
J. Math. Biol. (1998) 37: 61—83

The evolution of slow dispersal rates:
a reaction diffusion model

Jack Dockery1, Vivian Hutson2, Konstantin Mischaikow3,
Mark Pernarowski1

1Department of Mathematical Sciences, Montana State University, Bozeman,
Montana 59717, USA
2School of Mathematics and Statistics. Sheffield University, Sheffield, S3 7RH, UK
e-mail: v.hutson@sheffield.ac.uk
3Center for Dynamical Systems and Nonlinear Studies, School of Mathematics,
Georgia Institute of Technology, Atlanta, GA 30332, USA

Received: 29 January 1997 / Revised version: 23 September 1997

Abstract. We consider n phenotypes of a species in a continuous but hetero-
geneous environment. It is assumed that the phenotypes differ only in their
diffusion rates. With haploid genetics and a small rate of mutation, it is shown
that the only nontrivial equilibrium is a population dominated by the slowest
diffusing phenotype. We also prove that if there are only two possible pheno-
types, then this equilibrium is a global attractor and conjecture that this is true
in general. Numerical simulations supporting this conjecture and suggesting
that this is a robust phenomenon are also discussed.
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1 Introduction

Dispersal of organisms has important effects both from an ecological and
genetic point of view in a variety of situations. These effects have been much
studied recently; wide-ranging discussions of continuous models may be
found in [30, 10, 27, 2] and of discrete models in [28]. However, the evolution
of dispersal itself, although of obvious importance in this context, has received
a great deal less attention, although over the last few years more research has
been directed to its study. A recent review [21] contains a useful survey and
additional discussion, and further references may, for example, be obtained
from [31, 4, 24, 25].

A conclusion that is common to a large class of models (see [21]) is that
variability in space tends to reduce dispersal rates. The purpose of the present
investigation is to focus on the effect of spatial variability on its own by
considering a haploid model of a species where the only phenotypic difference



is the dispersal rate, thus excluding all other effects, and to enquire whether the
above conclusion is confirmed. Although there are considerable differences in
detail, a number of investigations that have a broadly similar direction and con-
clusion have been carried out; see for example [24, 25, 9, 22, 35, 36, 13]. The
model adopted here is continuous in space and time, and the basic equations
are of reaction—diffusion type. The general conclusion is that spatial variation
on its own causes a reduction in dispersal rates both in the absence of
mutation and with a small mutation rate, and the conclusion is robust in that
it remains valid even when slow diffusers suffer a penalty in their birth rate.

We consider n phenotypes of a species with densities u
i
(x, t), respectively,

at the point x in the bounded domain XLRm at time t. Dispersal is modelled
by a diffusion approximation, and phenotype i is assumed to have diffusion
rate d

i
, with 0(d

1
(d

2
( . . . (d

n
. The per-capita rate of increase of each

phenotype is identical, so phenotypes differ only in their diffusion rates, and
we assume that at low densities this rate of increase is represented by the
function a, which varies in space but is time independent. The genetics are
assumed to be haploid, and mutation is represented by the matrix eM, where
e is a small positive scalar. The structure of M is of course limited by biological
constraints, but it turns out that our conclusions require only very weak
conditions on M (see (H2) in Sect. 2), which are certainly satisfied in almost
any conceivable biological situation. The basic equations take the form

Lu
i

Lt
"d

i
Du

i
#u

iAa (x)!
n
+
j/1

u
jB#e

n
+
j/1

M
ij
u
j

on X]R
`

(16i6n) , (1.1)

where D is the Laplacian. Zero Neumann conditions Lu
i
/Ll"0 (where L/Ll

signifies differentiation in the direction of the outward normal) are imposed on
the boundary LX of X, representing the condition of no migration across LX.
When e"0, i.e., there is no mutation, we shall require that there be a so-called
‘semi-trivial’ equilibrium on each axis, that is a stationary solution
º

i
"(0, . . . , 0, uJ

i
, . . . , 0), where uJ

i
(x)'0 (x3X1 ); conditions ensuring this

are discussed in Sect. 2, where technical assumptions are given in detail.
In outline, the aims of the analysis are as follows. We wish to show that if

e"0, the phenotype with the smallest diffusion rate, that is, the first, will be
favored. In terms of the system (1.1) this means that º

1
is a global attractor for

all interior orbits, that is, for orbits with non-negative values none of which is
identically zero. We wish further to show that this broad conclusion remains
basically unaltered for small mutation rates, the precise meaning of this
statement being clarified below. From the point of view of the mathematical
theory of reaction—diffusion systems, this raises interesting questions because
the form of the reaction terms are such that they do not favor one phenotype
over another. Thus, it is the difference in the diffusion rates that principally
drives the dynamics of the system.

The plan of this paper is as follows. In Sect. 2, the basic assumptions are
given in detail and certain background results are stated. In Sect. 3, the case

62 J. Dockery et al.



e"0 is first considered, and the key result that lies at the heart of the analysis
is established: º

1
is asymptotically stable, whereas all the º

i
(i72) are

unstable. Remarkably, this result holds independent of the form of a(x), so
long as it is not constant. This result suggests that the interior orbits are
globally attracted to º

1
, with the consequence from a biological point of view

that evolution always favors the slowest diffuser. This conclusion is in accord-
ance with the tenor of the remarks in the introductory paragraphs. The main
thrust of the analysis that follows is first to attempt to show that the local
stability results are essentially unmodified when small mutation acts. We
show broadly that the equilibrium º

1
perturbs into the positive cone — that is,

the biologically feasible region — yielding an equilibrium º
1
(e), say, and that

º
1
(e) is asymptotically stable, whereas the other º

i
do not enter the feasible

region. We also consider in detail (Theorem 3.7 and Corollary 3.8) how the
form of º

1
(e) depends on the mutation matrix.

