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Abstract. The non-linear structure of deep, stochastic, gyrotactic bio-
convection is explored. A linear analysis is reviewed and a weakly
non-linear analysis justifies its application by revealing the supercriti-
cal nature of the bifurcation. An asymptotic expansion is used to derive
systems of partial differential equations for long plume structures
which vary slowly with depth. Steady state and travelling wave solu-
tions are found for the first order system of partial differential equa-
tions and the second order system is manipulated to calculate the speed
of vertically travelling pulses. Implications of the results and possibili-
ties of experimental validation are discussed.
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1 Introduction

Bioconvection is a term used to describe the bulk fluid motion and cell
aggregation patterns due to freely swimming micro-organisms in sus-
pension. For a comprehensive review of the subject and related fields,
see Pedley and Kessler (1992). There are a number of mechanical



processes involved that bias the micro-organisms to swim in preferred
directions. One such mechanism is the tendency of the micro-organ-
isms to swim upwards due to their asymmetric mass distribution. If
there is an upper boundary and the cells have greater density than the
fluid in which they swim, then a Rayleigh—Bénard or overturning type
of instability can arise, whenever the cells aggregate near the upper
boundary so that a layer of dense fluid overlays less dense fluid.
Additionally, straining fields and vorticity in the fluid can influence
the average local cell-swimming direction, causing the cells to swim
towards regions of downwelling fluid. This mechanism is known as
gyrotaxis, after Kessler (1984). Again, if the material density of the cells
is greater than the density of the fluid, then an aggregation of cells
will cause the fluid to sink faster in that region, thus attracting more
cells. This instability is called a gyrotactic instability. Some examples
of bioconvection patterns in shallow suspensions of the alga
Chlamydomonas nivalis can be found in Bees (1996) and Bees and Hill
(1997). C. nivalis exhibits both forms of instability mentioned above.
Childress et al. (1975) developed a model to describe the Rayleigh—
Bénard type instability for purely upswimming cells and this was
later extended by Pedley et al. (1988), Hill et al. (1989), Pedley and
Kessler (1990), Bees (1996) and Bees and Hill (1998b) to include the
gyrotactic instability in either deterministic or stochastic formulations.
For deep suspensions without an upper boundary, purely upswimming
models (Childress et al. 1975) are not unstable (cannot produce pat-
terns) unlike models incorporating gyrotaxis. In experiments with deep
suspensions of C. nivalis, long plume structures form in the interior of
the suspension and are not initiated at the boundaries, confirming that
C. nivalis is gyrotactic (Kessler 1985a). Experiments also show evidence
of vertically travelling pulses that move down the plumes (see Kessler
1985b). Observations indicate that larger pulses travel faster than
smaller pulses. The larger pulses can catch the smaller pulses, where-
upon they merge.

In this paper, we consider the fully non-linear equations for a deep
suspension as proposed by Pedley and Kessler (1990). In particular, we
employ the solutions obtained by Bees et al. (1998b) from a spherical
harmonic expansion of the Fokker—Planck equation that describes the
stochastic orientation of swimming micro-organisms subject to gravi-
tational and viscous torques.

Initially, in Sect. 3, we explore the linear analysis considered by
Pedley et al. (1988), which highlights the scalings required for the
weakly non-linear analysis of Sect. 5. Then, in order to simplify the
equations, Sect. 4 considers the experimentally realizable case of long
vertical wavelength patterns in deep suspensions. This provides a set of
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non-linear partial differential equations, the first pair of which involve
the vertical coordinate, z, in a passive manner. A weakly non-linear
analysis of deep bioconvection for long vertical wavelengths is con-
sidered in Sect. 5 in order to characterize the bifurcation to instability,
and thus determine if the linear analysis can be used to predict the
initial pattern wavelengths. In Sect. 6 we consider the horizontal
steady state solutions for long vertical wavelengths by numerically
integrating the equations and, in Sect. 7, time dependence is included
in the form of horizontally-travelling vertical plumes subject to a small
forcing flow field. Section 8 derives an equation for variations in the
z-direction and calculates the wavespeed of small amplitude verti-
cally-travelling pulses. The generalization of the above methods to
three-dimensional fluid flows is considered in Sect. 9. In the
Discussion, we summarize our results from both mathematical and
biological perspectives.

2 Governing equations

We begin by stating the main equations governing the flow and
concentration fields in an infinite domain (as proposed by Pedley and
Kessler 1990):

+ ·u"0 , (1)

oA
Lu
Lt

#u ·+uB"!+p
e
#nvDou#k+2u (2)

and
Ln
Lt

"!+ ·[n (u#»
s
SpT)!D ·+n], (3)

where u(x) is the fluid velocity, Sp (x)T is the mean cell swimming
direction, »

s
is the mean cell swimming speed, D (x) is the translational

cell diffusivity tensor, n (x) is the local cell concentration, p
e
(x) is the

excess pressure, v is the mean volume of a cell, Do is the the difference
between the cell and fluid density, o is the fluid density, u is the
acceleration due to gravity and k is the fluid viscosity. Both SpT and
D require a knowledge of the probability distribution function of
cell swimming directions, f (p), at each point in the fluid as a function
of the unit cell swimming direction vector, p. f (p) is modelled
using a Fokker—Planck equation of the form (Pedley and Kessler
1990)

Lf
Lt
#+ · (pR f )"D

r
+2f, (4)
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where D
r

is the cells’ rotational diffusivity. D
r

encompasses all the
possible sources of rotational diffusivity including both Brownian
effects as well as the intrinsically stochastic, locomotory apparatus of
the cells themselves. The deterministic torque balance associated with
a cell in a flow field can be expressed (from Pedley and Kessler 1990) as

pR "
1

2B
[k!(k ·p)p]#

1
2

X'p#a
0

p ·E · (I!pp), (5)

where a
0

is the cell eccentricity, X"+'u is the fluid vorticity, E is the
rate-of-strain tensor and B is the gyrotactic orientation parameter.
B represents a reorientation time scale due to the balance between
viscous and gravitational torques, given by

