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Abstract. The transient behavior of a class of nonlinear differential
systems representing stage-structured populations is studied. The
qualitative dynamics are described in terms of succession of extrema
for the state variables, or for the integrated difference between two
trajectories. The rules giving the possibilities of extrema are derived,
they characterize the classical stage-structured models. These rules can
be compared with experiments to validate the structure of the model.
An explanation for the disagreement of this transition scheme with
some experiments could be an unexpected interaction with another
variable. A new model taking the interaction into account thus engen-
ders new transition rules, which are to be compared with experiments.
These results are illustrated with experiments on copepods, showing
how the qualitative experimental features can help the construction
and the validation of the models.
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1 Introduction

For many animal species (crustacean, insects, amphibians,2), the
individuals take on different morphological shapes before reaching
their final adult state. This multiplicity of developmental stages gives
rise to individuals with a complex life cycle. Copepods are small
crustacea whose molting processes determine the succession of the
different stages. These different stages are characterized by different
shapes, sizes and behaviors, but above all they play very different roles



in marine ecosystems. When considering the dynamics of such a popu-
lation in the food-web it is therefore very important to determine
precisely the evolution of the population composition stage by stage.
There is thus a strong need to construct models which represent such
complex life cycles.

Because of the multiplicity of the represented stages, the corres-
ponding models often reach high dimensions. Unfortunately, the differ-
ent functions on which the models are constructed are mainly hypo-
thetical, and have rarely been validated experimentally. Moreover, due
to variability and weak sampling rate of data, parameter values, which
are not always identifiable (Walter, 1982), are generally not estimated
with precision. Under such conditions, the entire characterization of
the dynamical behavior of a stage-structured model so that it can be
compared with experimental data appears very difficult. For some
systems, there exists methods of simplification: logical terms can be
considered as an approximation of non-linear functions (Thomas,
1979; Glass and Pasternack, 1978; Snoussi and Thomas, 1993), singular
perturbation methods like the quasi steady state assumption (Segel,
1984, 1988) can be used. The qualitative description of the evolution of
equilibrium, when one parameter is modified, can also be a means of
comparison between model structure and data (Arditi and Ginzburg,
1989; Ginzburg and Akiakaya, 1992). More recently, a dynamical
qualitative methodology has been developed to characterize by means
of graphs the dynamical behavior of a class of biological systems
(Bernard and Gouzé, 1995a, b). With this analysis, the experimentalist
can compare the most immediate information from the data (extrema,
comparison with reference points) with the possible scenarii of such
qualitative events derived from the sign of the jacobian matrix.

Stage-structured models enter in the framework of these models
for which qualitative behavior can be entirely determined by the sign
of the jacobian matrix: the dynamics of stage i is the balance between
an input term in the stage depending on the stage i!1 (recruit-
ment) and an output term (mortality, transfer to the next stage,
dilution) depending on the stage i. Hence, the dynamics of each
variable only depend on the variable itself and on the precedent one
so that the system has a so-called loop structure (Hastings et al.,
1977; Mallet-Paret and Smith, 1990; Bernard and Gouzé, 1995a).
Nevertheless, the high dimension n of general stage-structured models
makes a global qualitative description difficult (it would involve 2A
qualitative states).

In this paper, we focus on the transient behavior of a subsystem
involving only a few successive variables, considering the other vari-
ables as peculiar inputs applied to the subsystem. We derive from the
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structure of the partial system the possibilities of succession of extrema
for these variables. We show that this analysis can also be applied to
a comparison between two experiments, by integrating the state vari-
ables, so that experimental noise is smoothed. We point out that the
usual succession rules may be transgressed if an unexpected interaction
occurs between a state variable and another variable (predation, com-
petition). This theoretical analysis is illustrated by experimental obser-
vations on different experiments with copepods.

2 Structure effects on the succession of extrema

2.1 Presentation and hypothesis

For stage-structured populations, the most common interaction dia-
gram between the variables representing the different stages is present-
ed in Fig. 1a. It is generally assumed that the dynamics of a stage only
depend on this stage (mortality growth, dilution) and on the previous
one (recruitment, egg laying). If x

i
3IR` represents biomass or number

in stage i, a common way for writing down the associated dynamical
system (R) is the following differential equations for the n considered
stages:

(R) G
xR
1
"f

1
(x

n
)!g

1
(x

1
)

2

xR
n
"f
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(x

n~1
)!g

n
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The system (R ) has a loop structure, as defined by Bernard and
Gouzé (1995a). For sake of simplicity, we will denote indices modulo n,
and therefore denote x

0
"x

n
.

