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Abstract. A model for the transmission of dengue fever with variable
human population size is analyzed. We find three threshold parameters
which govern the existence of the endemic proportion equilibrium, the
increase of the human population size, and the behaviour of the total
number of human infectives. We prove the global asymptotic stability
of the equilibrium points using the theory of competitive systems,
compound matrices, and the center manifold theorem.
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1 Introduction

In the last 20 years, dengue fever and the severe form of the disease
(described for the first time in the 1950s), dengue haemorrhagic
fever (DHF) have become the most important arthropod-borne viral
disease of humans [18]. At present, the annual estimations of dengue
fever range from 50 millions [20] to 100 millions [18] of cases, with
approximately 10 000 infant deaths due to the haemorrhagic form
of dengue [20].

Dengue fever has been recognized clinically for over 200 years.
During the 18th and 19th centuries the spread of the disease was slow,
generally by ships carrying breeding populations of A. aegypti and
susceptible human hosts This pattern changed dramatically during
and after World War II. Dengue viruses were spread by viremic
military personnel in the Pacific areas, and the vector was spread by
vehicles, water storage containers, and tires carrying the larvae of



A. aegypti. The dissemination of the disease was enhanced after the
war by rapid population growth and urbanization. Asian cities were
characterized by poor sanitation, the necesity of domestic water stor-
age and crowding, creating conditions for the breeding of A. aegypti
[18]. With the emergence of dengue haemorraghic fever in 1954 the
impact of the disease became more pronounced. In the 1970s and
1980s, the incidence of DHF rose to over 250 000 cases per year, and
DHF is now the third of fourth leading cause of hospitalization of
children in some areas of the Asian continent [18].

Postwar changes in dengue epidemiology in the Americas occured
somewhat later than in Asia. The first important outbreak of dengue
fever with severe cases occurred in Cuba in 1981 with 116 000 hospital-
ized patients, 34 000 documented cases of DHF and 158 deaths. During
the decade that followed the Cuban epidemic, 14 countries in the
Americas have reported confirmed cases of DHF [17, 18].

It is considered that human population growth and the dramatic
redistribution of the human population in the urban centers of devel-
oping countries have contributed to the introduction and enhancement
of dengue fever [1, 12, 17, 18, 24]. In the Americas, for example, the
urban population nearly doubled from 1970 to 1990, and during this
period dengue emerged as a major problem [18]. Crowding and poor
sanitation resulting in the proliferation of inadequate water storage
and garbage containers, have been responsible for an enormous prolif-
eration of the Aedes mosquitoes.

The assumption of constant population size in epidemiological
models, is relatively valid for diseases of short duration with limited
effects on mortality. However, this assumption fails to hold for diseases
that are endemic in communities with changing population size, and
for diseases which raise the mortality rate. In this situation, the effects
of the change of population size and induced mortality are far from
negligible, and in fact, may have a crucial influence on the dynamics of
the disease. Dengue fever may be considered as an example of such
a disease, since in regions where it is endemic the annual growth of the
population is in general above 2%.

In this paper we continue the modeling of dengue disease started in
[9]; here we analyze the effect of variable host population size and
disease specific death rate. In section two we formulate the model,
assuming that the host population grows exponentially, and has a con-
stant disease death rate.

Using results from the theory of competitive systems we prove the
global stability of the disease-free proportion when a certain threshold
parameter is less than one. We use the same approach as in [9], which
was based upon the results of Li and Muldowney [15], to establish the
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global stability of the endemic proportion. We also show, that there is
an intrinsic relation between the demographics of the human popula-
tion and the disease dynamics.

Similar results for epidemic models with variable population have
been obtained by several authors, among them, Busenberg and van den
Driessche [3], Mena—Lorca and Hethcote [16] for a SIRS model with
variable population; Busenberg and Vargas [4], Velasco—Hernández
[23] for a Chaga’s disease model with variable population.

2 Formulation of the model

Denote by N
H

and N
V

the human and vector population sizes, respec-
tively. We assume that the vector population has constant size with
birth and death rate equal to k

V
. For the human population we assume

an exponential growth. Then, the human population dynamics without
disease is given by

dN
H

dt
"(l

H
!k

H
)N

H
, N

H
(0)"N

H0
,

where l
H

and k
H

are the birth and natural death rates, respectively.
Let SM

H
, IM

H
and RM

H
denote the total number of susceptibles, infec-

tives, and immunes in the human population, respectively, and SM
V
,

IM
V

be the total number of susceptible and infective mosquitoes. The
immune class in the vector population does not exist, since the mos-
quitoes never recover from infection, that is, their infective period ends
with their death. The model is represented schematically by the follow-
ing diagram:

lHNH&" SM
H

Bk
HS
M
H

jHS
M
H (IM V@NV)&&&&" IM

H
B(kH`aH)IM H

cHIM H&" RM
H

Bk
HR

M
H

kVP SM
V

Bk
VS
M
V

jVS
M
V (IM H@NH)&&&&" IM

V
BkVI

M
V

In the diagram:

j
H
"effective contact rate between susceptible humans and vectors.

j
V
"effective contact rate between susceptible vectors and humans.

a
H
"disease induced death rate of humans.

c
H
"recovery rate of infected humans.

k
V
"mortality rate of vector population.