B"

kao

2hog
, (6)

where h is the offset of the centre of mass from the geometrical centre
and ao is the dimensionless resistance coefficient for rotation about an
axis perpendicular to p (Pedley and Kessler 1990). Following Pedley
and Kessler (1990) and Bees et al. (1998b), we can calculate

SpT"P
S

p f dS, (7)

where S is the surface of the unit sphere. If we assume (as in Pedley and
Kessler 1990) that there exists a constant cell direction correlation
time, q, in which the cell settles to a new preferred orientation, then the
diffusivity can be approximated by

D"»2
s
q (SppTN!SpT2) (8)

where

N"

S»2T
»2

s

. (9)

The distribution of swimming speeds for C. nivalis is obtained from the
experimental data of Hill and Häder (1997). This is used to calculate
the mean swimming speed, »

s
+65 lms~1, the mean square of the

swimming speed, S»2T, and N, which is found to be approximately
1.3. (Note that N is bounded below by 1.0.) Non-dimensionalizing
time with the cell direction correlation time, q, velocity with »

s
, length

with »
s
q, concentration with the average cell concentration, nN , and

thus D with »2
s
q (following Pedley et al. 1988), the governing equations

become
+ ·u"0, (10)
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L
t
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The ratio of buoyancy to inertia, often called the Richardson number
(Drazin and Reid 1982), is given by

Ri"
nN vDogq
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(13)

and the micro-organism Reynolds number is defined as

Re"
q»2
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kk
. (14)

The non-dimensional gyrotaxis parameter is given by

g"
B
q

(15)

and occurs in the non-dimensionalized Fokker—Planck Equation, as
does j, which is given by

j"
1

2BD
r

. (16)

Table 1 summarizes the parameters described in this section and
details two realistic sets of values as discussed in Bees (1996) and Bees
and Hill (1998). For the subsequent analysis, the problem will be
simplified by assuming that the cells are spherical, which means that
the cell eccentricity, a

0
, is zero. Analytic solutions to the gyrotactic

Fokker—Planck equation will be used throughout. They were derived
for a two-dimensional flow in a vertical plane by Bees (1996) and Bees
et al. (1998b) and are valid for all values of g, N and the non-
dimensional vorticity, u(x). They are
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Table 1. Key parameter expressions and estimates. Case I refers to original estimates
of the parameters as suggested by Pedley and Kessler (1990) and Case II to alternative
estimates (Bees and Hill 1998; Jones et al. 1994)

Parameter name Expression Typical value

j 1/2BD
r

2.2
N S»2T/»2

s
1.3

Case 1: q"1.3s and B"3.4s

Re q»2
s
o/k 5.2]10~5

Ri n6 vDogq/o»
s

5.2]10~6nN
g B/q 2.6

Case 2: q"5s and B"6.3s

Re q»2
s
o/k 2]10~4
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s

2]10~5nN
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"
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5
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2
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9
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1
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where

A
0

u

0 B"+'u. (21)

The functions Ai
j
(gu) are given in the Appendix, the superscripts x and

z indicate the x- and z-components and for brevity, the N-dependence
is only given explicitly when necessary. In particular, we introduce the
shorthand

E(gu)"!SpTx(gu) and A (gu)"Dxx(gu). (22)

3 Linear analysis

On perturbing the uniform solution in a suspension of infinite depth by
making the substitutions u"du1 and n"1#dn1 in Equations (10) to
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(12), where d;1, we can establish its linear stability. Eliminating the
pressure term, we obtain an equation for the z-component of u1:

L
t
(+2u1

3
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3
!Ri+2n1#Ri L

3
L
3
n1. (23)

Equation (12) becomes

L
t
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z
n1!Dxx(0)L2

x
n1!Dzz(0)L2

z
n1"gDSpTx (0)+2u1

3
,

(24)

where Dzz(0) and Dxx (0) are vertical and horizontal diffusivities for the
zero flow solution and

DSpTx (0)"
dSpTx (f)

df K f/0

. (25)

Consider normal mode solutions of the form
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3
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u
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n
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where C
u

and C
n

are constants. Eliminating C
u
and C

n
gives
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This is a rewritten form of the equations found by Pedley et al. (1988)
and the subsequent analysis in this section can be compared with their
results. Writing p"p

R
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Fig. 1. Curves of marginal stability for a homogeneous suspension of large depth. Two
cases are indicated. If m"0 then the bifurcation is stationary and the growth rate is
zero along the solid diagonal line and the line k"0. If m90 then we have a Hopf
bifurcation in which the real part of the linear growth rate is zero along the dotted line

The neutral curve for modes with zero linear growth is given by p
R
"0.

This implies

(F
1
#F

2
)2 (F

1
F
2
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3
)#F2

4
F
1
F
2
"0. (30)

For no vertical variation m"0, and then

k2"
KDSpTx (0)

Dxx(0)
, (31)

where
K"RiRe g (32)

(see Fig. 1). But if m90 then the neutral curve is given by the
relationship

K"

(k2#m2) (Dxx(0)k2#Dzz(0)m2)
k2DSpTx (0)

]A1# m2SpTz(0)

A
k2#m2

Re
#Dxx(0)k2#Dzz(0)m2B

2B , (33)

and on this curve p has an imaginary part given by Equation (28)
and thus the perturbation is oscillatory. Hence, the curve in Fig. 1
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Fig. 2. A plot of the linear growth rate for a mode with m"0 and horizontal
wavenumber k, for a value of the parameter K slightly above the critical value of 0.
Here, Re"10~3 and K"0.1

represents a Hopf bifurcation and it is apparent that K
c
, the critical

value of K, decreases with m. The curve with the lowest value of
K

c
occurs when m"0 and here the neutral curve represents a station-

ary bifurcation. In this case, the linear growth rate of a slightly
supercritical mode may be rewritten, using Equations (17) and (19), as

p"!

k2

2Re
(A (0)Re#1)$

k
2 Re

Jk2(A(0)Re!1)2!4ReKE@ (0), (34)

where the prime indicates the first derivative, and is plotted in Fig. 2.
This expression will be expanded in Sect. 5 to motivate the scalings for
a weakly non-linear analysis.

