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Abstract. General dynamic models of systems with two prey and one or two
predators are considered. After rescaling the equations so that both prey have
the same intrinsic rate of growth, it is shown that there exists a generalist
predator that can mediate permanence if and only if there is a population
density of a prey at which its per-capita growth rate is positive yet less than its
competitor’s invasion rate. In particular, this result implies that if the outcome
of competition between the prey is independent of initial conditions, then there
exists a generalist predator that mediates permanence. On the other hand, if the
outcome of competition is contingent upon initial conditions (i.e., the prey are
bistable), then there may not exist a suitable generalist predator. For example,
bistable prey modeled by the Ayala—Gilpin (h-Logistic) equations can be
stabilized if and only if h(1 for one of the prey. It is also shown that two
specialist predators always can mediate permanence between bistable prey by
creating a repelling heteroclinic cycle consisting of fixed points and limit cycles.
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1 Introduction

Lotka and Volterra when discussing two competing species classified their
interactions into three categories: coexistence, competitive dominance and
competitive bistability. One species always emerges the victor in the last two
categories. When the system exhibits competitive dominance, the victor dis-
places the other species independent of the initial conditions. When the system
is bistable, victory is contingent upon initial conditions. In light of biodiversity
issues, mechanisms that mediate coexistence between competing species is of
great interest to ecologists. One well studied mechanism, the keystone effect
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(Paine 1966), involves the presence of predators who mediate coexistence by
dynamically readjusting the competitive balance of the community.

One of the first people to investigate the theoretical implications of
predation on competing species was Slobodkin (1961). He showed that the
addition of a density-dependent mortality term to the Lotka—Volterra com-
petition equations could switch the population dynamics from competitive
exclusion to coexistence. Later mathematical analyses addressed this question
by evaluating the local stability of equilibria for two prey-single predator
models (Cramer and May 1972, Fuji 1977, Vance 1978, Hsu 1981, see Yodzis
1989 for further discussion). These analyses equate coexistence with a state of
constancy to which all populations return following sufficiently small per-
turbations. However, ‘‘if we are dealing with a system profoundly effected by
changes external to it, and continually confronted by the unexpected, the
constancy of [the system’s] behavior becomes less important than the persis-
tence of its relationships’’ (Holling 1973). An alternative definition of coexis-
tence introduced by Hutson and Law (1985) is permanence: the existence of ‘‘a
region of phase space (that is, the space occupied by the population vector) at
a non-zero distance form the boundary (corresponding to extinction of at least
one species), in which all the population vectors must ultimately lie.’’ Perma-
nence addresses Holling’s concerns by providing a global criterion that includes
coexistence about a non-equilibrium state (e.g. Klebanoff and Hastings 1994).

In the past decade, predator-mediated permanence has been studied for
several low-dimensional Lotka—Volterra systems. Hutson and Vickers (1983)
showed that a generalist predator could mediate permanence between domi-
nance controlled prey but could not mediate permanence for bistable competi-
tors. Kirlinger (1986) and Hofbauer and Sigmund (1989) showed the addition of
two specialist predators or two competitors can stabilize bistable communities.
In this article, predator-mediated permanence is studied for a larger class of
predator-prey equations to evaluate the robustness of these predictions.

2 Permanence for competing species

Consider the following equations of competition
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C3: The equilibria of Eq. 1 are hyperbolic.
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Recall that an equilibrium or limit cycle for a system of differential equations
dz/dt"G(z) is hyperbolic if it has no characteristic exponent with real part
zero (cf. Guckenheimer and Holmes 1983).

By examining the transversal eigenvalues of the equilibria (x*
1
, 0) and

(0, x*
2
) Eq. 1 falls into one of three cases. If both transversal eigenvalues are

positive, the competitors permanently coexist. If one transversal eigenvalue is
negative and the other is positive, the system is dominance-controlled. Finally,
if both transversal eigenvalues are negative, competition is bistable.

We provide two examples that satisfy conditions C1—C3.