The second main object, considered in Sect. 4, is to see how far global
conclusions may be drawn. Using results from the theory of monotone
dynamical systems (see [19, 17, 32] for a general discussion) we first show that
if e"0, then º

1
(0)"º

1
is globally stable in the case of two phenotypes. For

n'2, this question appears to present a difficult mathematical problem. We
conjecture, but are unable to prove, that this result remains true. We then
consider the global stability of º

1
(e). Using a result based on the perturbation

of a Morse decomposition, we show that for small e, º
1
(e) is globally stable

whenever º
1
(0) has this property. Therefore, global stability holds when

n"2, and also if the conjecture is valid.
Section 5 contains a computational investigation partly undertaken to

confirm the global convergence discussed above. However, the main question
we consider concerns the robustness of the result. The question discussed is
the strength of the evolutionary force, that is whether or not a small penalty
for slow diffusers, as might be caused by a lower birth rate, would reverse the
conclusions. Numerical studies are described in detail, and we show that the
evolutionary force is rather strong: a considerable penalty is allowed without
modification of the results. In Sect. 6, the results are summarized and some
further directions of research on elaborations of the model are discussed.

2 Preliminaries

Here the basic assumptions are listed and some well known results that will be
used later are recalled. The reaction—diffusion system (1.1) is first rewritten in
more convenient form. Let º"(u

1
, . . . , u

n
) and define the n]n matrix

D"diagMd
1
, . . . , d

n
N. Put 1"(1, . . . , 1) and let ( ,' be the scalar prod-

uct in Rn. Then (1.1) may be compactly written in the following form:

º
t
"DDº#[a(x)!S1, ºT]º#eMº ,

(2.2)
Lº/Ll"0 (x3LX) ,
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where L/Ll denotes differentiation in the direction normal to LX. Neumann
boundary conditions are assumed throughout although much of the analysis
easily extends to more general boundary conditions. The domain X is taken to
be open and bounded with smooth boundary, and a3C2`a (XM ). The following
conditions are imposed throughout.

(H1) 0(d
1
(d

2
( . . . (d

n
.

(H2) The n]n matrix M is constant. Also, M
ii
(0 (16i6n) and M

ij
70

(16i, j6n, i9j).

It may be remarked that, because of the special form of the basic equations
(2.2), there is no loss in generality in assuming the strict inequality d

j
(d

j`1
in

(H1). For if d
j
"d

j`1
, the jth and ( j#1)th equations may be added to yield

a new equation for u
j
#u

j`1
of exactly the same form as the other equations.

As the setting for the study of the equilibria of (2.2) we shall use the space
[C2`a(XM )]n. The norms in C2`a(XM ) and Ca (XM ) are denoted by E )E

2,a and E )Ea
respectively. Let K` denote the cone of non-negative functions in the particu-
lar space under consideration. We takeD"Mu3C2`a : Lu/Ll"0 on LXN and
consider operators DnP[Ca]n.

Consider first the situation on the ‘axes’ of (2.2), that is, the sequence of
scalar problems obtained by setting all the u

i
zero except for one component.

The following well known result (see [20] for example) will be central in the
sequel. Consider the eigenvalue problem

kD/#h/"j/ , (2.3)

where k'0, h3C2`a(XM ) and as always zero Neumann conditions are as-
sumed. It is well known that there is a unique eigenvalue j (h, k), say, called the
principal eigenvalue, such that the associated ‘principal eigenfunction’ (unique
up to a multiplicative constant) is strictly positive.

Lemma 2.1. ¹he principal eigenvalue j (h, k) of (2.3) is a continuous non-
increasing function of k, and is strictly decreasing if h is not a constant.
Furthermore, the following hold.

(i) j (h, k)CmaxXM h as kP0.
(ii) j (h, k)BhK as kPR, where hK denotes the average of h over XM .
(iii) If h

1
(x)7h

2
(x) for x in X, then j(h

1
, k)7j (h

2
, k) with strict inequality if

h
1
,D h

2
.

Lemma 2.2 [20]. Consider the initial value problem for the scalar equation

Lu

Lt
"kDu#u (h!u) .

If j (h, k)60, then 0 is the global attractor for positive solutions. If j(h, k)'0,
then there is a unique, strictly positive steady-state solution which is a global
attractor for non-trivial positive solutions, the convergence in both cases being
in E )E

=
.
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In addition to (H1) and (H2) we shall assume the following throughout.

(H3) The function a is non-constant and j(a, d
i
)'0 for all i.

Note that by Lemma 2.1, for this condition to hold it is necessary that
a(x)'0 for some x3X. Also, in view of Lemma 2.2, the condition (H3)
ensures that there is a semi-trivial equilibrium º

i
"(0, . . . , 0, uJ

i
, 0, . . . , 0) on

the ith axis for each i. It is clearly essential that j (a, d
1
)'0 as otherwise all

orbits of the system will tend to O"(0, . . . , 0). The assumption used is not
indeed essential and the analysis may be carried through without it, but it
represents the most general situation and simplifies the flow of the account.
We note that if a is positive for some x3X, from Lemma 2.1(i), (H3) holds if
every d

i
is small enough. Alternatively a''0, by Lemma 2.1(ii), is also suffi-

cient.
We next turn to the dynamics of the full system (2.2). This type of system

has been much studied, see the extensive discussion in [23] for example, or the
outlines in [16, 6] of the basis for several of the following observations. We
first note that local existence together with ¸= a priori bounds ensure the
global existence of classical solutions. The a priori bounds and indeed dissi-
pativity follow from the next result.

Set a*"max
x|XM

a (x) and take any A'a*. Let wN be the solution of the
ordinary differential equation

dwN
dt

"wN (a*!wN ) ,

with wN (0)"A; clearly wN is strictly decreasing and lim
t?=

wN (t)"a*.

Lemma 2.3. Assume that eM
ij
6a* for all i, j with i"j. For some ¹'0, let

u be a classical solution of the system (2.2) on (0, ¹] and be continuous on
[0, ¹]. Suppose that 06u

i
(x, 0)6A for x3XM and all i. ¹hen for all i, on

XM ](0, ¹],
06u

i
(x, t)6wN (t) ,

and if u
i
(x, 0),D 0, then u

i
(x, t)'0.

Proof. This is a direct application of [23, Theorem 1.2-6]. In the notation of
that theorem ¸

i
"D!L/Lt and the reaction terms of the system (2.2) are

f
i
(x, u). Let (v

1
, . . . , v

n
), (w

1
, . . . , w

n
) satisfy the same differentiability condi-

tions as u, and define the region

Q"M(x, t, u) :v
i
(x, t)6u

i
6w

i
(x, t), ∀i, x, t3X](0, ¹] .