4 The long vertical wavelength equations

We can exploit the long length scale in the z-direction by scaling z with
a small parameter, e. First, consider a two dimensional solution in the
xz-plane and put u"curl (!tj ), where t is the stream function. Then
u"L

z
t, w"!L

x
t and u"+2t. Equations (10) to (12) give

L
t
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1
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x
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and
L
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where J is the Jacobian defined by
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Putting Z"ez, we obtain
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and
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where ni and ti (i"0, 1,2) are in general determined by non-linear
partial differential equations in terms of the dependent variables. To
zero order in e,
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where we have used

SpTx"SpT0x#eSpT1x#O (e2) (44)

and similarly for Dxx. Here, the superscript 0 means zeroth order in
e and x means the x-component. These equations are the same as if we
had just assumed no vertical variation, but all the functions of integra-
tion in the solution will depend on Z and can be determined from the
solvability conditions at higher orders. Rewriting these equations, with
the ‘‘effective vorticity’’

p"gL2
x
t0"gu#O(e), (45)

gives
Re L
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and
L
t
n0"L

x
(A (p)L

x
n0#E(p)n0). (47)

The linear analysis of the previous section could be repeated here
by further expanding in the x-direction. Equations (46) and (47) are
the governing equations for bioconvection patterns in the form of
rolls which are independent of the y-direction and are of large
vertical aspect ratio. They are nonlinear partial differential equa-
tions and solutions of these equations are studied in the following
sections. Equations at the next order of e determine the z dependence of
the solutions and are investigated in Sect. 8.

5 Amplitude equations for long vertical wavelength instabilities

As unstable linear disturbances grow in an exponential fashion, non-
linear terms become more and more significant. Translational invari-
ance in space, xPx#xL , implies that the evolution equation of any
instability of the amplitude, A, of a solution must be invariant under the
transformation APAeikK xL , and hence the first translationally invariant
term to appear up to third order is DAD2A. Eventually, the third order
terms are of a comparable order to the first order terms and may affect
the growth of the solution. If third order terms counteract the linear
growth then the bifurcation to instability is said to be supercritical. If,
however, the third order terms aid the growth of the linear disturbance
then the bifurcation is said to be subcritical and one must look to higher
orders in order to saturate the growth of the leading order terms.
Subcritical bifurcations may imply the existence of stable bioconvecting
solutions below the critical parameter value and, hence, below the neutral
curve. See, for example, Coullet and Fauve (1985) and Fauve (1985) for
discussions on amplitude equations, and Buzano and Golubitsky (1983)
and Golubitsky et al. (1984) for the general form of amplitude equations
subject to spatial symmetrical constraints. It is possible, in most systems,
to generate a long wavelength theory of the evolution of initial distur-
bances close to the critical point (see Childress and Spiegel 1978;
Chapman and Proctor 1980 and Knobloch 1990). However, due to the
fact that the critical values of K and k are zero, we are unable to find
such an amplitude equation and, at best, the linear theory is recovered
at each attempt. We choose instead to derive a Landau equation
(Schlüter et al. 1965) which describes the weakly non-linear behaviour
of the system at a point (k, K) close to a general point on the neutral
curve (k

c
, K

c
), for which k

c
90, and to investigate the nature of the

bifurcation to instability close to the critical point at k
c
"K

c
"0.
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First we will motivate our scaling by expanding the growth rate of
Equation (34) in terms of (K!K

c
) and (k!k

c
),

p"A
Lp
LKB

c

(K!K
c
)#A

Lp
LkB

c

(k!k
c
)#h.o.t. (48)

where the subscript c implies that the function is evaluated at a point
on the neutral curve. We find that
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c

A (0)Re#1B (k!k
c
)#h.o.t. (49)

where k
c
is found from the linear analysis to be k

c
"J~KcE{(0)

A(0)
. Suppose

that the amplitude of a solution on the neutral curve is given by f (x, t),
then multiplying Equation (49) by the Fourier—Laplace transform of
f (x, t), fK (k, p), and taking the inverse Fourier—Laplace transform gives
the leading order form of the amplitude equation for small but finite
amplitude disturbances (see Fauve 1985):
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This indicates that we should scale time, 1/(K!K
c
) and x by the same

small scale. We also need to scale p such that the higher order terms
appear in the equations at the same order as the terms in Equation (50)
above. Defining our small parameter d (where 1<d<e) by

d2K
2
"(K!K

c
)#O (d3) (51)

where K
2

measures the distance from criticality, then this leads us to
the scalings and expansions
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where we shall show that K
1
"0. As E is odd and A is even, we can

write
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1
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and
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Hence, substituting these expansions and scalings into Equations (46)
and (47) gives
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The lowest orders of Equations (56) and (57) are
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"0 (58)

and
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#A(0)L2
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which imply that
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0 B eikx#c.c. (60)

where k"0 or J~KcE{(0)
A(0)

. This defines the piecewise continuous neutral
curve seen in Fig. 1. We choose to take the non-trivial root and, hence,
consider a solution near that part of the neutral curve that gives spatial
pattern. If K

c
is small then this solution is close to the trivial critical

solution at k"0. The next order gives the two equations
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Clearly L
x
n
1

is a secular term and L
x
(p

1
n
1
) is not. Solvability implies

that the secular term is orthogonal to the solution of the homogeneous
equation and so, in this case, the secular term should vanish and, hence,
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K
1
"0. This is consistent with our predicted scalings (Equation (51)).