Often the variable x
1

describes eggs, and x
n

the adults. Note that
some variables x

i
may have no biological meaning; they can represent

age classes in a stage, or be an aggregation of different stages which
have comparable dynamics.

The functions g
p

(IR`PIR) represent the output process of
the stage p, due to the sum of the transfer to the next stage and
the balance between mortality and growth. The functions f

p
(IR`PIR`) are the transfer from the precedent stage. These func-
tions are usually considered as increasing i.e. for all the indexes
p: ∀x

p~1
3 IR` df

p
/dx

p~1
'0. We assume that the function f

p
and

g
p

are C2.
Some stages may have more complex dynamics. For example in

the classical models of age-structured populations of fishes, several
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Fig. 1. a Graph of interactions for loop models (R ) (see eq. (1)). The dynamics of each
variable depend on the variable itself and on the previous one. b Graph of interactions
for the chain-structured submodel (R

k,p
) (see eq. (2)). Variable x

k~1
acts as an input

variable

stages of fish can spawn (Kishi et al., 1991). Such models, which are
continuous Leslie models do not have a loop structure: the dynamics
of the eggs depend on all the mature stages. Sometimes external
interactions (predation, food,2) can also make what is a priori
a loop structure disappear. In this case we will focus on a part of the
system only, but which still has the following dynamics (assuming
k6p):

(R
k,p

) G
xR
k
"f

k
(x

k~1
)!g

k
(x

k
)

2

xR
p
"f

p
(x

p~1
)!g

p
(x

p
)

(2)

The subsystem (R
k,p

), is thus a non autonomous system with the
input x

k~1
. The advantage in considering this subsystem is that we do

not need to give an analytical formulation for the whole system, which
may not be loop-structured.

Definition 1. ¹he system (2) verifying: ∀i3Mk,2, pN ∀x
i~1

3IR`

df
i
/dx

i~1
'0, will be called chain-structured with increasing interactions

(CSI
2
).

The interaction diagram for a CSI
2
subsystem (R

k,p
) is presented in

Fig. 1b.

294 O. Bernard, S. Souissi



2.2 Theorem for succession of extrema

Theorem 1 (CS2T theorem). Assuming that the variable x
p

obeys the
following differential equation:

(R
p
) MxR

p
"f

p
(x

p~1
)!g

p
(x

p
) (3)

where ∀x
p~1

3IR` df
p
/dx

p~1
'0, then the maxima [resp. minima] of x

p
appear during a phase of decline [resp. growth] of x

p~1
. ¹his transition

scheme for the pair (x
p~1

, x
p
) will be called the classical stage-structured

transition (CS
2
¹) scheme.

Proof. Denote z
p
"xR

p
. By differentiation along time of equation (3) we

obtain:
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Suppose that at time t
0
, x

p
admits an extremum: z

p
(t
0
)"0, thus we

have

zR
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d f
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dx
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) z
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) .

Because d f
p
/dx

p~1
'0, the sign of zR

p
(t
0
) is the same as that of

z
p~1

(t
0
).

If, for example, x
p~1

is increasing then zR
p
(t
0
)'0, and thus z

p
is

increasing for t
0
. Necessarily, z

p
is negative for some t(t

0
, and z

p
is

positive for some t't
0
. It implies that x

p
is decreasing before t

0
and

increasing after it: x
p

admits a minimum.
We have the symmetric result for x

p~1
decreasing.

In this approach, we do not consider the set of trajectories, of zero
measure, such that x

p
and x

p~1
admits for the same time t

0
an

extremum (see Bernard and Gouzé (1995a)). K

Now we propose a series of lemma to characterize the qualitative
behavior of these CSI

2
subsystems, in terms of succession of extrema.

For given (qualitative) initial conditions and for a given trend of the
input x

p~1
, these lemma predict the extrema that may appear.

We first consider the particular case where x
p~1

is constant on
a time interval.

Lemma 1. Assume that x
p~1

is constant for t3]t
1
, t

2
[ . If x

p
obeys the

CSI
2

subsystem (R
p
) then x

p
is monotonous for this period. If x

k
to x

p~1
also obey a CSI

2
subsystem (R

k,p~1
) then these variables are constant for

this period. If x
1

to x
n
obey a loop-structured system (R) then the system

is at equilibrium.
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Proof. See Appendix 1. K

The following lemma deals now with the other case where the input
is strictly monotonous.

