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Abstract. In this paper a general mathematical framework is developed to
describe cases of fixed and moving growth surfaces. This formulation has the
mathematical structure suggested by Skalak (1981), but is extended herein to
include discussion of possible singularities, incompatibilities, residual stresses
and moving growth surfaces. Further, the general theoretical equations neces-
sary for the computation of the final form of a structure from the distribution
of growth velocities on a growth surface are presented and applied in a num-
ber of examples. It is shown that although assuming growth is always in
a direction normal to the current growth surface is generally sufficient, growth
at an angle to the growth surface may represent the biological reality more
fully in some respects. From a theoretical viewpoint, growth at an angle to
a growth surface is necessary in some situations to avoid postulating singular-
ities in the growth velocity field. Examples of growth on fixed and moving
surfaces are developed to simulate the generation of horns, seashells, antlers,
teeth and similar biological structures.
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1 Introduction

The notion of growth or atrophy of some part of a biological body by the
accretion or removal of biological tissue on the surface of the body part is very
well established and supported by experimental observations. Tissues that
develop by surface growth include bones, nails, horns, antlers and seashells. In
some cases, such as nails and horns, the surfaces on which growth occurs are
fixed relative to the main structures of the animal (e.g. the skeleton). In other
cases, growth takes place on an outer surface, as in seashells and antlers, so
that the growth surface itself changes form and position in space relative to the
main structures of the animal as growth proceeds.



The term surface growth is used here to denote accretion or removal of
material at an external or internal surface of a tissue. In the case of develop-
ment and remodeling of bones, the cellular mechanisms for augmentation or
ablation are described in detail in histological texts (e.g. Fawcett 1994). The
development of teeth by surface growth is also well documented (e.g. Moss-
Salentijn and Hendricks-Klyvert 1990).

In mathematical and numerical simulations of bone remodeling, it is
generally assumed that the surface growth can be described by a growth
velocity vector normal to the growth surface (Cowin 1993; Huiskes 1993).
While this may be adequate for rounded structures, in some cases of sharp
corners, the growth velocity must be considered to be at an angle, not
normal, to the growth surface. Further, it is known from anatomical and
developmental studies that the generating cells and the new tissue are, often, at
an angle to the normal of the growth surface. This is particularly significant in
the growth of horns, seashells and teeth as will be shown in subsequent
examples.

There is an extensive related literature of pattern formation and mor-
phogenesis which develops patterns and forms by both volumetric and surface
growth (e.g. Murray 1989). This literature is based on the use of diffusion—
reaction equations as originally suggested by Turing (1952) and developed by
Nicolis and Prigogene (1977), Gierer (1981), Koch and Meinhardt (1994) and
others. These mathematical descriptions deal mostly with diffusion of mor-
phogens which are extracellular controlling substances. The pattern forma-
tion and growth subsequently described does not trace the positional history
of individual cells or the extracellular structure generated by a particular cell.
In the present study, a more detailed description of the kinematics of surface
growth is derived. This theory tracks the cells producing the growth as well as
the position and shape of the body generated. Moreover, the curves consisting
of material generated by a single cell (called cell-tracks herein) are also part of
the description.

There is also a literature of seashell shapes development which essen-
tially generates the external shapes of various existing and fossil sea-
shells by computer algorithms (Illert 1992a, b). This literature is closer to
the present paper in concept, but the parameters introduced do not
generally correspond to attributes of cell orientation and growth rates produ-
cing the three-dimensional forms. The present treatment gives a general
theory and some examples of surface growth producing three-dimensional
solids (shells, horns, teeth, etc.). The key element in this description is the
growth velocities and orientations of the generating cells on the growth
surface.

The general formulation for the description of surface growth is de-
veloped in Sect. 2 and examples are presented in Sect. 3. Residual stresses
that may arise due to surface growth are discussed in Sect. 4. In this regard,
the present paper is related to the discussion of compatibility of
volumetric growth and associated residual stresses presented in Skalak et al.
(1996).
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2 Description of surface growth

Consider a body such as shown in Fig. 1A which grows by accretion on an
internal or external surface labeled G

0
at t"0 and G at any later time t. The

growth surface G may be fixed in space and time relative to some reference
cartesian coordinates x

i
or it may change its form, size and/or location in

space. It is assumed that the new material added at the growth surface G is
always on the same side of G, e.g., on the side of the initial region R

0
in Fig. 1A.

In this section, it will be assumed that the initial region R
0

is moved as a rigid
body due to the surface growth on G, so that at a later time there is a new
region R

1
between R

0
and G as shown in Fig. 1B. It is also assumed that the

region R
1

and any new material added on G also moves a rigid body. This
assumption is not strictly necessary for the main purposes of this paper.
Volumetric growth in the region R

1
can be readily incorporated. However, the

assumption of rigid body motion of the region R
1

will be relaxed only in
Sect. 4 where residual stresses are discussed. Under this assumption, the
surface between the regions R

0
and R

1
in Fig. 1B has the same shape as the

generating surface G
0

had at t"0, Fig. 1A. To distinguish between the
generating cell surface G and the material that is generated on G and is moved
away from G, the surfaces which are comprised of material leaving the growth
surface at a time q(t, are designated by H in general. Subscripts 0, q, t on
G and H will be used as necessary to indicate particular times. Thus,
H

0
corresponds to G

0
, Fig. 1B. Further, we can write G

t
"H

t
, where t is the

current time. Note that Hq (q(t) has the same shape as Gq but Hq9Gq in
general because Hq may be in a different position in space.