The effective contact rate j
H

is the average number of contacts
per day that would result in infection if the vector is infectious. The
effective contact rate j

H
is the product of the average number of bites
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per mosquito per day, the proportion of infected bites that results in
infection, and the ratio between vector population size and human
population size. In the case of variable human population interacting
with a vector whose total population remains constant, j

H
should be

a variable function of the total human population. However, popula-
tion growth may be associated with conditions that enhace the effec-
tiveness of vectors in transmitting the disease, thus, we can assume as in
[23] that j

H
is constant. This assumption is an approximation that

may not be valid for an extended period of time.
The effective contact rate j

V
is the average number of contacts per

day that effectively transmit the infection to vectors. j
V

depends on the
average number of bites per mosquito per day and the proportion of
bites that result in vector infection.

We also assume that the birth and recovery rates are greater than
the specific death rate associated with dengue, since as was said in the
Introduction the estimated fatality cases are about 10,000 from more
than 50 millions of dengue cases.

The above hypotheses lead to the following equations:

SM @
H
"l

H
N

H
!k

H
SM
H
!j

H
SM
H

IM
V

N
V

IM @
H
"j

H
SM
H

IM
V

N
V

!(c
H
#k

H
#a

H
) IM

H

RM @
H
"c

H
IM
H
!k

H
RM

H
(2.1)
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.

All parameters in this model are non-negative. It is a simple matter to
show that equations (2.1) are well-posed, in the sense, that if the initial
data (SM

H
, IM

H
, RM

H
, IM

V
, N

H
) are in the region R5

`
, then the solutions will

be defined for all time t70 and remain in this region.
Introducing the proportions S

H
"SM

H
/N

H
, I

H
"IM

H
/N

H
, R

H
"RM

H
/N

H
,

I
V
"IM

V
/N

V
in system (2.1), and using the relation R

H
"1!S

H
!I

H
,

we obtain the following system that describes the dynamics of the
proportion of individuals in each class

S@
H
"l

H
(1!S

H
)!j

H
S
H
I
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H
I
H

I@
H
"j
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H
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(2.2)
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(1!I

V
) I

H
!k

V
I
V
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where M
H
"c

H
#l

H
#a

H
. The region

X"M(S
H
, I

H
, I

V
) D06S

H
#I

H
61, 06I

V
61N

is positively invariant for system (2.2). We observe that system (2.2)
does not involve N

H
(t), and therefore the behaviour of the proportions

can be analyzed separately. The population size of each class can be
determined from the equation

N@
H
"(l

H
!k

H
!a

H
I
H
) N

H
(2.3)

3 Analysis of the model equations

Our first results concern the existence and stability of equilibrium
points of system (2.2). For this, we shall use the following threshold
parameter:

R
0
"

j
H
j
V

M
H
k
V

. (3.1)

Proposition 3.1. System (2.2) always has the disease free equilibrium
E
0
"(1, 0, 0). If R

0
'1, there is a unique endemic equilibrium

E
1
"(S*

H
, I*

H
, I*

V
) in the interior of X.

Proof. From the first and third equations of system (2.2), the equilib-
rium points must satisfy the following relations:

I
V
"

j
V
I
H

k
V
#j

V
I
H

, (3.2)
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H
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H
)
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H
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H
I
H
) (k

V
#j

V
I
H
)#j

H
j
V
I
H

. (3.3)

Substituting I
H
"0 in equations. (3.2) and (3.3), we obtain I

V
"0 and

S
H
"1. Thus E

0
always exists.

Suppose now that I
H
90. Substituting equations. (3.2) and (3.3) in

the second equation of system (2.2), we find that I
H

satisfies the cubic
equation:

g (I
H
)"l

H
j
H
j
V
![M

H
!a

H
I
H
][(l

H
!a

H
I
H
) (k

V
#j

V
I
H
)#j

H
j
V
I
H
]

"!a2
H
j
V
I3
H
#a

H
(j

V
l
H
#j

H
j
V
!a

H
k
V
#j

V
M

H
) I2

H

#(a
H
l
H
k
V
!(j

V
l
H
#j

H
j
V
!a

H
k
V
) M

H
) I

H

#l
H
(j

H
j
V
!k

V
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H
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Observe that lim
IH?B=

g (I
H
)"GR.
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In order to be in the interior of X, an equilibrium given by (3.2),
(3.3), and (3.4) must satisfy the following inequalities:

0(I
H
(1, (3.5)

0(
j
V
I
H

k
V
#j

V
I
H

(1, (3.6)

0(
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(1, (3.7)

0(S
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H
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c
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l
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H
I
H

(1. (3.8)

The inequality (3.6) follows from (3.5). Since we are assuming that
l
H
'a

H
, (3.7) is true if (3.5) holds and I

H
((jHjV

aHkV
!1) kV

jV
. Finally, (3.8)

follows if 0(I
H
(1 and I

H
( lHcH`aH.

