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Abstract. The dynamic behaviour of food chains under chemostat conditions
is studied. The microbial food chain consists of substrate (non-growing
resources), bacteria (prey), ciliates (predator) and carnivore (top predator). The
governing equations are formulated at the population level. Yet these equa-
tions are derived from a dynamic energy budget model formulated at the
individual level. The resulting model is an autonomous system of four first-
order ordinary differential equations. These food chains resemble those occur-
ing in ecosystems. Then the prey is generally assumed to grow logistically.
Therefore the model of these systems is formed by three first-order ordinary
differential equations. As with these ecosystems, there is chaotic behaviour of
the autonomous microbial food chain under chemostat conditions with biolog-
ically relevant parameter values. It appears that the trajectories on the
attractors consists of two superimposed oscillatory behaviours, a slow one for
predator—top predator and a fast one for the prey—predator on one branch at
which the top predator increases slowly. In some regions of the parameter
space there are multiple attractors.

Key words: Bifurcation diagram — Chaos — Chemostat — Food chain —
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1 Introduction

The Monod model [17] is the classical basis for modelling the dynamics of
populations consisting of unicellular organisms. In that model food is ingested
with a rate proportional to the Holling type II functional response. A fixed
part of the ingested food is used for growth. Nisbet et al. [18] investigated
a variant of that model, the Monod-Herbert model [5]. Then ingested food is
not only used for growth but also for maintenance while these costs are
proportional to the biomass of the population.



Cunningham and Nisbet [3] and Nisbet et al. [18] studied the dynamic
behaviour of a bi-trophic microbial food chain consisting of substrate, bac-
terium and ciliate in a chemostat, a well stirred vessel. They showed that the
introduction of maintenance has a stabilizing effect, especially for low dilution
rates.

Kot et al. [12] and Pavlou and Kevrekidis [19] studied the complex
dynamics of a forced bi-trophic microbial food chain in a chemostat with
forcing in the form of a periodic inflow of substrate. In both papers the set of
parameter values proposed in [3] were used. The forced system displayed
quasiperiodicity, phase locking, periodic doubling and chaotic dynamical
behaviour.

In this paper the bi-trophic food chain is extended to a tri-trophic chain
with top predator. The substrate supply to the chain is constant rather than
oscillatory, so that the system is autonomous. For each trophic level a simpli-
fied version of the Dynamic Energy Budget (DEB) model [9, 11], is used. In
this individual-based model energy reserves act as a buffer. They impose
a kind of inertia on the response to changing food conditions. Also taken into
account are maintenance costs. The non-specific DEB model describes species
at all trophic levels by the same set of ODEs, only the parameter values differ
for different species. We will also use the set of parameter values proposed in
[3] for the substrate, prey, predator dynamics and extrapolated values for the
top predator. Hence, the parameter settings in this study are relevant for
bacteria living on glucose at 25 °C, ciliates such as ¹etrahymena sp. or Par-
amecium and carnivorous ciliates such as Didinium nasutum.

For a bi-trophic food chain the autonomous system exhibits only simple
limit sets being equilibria and limit cycles. The transition of an equilibrium to
a limit cycle at a Hopf bifurcation with increasing the concentration in the
reservoir, may be viewed as an example of the paradox of enrichment
(Roosenzweig [21]). We will show that the situation for a tri-trophic food
chain differs significantly. In some region of the parameter space the introduc-
tion of the top predator in an oscillating bi-trophic food chain can stabilize the
system to a positive equilibrium. The system can also converge to a positive
limit cycle, or chaotic behaviour can be the result. In another region of the
parameter space the top predator can not invade the system.

The proposed model resembles that for ecosystems, consisting of a tri-
trophic food chain (prey, predator and top predator) with logistic prey,
studied intensively in the literature, see for instance [4, 7, 8, 14, 16]. In the
chemostat model the substrate, which is taken to be inert, is modelled
explicitly.