Lemma 2. Consider the CSI
2

system (R
k,p

). If at time t
i
variables x

k
to

x
p

are decreasing [resp. increasing], the only possible extrema at time t
i

for these (p!k#1) variables is a minimum [resp. maximum] of variable
x
k

which arises if the input x
k~1

is increasing [resp. decreasing].

Proof: Suppose that variable i (k(i6p) admits a minimum. This
minimum corresponds to a phase of decline of the variable x

i~1
, and

therefore it is not allowed by the CS
2
T theorem.

Lemma 3. Consider the CSI
2

subsystem (R
k,p

). If x
k
is monotonous for

t3]t
0
, t

1
[, then x

j
(k(j6p) can have at the most ( j!k) extrema for

t3]t
0
, t

1
[.

Proof. While x
k

is monotonous, x
k`1

can have at the most one ex-
tremum. Suppose, for example, that it is a maximum: x

k`1
is thus

increasing and then decreasing. During each of these two phases, the
variable x

k`2
can have an extremum. This shows that the variable x

j
has, at the most, ( j!k) extrema. K

For the loop systems, Lemma 3 can be extended and a stronger
result can be given:

Lemma 4. Assume that the system is loop-structured (eq. (1)) with
increasing interactions. If at time t

1
the n state variables of the system are

increasing [resp. decreasing] they will remain increasing [resp. decreas-
ing] for all t7t

1
.

Note. This lemma, consequence of Lemma 2, is a general property of
cooperative systems (Smith, 1988).

2.3 Theorem of comparison between two trajectories

We propose here an important extension of the CS
2
T theorem, which

leads to new ways to determine if the experimental data can be
represented by a model with the assumed structure.

Assume that x1
p
(t) and x2

p
(t) are two different trajectories of the

same CSI
2

subsystem (R
p
) associated with two different initial condi-

tions and two different inputs x1
p~1

(t) and x2
p~1

(t).
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Denote by d
p
(t) the integrated difference between the two trajecto-

ries x1
p
(t) and x2

p
(t):

d
p
(t)"P

t

0

(x2
p
(q)!x1

p
(q)) dq (4)

Theorem 2. If the two variables x1
p
and x2

p
obey the same CSI

2
subsystem

(R
p
) then the pair (d

p~1
, d

p
) satisfies the CS

2
¹ scheme: the maxima [resp.

minima] of d
p

appear during a phase of decline [resp. growth] of d
p~1

.

Proof. Let us consider the following function:
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Since the integrated function f @
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is strictly positive, we obtain the
following relationship:
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with F
p

a strictly positive function.
By applying the same reasoning as in the proof of the CS

2
T

theorem, we have the result.

Important particular case. It is also possible to compare a traject-
ory x

p
(t) of a CSI

2
(R

p
) subsystem with the same trajectory translated

in time, x
p
(t!¹). We choose then x2

p
(t)"x

p
(t) and, for a positive real

¹, x1
p
(t)"x

p
(t!¹). Let us define now the moving average of x

p
on

the time interval ]t!¹, t[:

x6
p
(t)"

1
¹ P

t

t~T

(x
p
(q)!x

p
(q!¹)) dq (5)

We propose now a straighforward extension of Theorem 2 that
characterizes the behavior of the variables which have been filtered by
moving average:

Lemma 5. Assuming that the variable x
p
is driven by a CSI

2
subsystem

(R
p
). then the pair (x6

p~1
, x6

p
), as defined by eq. (5), satisfies the CS

2
¹

scheme.
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Consequences. If the measurements of the state variables are noisy,
which is generally the case in biology, this method provides us a very
simple filter to smooth the data, and remains nevertheless in the
framework of a qualitative analysis. The example presented in Sect. 2.4
demonstrates the practical efficiency of this methodology.

As for Sect. 2.2, we can derive properties of the dynamical behavior
for the integrated difference between two experiments:

Lemma 6. Consider x1
i

and x2
i

the components of two different trajector-
ries of a CSI

2
subsystem (R

k,p
). If there exists a time t

0
, such that:

∀i3Mk,2, pN x1
i
(t
0
)(x2

i
(t
0
) [resp. x1

i
(t
0
)'x2

i
(t
0
)], then the crossing

of two components (i.e. &j3Mk,2, pN, &t
c
s.t. x1

j
(t
c
)"x2

j
(t
c
)) is possible

only for components xi
k
, if the inputs verify x1

k~1
'x2

k~1
[resp.

x1
k~1

(x2
k~1

].