We take the surface growth to be due to a layer of cells which are located
on the surface G and their location on G will be incorporated into the
mathematical description. These cells may move with and along the surface

Fig. 1. Nomenclature for surface growth. (A) Initial region R
0

and growth surface G
0

at
t"0. (B) New growth, region R

1
, and growth surface G at time t'0
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G during growth. At each point of G, the rate of growth is defined as the
velocity of the material points (which are moved off G due to the material
being added) relative to the generating cells on the growth surface itself. This
definition of growth velocity �g defines the growth velocity as a material point
velocity and it may be at any angle to the growth surface. If n is a normal to
G drawn inward into the region R

1
, then when �g · n"v

i
n
i
is positive, mass is

being added (accretion) and when �g · n is negative there is removal of mass
(ablation). Here and below, bold face symbols indicate vectors (direct nota-
tion) and components are indicated by indicial forms, i"1, 2, 3.

A general description of surface growth is conveniently formulated in
terms of convected curvilinear material coordinates (h

1
, h

2
, h

3
) by equations of

the form

x
i
"x

i
(h

1
, h

2
, h

3
, t) , (1)

where x
i
are fixed, reference cartesian coordinates. The notion of material

coordinates h
i
implies that if the h

i
are each held at fixed values, the curve x

i
(t)

resulting from Eq. (1) describes the path in space of the material point
corresponding to the particular set of h

i
values. Equation (1) is assumed to

have unique inverse functions

h
i
"h

i
(x

1
, x

2
, x

3
, t) (2)

such that the spatial domain in x occupied by the body at any time has
a unique and one to one mapping on a corresponding region of h-space. The
assumptions of continuity and invertibility of Eqs. (1) and (2) excludes some
possible cases where there is a point source of volumetric growth and cases in
which there is some ablation followed by additional accretion. In the latter
case, Eq. (2) may have surfaces on which there are finite discontinuities. To
completely define a growing form, the ranges of h

1
, h

2
, h

3
occupied by the

body must be known including the location and motion of the cells on the
generating surface G at any time, in addition to Eq. (1).

Now two convenient choices of the h
i
will be introduced and retained

throughout the rest of this paper. These assumptions are specific choices but
they do not restrict the generality of the growth description. They simply
make the notation more convenient and compact.

The first choice is to represent the growth surface G as one on which
h
3

is constant (in space) at each instant of time. The value of the constant h
3

on G may be a function of time, say f
3
(t). Then the growth surface is

described by

hG
1
"h

1
(xG

1
, xG

2
, xG

3
, t) , (3)

hG
2
"h

2
(xG

1
, xG

2
, xG

3
, t) , (4)

hG
3
"h

3
(xG

1
, xG

2
, xG

3
, t)"f

3
(t) , (5)

where xG
1
, xG

2
, xG

3
are cartesian coordinates of points on G and h

i
(x, t) refers to

Eq. (2).
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The second choice facilitates a detailed correspondence to the biological
reality in cases like seashells, horns and teeth. It is to assume that any pair of
values (h

1
, h

2
) held constant on G over any time interval, locates the same

physical cell which is producing (extruding) the new growth. The values of
xG for fixed h

1
, h

2
may change, i.e. the generating cells may move with and

along the surface G. At a fixed time, t, a line describing a trajectory through
the body which consists of all the particles generated by the same cell is
given by

h
1
"C

2
, (6)

h
2
"C

2
, (7)

06h
3
6f

3
(t) , (8)

where C
1

and C
2

are constants and it is assumed that growth began at t"0,
at which time it is also assumed that h

3
"f

3
(0)"0 for convenience. The

curves given by Eqs. (6)—(8) will be called ‘‘cell tracks’’ although they already
have specific biological names in some cases such as bivalves and teeth. These
will be detailed in the examples in Sect. 3.

As a result of the above choices, the surface defined by

x
i
"x

i
(h

1
, h

2
, q, t) , (9)

where q is a constant in the range 06q6t and t is the current time, is the
surface Hq (Fig. 1B) which is made up of the material points which were
generated on surface Gq at time t"q.

The velocity of any material point of the extruded body will be designated
xR m
i

where the superscript m denotes a material point. Using Eq. (1),

x5 m
i
"A

Lx
i

Lt Bh
i

, (10)

where the subscript h
i

indicates the h
i

variables are held fixed to follow
a material particle.

The growth surface h
3
"f

3
(t) may also be described in terms of its

cartesian coordinates xG
i

via Eq. (1):

xG
i
"x

i
(h

1
, h

2
, f

3
(t), t) . (11)

Then the velocity of a generating cell on the surface G having fixed values of
h
1

and h
2

is given by

x5 G
i
"A

LxG
i

Lt Bh
1
,h

2

"A
Lx

i
Lt Bh

1
, h

2
, h

3

#A
Lx

i
Lh

3
Bh

1
, h

2
, t

df
3

dt
, (12)

where x
i

and xG
i

refer to Eqs. (1) and (11) respectively. The velocities xR G
i
,

Eq. (12), are the velocities of the generating cells on S
t
.

Now the growth velocity �g is defined as the velocity of a material point
leaving G relative to the generating cell on G. Thus,

vg
i
"x5 m

i
!x5 G

i
on G , (13)
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where x5 m refers to the velocity of a material point as it leaves G, Eq. (10). Using
Eqs. (10) and (12) in Eq. (13) gives

vg
i
"!