The autonomous tri-trophic food chain with logistic prey exhibits chaotic
dynamics in long-term behaviour when reasonable parameter values are
chosen, as shown in [4, 14]. The occurrence of chaotic behaviour proved to be
very sensitive to the choice of the relative death rates of the populations at the
three trophic levels. In this paper we will obtain chaotic behaviour, not by
tuning parameters of the populations but by tuning the chemostat control
parameters: the dilution rate and the concentration in the reservoir.
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We will present one- and two-parameter bifurcation diagrams. The two-
parameter bifurcation diagrams (in the microbial literature often called ‘oper-
ating diagrams’) are useful to examine the complex dynamics. These diagrams
show the asymptotic behaviour, existence of positive equilibria, as well as
limit cycles and their stability as a function of the two control parameters. A
continuation technique is used to calculate the bifurcation curves in the
parameter space, such as transcritical, tangent, Hopf and flip bifurcations of
equilibria and limit cycles. To calculate most of these bifurcation curves, we
used LOCBIF [6, 13], an interactive software package implementing a con-
tinuation technique in conjunction with detection of high codimension bifur-
cation points.

We will also give one-parameter bifurcation diagrams with the long-term
maximum values for the biomass of the top predator as function of one
control parameter, the dilution rate. The results given in the one-parameter
bifurcation diagrams show that there is chaotic behaviour of the autonomous
system in a biologically interesting region of the parameter space. On top of
these one-parameter diagrams the associated two-parameter diagram is plot-
ted. This facilitates the analysis of the routes to chaotic behaviour.

The chaotic attractor lies in the surface of a ‘‘teacup’’, see Fig. 1. In the
handle the top predator diminishes whereas the prey and predator are nearly

Fig. 1. Phase portrait for dilution rate D"0.03 h~1 and concentration in the reservoir
x
r
"292.5 mg dm~3. The ranges for the three variables are 06x

1
6100 mgdm~3,

06x
2
630 mgdm~3 and 06x

3
66 mg dm~3. The chaotic attractor traces the surface of

a ‘‘teacup’’
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constant. Then, starting over the rim, the prey-predator oscillate while the top
predator increases relatively slowly giving a trajectory on the cup which enters
in the handle again.

2 The model

Let x
0
(t) denote density of the resource (substrate). Furthermore, let x

i
(t) ,

i"1, 2, 3 denote biomass densities of prey, predator and top predator, respec-
tively, and e

i
(t) , i"1, 2, 3 denote scaled reserve densities. The DEB model

reads
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response. The first term on the right hand-sides of Eqs. (2) and (3) is the growth
term of the population whereby we assume that food uptake is proportional
to biomass density. The term l

i~1, i
e
i
is the assimilation rate and the term m

i
g
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is associated with the energetic costs for maintenance, also proportional to the
biomass density x

i
. The term in the denominator is the sum of the energetic

costs g
i
for growth plus an extra term, the energy reserves e

i
. Energy reserves

e
i
is the energy density divided by the maximum energy density which is

assumed to be a fixed parameter. For a complete description of the model and
the biological meaning of the parameters the reader is referred to [11] and
also Table 1.

In this paper, as in [9], we assume that the reserve densities are in
quasi-steady state and e
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Table 1. Parameters and state variables; t"time, m"biomass, v"volume of the reactor.
The subindex denotes the trophic level, i"0 substrate, i"1 bacteria, i"2 ciliate and i"3
carnivore

Parameter Dimension Units Interpretation

t t h Time
x
0

mv~1 mgdm~3 Substrate density
x
i

mv~1 mgdm~3 Biomass density
x
r

mv~1 mgdm~3 Substrate concentration in reservoir
D t~1 h~1 Dilution rate
f
i~1, i