Example 1. Ayala et al. (1973) conducted experiments on fruit fly dynamics to
test the validity of ten models of competition. One of the models accounting
best for the experimental results is given by:
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where r
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is the intrinsic rate of growth of species, K
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is the carrying capacity of

species i, h
i
provides a non-linear measure of intraspecific interference, and

a
ij

provides a measure of interspecific interference. The model defined by Eq. 2
has at most one internal equilibrium. Therefore, the following invasion criteria
determine the global dynamics: species j can invade the equilibrium,
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Note 1. When h
i
"1 Eq. 2 reduces to the Lotka—Volterra competition

equations.

Example 2. Schoener (1978) developed mechanistic one-level models of
various types of competition (completely overlapping resources, resource
partitioning, intra- and interspecific interference). In the case of species that
compete for completely overlapping resources and that engage in interspecific
interference, Schoener (1978) proposed that
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where I
0

is the rate of net energy input into the system, b
i
is the searching

efficiency of species i, c
ij

is the cost to species i due to interactions with species
j, C
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is the per-capita maintenance and replacement costs o f species i, R
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number of individuals of species i resulting from conversion of one unit net
energy input, and ½ is a constant that is inversely proportional to the rate
which the individuals can obtain food.
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Notice that an upper bound for Eq. 6 is given by
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Consequently, Eq. 6 cannot be meet for both species, and coexistence is
impossible.

3 Generalist predators that mediate permanence

To mediate permanence between the competing species, we supplement Eq. 1
with a generalist predator:

dx
1

dt
"x

1
f
1
(x

1
, x

2
)!s

1
x
1
g (x

1
, x

2
, y)

dx
2

dt
"x

2
f
2
(x

2
, x

1
)!s

2
x
2
g (x

1
, x

2
, y) (7)

dy

dt
"yF(x

1
, x

2
, y)

where s
i
represents the rate at which the predator encounters prey i while

actively searching, and g (x
1
, x

2
, y) /y is the portion of the predator population

that is actively searching (e.g. not handling or digesting prey, interfering with
one another, or resting). Although the predator’s functional response,
s
i
x
i
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, y)/y, occurs in an apparently restrictive form, it covers many

multiprey-single predator models where the standing ecological assumption is
that the predator selects its prey in a frequency independent manner (Begon
et al. 1990).

We assume that g and F are C1 and Eq. 7 satisfies two conditions.
C4: Eq. 7 is dissipative (i.e. there exists a constant K'0 such that every

solution v(t) to Eq. 7 satisfies limsup
t?=

Dv(t)D6K where D · D is the
Euclidean norm).
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C4 ensures that species do not grow without bound and C5 rules out
non-generic cases that would complicate the statement of our first theorem.

Theorem 1. Assume f
i
are such that C1—C3 are satisfied. ¹here exists a pred-

ator (i.e., parameters s
i
and functions g and F such that Eq. 7 satisfies C4—C5)

that mediates permanence if and only if for some i3M1, 2N there exists a value
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where j9i. In particular, when Eq. 8 does hold, there exists a ¸otka—»olterra
predator that mediates permanence.

A proof of Theorem 1 is presented in Sect. 6. The interpretation of
Theorem 1 is facilitated by the observation that the predictions are unaffected
by a rescaling of the competition equations such that f

1
(0, 0)"f

2
(0, 0). With

this rescaling, Eq. 8 asserts there exists a suitable predator if and only if there is
a density of one of the prey (say prey 1) at which its per-capita growth is positive
but less than the invasion rate of prey 2. When Eq. 8 holds, we construct
a Lotka—Volterra predator that mediates permanence and that has a higher
searching and conversion efficiency with respect to prey 2 (i.e. s

2
's
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and

F(0, x, 0) 'F (x, 0, 0) for all x'0). Eq. 8 always holds when there is a domi-
nant competitor. Hence, the condition of Eq. 8 fails only if the competitors are
bistable. However, unlike the Lotka—Volterra results of Hutson and Vickers
(1983), bistability does not imply Eq. 8 always fails as shown below.

Revisiting example 1. Consider the Ayala—Gilpin equations (Eq. 2). Suppose
competition is bistable (i.e. Eq. 3 fails for both prey). By Theorem 1 there exists
a predator that can mediate permanence if and only if there is an i3M1, 2N and
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for j9i. Eq. 9 holds if and only if h
i
(1 for some i. In particular, since the

Lotka—Volterra equations correspond to h
i
"1, no predator that selects its

prey independent of frequency can mediate coexistence for bistable
Lotka—Volterra competitors.