Choose v
i
(x, t)"0, w

i
(x, t)"wN (t) for all i. We need to show that for each i,

¸
i
v
i
#f

i
(x, uJ )70 (2.4)

for all (x, t, uJ )3Q with uJ
i
"v

i
, and

¸
i
w
i
#f

i
(x, uJ )60 (2.5)
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for all (x, t, uJ )3Q with uJ
i
"w

i
. The relation (2.4) is easy to check and (2.5) is

verified as follows using the definition of wN .

¸
i
w
i
#f

i
(x, uJ )"!

Lw
i

Lt
#d

i
Dw

i
#w

iCa!w
i
!+

j9i

uJ
jD#eM

ii
w
i
#e +

j9i

M
ij
uJ
j

"!wN [a*!a!eM
ii
]! +

j9i

uJ
j
(wN !eM

ij
)

60 ,

since a(a*(x3XM ), M
ii
(0 by (H2), and eM

ij
(a*(wN (t) for t70. h

Our final remark is that the system generates a semi-flow on [C(XM )]n. This
follows from results of [34], see also [26] for a convenient review. The detailed
verification is rather straightforward and is given for example in [32] or [6].
The existence of a global attractor is standard [12].

3 Equilibria and their stability

We start by considering the situation when there is no mutation, that is e"0.
Recall from Sect. 2 that it is assumed that the diffusion rates d

i
are such that

there is a (semi-trivial) equilibrium on each axis: º
1
, º

2
, . . . , º

n
. The first

result, Theorem 3.2, is central. It states that for the full system (2.2), º
1

is
asymptotically stable, but all º

i
(i72) are unstable; furthermore there are no

other equilibria in the positive cone. This might be thought to be a rather
surprising result from a mathematical point of view as it holds without
restriction on the spatial environment described by the function a. From
a biological point of view it suggests but does not prove that evolution is
always towards a lower diffusion rate. We leave until the next section a de-
tailed discussion of the extent to which we are able to justify this statement
without and with mutation.

Next, the behavior of equilibrium when mutation is ‘switched on’ is
examined with the aim of seeing whether the broad conclusions for e"0 go
over. We show that under minimal conditions (H2) on the mutation matrix,
º

1
remains in the positive cone and retains its stability, and that under

stronger but natural conditions, it moves into the interior of the positive cone.
On the other hand, the other equilibria º

i
(i72) do not perturb into the

interior.
A preparatory result is needed. Let u3C2`a be fixed and define linear

operators ¸
1
, ¸

2
:DPCa by setting

¸
1
[u; d]v"dDv#(a!u)v ,

¸
2
[u; d]v"dDv#(a!2u)v .

Denote the principal eigenvalue of ¸
1

by j (u, d ); the principal eigenvalue
of ¸

2
will then be j(2u, d).
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Lemma 3.1. ¹he following hold

j(uJ
i
, d

j
) G

'0 ( j(i) ,

(0 ( j'i) ,
(3.6)

j (2uJ
i
, d

i
)(0 . (3.7)

¸
1
, ¸

2
have bounded inverses whenever the corresponding principal eigenvalue is

less than zero. Furthermore, then (!¸
1
)~1 and (!¸

2
)~1 are positive in the

sense that v70 implies that !¸~1
1

v70 and !¸~1
2

v70, and if v,D 0 the
inequalities are strict.

Proof. By definition uJ
i
, which is of course a positive function, satisfies the

equation
d
i
DuJ

i
#uJ

i
[a!uJ

i
]"0 .

That is, uJ
i
is the principal eigenfunction of ¸

1
[uJ

i
; d

i
] with principal eigenvalue

zero. Hence (3.6) follows immediately from (H1) and the fact that the principal
eigenvalue is a strictly decreasing function of d (Lemma 2.1). Since uJ

i
'0, it

follows from Lemma 2.1(iii) that j(2uJ
i
, d

i
)(j (uJ

i
, d

i
)"0. We next want to

prove that ¸
1

is invertible under the given condition, the proof for ¸
2

being
similar. From standard a priori estimates ([26] or [30, p. 15]), there is a c'0
such that

EuE
2,a6c(E¸

1
E
0,a#EuE

0,a ) .

From this estimate and standard embedding results [11], it follows from
Theorem 12.12 [37] that ¸

1
is a Fredholm operator. Since 0Np (¸

1
), where

p denotes the spectrum, the operator is invertible. The positivity is a conse-
quence of the maximum principle, see [15, Theorem 16.6].

The main issue in the following theorem is the question of stability of the
semi-trivial equilibria º

i
; the result is in essence close to that of Hastings [13].

The proof depends on knowledge of the sign of the principal eigenvalue of the
linearised system at each º

i
. At first sight this seems to present a difficult

problem because the uJ
i

are not known explicitly — each is a solution of
a nonlinear elliptic problem. However, one observes that, as a is not constant,
the principal eigenvalues of the linear operators ¸

1
(uJ

i
; d

k
) decrease as k in-

creases (by (H1) and Lemma 2.1). The signs follow on noting that j(uJ
i
, d

i
)"0.

The details of the proof are given in Lemma 3.1.

Theorem 3.2. Assume that e"0. ¹hen º
1

is hyperbolic and asymptotically
stable, whereas º

i
is unstable for i72 (although not necessarily hyperbolic).

Except for O there are no other equilibrium in K`.

Proof. For fixed i (16i6n) put u
i
"uJ

i
#v

i
, u

k
"v

k
(k9i). Then lineariz-

ation leads to the system

Lv
i

Lt
"¸

2
[uJ

i
; d

i
]v

i
!uJ

i
+
jOi

v
j
,

(3.8)
Lv

k
Lt

"¸
1
[uJ

i
; d

k
] v

k
(k9i) .
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It is sufficient to check the spectrum of the linearization, see [26, Theorem
6.2], and from compactness we need only consider the sign of the largest
eigenvalue of the above system. From the special form of (3.8) it is clear that
the largest eigenvalue is the largest of the eigenvalues of ¸

1
[uJ

i
; d

k
] and

¸
2
[uJ

i
; d

i
]. If i"1, from Lemma 3.1 all these eigenvalues are negative. If i72,

then j (uJ
i
, d

k
)'0 for k"1, . . . , (i!1).