The general solution for these equations is

A
p
2

n
2
B"f

2
(X, ¹ ) A

a
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eB e2ikx#c.c. (63)

We choose a"b"0 as this part of the solution can be combined
with the leading order solution. Substituting Equation (63) back in to
Equations (61) and (62), we get that
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d"
ikA(0)
6E@(0)

and e"
1
3

. (65)

The next order gives

L2
x
p
3
#K

c
L
x
n
3
"ReL

T
p
1
!K

2
L
x
n
1
!K

c
L
X
n
1
!2L

x
L
X
p
1

(66)

and

E@(0)L
x
p
3
#A(0)L2

x
n
3
"L

T
n
1
!E@(0)L

x
(p

2
n
1
)!E@(0)L

x
(p

1
n
2
)

!E@ (0)L
X
p
1
!2A (0)L

x
L
X
n
1

!1
2
A@@(0)L

x
[p2

1
L
x
n
1
]. (67)

The solvability condition (see Ince 1956, Sect. 9.34) requires that

P
2n@k

0

uHN dx"0 (68)

where H means the Hermitian, u is the solution to the adjoint problem
and N indicates the secular terms in the inhomogeneous problem.
Hence,

f
T
"A

!K
2
E@(0)

A(0) Re#1B f!A
!K

c
E@(0)#9K2

c
A@@(0)

6(A(0) Re#1) B D f D2 f

#A
2J!K

c
E@(0)A(0)

A (0)Re#1 B if
X

(69)

(and a conjugate equation for the complex conjugate of f ) which
represents the non-linear saturation of linear modes.

The if
X

term is invariant to all of the relevant symmetries and
is a consequence of prescribing a periodic domain of size ¸"2n/k

c
.

The term represents corrections to the amplitude equation for small
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variations of the wavenumber from k
c

and can be removed by the
transformation

A
X@

¹@B"A
X#ii¹

¹ B, (70)

where

i"A
2J!K

c
E@(0)A(0)

A (0) Re#1 B, (71)

so that
f
T
Pf

T{
#ii f

X{
. (72)

For the special case at the critical point, where k"0, the if
X

term
vanishes. As K

c
decreases to zero, the third order term tends to zero

but, crucially, does so from below. The multiplier of the D f D2 f term is
negative provided K

c
'0 and

E@(0)(9K
c
A@@(0). (73)

E@(0) is always negative and A@@(0) is positive, provided A(p) has
a minimum at p"0. This occurs if and only if N'1.0206 (see
Equations (9) and (19)). Hence, if either N'1.0206 (very likely) or
K

c
is small but positive, then the multiplier of the D f D2 f term is negative.

We conclude that the bifurcation to instability is supercritical and this
is our main result in this section. It implies that the linear analysis is
useful for predicting the wavenumber of the initial disturbance from
equilibrium.

6 Steady non-linear solutions

We look for steady periodic solutions to the long vertical wavelength
Equations (46) and (47). The time-independent equations can be integ-
rated directly to obtain

p
x
#K(n0!K)"0 (74)

and
A (p)n0

x
#E(p)n0"C

2
(75)

where C
2

and K are in general unknown functions of Z. Applying the
symmetry condition p"0 when n0

x
"0 (i.e. that vorticity is zero in the

centre of the plume) gives C
2
,0. In general n0 and p are functions

of Z. To prepare the ground for later sections, we renormalise n0 as
follows. Integrating the first equation over x and assuming periodic
solutions, we find that

Mn0Nx"K(Z) (76)
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where M ·Nx is a space average over x (i.e. Mn0Nx,l~1: l
0
n0dx, where l is

the wavelength of the periodic solution, n0). As n0 is the normalized cell
concentration, so

MMn0NxNZ"MK(Z)NZ"1. (77)

We introduce the change of variables

N"

n0

K (Z)
(78)

and
K*(Z)"K (Z)K (79)

such that
MNNx"1. (80)

This implies that the long vertical wavelength equations, (46) and (47),
become

Re p
t
"(p

x
#K*(N!1))

x
(81)

and
N

t
"(A (p)N

x
#E (p)N)

x
, (82)

where there is now only one parameter, K*(Z). By changing variables,
such that q"ln(N), we see that the time-independent equations are
Hamiltonian and can be written as L

x
p"!L

q
H and L

x
q"L

p
H,

where

H"K*(eq!q)!P
p

0

E(p@)
A(p@)

dp@, (83)

and therefore the trajectories are closed, indicating many periodic
orbits as expected. The steady versions of Equations (81) and (82) can
be written in the form

p
x
"K*(1!N) (84)

and

N
x
"!

E(p)
A (p)

N, (85)

and are integrated numerically using a fourth order Runge—Kutta
scheme. Examples of the closed orbits of this system are shown in
Fig. 3 and clearly there are an infinity of possible solutions but their
wavenumbers are restricted to a small range from zero to some max-
imum value obtained by observation from the numerical solutions.
Thus, in a periodic domain of a specified size, there are finitely many
steady state solutions. Figure 4 displays examples of the periodic
curves of q (x) for K*"0.1, and shows how they increase their
wavelength with increasing amplitude. For all values of K* the pattern
wavelength increases with its amplitude. Therefore, small amplitude
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Fig. 3. A selection of periodic orbits for K*"0.1 going clockwise with increasing x

solutions give the maximum wavenumber. The small amplitude
solutions are precisely those given by the linear analysis of Sect. 3.
Hence, the maximum wavenumber is given by

k
c
"S

!K
c
E@(0)

A (0)
, (86)

from Equation (31). This is consistent with the form of the amplitude
equation given in Sect. 5. However, the system is structurally unstable
in that if a small perturbation displaces a solution from one trajectory
to another then it will stay on the new trajectory. For bioconvection in
an infinite domain we do not know the final pattern unless we know
every perturbation from the homogeneous state. It is thus necessary to
consider higher orders in order to establish the stability of the greater
system. However, for bioconvection with finite horizontal extent, the
above analysis provides us with a finite number of steady solutions
dictated by the maximum wavenumber, k

c
. Furthermore, we see in

Fig. 4 that the maximum amplitudes of the concentration profiles
become larger as the wavelength increases. Clearly there is a physical
maximum concentration due to the non-zero volume of the individual
cells, approximately 5]10~10 cm3. This is, in general, further reduced
due to geometrical constraints on the packing arrangement. Hence,
there is an upper bound on the concentration of 2]109 cells per cm3
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Fig. 4. Profiles of the orbits given in Fig. 3. Examples of N varying in the x direction
for K*"0.1. Note how the wavelength increases with the maximum amplitue of the
solution

and this will provide an upper bound on the pattern wavelength.
However, this wavelength is unlikely to be realized as cell-to-cell
interactions become more important as the concentration increases.
Such interactions are beyond the scope of this paper (but see Bees et al.
1998a).