— — Functional response
k
i~1, i

mv~1 mgdm~3 Saturation constant
I
i~1, i

t~1 h~1 Maximum food uptake rate
k
i~1, i

t~1 h~1 Overall population growth rate
y
i~1, i

— — Yield
m

i
t~1 h~1 Maintenance rate coefficient

l
i~1, i

t~1 h~1 Energy conductance, J assimilation rate
g
i

— — Energy investment ratio, J costs for growth

Table 2. Parameter set for bacterium-ciliate models, after Cunningham
& Nisbet [3] and [18]. The values for the new parameters m

i
(equal to 5%

of maximum growth rate k
i~1, i

) and g
i
are also given. The relationships

I
i~1, i

"k
i~1, i

/y
i~1, i

and l
i~1, i

"k
i~1, i

g
i

hold true for i"1, 2, 3. The
ranges for the control parameters are 0(D(k

0,1
and 0(x

r
6

300 mgdm~3

Parameter Unit Values

i"1 i"2 i"3

y
i~1, i

— 0.4 0.6 0.6
k
i~1, i

h~1 0.5 0.2 0.15
k
i~1, i

mgdm~3 8 9 10

I
i~1, i

h~1 1.25 0.33 0.25
m

i
h~1 0.025 0.01 0.0075

g
i

— 80.0 1.0 0.504
l
i~1, i

h~1 40.0 0.2 0.0756

The chemostat parameters for the model are presented in Table 2. The
values for i"1, 2 (prey, predator) are given in Cunningham and Nisbet [3]
and are based on measured bacterium and ciliate cultures in the chemostat.
This set of parameter values with m

i
"0 was also used in [12, 19] for the study

of the complex dynamics of a forced microbial food chain. In our study the
maintenance coefficient m

i
is chosen to be 5% of the maximum growth

rate k
i~1, i

. The values for i"3 (top predator) are extrapolated from those
given in [3], those of the parameter g

i
are not based on experimental data

but they are in a reasonable range for species such as Didinium nasutum, as
shown in [10].
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3 Equilibria and period-1 limit cycles

The bifurcation parameters are D and x
r
. The range of the parameter x

r
, the

substrate density in the reservoir, is taken 0(x
r
6300 mgdm~3, while for

the dilution rate D, we study the meaningful range 0(D(k
0,1

. An analytical
evaluation of the normal form in specific equilibrium points, as performed in
[7, 8, 14] for ecosystem models, is impossible. One has to resort to numerical
approximation.

In Fig. 2 we give the two-parameter bifurcation diagram for the food chain
of substrate (x

0
), bacteria (x

1
), ciliates (x

2
) and carnivore (x

3
), described by

system (5)—(8). The results are based upon stability analysis of the positive
equilibria and limit cycles. In this diagram the region with washout of the
predator and top predator is to the left of the curve labelled ¹C

e,2
. In this

region x
2
and x

3
are zero in equilibrium. Only present in the chemostat are the

bacteria (prey), x
1
'0, and their food, the substrate 0(x

0
(x

r
. The equilib-

ria are stable. At the left of the curve ¹C
e,1

there is total washout of all
biomass, that is, only substrate is present in the reactor with concentration
equal to that in the reservoir, x

0
"x

r
.

Fig. 2. Two-parameter bifurcation diagram for tri-trophic food chain in chemostat situ-
ation (Eqs. 5, 6, 7, 8). Values assigned to physiological parameters are listed in Table 2.
Dotted curves H~

2
, H`

3
, H~

32
and H~

31
mark Hopf bifurcations, curves ¹C

e,1
, ¹C

e,2
, ¹C

e,3
mark transcritical bifurcations while ¹

e,3
marks a tangent bifurcation curve and curve

¹C
c,2

marks a transcritical bifurcation for limit cycles with x
3
"0. Point M

1
is intersection

point for bifurcation curves, ¹C
e,3

, H~
2
, H~

32
, ¹C

c,2
point and point M

2
is intersection point

for bifurcation curves, ¹C
e,3

, ¹
e,3

, respectively
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On the left of the Hopf bifurcation curve H~
2

there is stable coexistence of
bacteria and ciliates (prey and predator). The three curves mentioned before,
¹C

e,1
, ¹C

e,2
and H~

2
, are for the bi-trophic food chain and were already

presented in Nisbet et al. [18]. In the region on the right of the Hopf
bifurcation curve H~

2
there is unstable coexistence of both species and there

exist stable limit cycles with x
3
"0 beyond the curve ¹C

c,2
and unstable limit

cycles below this curve. In the latter case the system will finally converge to
a positive attractor when a small amount of top predator is introduced in
the cycling food chain. In other words, the top predator can invade the
system.