In order to have the four inequalities mentioned above, we should
look for the roots of (3.4) in the interval (0, I

H1
), where

I
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"minG1, A

j
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j
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a
H
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!1B
k
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j
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,
l
H

c
H
#a

H
H .

If jHjV

aHkV
61, then I

H1
is non-positive, and therefore the only equilibrium

point in X is E
0
. Note that this is a special case of R

0
(1.

Suppose now that jHjV

aHkV
'1. Then I

H1
'0 and straightforward

calculations show that g(I
H1

)(0.
The local maximum I

H2
of g (I

H
) is given by

I
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where
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From the above inequality we have

I
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V
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Therefore, the maximum of g (I
H
) is to the right of the interval [0, I

H1
].

Since g (I
H1

)(0, it can be seen readily that (3.4) has a unique root
I*
H
3 (0, I

H1
), if and only if g(0)'0. But

g(0)"l
H
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H
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(R
0
!1) ,
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therefore, (3.4) has a unique root I*
H
3 (0, I

H1
) if and only if R

0
'1.

K

To analyze the stability of the equilibrium points of equations (2.2)
we shall use some results of competitive systems given in Appendix A.
In that Appendix we show that system (2.2) is competitive according to
the definition given in [21]. Furthermore, we shall use the following
property of system (2.2).

Proposition 3.2. On the boundary of X, system (2.2) has only one u-limit
point, which is the equilibrium E

0
. Moreover for R

0
'1, E

0
cannot be the

u-limit of any orbit in int(X).

For a proof we refer to [9].

Remark. From Proposition 3.2 it follows that for R
0
'1 system (2.2) is

persistent in the sense described in [5].

Next, we analyze the stability of E
0
.

Proposition 3.3. ¹he equilibrium E
0

is globally asymptotically stable in
X if R

0
61, and unstable if R

0
'1.

Proof. Using Theorem A.1 we shall prove the global stability of E
0
.

Suppose that C is a non trivial periodic orbit contained in X. By
Proposition 3.2, C can not be contained in the boundary of X. More-
over, since the S

H
—axis is an invariant set, the intersection of C with this

axis must be empty; this implies that there exists e'0 such that

CL[aN , bM ]L¹,

where

aN "(0, e, e), bM "(1, 1, 1),

and ¹ is the unit cube. In this cube, system (2.2) is also competitive,
then by Theorem A.1, [aN , bM ] must contain an equilibrium point, but for
R

0
61, the only equilibrium point in ¹ is E

0
which obviously is not in

[aN , bM ]. This eliminates periodic type solutions in X, and the global
stability of E

0
follows from the Poincaré—Bendixson property for

competitive systems [13, 21].
The characteristic equation of the Jacobian of system (2.2) around

E
0

is
(s#l

H
) [s2#(M

H
#k

V
) s#M

H
k
V
(1!R

0
)] ,

and we see that E
0

is unstable for R
0
'1. K
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Local analysis around the equilibrium E
1

proves that it is locally
stable for R

0
'1 (see appendix B for a proof ). Global stability is given

by the following proposition.

Proposition 3.4. ¼hen R
0
'1, the endemic equilibrium E

1
is globally

asymptotically stable in X!M(S
H
, 0, 0) D 06S

H
61N. All solutions with

initial data (S
H
, 0, 0) tend to the disease-free equilibrium E

0
.

Proof. From the transversality of the vector field of system (2.2) on the
boundary of X!M(S

H
, 0, 0) D06S

H
61N, we observe that it is enough

to show that E
1

is globally asymptotically stable in the interior of X.
Since system (2.2) is competitive, persistent for R

0
'1 and E

1
is locally

asymptotically stable, the result will follow from Theorem A.2 if we
show that system (2.2) has the property of stability of periodic orbits
(see appendix A for this definition). For this, let p(t)"(S

H
(t), I

H
(t), I

V
(t))

be a periodic solution whose orbit C is contained in X. In accordance
with [19] Theorem 4.2, it is enough to prove that the second com-
pound system

XM @(t)"(Df *2+(p(t)))XM (t)

is asymptotically stable, where Df *2+ is the second compound matrix of
the Jacobian Df. For our system the second compound equation is
given by

X@"!(j
H
I
V
#l

H
!a

H
I
H
#M

H
!2a

H
I
H
) X#j

H
S
H
½#j

H
S
H
Z

½@"j
V
(1!I
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) X!(j

H
I
V
#l

H
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H
I
H
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V
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H
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V
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H
S
H
Z

Z@"j
H
I
V
½!(M

H
!2a

H
I
H
#j

V
I
H
#k

V
) Z. (3.9)

See [9, 15] for more details.
As in [9], we consider the Lyapunov function

»(X, ½, Z; S
H
, I

H
, I

V
)"supADXD,

I
H

I
V
AD½D#DZDBB ,

where E ) E is the norm in R3 defined by

E(X, ½, Z)E"supMDXD, D½D#DZDN.