To prove the final assertion of the theorem we argue by contradiction. By
a rearrangement of indices we may assume that the equilibrium is of the form
(uN

1
, uN

2
, . . . , uN

i
, 0, . . . , 0) where 26i6n and each uN

j
70 but uN

j
,D 0. Then for

16j6i, uN
j
satisfies the equation ¸

1
[uN ; d

j
]uN

j
"0 where uN "+ uN

j
. However,

from Lemma 2.1 this is impossible.
We now examine the equilibria of (2.2) when there is a small mutation rate,

that is e'0 is small. Define the operator F :Dn]RP[Ca(XM )]n by setting

F (u, e)"DDu#[a!S1, uT]u#eMu .

Equilibria of the system (2.2) are thus solutions of F (u, e)"0, and the plan is
first to use the implicit function theorem to describe the perturbation of
º

1
"(uJ

1
, 0, . . . , 0).

The Frechét derivative of F at (º
1
, 0) is the linear operator

L:DnP[Ca(XM )]n given by

LU"DDU#[a!S1, º
1
T]U!S1, UTº

1
,

and from the form of this in components,

(LU)
1
"¸

2
[uJ

1
; d

1
]U

1
!

n
+
j/2

uJ
1
U

j
,

(3.9)
(LU)

i
"¸

1
[uJ

1
; d

i
]U

i
(i72) ,

it is clear that
p(L)Lp(¸

2
[uJ

1
; d

1
])Zn

i/2
p (¸

1
[uJ

1
; d

i
]) .

It follows from Lemma 3.1 that p(L) lies in the open left half plane, and from
an argument similar to that used in the proof of Lemma 3.1, L has bounded
inverse. Because of the simple form of (3.9), the structure of L~1 may be
obtained explicitly:

!L~1"

P
1

Q
2

2 2 Q
n

0 P
2

0 2 0

F F

0 0 2 P
n~1

0

0 0 2 0 P
n

,

where P
1
"!¸~1

2
[uJ

1
; d

1
], P

i
"!¸~1

1
[uJ

1
; d

i
] for i72. Thus from

Lemma 3.1, each P
i
is a positive operator, and the Q

i
are of course bounded.

We have thus proved the following.
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Lemma 3.3. L has a bounded inverse and !L~1 has diagonal elements which
are positive operators.

Theorem 3.4. ¹here is an e
0
'0 such that the system (2.2) has an equilibrium

º
1
(e)3[C

2`a(XM )]n for D eD(e
0

with º
1
(0)"º

1
, and º

1
(· ) is real analytic.

Further, this solution is hyperbolically stable.

Proof. An analytic version of the implicit function theorem is used, see [14,
p. 15]. From standard results on products of Hölder continuous functions (see
[39, p. 268]) it is easy to show that F is continuous. Indeed since F is quadratic
in º and linear in e, it is clear that it is analytic. Since L has a bounded
inverse, the existence and analyticity follow. The hyperbolicity and stability
are consequences of the corresponding property for º(0) [14]. h

This theorem shows that º
1

perturbs smoothly under e. However, we
want to prove that º (e) is a biologically relevant solution, that is it lies in the
closed positive cone. The following results show that a great deal of informa-
tion concerning º (e) may be obtained under minimal assumptions on M,
which are biologically natural. A preliminary result concerning the powers of
M is needed; its proof follows from Lemma 8.1 in the Appendix.

Lemma 3.5. For each i with 26i6n there are precisely two possibilities:

(i) ¹here is a p"p (i) with 16p6n!1 such that

(Mk)
i1 G

"0

'0

(16k(p) ,

(k"p) .

¹he irreducibility of M [1] is sufficient (but not necessary) for this to hold
for all 26i6n.

(ii) (Mk)
i1
"0 (k71).

Corollary 3.6. Suppose mutation is ‘step-wise’ [3], that is in addition to (H2) the
entries of M above and below the principal diagonal are strictly positive and all
other off-diagonal elements are zero. ¹hen p(i)"i!1.

Theorem 3.7. Put º] (e)"º
1
(e)!º

1
. Fix i with 26i6n and suppose that

for this choice of i case (i) in ¸emma 3.5 holds. ¹hen for 0(e(e
0
,

º] (e)
i
"ep(i)v

i
#O(ep(i)`1) (3.10)

where v
i

is independent of e and v
i
(x)'0 (x3XM ). If case (ii) holds, then

º] (e)
i
,0 on XM .

Proof. From Theorem 3.4, º] (e) is a real analytic function of e, so the aim is to
show that the first non-zero term in the Taylor series expansion of the ith
component is of the form (3.10). Define Lkeº] (0)"[Lkº] (e)/Lek]e/0

, and note
that º] (e) satisfies the equation

Lº] (e)"!eM (º
1
#º] (e))#S1, º] (e)Tº] (e) .
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Since º] (0)"0, differentiation of this equation yields on setting e"0,

LLeº] (0)"!Mº
1
, (3.11)

LLkeº] (0)"
k~1
+
j/1
A

k

k!jB(1, Lk~je º] (0)'Ljeº] (0)!kMLk~1e º] (0) (k72).

(3.12)

By Lemma 3.3, L is invertible, Thus (3.11) and (3.12) may be solved by
multiplying (3.11) by L~1, substituting for Leº] (0) in (3.12) with k"2, and
continuing inductively to back substitute in (3.12) with k"3, 4, . . . . Recall-
ing that º

1
"(uJ

1
, 0, . . . , 0) and i72, one readily sees that if [L jeº] (0)]

i
"0

for j"1, . . . , k!1, then the ith component of the first term on the right
hand side of (3.12) is zero. It follows from the form of L~1 that [Lkeº] (0)]

i
is

non-zero if and only if [MLk~1e º] (0)]
i
90. That is a non-zero term appears

only through the second term in (3.12), and using Lemma 8.1 (and the remark
following the proof), we obtain for each i

[Lkeº] (0)]
i
"0 (k(p (i)) ,

[Lp(i)e º] (0)]
i
"k![(!L~1M)p(i)º

1
]
i
.