Proof. This is the same demonstration as for Lemma 2, by considering
the variable d

i
. K

Lemma 7. Consider x1
i

and x2
i

the components of two different trajecto-
ries of a CSI

2
subsystem (R

k,p
). If for all t3]t

0
, t

1
[: x1

k
(t)(x2

k
(t), then

two components x1
j

and x2
j

(k(j6p) can intersect at the most ( j!k)
times for t3]t

0
, t

1
[.

Proof. This is an application of Lemma 3. K

Lemma 8. Consider x1
i

and x2
i

(i3M1,2, nN) the components of two
different trajectories of a loop-structured system with increasing inter-
actions. If at time t

1
, we have for all the components x1

i
(t
1
)(x2

i
(t
1
) then

∀t7t
1

x1
i
(t)(x2

i
(t).

Proof. This is an application of Lemma 4. Note that it is a general
property of cooperative systems (Smith, 1988). K

2.4 Application

The most common application of the CS
2
T scheme is the well-known

observation of the dynamics of a cohort, obtained by examining the
evolution of individuals initially at the same stage. The successions of
picks, which is well known from people studying development of
stage-structured populations, fit straightforwardly the CS

2
T scheme.

Using experimental data, we propose here to show that this CS
2
T

scheme is also respected for the more complex case where all the stages
are present at the initial time. To clarify our analysis, we first use the
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Fig. 2. Example of data processing by moving average for the small copepodite stage
of Euterpina acutifrons. The symbols represent the original data, the continuous line is
the moving average (¹"6 days) interpolated by splines function (MATLAB)

result of Lemma 5 to process the data with the moving average filter
(see an example of data processing on Fig. 2). Figure 3 presents the
processed data for the copepod Euterpina acutifrons. The experimental
qualitative behavior seems to be in agreement with the CS

2
T scheme

through the 120 days of the experiment when considering the pair
(large naupliar stage, small copepodite stage) for the numerous ob-
served extrema. It can be seen that the level of noise is very low,
because it has been smoothed by the filter. Thanks to the filtering effect
of the integration, a qualitative analysis can be performed, even for
very noisy data, for which the direct observation of extrema would be
too uncertain.

Figure 4 presents a comparison between two different experiments
with the copepod ¹emora stylifera. For these two experiments the large
naupliar stage and the small copepodite stage have been integrated
along time (cf eq. (4)). It can be seen that the behavior of this pair
follows the CS

2
T scheme given by Theorem 2.

This methodology may involve the selection of ‘‘reference experi-
ments’’ to which a given experiment could be compared. If the model is
validated for such a reference experiment, the criteria based on the
qualitative comparison are a way for the experimentalist to verify
whether a given experiment can also be explained by the structure of
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Fig. 3. Development of Euterpina acutifrons over several generations (Yassen 1984).
Data processed by moving average (¹"6 days) for (A) stage p!1 (large naupliar
stage) and (B) stage p (small copepodite stage). The extrema for the copepodite are
identified by gray strips

the model. The advantage is then to have more tests to compare an
experiment and the structure of the model.

3 An unexpected interaction: a reason to transgress the transition rules

3.1 Introduction

Suppose now that an experiment is performed, and that the analysis of
its qualitative features does not follow the CS

2
T scheme. Clearly it shows
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Fig. 4. Comparison of two experiments with ¹emora stylifera. (A) Large naupliar
stage: d

3
(t)": t

0
(x2

3
(q)!x1

3
(q)) dq. (B) Small copepodite stage: d

4
(t)": t

0
(x2

4
(q)!

x1
4
(q)) dq. The extrema of d

4
are represented by gray strips

that the structure of the model is not adapted to the representation of
this experiment. More precisely, if stage x

i
has an extremum which is

not allowed by the CS
2
T scheme for the observed trend of x

i~1
this

would mean that the dynamics of stage i can not be described by the
equation (R

i
). Note that this conclusion is independent of the dynam-

ics of the other stages.
We assume here that the structure of the model is consistent with

other experiments, where, for example, ideal growth conditions occur.
In other words, we suppose that the stages definition has been
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validated, and therefore that the noticed experimental incompatibil-
ities with the CS

2
T scheme are not due to aggregation of heterogen-

eous stages.
In this section, we will go further and try to help the experimentalist

to understand why his model did not fit his experiment, in order that he
can build a correct model. For this we will show that an unexpected
interaction can change the classical transition rules. This interaction
may have several sources such as food limitation, predation, competi-
tion, 2 We will take as an example the case of predation, which often
corresponds to the phenomenological question that the biologist wants
to answer: does species a eat species b? Which stages are mostly eaten?
We will show that observation of extrema not matching the CS

2
T

transition scheme can highlight such an interaction between two
variables.