In the region between the Hopf bifurcation curves H`
3
, H~

32
and H~

31
there

is stable coexistence of bacteria, ciliates and carnivore (prey, predator and top
predator).

A Bautin bifurcation point ¸
1

with zero first Lyapunov coefficient, separ-
ates the subcritical and supercritical Hopf bifurcations (see [13] ). In this point
a tangent bifurcation for limit cycles, ¹

c,3
originates, see Fig. 3. On the left

side of ¸
1

there is a supercritical Hopf bifurcation and therefore below the
curve H~

32
there is a stable equilibrium and an unstable limit cycle. Close to ¸

1
,

Fig. 3. Detail of the two-parameter bifurcation diagram Fig. 2. Dotted curves H~
2
, H`

3
and

H~
32

mark Hopf bifurcations, curve ¹C
e,3

mark transcritical bifurcations, while ¹
c,3

marks
a tangent bifurcation curve for positive limit cycles and curve ¹C

c,2
marks a transcritical

bifurcation for limit cycles with x
3
"0. Bautin bifurcation point ¸

1
is intersection point for

bifurcation curves, ¹
c,3

, H`
3

and H~
32

. Point ¸
2

is intersection point for bifurcation curves,
¹

c,3
and ¹C

c,2
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in the region between the curves H~
32

, ¹
c,3

and ¹C
c,2

there is one un-
stable equilibrium, one stable and one unstable limit cycle. The two limit
cycles collapse and disappear at the tangent bifurcation for limit cycles,
curve ¹

c,3
.

The tangent bifurcation curve ¹
c,3

ends in point ¸
2

tangentially to the
curve ¹C

c,2
where x

3
is zero. Close to ¸

2
, in the region between the

curves H~
32

and ¹C
c,2

there is one unstable equilibrium and one stable
limit cycle.

The supercritical Hopf bifurcation curves H~
32

, and H~
2

(with x
3
"0), and

the transcritical curves ¹C
e,3

and ¹C
c,2

, intersect in a point denoted by M
1
.

Close to M
1
, in the region between the curves ¹C

e,3
and ¹C

c,2
there is only

one unstable equilibrium.
At point M

2
in Fig. 2 the tangent bifurcation curve ¹

e,3
intersects the

transcritical bifurcation curve ¹C
e,3

. Between these two curves there are two
positive equilibria, while in the remaining region within the transcritical
bifurcation curve ¹C

e,3
there is one positive equilibrium. In the region with

two equilibria one is always unstable and the other is only stable in the region
between the two Hopf bifurcation curves H~

31
, H~

32
and H`

3
.

In the ecosystem model points M
2

and M
1

coincide. The dynamics in the
neighbourhood of this point is discussed in [8, 14] in which the normal form
in that point is studied. In the chemostat model these points are separated
points.

The transcritical curve ¹C
e,3

, Hopf bifurcation curves H~
2

, H~
31

, H~
32

and
H`

3
and the tangent bifurcation curve ¹

e,3
given in Fig. 2 were already

reported in [9, 11]. In the region between the curve H~
31

and the curves F
11

and
F
12

, which mark flip bifurcations or period doubling, there exists stable limit
cycles. The dynamic behaviour of the limit cycles inside these flip bifurcations
is studied in Sect. 4.1.

4 Limit cycles and chaotic attractors

4.1 Two-parameter bifurcation diagrams

The results given in the two-parameter bifurcation diagrams for limit cycles
are based upon stability analysis of the limit cycles. Fig. 4 gives the bifurcation
curves inside the region marked by the Hopf bifurcation curve H~

31
where the

positive equilibrium is unstable. A cascade of flip bifurcation curves leads to
chaotic behaviour as the dilution rate D is increased at a constant concentra-
tion in the reservoir x

r
. Only period-1P2 (F

11
, F

12
and F

13
) and period-2P4

(F
21

, and F
22

) flip bifurcation curves are shown. The tangent bifurcation
curves for the limit cycles, curves ¹

c,31
, ¹

c,32
, and ¹

c,33
, are also shown.