The lemma also shows that this term is positive. h

Corollary 3.8. For the step-wise mutation of Corollary 3.6,

[º] (e)]
i
"ei~1v

i
#O(ei) (26i6n) .

The biological implications of Theorem 3.7 and Corollary 3.8 may be
briefly summarized as follows. Under minimal conditions on the mutation
matrix M, the stable equilibrium º

1
"(uJ

1
, 0,2, 0) never leaves the positive

cone (and so is always feasible) and remains stable. If the first case of
Lemma 3.5 holds for each component (for which the irreducibility of M is
sufficient), the equilibrium º

1
enters the interior of the positive cone, that is

each component is strictly positive. In a special case (step-wise mutation), but
one with perhaps the most frequently encountered assumption on mutation,
the size of the components decrease in powers of e as the ‘distance’ (in the sense
of mutation) from the first component increases.

The section concludes with some technical results needed in the next
section. Consider the situation near º

i
(i72) and let u

i
"uJ

i
#v

i
, u

j
"

v
j

( j"i); note that v
j
70 in K` if j"i, but v

i
is not necessarily positive,

although u
i
"uJ

i
#v

i
70 obviously lies in K`. B(º

i
, d) will denote the closed

ball in [C(XM )]n with E ·E=, center º
i
, radius d.

Lemma. 3.9. Fix any i with 26i6n. ¸et j, / be the principal eigenvalue
and eigenfunction respectively of ¸

1
[uJ

i
; d

i~1
]. ¹hen j'0, and there is a d'0

such that for small enough e, p, v"c exp(pt)/ is a subsolution for the (i!1)th
equation in B(º

i
, d)WK`.
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Proof. The (i!1)5) equation is

Lv
i~1
Lt

!d
i~1

Dv
i~1

!(a!uJ
i
)v

i~1
"

eM
i~1, i

uJ
i
#eM

i~1, i~1
v
i~1

#eM
i~1, i

v
i
#e +

j9i, i~1

M
i~1,j

v
j
!v

i~1

n
+
j/1

v
j
.

Substitution of v in the above equation shows that we need to prove that

c exp(pt)Ap!j!eM
i~1, i~1

#

n
+
i

v
jB/6eM

i~1, i
(uJ

i
#v

i
)

#e +
j9i, i~1

M
i~1,j

v
j
.

Both terms on the right hand side are non-negative. With nd(j, for small
enough e and p, the bracketed term on the left hand side is (0.

We can draw two important conclusions from this Lemma. The first is the
following theorem. h

Theorem 3.10. ¹he equilibria º
i
, (i72) do not perturb into intK`, i.e. there

are no equilibria in B (º
i
, d)W intK`. Similarly, O is the only equilibrium in

B(O, d)W intK`.

The second point, which will be used in the next section, is that under the
hypothesis of Lemma 3.9 the invariant set of (B(º

i
, d)W intK`) under (1.1)

for small e'0 is empty, that is, any semi-orbit with initial condition in
(B(º

i
, d)WintK`) eventually leaves this set.

4 Global dynamics under mutation

Having addressed the question of existence and stability of the equilibria of
(1.1) in the previous section, we now turn to the problem of describing the
global dynamics on K`. When e"0, by Theorem 3.2 there are no equilibria
in intK`. As e increases, by Theorem 3.10 none of the boundary equilibria,
except perhaps º

i
, can perturb into intK`. Furthermore, by Theorems 3.4

and 3.7, º
1
(e) lies in K` and is hyperbolically stable; if the mutation is

step-wise (Corollary 3.6), by Corollary 3.8, º
1
(e) lies in intK`. It is, therefore,

plausible that º
1
(e) is a global attractor for int K` and it is the purpose of the

present section to see how far we can go in proving this.
In outline the argument is based on assuming that the global dynamics are

known when e"0. This enables us to find a Morse decomposition of the flow.
The importance of this is that Morse decompositions in general are stable
under small perturbations, and this enables us to deduce the dynamics for
small e. The principal difficulty is in obtaining the unperturbed dynamics; we
shall see that this may be done when n"2 for the system is competitive and
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may be made cooperative by a change of variable, see [17] for background.
The results of [19, 18, 33] may be used to yield Lemma 4.1 below, since by
Theorem 3.2 there are no equilibria in intK`. For n'2 this trick can no
longer be applied, but we conjecture that the dynamics has similar structure.
This does not seem to be easy to prove. In a fairly special case for three species
[7] the result holds, and numerical evidence supports the conjecture. The fact
that for a simple system of equations such as (1.1) there do not appear to be
any general techniques for determining when the set of critical points form
a Morse decomposition seems to indicate how poorly understood the interac-
tion between diffusion and heterogeneity of domain is for the dynamics
generated by reaction-diffusion systems.

The analysis is set in [C (XM )]n. From the remarks at the end of Sect. 2 it is
known that the system generates a semi-flow on this space and that there is
a global attractor. Let Inv K` denote the set of bounded solutions in K`. The
u and a-limit sets of a point u are denoted by u(u) and a (u) , respectively.
A finite collection of disjoint compact invariant subsets of InvK`,

MM(p)LInvK` : p"1, . . . , PN ,

is a Morse decomposition if for every u3InvK` TZP
p/1

M(p), there exists
p with 16p6P such that u(u)LM (p), and for each full trajectory in
backward time through u there exists q such that p(q6P and a(u)LM(q).

Using this language, the above mentioned results for (1.1) when n"2 can
be stated as follows.

Lemma 4.1. If n"2 and e"0, the Morse decomposition for InvK` is given
by M(1)"º

1
, M (2)"º

2
, M(3)"O.

Proof. From Theorem 3.2 there are no equilibria in int K`. Furthermore,
º

1
is an asymptotically stable equlibrium and º

2
is unstable. It follows from

[18, Theorem 5.1] and [19, Theorem B] that the u-limit set of every
u3 intK` is º

1
. On the boundary of K` the flow is known from Lemma 2.2:

º
1
, º

2
are, respectively, global attractors for the flows in the interior of the

u
2
"0 and u

1
"0 axes. The existence of the stated Morse decomposition is an

immediate consequence. h

We speculate that the following is true in general.