Lx
i

Lh
3

df
3

dt
"vg

i
(h

1
, h

2
, t) on G (14)

where the functions x
i
(h

1
, h

2
, h

3
, t) are those given by Eq. (1) and the deriva-

tives Lx
i
/Lh

3
in Eq. (14) are evaluated on G

t
. The general case of velocities �g,

x5 m and x5 G are shown schematically in Fig. 2. If the generating cells on G are
assumed to have a long axis, which is parallel to the direction in which they
extrude new material (like a tube of tooth paste), then the angle a that �g

makes with the normal n (Fig. 2) is also the inclination of the generating cells
with respect to n. The new material extruded by the generating cells must, of
course, be supplied to them by diffusion or the blood circulation which is not
described in the present discussion.

Two special cases using the above vocabulary give simple forms which are
useful in particular examples. The first case is that of G being a fixed surface
and the generating cells having fixed locations on G. Then xR G

i
"0 and it

follows from Eq. (12) that

A
Lx

i
Lt Bh

1
, h

2
, h

3

"!A
Lx

i
Lh

3
Bh

1
, h

2
, t

d f
3

dt
on G . (15)

Substituting Eq. (15) in Eq. (14) gives

vg
i
"A

Lx
i

Lt Bh
1
, h

2
, h

3

"x5 m
i

on G , (16)

Fig. 2. Schematic diagram of vector velocities at a growth surface. See text for definitions
and equations
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where x is again given by Eq. (1). Equation (16) corresponds to the logical
definition of growth velocity on a fixed surface G, i.e. it is the material point
velocity of the material moving away from the fixed surface G.

The second case, in which the extruded material remains fixed in space as
a rigid body while the growth surface moves is defined by

x5 m
i
"0 . (17)

Thus,
x
i
"x

i
(h

1
, h

2
, h

3
) . (18)

In this case, the motion of the growth surface is given by using Eq. (17) in
Eq. (12) so that

x5 G
i
"

Lx
i

Lh
3

d f
3

dt
(19)

and the growth velocity is, using Eq. (19) in (14),

vg
i
"!x5 G

i
. (20)

Equation (20) correctly states that in this case, the growth velocity is the
negative of the velocity of the generating cells on G. The negative sign in
Eq. (20) is due to the definition of growth velocity as the material point
velocity of extruded material relative to generating cells on G.

It is of interest to note that the above vocabulary allows for growth of the
cells on G as well as G itself growing. If the cells on G each increase and/or
divide and expand their individual cross-sectional area and/or divide and
expand on G, then G will also grow in area. This is represented mathematically
by the ranges of h

1
and h

2
on G being fixed in (h

i
space) but the functions

x
i
(h

i
, t) in Eq. (1) being adjusted so as to include all the area of the expanding

G. The original values of h
1
, h

2
generate the x

i
covering the new G.

On the other hand, if G increases by adding new cells on its periphery, then
the ranges of h

1
and h

2
on G are expanded (in h-space). Thus, in the grown

body (region R
1

in Fig. 1B) ranges of h
1

and h
2

will be functions of h
3
, in this

case, since h
3
"f

3
(q)"constant represents Hq corresponding to the time

t"q.
Of course, the mathematical functions can be utilized to allow for

growth of the individual generating cells, while allowing for adding new cells
at the periphery of G at the same time, by adjusting the ranges of h

1
, h

2
appropriately.

Division of the generating cells on G cannot be distinguished from expan-
sion of the individual cells on G in the present vocabulary because h

1
and

h
2

are defined as continuous variables to begin with. A small region of h
1

and
h
2

space on G may correspond to a single cell at one time. This range may be
divided into two parts at any time to simulate cell division. But in the
proposed continuum, no separate regions of (h

1
, h

2
) space are identified. The

only identification is that a line h
1
"C

1
, h

2
"C

2
, always represents material

from the same cell, without regard to the extent of the cell in a plane normal to
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this line. There are in principle, an infinite number of such lines (cell tracks)
emanating from any G

t
or any part of it.

It may be noted that the mathematical description proposed above is new
insofar as it describes both the growth velocity and cell tracks as well as the
motion of G and the motion and growth of generating cells on G. Most
previous treatments of surface growth assume only normal growth velocities,
which are generally sufficient to describe the rate of addition of mass and the
change of body form, but do not allow for definition of realistic cell tracks or
the explicit growth and motion of generating cells on G.

The cell tracks defined by Eqs. (6)—(8) are the same in concept to streak
lines defined in fluid mechanics. A streak line consists of points in a fluid which
at some previous time, passed through the same fixed point in space, like
a smoke line from a fixed source. Cell tracks are similar but different in that
source points (generating cells) may move in space. Cell tracks are like smoke
lines generated by a moving point source.

The surfaces Hq (Fig. 1B) defined by Eq. (9) are the same, in concept, to
time lines defined in fluid mechanics. A time line is made up of points in a fluid
which at some earlier time were all located along a given straight line. The
generating surface Hq consists of points all generated at an earlier time q(t,
but the generating surface is not a line and generally not plane. In a fluid, time
lines usually deform as time progresses. In the present theory growth surfaces
Hq do not change form with time, but must move as rigid bodies.

Material particle paths in the present vocabulary have the same definition
and physical meaning as in fluid mechanics and solid mechanics. Particle
paths may or may not be different from cell tracks, just as particle paths and
streak lines may or may not be the same in fluid mechanics.

Stream lines may also be defined in the present theory using exactly the
same definition and physical interpretation as in fluid mechanics. Stream lines
are curves which are everywhere tangent to the instantaneous material vel-
ocities. They are useful to visualize the instantaneous pattern of mass flow.