We obtain the following estimations of the right hand derivative of
DX(t) D, D½(t) D and DZ(t) D:

D
`

DX(t) D6!(j
H
I
V
#l

H
!a

H
I
H
#M

H
!2a

H
I
H
) DX (t) D

#j
H
S
H

I
V

I
H
A
I
H

I
V

( D½(t) D#DZ (t) D)B , (3.10)
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D
`

D½(t) D6j
V
(1!I

V
) DX(t) D!(j

H
I
V
#l

H
!a

H
I
H
#j

V
I
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#k

V
)
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H
S
H
DZ (t) D , (3.11)

D
`

DZ(t) D6j
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I
V
D½(t) D!(M

H
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H
I
H
#j

V
I
H
#k

V
) DZ (t) D. (3.12)

Adding inequalities (3.11) and (3.12), and using the fact that c
H

and
1!S

H
!I

H
are non—negatives we obtain

D
`
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V
(1!I

V
) DX (t) D

!(l
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and therefore
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H

I
V
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h
1
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H
S
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I
V

I
H
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H
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H
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H
!2a

H
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H
)

and

h
2
(t)"

I
H

I
V

j
V
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V
)#

I@
H

I
H

!

I@
V

I
V

!l
H
#a

H
I
H
!j

V
I
H
!k

V
.

Then, from (3.10) and (3.13) it can be shown as in [15] the following
inequality

D
`
»

1
(t)6supMh

1
(t), h

2
(t)N»

1
(t) . (3.14)

Rewriting equations (2.2) as

!j
H
I
V
#a

H
I
H
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H
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H
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V
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,
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and substituting in the expressions for h
1
(t) and h

2
(t) we obtain

sup Mh
1
(t), h

2
(t)N6
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I
H

#

S@
H

S
H

!l
H
#a

H
I
H
6

I@
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I
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#

S@
H

S
H

!l
H
#a

H
.

Therefore, from (3.14) and Gronwell’s inequality we obtain

»(t)6»(0) (I
H
(t)#S

H
(t)) e~(lH~aH)t6»(0) e~(lH~aH) t,

which implies that »(t)P0 as tPR, since by assumption
l
H
!a

H
'0.

Then, system (3.9) is asymptotically stable and therefore the orbit
C is asymptotically orbitally stable. As was noted before, this proves
the global stability of E

1
in X!M(S

H
, 0,0) : 06S

H
61N. K

The second part of the proposition follows immediately.
Next, we analyze the asymptotic behaviour of the total population

N
H
(t), and the total number of individuals in the epidemiological

classes SM
H
, IM

H
and RM

H
. For this we introduce the parameters

R"







l
H

k
H

if R
0
61

l
H

k
H
#a

H
I*
H

if R
0
'1 ,

(3.15)

R
1
"







j
H
j
V

(c
H
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H
#a

H
)k

V

if R
0
61
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H
j
V
S*
H
(1!I*

V
)

(c
H
#k

H
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H
)k

V

if R
0
'1.

(3.16)

First we study the dynamics of solutions whose initial conditions
are outside the subspace IM

H
"IM

V
"0. For R91 we have the following

results.

Proposition 3.5. ¹he total population N
H
(t) for system (2.1) decreases

exponentially to zero if R(1 and increases exponentially to R if
R'1. ¹he growth asymptotic rates are k

H
(R!1) if R

0
61, and

(k
H
#a

H
I*
H
) (R!1) if R

0
'1. (See [3] Lemma 3.4.)

Proposition 3.6. For R'1, (SM
H
(t), IM

H
(t), RM

H
(t)) tend, as tPR, to

(R, 0, 0) if R
1
(1 and to (R, R, R) if R

1
'1.
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Proof. Since I@
V
(t)P0 as tPR, in the limit, the proportion of infectious

mosquitoes is related to the proportion of infectious humans as

I
V
"

j
V
(1!I

V
)I

H
k
V

,

thus, the limit form of the equation for IM
H
(t) is given by

IM @
H
"(c

H
#k

H
#a

H
) (R

1
!1)IM

H
,

which implies that IM
H
(t) declines exponentially if R

1
(1, and grows

exponentially if R
1
'1.