Conjecture 1. ¹he set Mº
i
: i"1, . . . , nNXO is a Morse decomposition of

InvK` for e"0.

The rest of this section will be spent proving the following theorem.

Theorem 4.2. If Conjecture 1 holds, then for sufficiently small e'0, º
1
(e) is

a global attractor for all orbits in intK`.

Under appropriate conditions on M (essentially ensuring that if any
phenotype is not identically zero, mutation leads to all phenotypes being
produced), this result can be strengthened and intK` replaced by K` CMON.
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Proposition 4.3. ºnder the hypothesis of Conjecture 1 the Morse decomposition
of InvK` is given by

M (p)"º
p
, p"1, . . . , n and M(n#1)"O .

Proof. The assumption that Mº
i
: i"1, . . . , nNXO is a Morse decomposition

implies that it is possible to order each equilibrium point according to the
dynamics. Consider the dynamics on

K`
i, i~1

:"M (u
1
, u

2
, . . . , u

n
)3K` Du

j
"0, j9i, i!1N .

We are now in the setting of Lemma 4.1 in which case we know that the flow
induced order is O greater than º

i
greater than º

i~1
. The only order on

Mº
i
D i"1, . . . , nNXO which is consistent with the orderings from each face

K`
i, i~1

is the one of the proposition. h

The importance of the Morse decomposition is that in general it is robust
with respect to perturbation. Unfortunately, in the setting we are considering
here we are not interested in the perturbation of invariant sets in [C(XM )]n, but
only in K`. From Theorem 3.10 it is clear that some of the Morse sets may
perturb outside of K`. Therefore, rather than being able to quote the standard
perturbation results, we must reprove them in this special setting.

Remark 1. The existence of the above Morse decomposition of InvK` is
equivalent to the existence of a continuous function » : NPR where N is any
neighbourhood of InvK` relative to K` with the following properties:

(1) M (p)3»~1(p),
(2) given u3N TXn`1

p/1
M (p),

»(u)'»(u (t, u)) (t'0) .

The function » will be used to control the global dynamics for e'0.

Lemma 4.4. Given g'0 there exists a neighbourhood ¼ of Inv K` relative
to K` , k'0, and ¹"¹ (k)'0 such that for all t'¹, if u3¼ and

u ([0, t], u)L¼ T (Xn`1
p/1

Bg(M(p))) ,
then

»(u)!» (u(t, u))'k .

Proof. Let ¼s (M(p)) :"Mu3K` D u(u)"M (p)N and let

u3¼s (M(p))WLBg(M(p))WInvK`.

Assuming that u9M(q) for some q9p, »(u)'»(u (t, u) ) for t'0.
Since » is continuous and InvK` is compact, there exists k

p
'0 such that

»(u)7p#k
p
.

The lemma now follows from a proof by contradiction. In particular, fix
¹'0 and assume that there exist sequences MunNLN and Mk

n
NL(0, R) such

that k
n
P0, u([0, t], u)L¼ T(Zn`1

p/1
Bg(M(p))), and »(un)!»(u(¹, un))(k

n
.
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Observe that since Inv K` is compact it can be assumed that unPuN 3Inv K`T
(Zn`1

p/1
Bg(M(p))). Now

0(»(uN )!»(u (¹, uN ))

" lim
n?=

(» (un)!»(u(¹, un)))

( lim
n?=

k
n
"0,

a contradiction. h

From now on we assume that 0(g(d/2 where d is chosen to satisfy
Lemma 3.9 and such that given u3Bg(M (p)) and v3Bg(M(q)) with p9q,
D»(u)!» (v) D'1/2. We now choose 0(k(1/4.

Proof. (of ¹heorem 4.2). Let Inv K`e denote the maximal invariant set in
K` under (1) with e'0, and let ue denote the corresponding semiflow. By
upper semicontinuity of attractors, given ¼ as in Lemma 4.4, there exists
e
1

such that for all e3(0, e
1
), Inv K`e L¼. Since e represents a continuous

perturbation of (1), there exists e
2
3(0, e

1
) such that for all e3(0, e

2
), u3¼,

and t3[0, ¹], Eu (t, u)!ue (t, u)E(k/3.
To complete the proof we shall show that for e'0, but sufficiently small, if

u3 intK`, then u(u, /e)"º
1
(e). Since » decreases uniformly with time on

InvK` T (Zn`1
p/1

Bg(M (p))), there exists ¹e@'0 such that u (¹e@, u)3Bg (M(p))
for some p'1. Given our choice of g and k, it now follows that
ue(t, u)NBg(M (q)) for any q'p and t'¹e@. By induction we may now assume
that p and ¹e@ have been chosen such that ue(¹e@, u)3Bg(M(p)) and for all
t'¹e@, ue(t, u)NBg(M(q)) for q9p. Let ve"ue(¹e@, u). By Lemma 4.4, for
any positive integer k, ue ([k¹, (k#1)¹], ve)WBg(M(p))90. Therefore,
u(ve, ue)"u(u, ue)WBg(M (p))90. However, by Lemma 3.9 and the follow-
ing remarks, u(ve, ue)L/ Bg(M(p)). Let we3u (ve, ue) TBg(M(p)). By the com-
pactness of Inv K` we can choose a sequence Me

k
N such that e

k
P0 and

we
k
Pw. Then w3InvK` and p!3/4(»(u (R, w) )(p#3/4. Since MM(p)N

is a Morse decomposition of InvK`, w"M(p), a contradiction since
wNBg(M(p)). Therefore, for e'0 but sufficiently small u(u, ue)"º

1
(e) and

hence º
1
(e) is the global attractor for intK`. h

5 Convergence and robustness – numerical investigations

We consider in this section computations to elucidate the convergence to
º

1
(e) for small mutation rates e and the robustness of the results if the slowest

diffuser suffers a ‘penalty’ for a low diffusion rate. It will be assumed through-
out that the function a modelling the per capita rate of increase at low
densities has the form

a(x)"a'#tanhA
x!1/2

d B , (5.13)
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where a' , the average of a, and d are parameters to be chosen. With d chosen
small, this choice of a reflects an environment divided into regions where the
per capita rate of increase is low for 0(x(1/2 and high for 1/2(x(1.