There is a cusp bifurcation for the tangent bifurcations for period-2 limit
cycles, ¹

c,31
. In order to study these phenomena in more detail we

combine these results with those of one-parameter bifurcation diagrams in the
next section.
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Fig. 4. Two-parameter bifurcation diagram for food chain with three population levels
in chemostat situation (Eqs. 5, 6, 7, 8). Detail of Fig. 2. Dotted curves H`

3
, H~

32
and H~

31
mark Hopf bifurcations, curve ¹C

e,3
mark transcritical bifurcations while ¹

e,3
marks

a tangent bifurcation curve and curve ¹C
c,2

marks a transcritical bifurcation for limit
cycles with x

3
"0. Curves F

11
, F

12
and F

13
are period-1P2 flip bifurcation curves for

limit cycles and F
21

and F
22

those of period-2P4. Curves ¹
c,31

, ¹
c,32

and ¹
c,33

are tangent
bifurcation curves

4.2 One-parameter bifurcation diagrams

In these one-parameter bifurcation diagrams for limit cycles and chaotic
attractors peak (global and local) biomass of the top predator attained during
a limit cycle or chaotic behaviour are shown as function of the control
parameter D. Let us consider again the positive equilibrium values for the
biomass of the carnivore, x

3
, the positive equilibrium values as a function of

the dilution rate D. In Fig. 5 we show these values for the carnivore biomass as
a function of the dilution rate in the range 0.026D60.04 h~1, while the
concentration in the reservoir is x

r
"292.5 mgdm~3.

Above the one-parameter bifurcation diagram, the rotated two-parameter
bifurcation diagram Fig. 4 is reproduced for the range 275 mgdm~36

x
r
6292.5 mgdm~3. The region where the positive equilibrium is stable is

indicated by the drawn line between the Hopf bifurcation curves H`
3

and
H~

31
for the equilibrium with the largest biomass for the top predator x

3
. The

unstable equilibria (shown as dashed curves) are below the H~
31

curve, between
the curves ¹C

e,3
and ¹

e,3
and between the curves H`

3
and ¹

e,3
for the

equilibrium with the smallest biomass for the top predator x
3
.
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Fig. 5. One-parameter bifurcation diagram for peak (global and local) values of top
predator as a function of dilution rate D, where concentration in reservoir is x

r
"292.5

mgdm~3. Solid curves give stable equilibrium values and peak values of stable limit cycles.
Dashed curves give unstable equilibrium values and (only global) peak values of unstable
limit cycles. At the top the rotated two-parameter bifurcation diagram, Fig. 4, for
2756x

r
6292.5 is plotted. Bifurcation points (the D values for intersection points in

two-parameter diagram (Fig. 4) of bifurcation curves with x
r
"292.5 line) are indicated by

vertical lines

Starting from a point in phase space close to the latter equilibrium, the
system converges asymptotically to the stable limit cycle with positive sub-
strate, bacteria and ciliates while the carnivore population goes asymp-
totically extinct, that is x

3
P0 for tPR. The intersection of these unstable

equilibrium points with the x
3
"0 axis gives the transcritical bifurcation,

curve ¹C
e,3

. The peak value of the dilution rate D for the curve with unstable
equilibria marks the tangent bifurcation ¹

e,3
. In a small interval between the

curves ¹
e,3

and H`
3

the equilibria with the largest x
3

are unstable too. In this
case the system also converges asymptotically to a stable limit cycle with
x
3
"0, indicated by the horizontal line with x

3
"0 for D values above the

curve ¹C
c,2

. An unstable limit cycle (only global peak values are shown as
dashed curves) which originates from the subcritical Hopf bifurcation point
H`

3
is connected to the transcritical bifurcation ¹C

c,2
point. Below this curve

we have stable limit cycles with x
3
"0 and above this curve attractors with

x
3
'0. For D-values between the curves H`

3
, and H~

31
the equilibria above this

curve are stable; it is a point attractor. Below H~
31

the system becomes
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Fig. 6. One-parameter bifurcation diagram for peak (global and local) values of top
predator as a function of dilution rate D, where concentration in reservoir is x

r
"297.5

mgdm~3. See Fig. 5 for a description of the curves

unstable; starting from the perturbed equilibrium the system converges to
a positive attractor, a limit cycle or chaotic attractor, until the D-values
attains the value belonging to the second intersection point of the curve
H~