Here we have shown, that it is possible to construct steady state
solutions from the first order equations that are non-linear in x and
describe a horizontal balance between diffusion and gyrotaxis. These
solutions are only dependent on Z through the functions of integra-
tion, and they will be used in later sections when investigating the
system at higher orders.

7 Horizontally drifting plumes

In certain special situations it is possible to obtain time-dependent
solutions. In this section we present an illustrative example of a solu-
tion that may help to explain why some plume structures drift in
a regular fashion. In particular, we investigate a travelling wave
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solution that leaves in its path a regular array of drifting plumes. It is
first necessary to break the symmetry of the system and impose
a ‘‘background vorticity’’, by requiring that the effective vorticity, p,
equals p

0
at x"R where p

0
is a positive constant. For example,

a constant shear flow in the horizontal direction would be sufficient.
Consider N"x!ct, where without loss of generality c70, then

the long vertical wavelength Equations (81) and (82) become

!cRe p@"(p@#K*N)@ (87)
and

!cN@"(A(p)N@#E(p)N)@ (88)

where the prime indicates differentiation with respect to N. This implies
that

p@"K*(1!N)!cRe p#C
1

(89)
and

N@"!

E(p)N#cN#C
2

A (p)
. (90)

For a rightward travelling wave, we look for solutions that are
homogeneous far enough to the right such that N"1, p"p

0
and

N@"p@"0 at N"R. As N represents the concentration of cells, so
N70 ∀ N3R, which means that no trajectory that asymptotes to
(p, N)"(p

0
, 1) should cross the line in phase space given by N"0.

Applying the boundary conditions at N"R to Equation (89) implies
that C

1
"cRe p

0
. Applying boundary conditions to Equation (90)

gives
c#C

2
"!E(p

0
). (91)

This enables us to rewrite the equations as

p@"cRe(p
0
!p)#K*(1!N) (92)

and

N@"
[c(1!N)#(E (p

0
)!E(p)N)]

A(p)
. (93)

Hence, there is an equilibrium point at (p
0
, 1). Linearizing about this

point and calculating the eigenvalues, j, corresponding to the principal
linear growth rates, we find that

j"!

1
2 AcRe#

c#E (p
0
)

A(p
0
) B

$

1
2SAc Re!

c#E(p
0
)

A(p
0
) B

2
#4K*

E@(p
0
)

A (p
0
)
, (94)
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which implies that there is a stable (with respect to N) focus or node, or
a saddle point depending on E(p

0
) etc. The stable focus represents

growing oscillations travelling to the right but the other two cases lead
to unbounded cell concentrations and will not be considered further.
For the stable focus to exist we require R(j)(0, which implies that

06
!E (p

0
)

A (p
0
) Re#1

(c, (95)

and I(j)90, which implies that

c
~
(c(c

`
(96)

where

c
B
"

E(p
0
)

A (p
0
) Re!1

G

2A (p
0
)

A(p
0
) Re!1S

!K*E@(p
0
)

A (p
0
)

. (97)

Hence, we require

E@(p
0
)(0 (98)

for real, non-zero values of c
B

. The nullclines for this system are
given by

N"

cRe
K*

(p
0
!p)#1 (99)

and

N"

c#E(p
0
)

c#E(p)
(100)

and are plotted in Fig. 5. This figure enables us to see the location of
two other equilibrium points and to establish their stability from
geometrical considerations. The saddle point is the second most im-
portant feature and it clearly allows the possibility for a homoclinic
orbit bifurcation to a limit cycle around the focus (e.g. Balmforth 1995).
A Hopf bifurcation may occur and it is the objective of the subsequent
analysis to establish necessary and realistic conditions for its existence.
If a trajectory starts in the neighbourhood of (p, N)"(p

0
, 1), then we

also require that N@60 (i.e. L
t
N70) on N"0 for N to be bounded

below by at least N"0. If N"0 then

N@"!

C
2

A (p)
(101)

and hence we require that C
2

be positive. This in turn implies that

06c6!E (p
0
). (102)
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Fig. 5. Nullclines (solid lines) for a typical travelling wave system where c#E(p
0
)60.

The arrows indicate the direction of the flow and the long-dashed lines indicate the
manifolds of the saddle point, B. B allows the possibility of a homoclinic orbit around
the focus, A, and as the focus, A, changes stability a limit cycle can develop. This
ensures the existence of a Hopf bifurcation. The equilibrium point C is not within the
region of realistic cell concentrations

The maximum wavespeed is given by c"!E(p
0
) and occurs when

C
2
"0. Clearly no travelling wave solutions exist if there is no back-

ground vorticity as c"0 if p
0
"0. Collecting all of these necessary

conditions together for a limit cycle to exist gives

06
!E (p

0
)

A(p
0
) Re#1

(c6!E (p
0
) (103)

and

c
~
(c(c

`
, (104)
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Fig. 6. Travelling wave solutions exist for a small range of wavespeeds, c, for given
values of the parameters Re, K* and p

0
. Here K*"0.1, Re"0.4 and p

0
is plotted

along the x axis. The hatched region indicates where travelling wave solutions exist.
Here, the value of Re is artificially large so that the hatched region can be clearly seen.
Normally Re&10~4 and the region is much smaller

where

c
B
"

E (p
0
)

A (p
0
) Re!1

G

2A (p
0
)

A(p
0
) Re!1S

!K*E@ (p
0
)

A(p
0
)

(105)

and

E@(p
0
)(0 (106)