The theoretical investigation suggests that, for small e, the solution con-
verges to the equilibrium º

1
(e) which consists principally of the slowest

diffuser together with small populations of phenotypes with higher diffusion
rates in the proportions given by Theorem 3.7 and Corollary 3.8. As was
indicated in the previous section, a full proof of this result has only been
possible when n"2. Furthermore, the theory as developed so far gives no
information as to the manner of convergence, its rate and so on. Numerical
calculations have been carried out in order to throw light on this question as
well as to demonstrate the ultimate convergence to º

1
. To set the scene, we

suppose that a region, possibly an island, has been colonized by a small
number of a species, and as is surely the most likely, that it is the fastest
phenotype that does the colonizing; subsequently there is no migration across
the boundary region. It is assumed there are 9 phenotypes with diffusion rates
d
k
satisfying

d
k
"d

1
#(k!1)

d
9
!d

1
8

(16k69) . (5.14)

Here, d
1
"0.01, d

9
"1, e"0.01, a'"1, and the spatial domain is (0, 1). The

mutation matrix is chosen to have the simplest ‘step-wise’ form M
ii
"!2,

M
i, i~1

"M
i, i`1

"1 (1(i(n), and M
11
"!1, M

12
"1, M

98
"1,

M
99
"!1 with all other elements zero. The initial value of the phenotypes is

taken to be u (x, 0)"(0, 0, . . . , 0, 0.1). The results are presented in Fig. 1
where the average values uN

i
(t) for each phenotype are plotted against time and

phenotype i. As expected, u
9

first increases rapidly towards its (unstable)
equilibrium value which is approximately (0, 0, . . . , 0, 1). Mutation slowly
produces small densities u

8
, u

7
, . . . until eventually an appreciable amount of

u
1

appears, which then increases rapidly towards the stable equilibrium º
1
(e).

An interesting observation is that the phenotypes near the ‘center’ on the
phenotype scale, for example u

4
, u

5
, never reach appreciable proportions and

are likely to be difficult to observe.
To test further the robustness of the phenomena observed in Fig. 1, we

submit a table of the maximal averages

ºM
k
"max P

1

0

u
k
(x, t) dx

for different combinations of parameter values. It is evident from these results
that maximal averages are high only for the very highest and lowest dispersal
rates. Graphs similar to Fig. 1 (not shown here) confirm that the high maximal
average of u

9
is due to an initial transient, whereas the high maximal average

of u
1

is due to the attraction to the stable equilibria º
1
(e). Furthermore,

intermediate phenotypes again never reach appreciable proportions.
We next turn to the question of robustness of the results concerning the

evolution towards small diffusion rates. It will certainly be the case in many
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Fig. 1. Colonization figure: spatial averages uN
i
(t) are plotted for each phenotype i. Note that

the slowest diffuser dominates the dynamics for large t. Parameter values for the run were
e"d"d

1
"0.01, d

9
"1, a'"1

realistic biological situations that the reaction terms will not be independent
of the diffusion rates. For example, if the diffusion rate of a phenotype is very
small, it may suffer a penalty from self-competition between parent and
offspring. On the other hand, there will be a cost in supporting high dispersal.
The second factor will produce an advantage for low dispersal rates, which
will reinforce the general direction of our results. However, the first will act
towards reducing and eventually destroying the advantage predicted for low
diffusion. In order to see how difficult it is to reverse the predicted direction of
evolution, we consider a simple model where there are 2 phenotypes and
mutation does not act. Consider then the system

u
t
"d

1
u
xx
#u(a (x)!u!v) , (5.15)

v
t
"d

2
v
xx
#v (b (x)!u!v) , (5.16)

where

a (x)"aL #tanhA
x!1/2

d B!j , (5.17)

b(x)"aL #tanhA
x!1/2

d B , (5.18)

and d
1
(d

2
. Thus j is a penalty parameter for the slower diffuser.
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Fig. 3. Branchpoint continuation in (j, d
1
)-plane. Curves I and II are branchpoints

corresponding to the equilibria (uN (x), 0) and (0, vN (x)), respectively. Between curves I and II,
the coexistence equilibrium is stable. aL "0.25, d"0.1, d

2
"1

Fig. 2. ¸2 norm of equilibrium ul
0

as a function of the penalty parameter j. Three branches
of the solution intersect at branch points labelled B and E. â"0.25, d"0.1, d

1
"0.05,

d
2
"1

In Fig. 2, AUTO [8] was used to compute the equilibria ul
0

of (5.15)—(5.16)
for fixed d

1
"0.05. Curves AC and DF represent the ¸2 norms of º

1
"(uJ

1
, 0)

and º
2
"(0, uJ

2
), respectively, as a function of j. At the point B, º

1
becomes

unstable, throwing off a stable coexistence equilibrium into the interior, which
at E is absorbed into º

2
producing a stable equilibrium.

By augmenting the system (5.15)—(5.16) with its linearization about º
1

and
º

2
, AUTO was then used to continue the branch points B and E in the (j, d

1
)-

plane. The results of these computations are shown in Fig. 3 where curves
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I and II correspond to branchpoints B and E, respectively. Thus, Fig. 3
describes the overall effect of varying j and d

1
on the equilibria º

1
and its

stability. To the left of the curve labelled I, º
1

is the sole stable equilibria.
Between the curves I and II a stable (coexistence) equilibrium has bifurcated
from º

1
into the interior of the feasible region. As j increases further, the

equilibrium moves towards º
2
"(0, uJ

2
) and on reaching II is absorbed

into º
2
.

The firm conclusion is that the model is robust, almost surprisingly
strongly robust, at least if d

1
is small. A considerable penalty of j up to about

0.5 is allowed, which is the same order of magnitude as the variation in a.

6 Concluding remarks

We start by summarizing some of the implications of the results of the analysis
from a biological point of view. The equations model a situation where in
a spatially inhomogeneous environment the phenotypes of a species differ
only in their dispersal rates. Mutation is allowed and may be of a very general
nature. We show that there is a strong evolutionary force causing the pheno-
type with the lowest diffusion rate to be favoured. We are able to prove the
main thrust of this assertion analytically, but are not able to give a full proof in
the most general case. However, extensive numerical computations have been
carried out to confirm the assertions.