Under the assumption that the growing body moves as a rigid body, the
growth velocity �g and the motion of the growth surface x5 G must be such that
(see Eq. (13)):

x5 m"�g#x5 G"u#w]x , (21)

where the vectors u and w are not functions of x, but may depend on time
and w]x indicates the cross-product. The form of �g in Eq. (21) is the same as
that of Volterra dislocations which are also relative motions of two rigid
surfaces.

A problem of theoretical and biological interest is to construct the descrip-
tions of growth of the form of Eq. (1) when the growth velocities �g, Eq. (14)
and the growth surface G, Eq. (11), are given. When G is a rigid surface and the
generating cells are fixed on it, it will usually be convenient to express �g via
the functions u(t) and w (t) in Eq. (21) and to compute the resulting forms
which may then be compared to the biological forms and cell tracks in
animals.
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In the case that G is fixed and x5 G"0 in Eq. (21), and u and w are given, it is
possible to construct an integral equation which describes the resulting body
form. Assume that the growth starts from the known G

0
at t"0. Any

curvilinear coordinates h
1
, h

2
on G

0
at t"0 may be assigned in the form

h
1
"f

1
(x0

i
), h

2
"f

2
(x0

i
) (22)

where x0
i

are cartesian coordinates on G
0
.

Now at t"0,

�m"u#w]x0 on G , (23)

where x0 denotes coordinates on G. After a time interval Dt, the mass particle
generated at x0 will have the coordinates x where

x"x0#�mDt"x0#(u#w]x0)Dt . (24)

It follows by tracing successive time increments, Dt, that the location of
a material point identified by fixed h-values is given in general by the integral
equation

x (h, t)"x0 (h
1
, h

2
)#P

t

q
0

[u(q)#w (q)]x(h, q)]dq (25)

where q
0
is the time at which the particle is first generated on G. For simplicity

and without loss of generality, we may take f
3
(t)"t in Eq. (5) so q

0
"h

3
.

Integration of Eq. (25) then yields the general description of the growth in the
form of Eq. (1).

If G is not a surface of fixed form, but the body generated moves as a rigid
body, it is convenient to choose the reference axis x as fixed to the growing
body so only the suface G moves. This is a convenient mode of description of
the growth of shells, bones and antlers which are regarded as rigid bodies in
the present approximation and grow by deposition of material on the surface
G which is always part of the external surface of the body. The generating
cells may move with and on the surface G leaving the new material
behind them. There is no constraint for compatibility in this case, i.e. �g can be
any continuous vector function over G and is not restricted to rigid body
motions.

If �g is specified on G as a function of (h
1
, h

2
, t) (in reality �g is controlled for

any fixed h
1
, h

2
, i.e. for a particular cell, by a genetic code and environmental

influences), but Eq. (1) are not given, we may reconstruct the body generated
by the following process.

Assume G
0

is known, and the initial coordinates x0
i

on G are

x0
1
"x0

1
(h

1
, h

2
), x0

2
"x0

2
(h

1
, h

2
), x0

3
"x0

3
(h

1
, h

2
) at t"0 , (26)

where the superscript 0 indicates these are values on G
0
at t"0. The case here

corresponds to Eqs. (17)—(20) so that

x5 G
i
"!vg

i
(h

1
, h

2
, t) . (27)

Kinematics of surface growth 877



Holding h
1
, h

2
constant, the integration of Eq. (27) with the initial conditions

(26) yields the trajectory of the cell on G with coordinates h
1
, h

2
:

xG
i
(h

1
, h

2
, t)"x0

i
(h

1
, h

2
)#P

t

0

(!vg
i
(h

1
, h

2
, q) dq . (28)

At this point, it is of interest to note that in a typical problem of producing
a sequence of surfaces G, there may be various different vector growth
velocities �g which produce the same set of surfaces G. But these will not have
the same cell tracks, as indicated in the schematic examples shown in
Fig. 3A, B. In Fig. 3A, all �g are parallel. In Fig. 3B, all growth vectors are
normal to the initial G. If the surfaces G at different times are smooth and �g is
a continuous distribution, then the successive G surfaces can always be
produced by a distribution of �g which is always normal to the current G. This
is what is usually assumed in studies of bone growth and atrophy due to stress
(Cowin 1993; Huiskes et al. 1994).

It should be noted that the rate at which mass is created per unit area on
G is always given by

m5 "o�g · n , (29)

where n is the normal to G (n is taken positive when pointing into the tissue
being created) and o is the density of the new growth or that of tissue being
removed, when �g · n is negative. Any two distributions of �g which produce
the same sequence of surfaces G must have the same normal component of
growth velocity. There usually exists a purely normal distribution of �g to

Fig. 3. Illustration of how the same
final surface may be produced by dif-
ferent growth velocities. (A) All growth
velocities are parallel to each other.
(B) All growth velocities are normal to
the growth surface
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describe the rate of mass addition and the sequence of surfaces G. But purely
normal growth may not suffice to describe the biological cell tracks observed
in vivo. It may also not lead to a realistic description of singular points on the
growth surface, as discussed below.