(see Fig. 6). As K* decreases then the region described by Equation
(104) shrinks but the region only vanishes if K*60. Similarly, the
region described by Equation (103) decreases as Re decreases but only
vanishes if Re60. The two regions always coincide near to p0"0 and
c"0. Numerical integration of the governing Equations (89) and (90)
shows that a limit cycle does exist for certain limited choices of c see
Figs. 7 and 8 which corresponds exactly with the region given in Fig. 6.
This suggests that if the pattern nucleates at a point then plumes will
spread out and increase in amplitude until a regular pattern is reached,
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Fig. 7. Spiral trajectories for the travelling wave system (clockwise with N) where an
unstable limit cycle can be clearly observed. K*"0.1, p

0
"0.4, Re"0.4 and c"0.15

Fig. 8. Cell concentration for a horizontally travelling plume solution, varying with
x!ct for waves travelling to the right. In this example, each peak indicates a high
local cell concentration and, therefore, a plume extended in the vertical direction.
K*"0.1, p

0
"0.4, Re"0.4 and c"0.15
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where the wave speed is confined to a small range. This in turn suggests
that laminar fluid motions can control the transport and production of
plume structures and that there is a limited range of possible transport
speeds determined by the physical attributes of the swimming cells.
However, the presence of horizontal boundaries will influence both the
above solutions and the potential for constructing feasible experiments
to compare with the above results.

In order to illustrate the results of this section, we provide an
example computation for a suspension of C. nivalis in a deep channel
bounded by vertical walls 3 cm apart. A shear flow is imposed by
moving one of the boundaries. Travelling waves, if they exist, will
consist of plumes travelling to the right or left with a speed that is
confined to a small range of values. Condition (106) implies that we
must look for a value of p

0
that satisfies E@(p

0
)(0. Equations (17), (22)

and (137) give the necessary constraint on p2
0

in the form of a cubic
equation, which can be solved to give Dp

0
D(1.3. We choose p

0
"1.0

and, since p
0
"gu"gqX, and given q"1.3 and g"2.6 from Table 1,

we find that the magnitude of the dimensional vorticity, X, is 0.3 s~1.
Taking into account that X"+'u+w

x
and that the distance

between the boundaries equals 3 cm, one of the boundaries must
move at a speed of 0.9 cm s~1. From Table 1, Re"5.2]10~5,
Ri"5.2]10~6n

0
and N"1.3. Taking nN "106 cells cm~3 and

assuming zero vertical variation in the plume profile, Equations
(103) and (104) give (to 6 s.f. to illustrate the small range of possible
values)

0.300550(c(0.300556 (107)
and

0.290827(c(0.310295, (108)

respectively. In dimensional terms, the speed of the travelling plume is
approximately 0.0019 cms~1. Clearly, in the suggested experimental
arrangement, it is possible that the close proximity of boundaries may
affect the structure of the travelling array of plumes. Increasing the
distance between the boundaries may solve this problem but would
make such an experiment more difficult to perform, as it implies an
associated increase in the speed of the boundaries in order to maintain
a particular value of the forcing vorticity. It would also be possible
to measure the upper value of vorticity for which travelling plumes
still exist. The theoretical critical value is given approximately by
p
0
"1.3. Increasing p

0
beyond this value will destroy the travell-

ing plume structure entirely as, on average, the cells start to tumble and
E@(p

0
)'0.
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8 Vertical variation of the steady state solutions

In this section we develop a theory to help explain the nature of the
pulses that travel down the long plume structures (cf. Kessler 1985a,
1985b). We consider the steady state solutions of Sect. 6 and allow
these solutions to vary slowly with time and in the vertical direction. If
we rescale time with the small parameter e, such that ¹"et, then we
can use the equations of Sect. 4 to obtain the leading order equations
for a small variation in the z direction. The first order equations are
(see Sect. 4 and Equations (42) and (43))

L
x
(gL2

x
t0)#K(n0!K (Z, ¹ ))"0 (109)

and
A (gL2

x
t0)n0

x
#E(gL2

x
t0)n0"C

2
(Z, ¹ ), (110)

where K is defined in Sect. 6 and C
2

is at present an unknown function
of Z and ¹. Applying the symmetry condition, that vorticity be zero
(L2

x
t0"0) in the centre of a plume (n

x
"0) in which E(0)"0, gives

C
2
"0. At second order, we get

1
Re

(L4
x
t1)#RiL

x
n1"L

T
(L2

x
t0)#L

Z
t0L3

x
t0!L

x
t0L2

x
L
Z
t0 (111)

and

L
x
(n1SpT0x (gL2

x
t0)#n0SpT1x!D0xx(gL2

x
t0)L

x
n1!L

x
n0D1xx)

"!L
T
n0#L

x
(Dxz (gL2

x
t0)L

Z
n0)#L

Z
(Dxz (gL2

x
t0)L

x
n0

!SpTz (gL2
x
t0)n0)#L

x
t0L

Z
n0!L

Z
t0L

x
n0, (112)

where

SpT1x"gL2
x
t1

d
dm

SpTx (m) Km/g©2xt0

(113)

and a similar expression for the linearization, D1xx, of Dxx with
respect to the steady state solution. The solvability condition can
be found by integrating Equation (112) over a horizontal wavelength.
If M ·Nx represents a periodic space average in the x-direction as
before, then

L
T
Mn0Nx"L

Z
MDxz (p)L

x
n0!SpTz (p)n0Nx

#ML
x
t0L

Z
n0!L

Z
t0L

x
n0Nx, (114)

where p"gL2
x
t0. The last two terms in (114) can be rearranged to

give L
Z
Mn0L

x
t0Nx, and substituting from (109) gives !L

Z
ML

x
t0 (gL3

x
t0/

K!K (Z, ¹))Nx,L
Z
Mp2/KgNx. Simplifying the other terms in
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Equation (114) so that they are also written in terms of p and K, using
the first order Equations ((109) and (110)), gives

L
T
K(Z, ¹ )"L

ZGG (p)K (Z, ¹ )#
p2

KgH
x
, (115)

where

G(p)"!SpTz (p)!Dxz (p)
E(p)
A(p)

. (116)

This equation may possess travelling wave solutions and, in some
respects, is similar to the equations discussed by Whitehead (1988) in
which soliton-like pulses travel up magma ducts in a viscous matrix. It
is the purpose of the following analysis to investigate small amplitude
solutions for which the wave speed is derived but not the waveform.

