F
1
(q) (dotted line) plotted against q and

normalised to lie between 0 and 1. The parameter values are as listed in Fig. 2

simply in a scaling factor. This scaling factor is very large, suggesting
that the second order derivative term is not small outside the neigh-
bourhood of the maximum.

At this stage we have an intuitive understanding of the solutions
F(q) of equation (8). We also have an approximate analytic solution,
F
1
(q), which we can use to predict the effect of changing various

parameters.

3 Interpretation of results

In terms of the model equations, we are particularly interested in
predicting the size and number of aggregates which will form, and the
length of time during which they will be visible, that is, when F(q) is
sufficiently large. If nonlinear effects are not too strong, we expect that
the number of aggregates will be determined by the combined effect of
the solutions corresponding to the various modes.

Numerical results are shown in Fig. 5. We observe that there is one
wavenumber which attains a higher amplitude than any other. We
refer to this wavenumber as k

.!9
(here k

.!9
"2.20). We also note that

every wavenumber k larger than k
.!9

initially has a slightly higher
growth rate than k

.!9
. These high frequencies quickly begin decaying

however, while the amplitude of the k
.!9

pattern is still growing
rapidly.

Once the k
.!9

solution begins to decay, solutions corresponding to
smaller wavenumbers become largest in decreasing order. The ampli-
tude of each solution with k(k

.!9
is always in the process of decaying,

once it supersedes the next highest mode. Thus we should see a
continuous decrease in the wavenumber of the observed pattern as
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Fig. 5. F(q) for discrete values of k"mn/l, m"4 to 9 (or k"1.26 to 2.83). The m"9
curve decays the fastest, then the m"8 curve, etc. The curve corresponding to m"7
has the highest peak. The other parameter values are: d

u
"0.33, a"80, k"1, u

0
"1,

w"1 and l"10. (K"10.9)

t increases, accompanied by a decrease in amplitude. This corresponds
to the biologically observed coalescing of aggregates and eventual
dissipation of pattern. Note that for these figures K

'308
"5.47 and so

k
.!9

is less than K
'308

by a factor of 2. For all of the numerical solutions
observed in this study, k

.!9
was consistently much less than K

'308
.

4 Numerical simulation results

We can now compare the predictions of the linear theory with the
actual solution behaviour of the partial differential equations. Simula-
tion results were obtained using Strang Splitting and Clawpack [8, 9].
The method and its behaviour is discussed in detail in Tyson et al. [12].
For all of the simulations, zero flux boundary conditions were used.
The initial condition in chemoattractant concentration is zero every-
where on the domain, and in cell density is a random perturbation
about u

0
"1. The random perturbation was obtained via the Fortran

random number generator routine, rand, which produces pseudo-
random real numbers distributed uniformly over (0, 1). Various seeds
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and grid refinements were used. The results presented in the figures
below are all generated from runs using the same seed, grid spacing
(Dx"0.06) and noise amplitude (order 10~1).

A time sequence for a"80 is shown in Fig. 6. The sequence was
truncated at the time beyond which little change was observed in the
number of peaks, and the pattern amplitude simply decreased. The
plots in the left hand column of each figure are the cell density profiles
at various times q, while the plots in the right hand column are the
corresponding power spectral densities. The density axis for the latter
plots are restricted to lie above the mean value of the initial power
spectral density, at q"q

0
. This highlights the pattern modes which

grow.
As predicted in equation (13), the power spectral density plots

indicate that spatial pattern modes with wavenumber higher than
K"10.9 do not grow. Also, spread of ‘‘nonzero’’ modes decreases as
time increases. In the actual cell density distribution, the pattern
observed initially has many peaks, and the number of these decreases
over time. Our prediction for the value of k

.!9
is off by a factor of two

in these figures. The solution is actually dominated by k
.!9

+1.1 while
the predicted value was 2.2.

Moving to two dimensional simulations, we obtain the same type
of results from the model as was observed in the one dimensional case.
An initial condition consisting of small random perturbations about
a uniform distribution of cells produces patterns consisting of a ran-
dom arrangement of spots (Fig. 7). From the surface plot, Fig. 8, it is
clear that the aggregates of cells are very dense in comparison to the
regions in between. The number of spots is large at first and then
decreases over time as neighbouring spots coalesce. Eventually, all of
the spots disappear.

Recall that this is exactly what is observed in the bacterial experi-
ments. To begin with, bacteria are added to a petri dish containing
a uniform concentration of succinate. The mixture is well-stirred, and
then allowed to rest. At this point, the state of the solution in the petri
dish is mimicked by the initial condition for our model: small perturba-
tions of a uniform distribution of cells and succinate. After a short
period of time, on the order of 20 minutes, the live bacteria aggregate
into numerous small clumps which are very distinct from one another.
This behaviour corresponds to the random arrangement of spots
separated by regions of near-zero cell density observed in the model
solutions. Experimentally, the bacterial aggregates are seen to join
together, forming fewer and larger clumps. This also is present in
the mathematical model, and is clearly evident when the solutions
are displayed as a movie with the frames separated by small time
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Fig. 6. ¸eft-hand plots: cell density plotted against space at various points in time.
Right-hand plots: corresponding power spectral density functions. Initially the cells are
uniformly distributed over the one dimensional domain and disturbed with a small
perturbation of order 1]10~1. Parameter values are the same as for Fig. 5: d

u
"0.33,

u
0
"1, w

0
"1, l"10, k"1 and a"80. (K"10.9)

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&"
Fig. 8. Surface plot of the cell density pattern arising from a uniform distribution of
stimulant on a square domain. This output corresponds to the t"2 image plot in Fig. 7
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Fig. 7. Two dimensional cell density pattern arising from a uniform distribution of
stimulant on a square domain. White corresponds to high cell density, black to low cell
density. Parameter values: d

u
"0.33, a"80, k"1, u

0
"1, w"1 and l"10
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increments. In both the model and experiment, the spots eventually
disappear and cannot be induced to re-form. This is explained by the
mathematical model as a saturation of the chemotactic response,
which no longer has any effect as the production of chemoattractant
increases continually.

5 Conclusions

In this paper, we explored a simple and intuitively revealing analysis
which explains how evolving patterns of randomly arranged spots
appear transiently in a chemotaxis model and in experiment. The
central idea is to consider the rate of growth of individual modes
over small time intervals, and extrapolate from this to the combined
behaviour of all disturbance frequencies. Low mode number per-
turbations to the uniform solution are unstable and grow in magni-
tude, but eventually these stabilize and decay with the larger mode
numbers stabilizing first. This agrees qualitatively, and to a great
extent quantitatively, with what is observed experimentally and nu-
merically: clumps form, coalesce into larger aggregates, and eventually
disappear.
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