The solution RM
H
(t) is given by

RM
H
"RM

H0
e~kHt#e~kHtc

HP
t

0

IM
H
(s) ekHsds.

From the exponential nature of IM
H
(t), it follows that RM

H
(t) declines

exponentially if R
1
(1, and grows exponentially if R

1
'1. K

For the case R"1. we have the following proposition.

Proposition 3.7. Suppose R"1 and tPR. If a
H
"0, N

H
(t) remains

fixed at its initial value N
H0

and (SM
H
(t), IM

H
(t), RM

H
(t)) tend to (N

H0
, 0, 0) if

R
0
61 and to N

H0
(S*

H
, I*

H
, R*

H
) if R

0
'1. If a

H
'0, N

H
(t) tends to an

equilibrium N*
H
70 and (SM

H
(t), IM

H
(t), RM

H
(t)) tend to (N*

H
, 0, 0) for R

0
61

and to (SM *
H
, IM *

H
, RM *

H
), for R

0
'1.

Proof. Suppose a
H
"0, then N@

H
(t)"0 and thus N

H
(t) remains fixed at

its initial value N
H0

. In this case system (2.1) becomes the model with
constant human population studied in [9]. For this system the solu-
tions with initial conditions SM

H0
#IM

H0
#RM

H0
"N

H0
, tend to (N

H0
, 0, 0)

if R
0
61, and to N

H0
(S*

H
, I*

H
, R*

H
) if R

0
'1.

Suppose now a
H
'0. If R

0
61, then l

H
"k

H
and the differential

equation for N
H
(t) becomes

N@
H
"!a

H
IM
H
,

which implies that N
H
(t) is bounded for all t'0. In this case there

exists a line of equilibria along the positive SM
H

axis in the SM
H
IM
H
RM

H
IM
V

space. To prove that all solutions with positive initial conditions
approach this line we use the Lyapunov function

»"N
H
,

with orbital derivative
»Q "!a

H
IM
H
60.
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By the LaSalle—Lyapunov theorem [11], all solutions of (2.1) approach
the largest invariant set contained in

M
1
"M(SM

H
, IM

H
, RM

H
, IM

V
)3R4

`
D IM

H
"0N.

It can be seen from (2.1), that this set corresponds to the positive
SM
H

axis.
Now, for R

0
(1 the equilibria (N*

H
, 0, 0, 0) are neutrally stable, i.e.,

they have a single zero eigenvalue and the other eigenvalues have
negative real part. Therefore, each orbit tends to an equilibrium point
(see [2, Proposition 1.1]).

For R
0
"1, the equilibria (N*

H
, 0, 0, 0) have a zero eigenvalue of

multiplicity two; in this case, writing the system (2.1) in the normal
form and using the center manifold theorem [6], after change of
variables and long calculations that we omit here, it can be proved that
the equilibria (N*

H
, 0, 0, 0) with N*

H
'0 are unstable [8]. Since N

H
(t) is

bounded, all solutions except those that lie on the stable manifold of
(N*

H
, 0, 0, 0) must approach (0, 0, 0, 0).
If R

0
'1, system (2.1) has a line of equilibria given by

(SM *
H
, IM *

H
, RM *

H
, IM *

V
), where

SM *
H
"A

c
H
#k

H
#a

H
j
H
j
V

B A
k
V
a
H
#j

V
r
H

a
H

B N*
H
,

IM *
H
"

r
H

a
H

N*
H
,

RM *
H
"

c
H
r
H

k
H
a
H

N*
H
,

IM *
V
"

j
V
r
H
N

V
j
V
r
H
#k

V
a
H

,

with r
H
"l

H
!k

H
. These are neutrally stable, and taking the limit

form of (2.1), it can be seen that the trajectories are bounded. In this
case, we can only say that nearby orbits will approach a unique point
in the equilibria line [2]. K

The results for solutions with initial conditions outside the sub-
space IM

H
"IM

V
"0 are summarized in Table 1. And on the subspace

IM
H
"IM

V
"0 we have the following behaviour

Proposition 3.8. On the subspace IM
H
"IM

V
"0, the human population

N
H
(t) grows exponentially if R'1, remains constant if R"1 and
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Table 1. Threshold criteria and asymptotic behaviour

R R
0

R
1

N
H

(S
H
, I

H
, R

H
, I

V
)P (SM

H
, IM

H
, RM

H
)P

(1 61 (1! N
H
P0 (1, 0, 0, 0) (0, 0, 0)

(1 '1 (1! N
H
P0 (S*

H
, I*

H
, R*

H
, I*

V
) (0, 0, 0)

'1 61 (1 N
H
PR (1, 0, 0, 0) (R, 0, 0)

'1 61 '1 N
H
PR (1, 0, 0, 0) (R, R, R)

'1 '1 '1! N
H
PR (S*

H
, I*

H
, R*

H
, I*

V
) (R, R, R)