The cell normalization condition implies that MK (Z, ¹ )NZ"1 and
so we write

K (Z, ¹ )"1#M (Z, ¹) (117)

where DM (Z, ¹ ) D;1 and MM(Z, ¹ )NZ"0, and expand p and n0 in
terms of M(Z, ¹ ) in Equations (109) and (110) as

p(x, Z, ¹ )"p
0
(x)#M(Z, ¹ )p

1
(x)#O(M2) (118)

and
n0 (x, Z, ¹ )"n

0
(x)#M(Z, ¹ )n

1
(x)#O (M2). (119)

At first order we regain the non-linear Equations (84) and (85) for
solutions in the horizontal direction with zero vertical variation, i.e.

p
0x
#K(n

0
!1)"0 (120)

and

n
0x
#

E (p
0
)

A (p
0
)
n
0
"0. (121)

The next order in M(Z, ¹ ) provides a set of linear equations for the
perturbations to the steady state solutions which are independent of
M (Z, ¹ ), Z and ¹:

p
1x
#K(n

1
!1)"0 (122)

and

n
1x
#

E(p
0
)

A(p
0
)
n
1
#

d
dp

0
A
E(p

0
)

A(p
0
)Bn

0
p
1
"0. (123)

This last system describes a forced oscillator and potentially has
solutions with wavelengths that are quotient multiples of the unpertur-
bed system. We can find explicit solutions with a multiple of the
wavenumber of the unperturbed system satisfying the same boundary
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Fig. 9. A plot of the perturbation, p
1

(solid line), to p
0

(dotted line) varying with x for
a vertically travelling pulse down a plume. The perturbation indicates the form of the
vorticity deviation to the regular plume solution. Here K*"0.01 with the initial
conditions n

0
"5, p

0
"0, n

1
"13.8 and p

1
"0

conditions, and so more than one closed orbit is possible for (p
1
, n

1
),

for any given solution (p
0
, n

0
). Using Equations (117) and (118) in

Equation (115) gives

L
T
M(Z, ¹ )"GG@ (p

0
)p

1
#

2p
0
p
1

Kg H
x
L
Z
M (Z, ¹ )#O (M2). (124)

For a travelling wave solution, put N,Z!ct in Equation (124) so
that

LNM (N) (B#c)"0, (125)
where

B"GG@ (p
0
)p

1
#

2p
0
p
1

Kg H
x
. (126)

Clearly, a non-trivial solution exists when the wave speed is given by
c"!B. In principle, the full problem in Equation (115) is sufficient to
calculate the waveform but it is not amenable to simple analysis. As an
example, we show a numerical example for n

1
and p

1
given that

K"0.01 and n
0
"5 when p

0
"0, which is just one of an infinite

number of possible orbits. We find a closed orbit with the initial
conditions p

1
"0 and n

1
"13.8, as illustrated in Figs. 9 and 10, which
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Fig. 10. Perturbation, n
1

(solid line), to the cell concentration, n
0

(dotted line), varying
with x for a vertically travelling pulse. The perturbation indicates the small amplitude
variation in the vertical direction of the regular cell concentration profile. Adding small
positive or negative values of n

1
to n

0
results in either a more sharply peaked

distribution or a fatter plume respectively. Here K*"0.01 with the initial conditions
n
0
"5, p

0
"0, n

1
"13.8 and p

1
"0

has the same wavelength as the unperturbed solution. In this example
we can use the functions p

0
and p

1
to calculate c.

A possible experimental test of the theory would be to measure the
concentration profiles and speeds of small amplitude ( DM D;1) travel-
ling pulses on otherwise stationary plumes and compare the results
with the theory. Experimental observations of pulses indicate that they
travel at a speed in the range 0.1—1 mms~1. Averaging the concentra-
tion profiles in the Z direction would give the n

0
profile. From Sect. 6

we see that the first order equations, (120) and (121) are Hamiltonian
and thus we can use Equation (83) to calculate p

0
. Equations (122) and

(123) can then be used to solve for (p
1
, n

1
) and the wavespeed, c, can

then be calculated from Equation (125). Alternatively, n
1
can be extrac-

ted directly from the cell concentration profile data (i.e. from the profile
of the travelling pulse). The wavespeed should be compared with the
experimentally determined value. Notice that it is independent of
DM(Z, ¹) D as long as DM (Z, ¹) D is small. Clearly, the computation of
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p
0

and p
1

can be avoided if one can measure them directly, instead of
n
0

and n
1
. As an example, we could calculate the pulse speed from the

profiles in Fig. 9 as if we had obtained them from experiments (or via
calculation from the concentration data). As c"!B (p

0
, p

1
), we must

first calculate B from Equation (126) which consists of an integral with
respect to x over one wavelength divided by the wavelength. The
integrand consists of functions of p

0
and p

1
given by Equations (17) to

(20) and (116). The integration can be efficiently performed numerically
using commercially available tools such as Maple or Mathematica.
Finally, the speed should be expressed in dimensional form by multi-
plying by »

s
+65]10~4 cm s~1. For the solutions portrayed in

Fig. 9, and assuming that g"2.6 (Case I of Table 1), K"0.01
and N"1.0, we find that c"!1.95, which corresponds to a speed
of 0.13 mms~1 downwards. Using g"1.3 (Case II of Table 1) gives
c"!3.89 and thus the speed is 0.25 mm s~1. Both of these results
are for very small amplitude pulses and larger amplitude solutions
may travel faster, as observed in the experiments. Even though we
have only considered small amplitude pulses, the calculated speeds are
certainly realistic.