3.2 Consequence of an unexpected interaction

Assuming, for example, that some predator of concentration u eats the
stage p. The subsystem driving this stage depends now on two inputs
x
p~1

and u:

(Ru
p
) MxR

p
"f

p
(x

p~1
)!g

p
(x

p
)!h

p
(u, x

p
) (6)

The logical assumption that the loss due to predation increases
when u increases implies that the function h

p
((IR`)2PIR`) verifies:

∀(u, x
p
)3(IR` )2,

Lh
p

Lu
'0 .

Theorem 3. ¸et x
p

be driven by the subsystem (Ru
p
) where

∀(u, x
p
)3(IR`)2, Lh

p
/Lu'0 and df

p
/dx

p~1
'0. If x

p~1
increases

and u decreases [resp. x
p~1

decreases and u increases]x
p

can have
at the most one extremum, and this extremum is a minimum [resp.
a maximum].

Proof. If we consider the time t
0

when x
p

admits an extremum, we
have:

zR
p
(t
0
)"

df
p

dx
p~1

z
p~1

(t
0
)!

Lh
p

Lu
uR (t

0
)

Since z
p~1

(t
0
) and uR (t

0
) have opposite signs, using the same prin-

ciple as for the CS
2
T theorem, we can derive the sign of zR

p
(t
0
). K
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Table 1. Transition rules for the subsystem (R u
i
) : The new criteria of appearance of

extrema for the variable x
i
in relation to the trend of variables x

i~1
and u

Note that if x
p~1

and u have the same trend, both extrema are
a priori possible for x

p
. Especially one can find extrema not compatible

with the CS
2
T theorem (see Table 1).

Application. If an experimental extremum for variable x
p

appears
which disagrees with the CS

2
T theorem, an interaction between

variables x
p
and u can be hypothesized. By examining the trend of the

three variables x
p~1

, x
p

and u it can be verified if the rules given by
Theorem 3 agree with the experiment. This can therefore constitute an
indirect method to highlight an interaction between predators and
individuals in a stage.

When there are interactions, it is still possible to compare two
different experiments. Furthermore we shall see that if the input is the
same for both experiments, the CS

2
T rules remain valid.

Theorem 4. Consider x1
p
and x2

p
two different trajectories from subsystem

(Ru
p
) associated with two sets of input (x1

p~1
, u1) and (x2

p~1
, u2), respec-

tively. Assume that ∀x
p
3IR`, df

p
/dx

p~1
'0 and ∀(u, x

p
)3(IR`)2,

Lh
p
/Lu'0, then the same rules as for ¹heorem 3 are satisfied for

(d
p~1

, º
p
, d

p
), with d

p
(t)": t

0
(x2

p
(q)!x1

p
(q))dq and º

p
(t)": t

0
(u2

p
(q)!

u1
p
(q))dq.

Proof. Consider the function s(x
p~1

, x
p
, u)"f

p
(x

p~1
)!g

p
(x

p
)!

h
p
(u, x

p
), verifying Ls/Lx

p~1
'0 and Ls/Lu(0. As for the proof of

Theorem 2, we define:

u
2
(a)"s (ax2

p~1
#(1!a)x1

p~1
, ax2

p
#(1!a)x1

p
, au2#(1!a)u1)
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Then, the principle used for Theorem 2 leads us to the following
relationship:

d®
p
"d0

p~1
C#d0

p
C!ºQ H

with C, K and H strictly positive functions of the variables
(xj

p~1
, xj

p
, u i ), j"1,2.

By considering the time when d
p

reaches an extremum, we can
conclude in the same way as for Theorem 3. K

If the predator dynamics are the same for both experiments (i.e. u is
the same), a stronger result can be derived:

Theorem 5. Consider x1
p
and x2

p
two different trajectories form subsystem

(Ru
p
) associated with the sets of inputs (x1

p~1
, u) and (x2

p~1
, u), respective-

ly. Assume that ∀x
p
3IR`, df

p
/dx

p~1
'0, then the pair (d

p~1
, d

p
)

follows the CS
2
¹ scheme. K

Proof. The proof is the same as for Theorem 4, with ºQ "0.