Note 2. Estimates of h
i

for Drosophila in the literature suggest that h
i

is
typically less than one (see Gilpin and Ayala 1976, Thomas et al. 1980).
Furthermore, there is some evidence that for a small subset of these species,
pairwise competition is contingent upon initial conditions (Gilpin et al. 1986).

Revisiting example 2. Consider the Schoener model of competition (Eq. 4)
and assume that competition is bistable (i.e., Eq. 6 fails for both prey). By
Theorem 1 there exists a predator that can mediate permanence if and only if
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Fig. 1. The bifurcation diagram for the Schoener equations. In this diagram, we vary the
a
i
between 1 and 5 and hold all other parameters fixed at b

ij
"c

i
"1.0. For parameters in

Region I, one species dominates over another and predator-mediated coexistence is possible.
In Region II, the competition is bistable and predator-mediated permanence is possible. In
Region III, the competition is bistable and predator-mediated coexistence is not possible
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(see Fig. 1).
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4 Specialist predators that mediate permanence

We consider adding two specialist predators (Begon et al. 1990) whose
functional responses (the per-capita consumption rate) and numerical re-
sponses (the number of progeny produced per predator at a given prey
density) are given by g

i
and h

i
: RPR. We assume that g

i
and h

i
are C1 and

satisfy h
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(0)"g
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(0)"0 and g@
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(x) are positive for all x. In particular,

these functions may be a linear, type II, or type III (Holling 1966). With the
addition of these specialists Eq. 1 becomes
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is the density of predator i and m
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is the per-capita mortality rate of

predator i.

Theorem 2. Assume that f
i
satisfies C1—C3 and g
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are as defined above.
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are sufficiently small, the following two statements hold.

1. If prey 1 is dominant, the subsystem of Eq. 12 consisting of x
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permanent (see Fig. 2a).
2. If the prey are bistable, Eq. 12 is permanent. Furthermore, the equilibria,
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The proof of Theorem 2 is presented in Sect. 7. The first assertion of
Theorem 1 generalizes a result of Butler and Wolkowicz (1986) and the second
assertion generalizes work of Kirlinger (1986). In the bistable case, predators

Fig. 2. (a) The limit sets for the subsystem x
1
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1
of Eq. 12 when prey species 1 is

dominant. (b) The limit sets for the subsystem x
1
!x

2
!y

1
of Eq. 12 when the f

i
define

a bistable community and the m
i
are sufficiently small
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mediate permanence by creating a repelling heteroclinic cycle: (prey 1)P(prey
1, predator 1)P(prey 2)P(prey 2, predator 2)P(prey 1). Whenever the g

i
are

saturating functions (e.g., Holling type II or III) and the m
i
are sufficiently small,

these heteroclinic cycles will alternate between equilibria and limit cycles.

5 Discussion

In addition to providing a simple criterion for predator mediated permanence,
Theorem 1 offers two insights into the Lotka—Volterra prediction: a generalist
predator cannot mediate permanence between bistable prey. First, Theorem 1
implies (see revisiting Example 1) that no predator who selects its prey in
a frequency-independent manner can mediate permanence for bistable
Lotka—Volterra prey. Thus, the Lotka—Volterra prediction holds for a large class
of predator equations which can introduce non-equilibrium dynamics. Second,
Theorem 1 applied to the Ayala—Gilpin equations implies that the Lotka—Vol-
terra prediction is not robust to C1 perturbations of the prey equations.

Theorem 2 implies that it takes one specialist predator to mediate perma-
nence for dominance controlled prey but it always requires two specialists for
bistable communities. The first observation prompts the questions: for larger
competitively structured prey communities, how many specialist predators
are required to mediate permanence, and what is the effect of removing one of
these predators? Since the dynamics of competition can be arbitrarily complex
(Smale 1976), a mathematically complete answer is impossible. However, if we
restrict our attention to ecologically prominent community types (founder
controlled, dominance controlled, etc.), answers are likely to be forthcoming.
For example, Wolkowicz (1989) has shown that it takes n!1 specialists to
mediate coexistence in a chemostat model consisting of n prey competing for
a limiting resource. When this community is permanent, the removal of
a predator will result in the extinction of 1 to n!1 prey species and their
affiliated predators. In contrast, extending the proof of Theorem 2 to n dimen-
sions, Schreiber (1996) has shown that a founder-controlled prey community
(i.e., pairwise prey interactions are bistable, Yodzis 1989) requires n specialist
predators to mediate permanence. When predator-mediated permanence oc-
curs, the dynamics of the linked predator-prey system includes a heteroclinic
network and the removal of one predator causes the community to collapse to
one species. As many competitively structured communities lie between these
two extremes, many interesting questions remain unanswered.