In the case of a sharp corner to be created at an angle a to G, as shown in
Fig. 4A, growth in the normal direction cannot produce the required form
without a singular growth velocity. The discussion is simplified by reverting to
the case of G being fixed on the x

1
axis and generating the region R

1
, Fig. 4A,

whose outer boundary is at the angle a to the x
1
, x

3
plane. Figure 4B shows

the normal velocity distribution that can produce part of the region R
1

(the
part DEHG). But the blank part (EHF) cannot be produced by growth
normal to G. It would require a point source at E to fan out and produce the
region EHF. This would be a singularity at E and require a deformation rather
than rigid body motion of the region EHF as time progressed which is not
physiological. In the growth of some horns, teeth and seashells it is known
that the generating cells are, in fact, oriented at an angle to G, as shown in
Fig. 4C.

Fig. 4. (A) Schematic diagram of a region R
1

growing at
angle a to the growth surface G. (B) Growth produced by
growth velocities normal to G. Region EHF cannot be
produced. (C) Growth produced by growth velocities at
angle a to G
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3 Examples of surface growth

The following examples are chosen to illustrate growth from fixed and
changing surfaces, starting with elementary examples to illustrate general
principles and proceeding to more realistic biological cases.

Example 3.1. Fixed growth surface

Suppose G is a fixed circular area in the x
1
, x

2
plane, centered at the origin

with radius a as shown in Fig. 5. Further, suppose that �g is given as a constant
vector over G:

�g"v
0

i
3

, (30)

where v
0

is a constant and i
3

is a unit vector in the x
3

direction. Assume
the generating cells on G are fixed in position. Then choose h

1
"x

1
, h

2
"x

2
and h

3
"q where q is the time at which any material point is first

generated.
In this case Eq. (25) gives

x"x0#P
t

h
3

v
0

i
3
dq"x0#v

0
(t!h

3
)i
3

. (31)

Equation (31) gives the components

x
1
"h

1
, x

2
"h

2
, x

3
"v

0
(t!h

3
) . (32)

Equation (32) is the explicit expression of Eq. (1) for this case and is valid in the
domain h2

1
#h2

2
6a2 and 06h

3
6t. The grown length is ¸"v

0
t. The

particle paths and cell tracks are the same set of straight lines as shown in
Fig. 5.

Fig. 5. Growth of a cylinder from a fixed growth surface G
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Example 3.2. Growth surface accreting on edges

Consider a case in which G is again a circular area fixed at x
3
"0, but with

a radius ‘‘a’’ which grows so that

a"kt , (33)

where k is a constant. Suppose the growth velocity is again given by Eq. (30).
Then with the same choices of h

i
as in Example 3.1, Eqs. (31) and (32) also hold

here. The only difference is that the domain in h space is now limited to
(h2

1
#h2

2
)6k2h2

3
and 06h

3
6t. The solution implies that the cells on G are

fixed in position once they are generated and new cells are added at the
periphery of G as G grows. The solid generated is a cone with half angle
c where tan c"k/v

0
and all cell tracks and particle paths are lines parallel to

x
3

as shown in Fig. 6.

Example 3.3. Growth surface accreting with varying �g

Consider next a problem in which the external shape is given to be the same as
the cone in Example 3.2, Fig. 6, but with the cell tracks as shown in Fig. 7. The
cone in Fig. 7 grows exactly at the same rate as in Fig. 6 so ¸"v

0
t and a"kt

in Fig. 7 and the cone half-angle is again c where tan c"k/v
0
. The motivation

for Fig. 7 is that cell tracks may be the direction of the final fiber structure and
the fiber directions shown in Fig. 7 may produce a stronger structure than
those in Fig. 6.

The interior cell tracks in Fig. 7 form cones with half-angles b where
06b6c. The vector field �g must also be such that �g · n"v

0
on G to supply

the mass required. At the same time there must be a radial velocity inwards at
angle b to i

3
to produce the inclination of the cell tracks. The distribution of �g

on x
3
"0 satisfying these conditions is

�g"!

x
3
t

i
1
!

x
2
t

i
2
#v

0
i
3

. (34)

The results given by Eq. (34) is derived using the fact that the values of
h
1

and h
2

are constant on cell tracks. The values of h
1

and h
2

on the surface of
the cone with half-angle b are assigned to be h

1
"b cos/ and h

2
"b sin/.

From the geometry of Fig. 7, it can be shown that for any time, t, and position
x that

h
1
"b

x
1
r

, (35)

h
2
"b

x
2
r

, (36)

h
3
"t!

x
3

v
0

, (37)
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Fig. 6. Growth of a cone by normal growth velocities on an expanding growth surface G

Fig. 7. Growth of a cone from an expanding surface G by growth velocities at variable
angles to the growth surface to produce the cell tracks shown

where b and r are given by

b"tan~1A
r

v
0
t!x

3
B (37a)

and
r"[x2

1
#x2

2
]1@2 (37b)

so that Eqs. (35)—(37) give h
i
in terms of x

i
and t.

Equations (35)—(37) can be inverted to give

x
1
"v

0

h
3
h
1

b
tan b , (38)

x
2
"v

0

h
3
h
2

b
tanb , (39)

x
3
"v

0
(t!h

3
) , (40)

where now
b"[h2

1
#h2

2
]1@2 , (41)
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so that Eqs. (38)—(40) give x
i
in terms of h

i
and t. It follows from Eqs. (38)—(40)

and Eqs. (10) that

x5 m
i
"0, x5 m

2
"0, x5 m

3
"v

0
. (42)

Equation (42) shows that the particles move in straight lines parallel to i
3
, as

expected. Note that in this case the particle paths are not the same as the cell
tracks shown in Fig. 7.