3.3 Application

In the experiment of Fig. 5, the copepod Euterpina acutifrons grows
with another copepod ¹emora stylifera. It is hypothesized (Yassen,
1984) that adult stages of ¹. Stylifera eat small stages of E. acutifrons.
Hence, contrary to a lot of experiments where E. acutifrons is reared
alone, it can be seen (Fig. 5) that the CS

2
T scheme is not respected for

the small naupliar stage: a maximum of naupliar stage can be observed
during a phase where the eggs, the previous stage, are still increasing.
As the number of adults of ¹. Stylifera is increasing, this confirms the
suspected interaction with ¹. stylifera. The first naupliar stages are
generally non-feeding stages therefore we suggest that the interaction is
not a competition for food but a predation of the naupliar stages of
E. acutifrons.

In another experiment (Fig. 6), eggs and the small naupliar stage
are observed for the copepod Acartia clausi. In this experiment, a min-
imum of the nauplii can be seen during a declining phase of the eggs,
and a maximum of nauplii follows during an increasing phase of the
eggs. These two extrema are not compatible with the CS

2
T scheme.

For these species, a phenomenon of cannibalism can be hypothesized:
adults may eat their own nauplii. As the minimum of the nauplii
appears during a phase where adults are decreasing, and the maximum
during an increasing phase of the latter, they are now allowed by the
result of Theorem 3.
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Fig. 5. Bispecific culture Euterpina acutifrons—¹emora stylifera: data processed by
moving average (¹"4 days) for (A) eggs, (B) small naupliar stage of E. acutifrons and
(C) adults of ¹. stylifera. The discussed extremum of the small naupliar stage of E.
acutifrons is represented by a gray strip

4 Conclusions

Models describing stage-structured populations may be very complex,
but they are generally loop-structured and have monotonous interac-
tions. Rules governing the succession of qualitative events can therefore
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Fig. 6. Bispecific culture Euterpina acutifrons—Acartia clausi: data processed by mov-
ing average (¹"6 days) for (A) eggs, (B) small naupliar stage and (C) adults of A.
clausi. The discussed extrema of the small naupliar stage of A. clausi are represented by
gray strips

be derived both for the scenarii of extrema for the state variables and
for the integrated value of two different trajectories. Some typical
results for these systems are shown: during a period where stage i is
decreasing, the stage (i#k) can have at the most k extrema. This set of
rules gives the experimentalist qualitative criteria with which to test his
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model. He can then verify experimentally these rules, in other words
compare the structure of his model with his experiments. If the latter
are always respected, the structure of the model will be validated.

Sometimes some stages have more complex kinetics, but other
stages still have classical stage-structured dynamics. In the work pre-
sented here the system is not considered as a whole, and the experi-
mentalist can test separately the structure of the sub-model describing
the stages with the classical stage-structure. More precisely, some parts
of the model are not required to be explicitly described. It means that
the methodology remains valid for complex interactions linking some
stages with external variables.

We have shown that the behavior of the stage may qualitatively
change if an unexpected interaction between a stage and another
variable occurs. In this case the method described may be of substan-
tial help in discovering or proving non-directly observable inter-
actions. In using this methodology we suspect there exists a predation
relationship between the two copepods E. acutifrons and ¹. stylifera.
We have also hypothesized an unexpected cannibalism relationship in
the adults of A. clausi on his own nauplii.

With such an analysis, the experimentalist can use an information
which is easy to obtain because of its qualitative aspect, even if the data
are noisy. Since neither the parametric values nor the precise math-
ematical formulation of the functions is required, this information is
very robust and strong enough to invalidate by comparison with
experiments an a priori supposed structure.
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Appendix 1: Proof of Lemma 1

For x
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2
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p
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on the same way, the mth derivatives z(m)
p

(t
0
)"0 for all m, so that the

variable x
p

does not have a strict extremum.

If x
k
to x

p~1
obey a CSI

2
subsystem (R

k,p~1
), we have for t3]t
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, t

2
[:
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dx

p~2

z
p~2

(t)!
dg
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dx
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therefore z
p~2

"0. The calculation of zR
p~2

shows that z
p~3

"0, and
so on until z

k
"0.

If the system is loop-structured, this reasoning proves that ∀i,
z
i
(t)"0: the system is at equilibrium.
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