31
with the line x

r
"292.5 mgdm~3. This point is not shown in Fig. 5

because it occurs for D(0.02 h~1.
The following procedure is used to obtain the results for the limit cycles

and chaotic attractors in these diagrams. The system is integrated in time
starting from a perturbed equilibria (the equilibrium value for the top pred-
ator was increased slightly). In case of multiple limit cycles or chaotic attrac-
tors, the system starts from the attractor for slightly different values of D in
a continuation process. In order to get rid of the transients, integration is
performed for a fixed time (we used 10 000 h) without examination of the
results. From that point in time (until 15 000 h) the top predator peak value is
shown as a dot in the diagram.

Period-1P2 (F
11

and F
12

) and period-2P4 (F
21

, and F
22

) flip bifurcation
curves are shown in the diagram. A route of periodic doubling leads to chaotic
behaviour within the two Period-2P4 (F

21
and F

22
) curves.

In Fig. 1 the phase portrait for dilution rate equal to D"0.03 h~1 and
x
r
"292.5 mgdm~3 is shown. It illustrates the chaotic attractor which traces

the surface of a ‘‘teacup’’ as in models for ecosystems, see [4].
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Fig. 7. One-parameter bifurcation diagram for peak (global and local) values of top
predator as a function of dilution rate D, where concentration in reservoir is x

r
"300

mgdm~3. See Fig. 5 for a description of the curves

The maxima for the biomass of the top predator in the chaotic region in
Fig. 5 show that there is period-2 behaviour because the maxima fill two
disjunct intervals. The trajectories lie on a Möbius band folded over the
surface of the teacup, see also the white band in the centre of the attractor in
Fig. 1.

We now discuss one-parameter bifurcation diagrams with higher concen-
tration in the reservoir x

r
, namely x

r
"297.5 mg dm~3 and x

r
"300.0

mgdm~3, shown in Figs. 6 and 7, respectively. The dynamic behaviour for
these values of x

r
resembles that for x

r
"292.5 mgdm~3 but we will encounter

new more complex dynamic phenomena.
For x

r
"297.5 mg dm~3, when decreasing the dilution rate from the curve

F
11

, a period-2 limit cycles becomes a period-1 limit cycle again when the
curve F

13
is reached. Furthermore, three attractors coexist for certain values of

the dilution rate, namely between the curves ¹
c,33

and ¹C
c,2

. The initial
values of the state variables determine to which limit cycle the system will
evolve. For one of these coexisting limit cycles the top predator goes extinct in
the long-term. The coexisting limit cycles were calculated using continuation
with the parameter D. The end point values for the state variables of the
preceding D-value were used as initial conditions. So, bounded by the tangent
bifurcation ¹

c,32
there exists now a stable limit cycle which was not there with

x
r
"292.5 mgdm~3.
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Comparison with Fig. 5 shows furthermore that the two disjunct intervals
associated with the Möbius band collided. There is now a window with stable
period-3 orbits. For D"0.029436 h~1, the right boundary of this window is
formed by a flip bifurcation which introduces a cascade of periodic doubling.
At the left boundary for D"0.02899 h~1 of this window the attractor widens
abruptly to the full width of the chaotic region at the point of a tangent
bifurcation for the period-3 limit cycle. The existence of such a window
resembles those occurring in the well-known bifurcation diagram of the
logistic map. Such a window is associated with a intermittency route to chaos,
see for instance [26]. An unstable period-2 limit cycle (not shown in the figure)
connects two tangent bifurcations for period-2 limit cycles ¹

c,31
, close to the

cusp bifurcation (see Fig. 4). This gives coexistence of two stable period-2 limit
cycles in the region bounded by the tangent bifurcations ¹

c,31
, D+0.028 h~1.