It also follows from Eqs. (38)—(40) and Eq. (12) that

x5 G
1
"

x
1

h
3

"

x
1
t

, (43)

x5 G
2
"

x
2

h
3

"

x
2
t

, (44)

x5 G
3
"0 . (45)

The result shown in Eqs. (43) and (44) is a result of the self-similarity of cones
and is not expected to generalize to other shapes. Using Eqs. (43)—(45) and (42)
to compute �g by substituting into Eq. (13) gives exactly the vector field of
Eq. (34), which demonstrates the consistency of the solution.

Also note that the cells on G move radially outward with radial velocity
v
0
tanb, as time increases as indicated by Eqs. (43) and (44) and G must

increase in area as time increases. If the range of h
1
, h

2
is terminated at some

angle c
1

where c
1
(c, a hollow horn is generated as indicated by the stippled

area in Fig. 7.

Example 3.4. Axes fixed relative to the growing body

Consider the same cone structure and growth as shown in Fig. 7, but viewed
from axis x which are fixed to the growing body. In this case, the growth
surface G moves to the left at velocity (!v

0
) as shown in Fig. 8. The length of

Fig. 8. Growth of the same cone as in Fig. 7, but viewed from axes fixed to the cone so that
the growth surface moves to the left at velocity v

0
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the cone is ¸"v
0
t, the radius of G is a"kt, and the cone half-angle is c where

tan c"(k/v
0
), as in Fig. 7. Equation (1) describing the growth in Fig. 8 is

obtained from Eqs. (38)—(40) by replacing x
3
by (x

3
#v

0
t). Then x

1
and x

2
are

again given by Eqs. (38) and (39), but Eq. (40) changes to x
3
"!v

0
h
3
. It can

be readily shown that �g is again given by Eq. (34), but now x5 m"0 and
x5 G"!�g . The physical interpretation is now that the cells on G are moving
along the cell tracks that they are generating and leaving the new material
behind them at rest. It is noteworthy that in the Examples 3.3 and 3.4 that the
vector growth velocity �g is independent of the reference system x, as it should
be when properly defined.

Example 3.5. A curvilinear horn

Let G be a circle in the (x
2
, x

3
) plane centered at (0, !r

0
, 0) as shown in

Fig. 9B. The radius a of G is specified as

a"a
0

2k

n
t , (46)

where a
0

and k are constants. On G a growth velocity is specified as

�g"!kx
2

i
1

. (47)

The problem is to find the resulting shape grown. The answer is shown (at
time t"n/2k) in Fig. 9A. It is a horn with a circular center line. To show this,
we proceed as follows.

Note that �g is of the form of Eq. (21) with u"0 and w"ki
3
. Since G is

fixed in the (x
2
, x

3
) plane, Eq. (25) is applicable and gives an integral equation

for the cell tracks (h
1
, h

2
)"constants. Values of (h

1
, h

2
) are chosen on G as

shown in Fig. 9B:

h
1
"xG

2
#r

0
, h

2
"xG

3
. (48)

The integral equation (25) becomes

x (h, t)"xG(h
1
, h

2
)#P

t

q
0

(ki
3
)]x(h, q) dq , (49)

where q
0

is the time that growth begins at (h
1
, h

2
) i.e. when this point becomes

part of the growth surface. Consider the point (0, !r
0
, 0) at which growth

starts at t"0. For this point, the components of Eq. (49) are the pair of
integral equations for x

1
and x

2
:

x
1
"!P

t

0

kx
2
(q) dq , (50)

x
2
"!r

0
#P

t

0

kx
1
(q) dq . (51)
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Fig. 9. A horn grown from expanding surface G. All cell tracks shown are segments of
concentric circles

The solution to Eqs. (50) and (51) is

x
1
"r

0
sin kt , (52)

x
2
"!r

0
cos kt . (53)
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Equations (52) and (53) show that the centerline of the horn is part of a circle,
as shown in Fig. 9A. In a similar manner, it can be shown that every cell track
(and particle path) for this �g is part of a circle with radius (r

0
!h

1
), Fig. 9B.

Further, the angular velocity of each particle with respect to the x
3

axis is
k since w"ki

3
.

The horn developed is shown in Fig. 9A at time t"(n/2k) when the
centerline is a quarter circle and the radius of G is a

0
. The coordinate h

3
is

again taken to be h
3
"q where q is the time at which a particular particle is

initiated on G. Then h
3
"constant, is a plane containing the x

3
axis. Several

such planes are shown in Fig. 9B. In each such plane, the cross-section of the
horn will be a circle.

Example 3.6. A curvilinear horn of logarithmic spirals

Consider producing a horn with the external form shown in Fig. 9, but with
cell tracks which are at constant angles to the centerline, similar to Fig. 8, as
compared to Fig. 6. This may be accomplished by the use of logarithmic
spirals which are extensively discussed by D’arcy Thompson (1942) in connec-
tion with the forms of shells, horns and other biological forms. Logarithmic
spirals are plane curves (Fig. 10) described by

r"beh #05 a , (54)

where r, h are polar coordinates and b and a are constants. The angle between
the tangent to the spiral and the radius vector r is the constant angle a. This
property is suggested in the alternate name of equiangular spiral. If a is (90°,
then r increases with h. If a is '90°, then r decreases with h, i.e. the curve
spirals inwards rather than outwards. When a"90°, r is constant and the
spiral becomes a circle.

Fig. 10. A logarithmic spiral. The angle a be-
tween the tangent to the spiral and the radius
vector r is constant
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In Fig. 11, a close approximation to the boundaries shown in Fig. 9 are
illustrated for a specific case. Fig. 11 is a cross-section of a horn with the
following logarithmic spirals as the cell tracks. The problem to be solved is to
find the growth velocity �g that produces this horn.