"1, a
H
"0 61 61! N

H
"N

H0
(1, 0, 0, 0) (N

H0
, 0, 0)

"1, a
H
"0 '1 "1! N

H
"N

H0
(S*

H
, I*

H
, R*

H
, I*

V
) N

H0
(S*

H
, I*

H
, R*

H
)

"1, a
H
'0 (1 (1! N

H
PN*

H
(1, 0, 0, 0) (N*

H
, 0, 0)

"1, a
H
'0 "1 "1! N

H
P0 (1, 0, 0, 0) (0, 0, 0)

"1, a
H
'0 '1 "1! N

H
PN*

H
(S*

H
, I*

H
, R*

H
, I*

V
) (SM *

H
, IM *

H
, RM *

H
)

!This condition is automatically satisfied for the values of R
0

and R.

decreases to zero if R(1. ¹he infective humans IM
H
(t) remain constant

and equal to zero; the recovered humans RM
H
(t) tend exponentially to zero;

and the susceptible humans SM
H
(t) tend to N

H
(t).

4 Discussion of the threshold parameters

The threshold parameter R
0
" jHjV

(cH`lH`aH)kV
governs whether or not an

endemic proportion may exist and be globally stable.
The parameter R is the basic reproduction number of the human

population, and it has two different values depending on the existence
of an endemic proportion, as well as the excess death rate of the
disease. When R

0
61 or a

H
"0, R"lH

kH
, and it represents the net

reproduction rate in a population where the disease is absent, or the
disease does not raise the mortality rate. When R

0
'1 and a

H
'0,

R" lH
kH`aHI*

H

, and it is the net reproduction rate when the excess of
death due to the presence of the disease is taken into account.

The threshold parameter R
1

governs the growth of the total num-
ber of infectious humans and also has two different forms. If R

0
61,

R
1
" jHjV

(cH`kH`aH)kV
, and when R

0
'1, R

1
" jHjVS*

H(1~I*V)
(cH`kH`aH)kV

.
The quantity RI

1
"JR

1
can be interpreted as the average number

of secondary infections produced by an infectious individual during its
infective period. This follows from the next argument, which we shall
give only for the case R

0
'1.

Suppose an infectious human is introduced into a popula-
tion where there exists an endemic proportion (S*

H
, I*

H
, R*

H
, I*

V
) at
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equilibrium. During the infective period this infectious human will
produce on average

j
V
N

V
(1!I*

V
)

N
H

1
(c

H
#k

H
#a

H
)

new infections in the vector population. Analogously, each infected
mosquito infects on average

j
H
N

H
S*
H

N
V

1
k
V

humans during the rest of its life. The geometric mean

RI
1
"S

j
V
(1!I*

V
)

(c
H
#k

H
#a

H
)

j
H
S*
H

k
V

is the expected number of secondary cases which one case produces
when there exists an endemic proportion at equilibrium. Hence we can
say that RI

1
is the basic reproduction number of the disease.

The threshold conditions R and R
1

can be replaced by equivalent
conditions involving only the parameters of the model. To find an
equivalent expression for R we notice that N

H
grows exponentially

with asymptotic constant rate l
H
!k

H
!a

H
I*
H

when R
0
'1, There-

fore, N
H
PR if and only if lH~kH

aH
'I*

H
. Furthermore, for R

0
'1 and

a
H
'0, g(I

H
) defined by (3.4) is positive at I

H
"0, zero at I*

H
and its

local maximum is to the right of lH

aH
. Moreover g (lH

aH
)(0. These condi-

tions imply that lH~kH

aH 'I*
H

if and only if g(lH~kH

aH )(0. Substituting lH~kH

aH

in the expression for g we obtain the equivalent inequality

l
H
j
V

k
H C

k
H
#

(c
H
#k

H
)j

H
c
H
#k

H
#a

H
j
H
j
V
#k

H
!a

H
k
V D'1. (4.1)

Defining by U the left side of (4.1), we have that N
H
(t) grows exponenti-

ally if and only if U'1. Analogously, N
H
(t) decreases to zero if and

only if U(1, and remains constant when U"1.
For the condition R

1
" jHjVS*

H(1~I*H)
(cH`kH`aH)kV

we can find also an equivalent
expression. Recall that for R

0
'1 the total number of infectives

IM
H

grows exponentially with constant rate given by

(c
H
#k

H
#a

H
) C

j
H
j
V
S*
H
(1!I*

V
)

(c
H
#k

H
#a

H
)k

V

!1D (4.2)

Substituting S*
H
(1!I*

V
) and using the fact that g (I*

H
)"0, (4.2) becomes

l
H
!k

H
!a

H
I*
H
. Therefore, IM

H
(t) grows to infinity if and only if U'1,

and decreases to zero if and only if U(1.
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In summary, our threshold parameters could have been

R
0
"

j
H
j
V

M
H
k
V

,

R"G
l
H

k
H

if R
0
61

U if R
0
'1,

R
1
"G

j
H
j
V

(c
H
#k

H
#a

H
)k

V

if R
0
61

U if R
0
'1 .