A second window with period-3 orbits exists for D+0.0265 h~1.
For x

r
"300 mgdm~3 the diagram given in Fig. 7 shows that one of the

coexisting stable limit cycles in the region bounded by the tangent bifurcation
curve ¹

c,32
for x

r
"297.5 mgdm~3, disappeared in the region bounded by the

tangent bifurcation curves ¹
c,33

(Fig. 4). The unstable limit cycle, shown in
Fig. 6 cuts the stable limit cycle, and two curves representing unstable limit
cycles connect now the tangent-bifurcations ¹

c,32
and ¹

c,33
.

In the region bounded by the ¹
c,32

curves (Fig. 4) there is a period
doubling for the remaining limit cycle denoted F

1Ë
(Fig. 4). For a small region

of D+0.0303 h~1 there is also coexistence of a chaotic attractor and the
stable limit cycle.

5 Biological implications

5.1 Effects of enrichment of the resources

We investigate the effects of enrichment of the resources on the stability of the
food chain by the analysis of the bifurcation diagrams with increasing concen-
tration of the resources in the feed, x

r
, and a constant dilution rate, D. In [1, 2]

the effects are analyzed on the mean abundances of the trophic levels for
a food chain model with logistic prey; the ecosystem model.

The invasibility of the top predator is described in relation to the paradox
of enrichment. With a bi-trophic food chain a stable limit cycle appears when
the Hopf bifurcation H~

2
is passed by increasing the concentration in the

reservoir x
r
. This phenomenon is called the ‘paradox of enrichment’ [22].

With a tri-trophic food chain the situation is entirely different and much more
complicated. From Fig. 2 we conclude that in the region between the curves
H~

2
, ¹C

c,2
and H~

31
the top predator stabilizes the system. There is a stable

positive equilibrium for the tri-trophic food chain. The limit cycle of the
bi-trophic food chain becomes unstable after the introduction of the top
predator, i.e. the top predator invades the system. On the right side of the
curve H~

31
, but still below the curve ¹C

c,2
, this holds also true but now the
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system converges to a positive limit cycle or a complex attractor instead of the
limit point. Above the curve ¹C

c,2
the limit cycle of the bi-trophic food chain

is stable, that is, top predators, if introduced in small numbers, are washed out
again. Between the curves ¹C

c,2
and H`

3
there is also at least one other

attractor and the unstable limit cycle which originates from the subcritical
Hopf bifurcation H`

3
is the separator.

It is a regularly observed experimental fact that after some period of
operation of a chemostat with a bi-trophic food chain, the dynamics changes
notably; see [27]. It is stated that this is possibly due to ‘mutation’ of the prey
to forms more resistant to predation, especially when the number of organ-
isms is very low the population is sensitive to mutations. An alternative
explanation is invasion of some top predator, which is possible for a large
region of the control parameter space.

5.2 Influence of noise on dynamic behaviour

It is well-known that simple systems (discrete-time as well as continuous-time
systems) can exhibit complex dynamics. In this paper we show that biolog-
ically more realistic models (they include maintenance and energy reserves) for
a microbial food chain in the chemostat also can exhibit chaotic dynamics.

There is a controversy regarding the importance of chaos in population
biology. For ecosystems, time-series analysis was used to show the possibility
of chaotic dynamics of these systems, see for instance [28]. Food chains in
chemostats are more tractable. The chemostat is an expermimental apparatus
and a situation can be created such that some of the assumptions on which the
model is based, are satisfied (for instance a homogeneous environment is
obtained by stirring and the temperature is kept constant). This means that
one does not have to rely on time-series analysis for the route to chaos can be
studied experimentally like the way it is performed analytically.

Although the dynamics is determined in principle completely and precisely
by the algorithm, that is the set of ODEs, in practice it is unpredictable due to
numerical errors. The results presented are the solutions of a discrete-time
scheme, which approximates the continuous-time evolution equations. Fur-
thermore, the calculated solution of the discrete-time scheme is an approxima-
tion itself due to round-off errors. So, effectively the long-term future of
a chaotic system is unpredictable because of the sentitivity upon initial
conditions. This implies that with complex dynamic behaviour we have to
focus on the shape of attractors and not to long-term time courses of the state
variables.