6 Proof of Theorem 1
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are such that Eq. 7 is permanent.
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Let v(t)"(x
1
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Note that C3 implies that d is positive.
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Now, we define our predator. Let g (x
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— Eq. 7 is dissipative. The proof of this fact is analogous to Lemma 1 in the
next section and therefore omitted.
These observations in conjunction with the work of Hastings (1978) imply
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7 Proof of Theorem 2

The following definitions will be used throughout the proof of Theorem 2:
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for any solution, v (t), to Eq. 12 with v (0)3R4
`

.

Proof. For positive constants A and B, we have that

+
i

AxR
i
#ByR

i
"+

i

(x
i
f
i
(x

j
, x

i
)!y

i
g
i
(x

i
))A#(y

i
h
i
(x

i
)!m

i
y
i
)B

6+
i

x
i
( f

i
(0)!ax

i
)A#y

i
x
i
(Bc!Ab)!m

i
y
i
B .
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Given a solution, v (t), for Eq. 12 define S(t)"+
i
Ax

i
(t)#By

i
(t). For

A'Bc/b and sufficiently small e'0, we get that

SQ #eS6+
i

x
i
A( f

i
(0)#e!ax

i
)

6

A (F#e)2
2a

.

From this it follows that

limsup
t?=

S (t)6
A(F#e)2

2ae
. K

To prove the first assertion of Theorem 2, assume that prey 1 is dominant.
Theorem 3 implies that it is sufficient to show that the predator y

1
can invade

all equilibria of the form (x
1
, x

2
, 0, 0) with x

1
'0 and that prey 2 can invade

all the equilibria and limit cycles that lie in the positive orthant of the
predator-prey subsystem x

1
!y

1
. C3 implies that there are only a finite

number of equilibria of the form (x
1
, x

2
, 0, 0) and, hence, k is positive. If we

choose m
1

sufficiently small so that h
1
(k)'m

1
then the predator y

1
can

invade all of these equilibria. In particular, the predator-prey subsystem,
x
1
!y

1
, is permanent.

Since g
1
(0)"0, we have that g

1
(x) and h

1
(x) are bounded below by bx for

x3[0, x*
1
]. Let v(t)"(x

1
(t), x

2
(t), y

1
(t), 0) be a solution to Eq. 12 such that

y
1
(0)'0. As Eq. 12 is dissipative (Lemma 1), we have that

07limsup
T?=

1

¹

ln
y
1
(¹)

y
1
(0)

"h
1
(x

1
)!m

1

7bxN
1
!m

1
.

Hence,

xN
1
6

m
1

b
. (15)

If v(t)"(x
1
(t), 0, y

1
(t), 0) with y

1
(0)'0, we have that

f
2
(0, x

2
)7f

2
(0, 0)!gx

1

7f
2
(0, 0)!g

m
1

b

which is strictly positive for sufficiently small m
1
. Hence, for sufficiently

small m
1
, Theorem 3 implies assertion 1 of Theorem 2 (i.e., the subsystem

x
1
!x

2
!x

3
of Eq. 12 is permanent).

To prove the second assertion of Theorem 2, we use the following theorem.
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Theorem 4 (Hutson 1984). Consider F3C1(Rn
`

, Rn) such that LRn
`

is invariant
for the flow of v5 "F (v). Assume P3C1 (intRn

`
, R

`
) is bounded below.

Define

/ (v)"G
S+P(v), F (v)T

P(v)
if v3intRn

`

liminfu?v,u|intRn
`
/ (v ) else .

¹hen for any solution v(t) to v5 "F(v), / (v(t)) is integrable. Furthermore,
v5 "F(v) is permanent if

sup
T;0

P
T

0

/ (v(t )) dt'0

for all solutions v(t) such that v (0)3LRn
`

lies in an omega limit set of v5 "F (v).