The computations highlight an interesting feature of the evolutionary
trend. Assume that an island is first colonized by the n-th phenotype, a plaus-
ible assumption because it has the highest dispersal rate. Then mutation
produces phenotypes 1, . . . , (n!1) and the dynamics rapidly drive the sys-
tem towards an equilibrium consisting of the first phenotype together with
small proportions of the others. The computations (see Fig. 1 and Table 1)
show strikingly that with stepwise mutation, the total populations of inter-
mediate phenotypes always remain extremely small. Thus, perhaps rather
surprisingly, it appears likely that these will not be observed.

A second important question concerns the robustness of the result. As has
been observed, the dynamics are driven by the difference in the diffusion rates
alone. This is a somewhat unfamiliar situation in models of this nature, but
intuition may suggest that the trend noted might be rather sensitive to
changes in the reaction terms. In particular, if, as is not unlikely, the slowest
diffuser suffers a penalty in its birth rate, the trend might be reversed. The
computations in section 5 do not confirm this view. These computations show
rather strikingly that the conclusions are extremely robust and a rather
substantial penalty is needed to reverse the trend.

The model raises some interesting mathematical questions. In the study of
the dynamics of reaction—diffusion systems, it is normally expected that
differences in the reaction terms will play a central role. However, in the
present case the per-capita rates of increase represented by these terms are
identical. Thus, the dynamics are principally driven by the differences in the
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diffusion rates. This situation seems not to be well understood, as is apparent
in the discussion in Sect. 4. There we wished to show that the set of critical
points (all of which are known, together with their local stability properties)
form a Morse decomposition. This follows from standard results on mono-
tone dynamical systems when n"2. However, for n'2 techniques do not
appear to exist for tackling this problem, and we have been forced to leave this
an open question.

The analysis raises some other questions that are all of mathematical and
biological interest and are worth further investigation. The first we mention is
to describe at least the gross manner of convergence to º

1
(e). An attempt

is being made to analyze this question by devising appropriate shadow
systems, but the results are as yet too incomplete to present here. The second
question is to enquire what form the results would take if the genetics were
diploid. The final question is to introduce an environment that is both
spatially inhomogeneous and temporally periodic. Even the local analysis
raises challenging questions concerning estimates for the eigenvalues of
periodic parabolic problems. However, it is a particularly interesting
problem because intuition does not suggest obvious answers. Preliminary
results in very special cases suggest that the effect of temporal variation,
if the frequency is sufficiently large, is to cause evolution to favour the
phenotype with the largest diffusion rate and so to reverse the trend discussed
in this paper.
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Appendix

Lemma 8.1. Assume n'1, and let N be an n]n matrix with N
ij
70 for all i, j

such that i72 and i9j . ¹hen for each i with 26i6n, one of the following
possibilities holds.

(i) There is a p"p (i) with 16p6n!1 such that

(Nk)
i1 G

"0

'0

(16k(p) ,

(k"p) .

(ii) (Nk)
i1
"0 (k71).
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Proof. Fix i with 26i6n throughout the proof. If (Nk)
i1
"0 for

16k6n!1, by the Cayley—Hamilton theorem, case (ii) holds. If case (ii)
does not hold, there is a p with 16p6n!1 such that (Nk)

i1
"0 for

16k(p and (Np)
i1
90. If p"1, by a condition of the lemma, N

i1
70 and (i)

follows. Thus to prove the lemma it is enough to show that (Np)
i1
70 for

p72.
The key idea in the proof is to show that if a diagonal component N

jj
or

a component in the first row of N occurs in (Np )
i1

, it is multiplied by a factor
which is zero. Thus only non-negative terms can occur.

Throughout the proof, terms of the form j
s
are integers with 16j

s
6n. Set

P
1
"N

i1
"0, and for k72 let P

k
be any product of the form

Nij
1
Nj

1
j
2
. . . Nj

k~1
1 .

The first step is to prove that if 16k6p!1, P
k
"0 for any j

s
with

16s6k!1. The proof is by induction. The result is clearly true for k"1. It
is thus enough to show that if k6p!2 the statement (A

k
):

P
s
"0 (16j

1
, . . . , j

s~1
6n, 16s6k) ,

implies that (A
k`1

) holds. Now

0"(Nk`1)
i1
"+ Nij

1
. . . Nj

k
1 , (8.19)

where the summation sums over all j
s
with 16s6k. Thus each term in the

sum is of the form P
k`1

. If any P
k`1

contains a diagonal term, there are
various possibilities. The first is that for some s with 26s6k!1 and
some P

k
,

P
k`1

"Nij
1
. . . Nj

s~1
j
s
Nj

s
j
s
Nj

s
j
s`1

. . . Nj
k
1

"Nj
s
j
s
P

k

"0

by the induction hypothesis. Alternatively, the first term in P
k`1

may be of the
form N

ii
or its last term may be N

i1
. By the same argument, P

k`1
"0 in these

cases also. A very similar argument shows that any product which contains
a term of the form N

1m
is also zero. By the conditions of the Lemma, all the

other terms in the sum in equation (8.19) are non-negative. Hence every term
in this sum is non-negative, and it follows from (8.19) that each term is zero.
This proves the assertion (A

k`1
) and the result follows by induction.

It is now easy to complete the proof. We have

(Np )
i1
"+ Nij

1
. . . Nj

p~1
1

"+P
p

in the notation above. By exactly the same argument as applied in the
previous paragraph, if P

p
contains a diagonal term N

ss
, say, then

P
p
"N

ss
P

p~1
"0
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by what was proved above. The same argument applies if P
p
contains a term

of the form N
1m

. Since by assumption of the Lemma all other terms are
non-negative, it follows that (Np )

i1
70. h

Of course Lemma 3.5 follows immediately from this result. It is clear that
the result applies when the elements of the matrix are operators, positivity
going over unchanged. We note that from (H2) and Lemma 3.3, (!L~1M )
has the sign structure (in the sense of operators) asserted in the statement of
Lemma 8.1. This is central to the proof in Theorem 3.7.
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