From Table 1 it can be seen that the center-line curve C
0

is a circle. The
curves C

1
and C

2
are logarithmic spirals which spiral outwards. The curves

C
3

and C
4

are logarithmic curves spiraling inwards. The constants in Table 1
have been adjusted so that all curves meet at the point (50, 0) so C

0
is a quarter

of a circle.
The cross-section shown in Fig. 11 is the curved counterpart of Fig. 8 in

the sense that along any radius in Fig. 11 the angle between tangents to the
curves C

0
, C

1
, C

2
, C

3
, C

4
are constants independent of h. The same is true for

Fig. 11. A horn grown from an expanding surface G by growth velocities at various angles
to G to produce logarithmic spiral cell tracks as shown. The centerline is a segment of
a circle

Table 1. Dimensions and constants of cell tracks
in Fig. 11

Curve b (cm) a (deg)

C
1

40 81.92
C

2
45 86.34

C
0

50 90.00
C

3
55 93.47

C
4

60 96.62
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the cell tracks in Fig. 8, for any line drawn parallel to the x
1

axis (which is the
analogue of r as rPR).

To complete the description of the 3-D horn, whose section is shown in
Fig. 11, we assume that G is always a circle, and that as a result, sections
h
3
"constant, are planes containing the x

3
axis. The cross-sections on such

planes are then also circles. Curves on which (h2
1
#h2

2
)"constant, are also

circles in the interior on h
3
"constant planes. The stipulation that G is always

a circle, together with the two cell tracks C
1

and C
4
, completely defined the

external geometry of the horn. The cell tracks in the interior in Fig. 11 are
defined by requiring them to be logarithmic spirals. Cell tracks which are not
in the plane shown in Fig. 11, must have some component of the growth
velocity in the x

3
direction as well as in the x

1
, x

2
plane. The information given

above is sufficient to develop a computer program based on Eq. (25) which
generates this 3-D horn. A computer drawn 3-D view of the horn is shown in
Fig. 12.

Logarithmic spirals were extensively discussed by D’arcy Thompson
(1942), primarily with respect to shells in which the spiral angle is constant for
all points of the shell. The use of inward and outward spirals for horns as in
Fig. 11 was not developed.

In Fig. 11, the stippled area indicates a possible cross-section of a hollow
horn. The solid tip may be produced by a change of G from a circle to a ring as
growth proceeds as shown schematically in Fig. 13.

Fig. 12. Computer generated 3-D-view of the horn shown schematically in Fig. 11
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Fig. 13. Regions of active growth on growth surface G (stippled areas) to produce a hollow
horn such shown stippled in Fig. 11

Example 3.7. A curvilinear horn of flatter spirals

Another example of growth of a horn is illustrated in Fig. 14. In this example,
no cell track is a circle, but all cell tracks are flat logarithmic spirals, similar to
a long-horn steer. Here the parameters in Eq. (54) are chosen as follows.

The values in Table 2 produce the curves starting at A and B in Fig. 14. To
define the rest of the horn, planes are chosen so that they intersect the curves
C

1
and C

2
at equal angles. In this b

1
"b

2
"82.10° in Fig. 14. Such surfaces

are assumed to be generating surfaces and the cross-sections of the horn on
such planes are assumed to be circles Hq which were on the generating surface
Gq at earlier times.

Fig. 14. A horn grown from an expanding surface G by growth velocities such that all cell
tracks are expanding logarithmic spirals
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Table 2. Dimensions and constants of cell
tracks in Fig. 14

Curve b (cm) a (deg)

C
1

40 63.01
C

2
60 78.81

Fig. 15. Computer generated 3-D-view of the horn shown schematically in Fig. 14

The above is sufficient information to develop the full external geometry of
the horn. Interior cell tracks are also assumed to be logarithmic spirals in the
x
1
, x

2
plane and to be connected by circular cross-sections. A 3-D view of this

horn generated by a computer program is shown in Fig. 15. The region ADB
in Fig. 14 is considered to be part of the skull and is omitted in Fig. 15.

Example 3.8. Horns with 3-D spirals

All of the examples shown in Figs. 5—15 have a plane of symmetry. In this
example and in Example 3.9, horns with a three dimensional spiral component
will be produced by introducing tangential and asymmetric components of
the growth velocity distribution. Here we consider the simplest example of this
type of horn or tusk, which is straight but has several screw-like threads
similar to the horn of the narwhal. Consider the external form and coordinates
shown in Fig. 7. In order to produce spiral cell tracks in the same external
form, a rotational component is added to Eq. (34) representing rigid body
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rotation about the x
3

axis. Thus,

�g"!A
x
1
t
#ux

2B i
1
!A

x
2
t
!ux

1B i
2
#v

0
i
3

, (55)

where u is the angular velocity. To make the angle of the spiral a constant at
the outer surface, u is varied in time so that

u"i
v
0
a

, (56)

where i is a constant and a is the maximum radius of G at time t. An example
of a tusk with 45° spirals of cell tracks on the outer surface, generated by
a computer program using Eq. (55) and i"1 as input is shown in Fig. 16.

It may be noted that although the resultant horn shown in Fig. 16 is
unique for the given �g (Eq. (55)), the decomposition of a given �g into x5 m and
x5 s is not unique. In any case, according to Eq. (13),

�g"x5 m!x5 G . (13)

Within the present theory, x5 m must be a rigid body motion. One choice which
is always permissible is x5

m
"0; then x5 G"!�g.