9 Extension to a three-dimensional flow field

A goal of future work is to investigate the three-dimensional
structure of deep bioconvection. Some progress towards this can
be made if we assume, as may be suggested by observations, that
the vertical component of the vorticity is zero, so that we can use
the spherical harmonic approximations developed in Bees et al.
(1998b) for a three-dimensional flow field with purely horizontal
vorticity. Suppose that there is a poloidal velocity field, F, such
that

u"+'+'(Fk) (127)
which gives

+'(Fk)"A
L
y
F

!L
x
F

0 B , (128)

u"A
L
x
L
z
F

L
y
L
z
F

+2
H
F B (129)
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and

u"+'u"A
!L

y
+2F

L
x
+2F

0 B , (130)

where +2
H

is the horizontal Laplacian. Eliminating the pressure term
and applying Equations (128)—(130) to (10)—(12) gives

!L
t
+2+2

H
F"!A

1
(F)!A

2
(F )#Ri+2

H
n#

1
Re

+4+2
H
F (131)

and

L
t
"!L

x
nL

x
L
z
F!L

y
nL

y
L
z
F#L
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F!+ · (nSpT!D ·+n), (132)

where the non-linear operators, A
1
(F) and A

2
(F ), are given in the

Appendix. We can now proceed as in Sect. 4 by introducing a long
vertical wavelength, Z"ez where e;1, to obtain

L
t
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H
F0"Ri+2

H
n0#

1
Re

+6
H
F0 (133)

and
L
t
n0"!+

H
· (n0SpT (+2

H
F0)!D (+2

H
F0) ·+

H
n0), (134)

where
n (x, Z, t)"n0 (x, Z, t)#en1(x, Z, t)#2 (135)

and
F(x, Z, t)"F0(x, Z, t)#eF1(x, Z, t)#2 (136)

As before, these equations are not explicitly dependent on Z but the
functions of integration will be.

The expressions given in Bees et al. (1998b) can be used for the
terms SpT and D. To proceed further we should have to consider
particular forms for n0 and +2

H
F0; for example, we may introduce

hexagonal or square planforms (see Buzano and Golubitsky 1983 and
Golubitsky et al. 1984). These equations may be used in future analysis
to predict the three-dimensional patterns in gyrotactic bioconvection
and to analyse their stability.

10 Discussion

Guided by observations of long plume structures in deep suspensions
we have expanded the full equations, describing gyrotactic bioconvec-
tion, in the vertical direction. In doing so, we assume that any vertical
variation of the horizontal cell concentration and fluid flow fields
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occurs on long length and time scales. We divide this discussion into
two parts that are relevant to the mathematical theory and a biological
viewpoint, respectively.

Initially, we analyse the first order set of non-linear partial differen-
tial equations by constructing a weakly non-linear theory to show that
the bifurcation to instability is supercritical and thus the linear theory
can be used to predict the first unstable wavelengths to occur in a well-
mixed suspension. In particular, at first order (i.e. with no vertical
variation) we obtain a set of partial differential equations in x and t, for
which we derive a Landau equation for the non-linear saturation of
linear modes close to the curve of neutral stability and show that the
bifurcation to instability is supercritical. Further analysis could be
carried out on the full non-linear equations, allowing for the Hopf
bifurcation resulting from non-zero vertical variation, but this would
significantly increase the algebraic complexity. As an alternative, to
more closely model a layer of finite depth, the system could be investi-
gated for a small, but non-zero, fixed value of m, leading to a non-zero
critical wavenumber and a non-zero critical parameter, K (see Fig. 1).
The solutions and stabilities of the resulting amplitude equation could
then be determined. In particular, we would obtain a Ginzburg—
Landau equation to describe temporal and spatial evolution of the
solution amplitude (see Newell and Whitehead 1969; Chaté 1994). Next
we investigate particular solutions to the first order equations. Namely,
steady state and travelling solutions. The steady state solutions are
described by a Hamiltonian system. These solutions are dependent on
the function of integration, K*, which is itself dependent on z. The
travelling solutions consist of horizontally drifting, long vertical plume
solutions, and our analysis indicates that their speed is bounded within
a very small range of values. Finally, we consider the second order
non-linear partial differential equations and construct a solution that
corresponds to vertically travelling pulses down regular plume struc-
tures. We derive an evolution equation for the general plume profile
and calculate the speed of small amplitude pulses.

Biologically speaking, we analyse the mathematical structure of the
governing equations and calculate that the easily-applied linear theory
is adequate to predict the distance between the first plumes to appear
in a well mixed deep suspension of C. nivalis. In other words, by fixing
the dimensions of the container we can predict the distance between
the very first plumes to occur just by analysing the accumulative
behaviour of individual micro-organisms. We also calculate the pro-
files of well established plume solutions, which again can be compared
directly with experimental measurements. Significantly, we investigate
the occurrence of horizontally drifting plumes subject to a forcing flow
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field. We show that it is possible to predict the speed that these
plumes will drift at and to calculate a cut-off value for the forcing,
above which no drifting plume solutions exist. Both these aspects can
be compared directly with experiments to help determine whether the
full theory is consistent. Finally, we provide an analysis of the higher
order equations and calculate solutions for pulses that can travel down
long plume structures. These solutions can be used to provide a
comparison with experimentally determined concentration or flow
field profiles of the travelling pulses (frequently observed in deep
suspensions) after a minor computation. The solutions described
above and their comparison with experiments will form a basis from
which to verify (or point towards problems with) the current theoret-
ical understanding of the mechanisms involved in the phenomenon of
bioconvection.
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Appendix A

The definitions for the functions Ai
j
(f) (from Bees et al. 1998b) are
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.

Below are the definitions for the operators A
1
(F ) and A

2
(F ) used

in Sect. 9:
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and

A
2
(F )"L

z
+ · ((u ·+)u),L

z
L
x
(L

x
L
z
FL2

x
L
z
F#L

y
L
z
FL

x
L
y
L
z
F

!+2
H
FL2

z
L
x
F)#L

z
L
y
(L

x
L
z
FL

x
L
y
L
z
F#L

y
L
z
FL2

y
L
z
F

!+2
H
FL2

z
L
y
F)!L2

z
(L

x
L
z
FL

x
+2

H
F#L

y
L
z
FL

y
+2

H
F

!+2
H
FL

z
+2
H
F ), (139)

where
u"+'+'(Fk). (140)
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