Note that for R
0
'1, the threshold conditions for the behaviour of

N
H

and IM
H

are the same. Moreover, both populations grow or decay at
the same rate.

5 Conclusions

We have formulated a model for dengue disease with variable human
population. Since in the regions where dengue is endemic the popula-
tion grows with an annual rate above 2%, then our model incorporates
the effect of variable human population with exponential growth. This
model also captures the general features of the transmission of ar-
boviral diseases; thus, our results are more general and can be applied
to those diseases as well.

We found three threshold parameters that control the development
of the disease and the growth of the human population. The parameter
R

0
is the threshold condition for the existence of the endemic propor-

tions of infected humans and infected mosquitoes. On the other hand,
the basic reproduction number R

1
controls the asymptotic behaviour

of the number of infected humans, in an increasing population, when
the infective proportion is tending to zero.

The threshold parameter R controls the growth of the total human
population. When R

0
61 or the disease related death rate a

H
is zero,

R represents the usual reproduction rate in a disease-free population.
When R

0
'1 and a

H
'0, R is a measure of how the disease impacts on

the population demography. In some cases, this impact may be suffi-
ciently strong to take the population to extinction, as can be observed
when the reproduction rate in absence of the disease, lHaH , is equal to one.
Even if the disease dies out, it may be tending to zero so slowly, that it
drives the population to extinction (case a

H
'0, R"1, R

0
"1).
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An interesting case arises when R"1. Here, the asymptotic behav-
iour of the total population N

H
(t) depends on the value of a

H
. If a

H
"0,

N
H
(t) remains constant at its initial value N

H0
, independently of the

proportion of infected individuals. On the other hand, for a
H
'0,

N
H

tends to an equilibrium N*
H
, which depends on the mentioned

proportion. Thus, for R
0
(1 (which implies l

H
"k

H
), N

H
(t) will de-

crease to N*
H
6N

H0
; and for R

0
'1 (which implies l

H
"k

H
#a

H
I*
H
),

N
H
(t) will increase or decrease initially, depending if the initial fraction,

I
H0

, is less or bigger than lH~kH

aH ; and then, will tend to N*
H

which can be
greater than N

H0
.

A basic aspect of these results is that the infective proportion I
H

and
the total number of infective humans may have different behaviours.
Thus, I

H
may be tending to a positive endemic value, and yet the total

number of infectives tends to zero if the total population is decreasing
(case R(1, R

0
'1). On the other hand, I

H
may be tending to zero,

and IM
H

will grow exponentially (case R'1, R
0
61, R

1
'1).

Some authors [3, 4, 22] have pointed out that in a nonconstant
population, two different policies can be considered: one is to reduce
the proportion of infected individuals, and the threshold condition is
R

0
, and the other policy is to reduce the total number of infectives, and

the threshold conditions are R
1

and R.
To get a reduction on the number of infectives in a growing

population requires a bigger effort than the one needed to reduce the
infective proportion; since in the first case it is necesary to diminish
R and R

1
, whereas in the second case, it is only necesary to reduce R

0
,

which in a growing population, is less than R
1
.

The discussion above may suggest that the simplest way to control
the disease in a growing population is reducing the proportion of
infectives. However, we have to consider that the number of hospitaliz-
ations and medical services required to attend the infected population
can be considerable, even if the infective proportion is relatively small.
Gubler [10] mentions that in the Southeast Asian countries, there have
been 700 000 children hospitalized with DHF between 1960 and 1986.
This figure is not significant compared with the total population of
those countries during these years; however, the same author mentions
that the economical impact of those hospitalizations has represented
an important problem for the region. Unfortunately for these times the
problem has increased, Halstead [12] mentions that by the last decade
of the XXth century Aedes aegypti and the 4 dengue viruses had spread
to nearly all countries of the tropical world. Some 2 billion persons live
in dengue—endemic areas with tens of millions infected annually. Near-
ly three million children have been hospitalized with (DHF/DSS) in the
past three decades, mainly in South—East Asia.
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A Mathematical appendix

In this appendix we give a brief review of some mathematical results on
competitive systems. We start with the definition of competitive system
given by Smith in [21].

Let DLRn be an open set, and xN Pf (xN )3Rn be a C1 function
defined in D. We consider the autonomous system in Rn given by

xN @"f (xN ). (A.1)

System (A.1) is competitive in D iff, for some diagonal matrix
H"diag (e

1
, 2 , e

n
), where each e

i
is either 1 or !1, H(DF(xN )) H has

non positive off-diagonal elements for xN 3D, where DF(xN ) is the Jac-
obian of (A.1). It is shown in [21] that, if D is convex, the flow of such
a system preserves for t(0 the partial order in Rn defined by the
orthant

K"M(x
1
,2 , x

n
)3Rn : e

i
x
i
70N.