Define

P (x
1
, x

2
, y

1
, y

2
)"x

1
x
2
ya
1
ya
2

where a is a positive constant that remains to be determined. For
v"(x

1
, x

2
, y

1
, y

2
)3intRn

`
, we get

/ (v)"+
i

f
i
(x

i
, x

j
)!

g
i
(x

i
)y

i
x
i

#ah
i
(x

i
)!am

i
.

/ extends continuously to LR4
`

as lim
xi?0

g
i
(x

i
)/x

i
"g@

i
(0). Theorem 4 implies

it is sufficient to show that

sup
T;0 P

T

0

+
i

f
i
(x

i
(t ), x

j
(t))!

g
i
(x

i
(t))y

i
(t)

x
i
(t)

#ah
i
(x

i
(t))!am

i
dt

is positive for any solution, v (t) , to Eq. 12 with v(0)3LR4
`

. To prove this, we
begin by examining the boundary dynamics when the m

i
are sufficiently small.

Lemma 2. If m
1

is sufficiently small, then every solution, v(t)"(x
1
(t), x

2
(t),

y
1
(t), 0), to Eq. 12 with x

1
(0), x

2
(0) and y

1
(0) positive satisfies

lim
t?=

v(t)"(0, x*
2
, 0, 0) .

Proof. The proof of assertion 1 of Theorem 2 implies that y
1
can invade all the

equilibria of the competition equations for which x
1

is positive, and prey 2,
can invade the predator-prey subsystem, x

1
!y

1
, whenever m

1
is sufficiently

small.
Since the basin of attraction of (0, x*

2
, 0, 0) includes a set º]R

`
where

º is a neighborhood in R2
`

of the positive x
2

axis, it suffices to show that
lim

t?=
x
1
(t)"0.
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Lemma 1 and Eq. 15 implies that along an orbit v(t)

07limsup
T?=

1

¹

ln
x
2
(¹ )

x
2
(0)

"f
2
(x

2
, x

1
)

7a (x*
2
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2
)!gx

1
)

7a (x*
2
!x

2
)!

gm
1

b
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x*
2
!x

2
6

gm
1

ab
. (16)

Since
ax*

2
#f

1
(0, x*

2
)!ax

2
7f

1
(0, x

2
)

we have that along the orbit v (t )

f
1
(x

1
, x

2
)6f

1
(0, x

2
)

6ax*
2
#f

1
(0, x*

2
)!ax

2

"a (x*
2
!x

2
)#f

1
(0, x*

2
) .

As f
1
(0, x*

2
) is negative, Eq. 16 implies that f

1
(x

1
, x

2
) is strictly negative for

sufficiently small m
1
. Hence

limsup
T?=

1

¹

lnA
x
1
(¹)

x
1
(0)B"

xR
1
(v)

x
1
(v)

6f
1
(x

1
, x

2
) (0

and lim
t?=

x
1
(t )"0. h

Now we need to show that / has the desired properties on the boundary
limit sets. We have that
— At (0, 0, 0, 0), /(0, 0, 0, 0)"f

1
(0, 0)#f

2
(0, 0)!am

1
!am

2
.

— At v"(x*
1
, 0, 0, 0) or v"(0, x*

2
, 0, 0), /(v)"f

j
(0, x*

i
)#ah

i
(x*

i
)!am

i
where

i9j.
— At equilibria of the form v"(x

1
, x

2
, 0, 0) with x

i
'0 for i"1, 2,

/ (v)"a(h
1
(x

1
)#h

2
(x

2
)!m

1
!m

2
)7abk!2m where m"max

i
m

i
.

— At orbits of the form v (t)"(x
1
(t), 0, y

1
(t), 0) or (0, x

2
(t), 0, y

2
(t)) with

x
i
(0)'0 and y

i
(0)'0 for i"1 or i"2, respectively,

sup
T;0

1

¹ P
T

0

/ (v(t))dt7/(v)7f
j
(0, x

i
)!am

i
7f

j
(0, 0)!g

m
j

b
!am

i

where i9j.
Hence, the conditions of Theorem 4 are met whenever the a is sufficiently

large and the m
i
are sufficiently small. In which case, the heteroclinic cycle is

repelling and the system is permanent. K
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