Moreover, in reality there is always noise. First, there is measurement noise
and this holds for the control parameters as well as the observed variables,
i.e. the population biomass. In [15, 25] chaos is distinguised from measure-
ment error in time series and this makes short-term predictions possible. In
some regions of the bifurcation diagram, in Figs. 2 and 4, the dynamic
behaviour depends very sensitively on the control parameters. The setting of
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the control parameters, especially the dilution rate (assumed to be continuous
but generally discontinuous in time), will be too inaccurate in practice. With
respect to the observed variables, measurement noise associated with the use
of a Coulter Counter for the measurement of the biovolumes, makes the
different cycles with small differences in the amplitudes, as occuring with
multiple solutions in Fig. 7, indistinguishable.

Second, some of the biological events at the individual level take place at
random. This is called dynamic noise; see [24]. For organisms which propa-
gate by binary fission the size at which they divide is stochastic, but also the
parameters which determine the growth of an individual is subject to stochas-
tic fluctuations which are much larger than errors due to round-off. This
stochasticity is intrinsic and the ‘law of large numbers limit’ justifies the use of
the deterministic model consisting of mean field equations.

Another random effect is associated with washout or predation. For the
Holling type II functional response, which describes the predation, different
mechanistic models are proposed in the literature, see for instance [11]. In
these models two parameters, the handling time and the search time, are
important. For low densities the hyperbolic relationship is not reasonable. In
the SEIR epidemic model the linear functional response, that is the ‘law of
mass-action’ holds. Also in that case the deterministic relationship fails for low
numbers. In [20] it is replaced by a stochastic model and the influence on the
chaotic behaviour is studied by numerical simulations.

Observe that contrary to the classical Lotka—Volterra model, the chemos-
tat model with Holling type II functional response and maintenance included,
system (5)—(8), does not predict unrealistic low numbers during oscillatory
behaviour; see also Fig. 1. Furthermore we deal with microbial food chains, so
the number of organisms is relatively large. This suggests that generally the
mean field theory gives a good approximation.

Dynamic noise may destroy completely simple dynamics such as limit
cycles; see for instance [23] where a one-dimensional map is iterated in the
presence of noise, added multiplicatively. Because the bifurcation diagrams
presented in Fig. 5 show a period doubling route to chaos similar to that of
one-dimensional maps, we expect also destruction of simple dynamic behav-
iour with the introduction of noise in our model.

6 Discussion and conclusions

Autonomous microbial tri-trophic food chains under chemostat conditions
were modelled here with a simplified version of the DEB model for each
trophic level. For reasonable parameter values taken from literature, [3] and
[18], a number of different attractors, stable equilibria, stable limit cycles and
chaotic attractors occur.

It appears that the food chain introduces its own time-scale. At the
individual level the parameter l

i
which is proportional to the assimilation rate

is a good measure for the time scale. For the population level it is the
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expression k
i~1, i

!m
i

representing the maximum attainable population
growth rate. For a food chain which exhibits cyclic behaviour, the frequency
imposes a new time-scale. For the set of parameter values used in this paper
the cycle-period is very large, more than 300 h. This complicates experimental
verification under laboratory conditions, as in chemostats. Furthermore, the
band width of the chaotic oscillations is too small to distinguish it from
measurement error.

Parts of the one-parameter diagrams, in which the peak (global and local)
values of the top predator are given as a function of one control parameter,
resemble the bifurcation diagram of one-dimensional quadratic maps such as
the logistic map.

In some regions of the two-dimensional control parameter space, different
competing attractor coexists and the initial point in the state space determines
to which attractor the system will evolve. The attractors resemble those of
ecosystem models in the literature, for instance the chaotic attractor traces the
surface of a ‘‘teacup’’.

The information of one- and two-parameter bifurcation diagrams is
presented in one diagram. This facilitates the analysis of the complex dynamic
behaviour ranging from equilibria and limit cycles to chaotic behaviour
via a rich set of local, and eventually global bifurcations, eventually includ-
ing boundary crises. The combination of the results of continuation of bifurca-
tion curves and long-term behaviour minimizes the overlook of relevant
bifurcations.
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