The Jacobian DF of system (2.2) is given by:

DF"

!l
H
!j

H
I
V
#a

H
I
H

a
H
S
H

!j
H
S
H

j
H
I
V

!M
H
#2a

H
I
H

j
H
S
H

0 j
V
(1!I

V
) !j

V
I
H
!k

V

.

(A.2)

If we choose the matrix H as

H"A
1 0 0

0 !1 0

0 0 1 B ,
we can see that system (2.2) is competitive in X with respect to the
partial order defined by the orthant

K"M(S
H
, I

H
, I

V
)3R3 : S

H
70, I

H
60, I

V
70N.

In [14] and [21], it is proved that three-dimensional competitive
systems satisfy the Poincaré—Bendixson property. There is another
remarkable property of 3-dimensional competitive systems [13]:

Theorem A.1. ¸et C be a non-trivial periodic orbit of a competitive
system in a convex set DLR3, such that

CL[aN , bM ]LD ,
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where [aN , bM ]"MaN 6xN 6bM N and6is the lexicographic order in R3. ¹hen
[aN , bM ] contains an equilibrium point.

Definition. We say that system (A.1) has the property of stability of
periodic orbits, iff the orbit of any periodic solution is asymptotically
orbitally stable.

The following result, is the key to establish the global stability of
the endemic proportion equilibrium of system (2.2) (see [9, 15]).

Theorem A.2. Assume that n"3 and D is convex and bounded. Suppose
(A.1) is competitive, persistent, and has the property of stability of
periodic orbits. If xN

0
is the only equilibrium point in int (D), which is

locally asymptotically stable, then it is globally asymptotically stable
in int(D).

B Local stability of E
1

Here we shall prove that E
0

is locally asymptotically stable for R
0
'1.

The local stability of the equilibrium E
1

is governed by the Jacobian of
system (2.2) evaluated at this point. From system (2.2) we obtain the
following relations:

S*
H
"

ab
j
H
j
V

, (B.1)

!

l
H

S*
H

"!l
H
!j

H
I*
V
#a

H
I*
H
, (B.2)

where
a"j

V
I*
H
#k

V
,

b"M
H
(1!I*

H
).

Then the Jacobian can be written as:

DF(E
1
)"

!

j
H
j
V
l
H

ab
a
H
ab

j
H
j
V

!

ab
j
V

j
H
j
V
I*
H

a
!b#a

H
I*
H

ab
j
V

0
j
V
k
V

a
!a

. (B.3)

The characteristic equation of (B.3) is given by

S3#AS2#BS#C"0, (B.4)
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where

A"

j
H
j
V
l
H

ab
#a#b!a

H
I*
H
,

B"(b!a
H
I*
H
)j

V
I*
H
#

j
H
j
V
l
H

b

#

j
H
j
V
l
H

ab
(b!a

H
I*
H
)!ba

H
I*
H
!k

V
a
H
I*
H
,

C"

j
H
j
V
l
H

b
(b!a

H
I*
H
)!

j
H
j
V
k
V

a
(l

H
!bI*

H
)!a

H
abI*

H
.

Since c
H
'a

H
and l

H
'a

H
then b!a

H
I*
H
'a

H
. From this we see

immediately that A'0.
From the first two equations of (2.2) at equilibrium, we have the

following relation:

bI*
H
"l

H
!(l

H
!a

H
I*
H
) S*

H
(l

H
. (B.5)

Since S*
H
(1, we also have the relation

j
V
j
H
'ab . (B.6)

Therefore, from (B.5) and (B.6) we get

B'(b!a
H
I*
H
)j

V
I*
H
#al

H
#l

H
a
H
!a

H
bI*

H
!k

V
a
H
I*
H

'0.

Using (B.1) and (B.5), we can write C as

C"

j
H
j
V
l
H

b
(b!a

H
I*
H
)!bk

V
(l

H
!a

H
I*
H
)!a

H
abI*

H
.

Substituting from (3.4) for l
H
j
H
j
V

we obtain

C"(l
H
!a

H
I*
H
) bj

V
I*
H
#j

H
j
V
bI*

H
!

l
H
j
H
j
V
a
H
I*
H

b
!a

H
abI*

H

'(l
H
!a

H
I*
H
) bj

V
I*
H
#j

H
j
V
(b!2a

H
) I*

H

'0.

Finally, the following inequality is easy to obtain

AB'aC
j
H
j
V
l
H

ab
(b!a

H
I*
H
)!ba

H
I*
HD

"

j
H
j
V
l
H

b
(b!a

H
I*
H
)!a

H
abI*

H

'C .
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