Another possibility is that G is a fixed surface so that x5 G · n"0. Then we
require

x5 m · n"�g · n"vg
n
, (57)

Fig. 16. Computer generated view of a straight
tusk or horn with spiral cell tracks. All cell tracks
are spirals but only a few are shown for clarity
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where vg
n
is the normal component of �g. The tangential component of �g is �g

t
.

�g
t
"�g!vg

n
n . (58)

There may still be leeway in the choice of splitting �g
t

between x5 m and x5 G . If
�g
t
is not a rigid body motion, then some part of �g

t
must be assigned to x5 G.

In the present case, G is assumed to be the plane x
3
"0 and it is clear that

the term v
0

i
3

in �g of Eq. (55) must then be part of x5 m. The terms containing
u in �g constitute a rigid body rotation which may be assigned to be a part
either of x5 G or of x5 m . If the rotation is assigned to x5 G, then the generating cells
would have to rotate around in a circle on G at angular velocity u and the
horn generated would have only a translational velocity v

0
parallel to x

3
,

similar to Example 3.3. In the present case, the cell tracks would still be
spirals.

If the rotation terms in Eq. (55) are assigned to x5 m, then the horn being
generated would rotate as it grows. In this case, it follows from Eqs. (55) and
(13) that

x5 G"
x
1
t

i
1
#

x
2
t

i
2

. (59)

Equation (59) is a required motion of the generating cells in the outward radial
direction on G. This motion is necessary in order that the cell tracks be
continuous on the surface of the horn as indicated in Fig. 16. Note that Eq.
(59) is equivalent to Eqs. (43) and (44). In Example 3.3 and the present case, the
motions of the generating cells are the same, but here the generating cells are
inclined at 45° to the normal to G.

Example 3.9. Non-symmetric spiral horns

There are some horns which take a spiral form in space without any plane or
axis of symmetry. Such a spiral horn may be visualized as a part of the
narwhal’s tusk of Example 3.8: the portion of a narwhal’s tusk surrounding
a particular cell-track forms such a tapered spiral. Consider a circular subdo-
main G@ of radius a

2
, centered at a radius a

1
and osculating the circular

boundary of G of the Example 3.8 which has radius a"kt, as shown in
Fig. 17. On G in Example 3.8, the generating cells velocities are

x5 G
i
"x

1
/t"u

1
, x5 G

2
"x

2
/t"u

2
. (60)

The strain rates in the x
1

and x
2

directions are then

Lu
1

Lx
1

"

Lu
2

Lx
2

"

1

t
. (61)

Equation (61) shows that the motion of the generating cells is a spatially
isotropic expansion at any time. Hence, the circular domains shown in Fig. 17
remain self-similar for all t. It follows that if Eq. (55) is the assumed growth
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Fig. 17. Growth surfaces for a straight horn (radius a) with spiral cell tracks and a horn
which is a spiral in space (radius a

2
). The growth velocities are the same for the two cases in

the common region (radius a
2
)

velocity distribution and G@ is restricted to the self-similar circle, a
2
/a"con-

stant, as shown in Fig. 17, that from this G@, a horn will grow out with
spiral cell tracks and the central fiber of horn will also be a spiral in 3-D
space.

The above description will produce a spiral horn for which the region G@
(of radius a

2
) will move in the x

1
, x

2
plane. The center 0@ of G@ is at radius a

1
,

and lies on the x
1

axis. Taking the origin of the moving axes x@
1
, x@

2
to be 0@

i.e. we choose

x@
1
"x

1
!

a
1

a
0

kt, x@
2
"x

2
, x@

3
"x

3
. (62)

Then using Eq. (62) to express Eq. (55) yields the growth velocity in terms
of x@

i
:

�g"!

x@
1
t

i
1
!

x@
2
t

i
2
#v

0
i
3
#ux@

1
i
2
!ux@

2
i
1

!k
a
1
a

i
1
#ku

a
1
a

t i
2

, (63)

where u is again given by Eq. (56). The first two terms in Eq. (63) represent the
expansion of G@, i.e.,

x5 G
1
"

x@
1
t

i
1
#

x@
2
t

i
2

. (64)

The remaining terms of Eq. (63) represent the particle velocity x5 m relative to
the prime coordinates. The next to last term in Eq. (63) is a motion of the horn
as a whole in the negative x@

1
direction. This motion is required because the

base S@
t
and the tip of the horn continually move apart in the x

1
direction. The
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last term is a motion in the x@
2

direction which gives the cell tracks their
orientation.

A spiral horn of an extant antelope is shown in Fig. 18a. A spiral horn
generated by a computer program using �g as given by Eq. (63) is shown in
Fig. 18b. The constant ratio (a

1
/a) was taken to be 0.9, i in Eq. (56) was set

equal to 1.0, and k/v
0

was set equal to 0.1.

Fig. 18a. Sketches of various extant horn forms (from Bubenik and Bubenik 1990, by
permission)
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Fig. 18b. Computer generated spiral horn based
on schema shown in Fig. 17. See text for explana-
tion and equations

Example 3.10. Antlers

Antlers, in contrast to horns, do not grow at the base, but have the growth
surface at the external ‘‘velvet’’ layer; this layer similar to periostial layers that
produce the growth of long bones of the skeleton. At the tip of growing antlers
there are identifiable layers of the velvet of epidermis, periostium, cartilage
and antler bone (Bubenik and Bubenik 1990). Further, there is a blood supply
and a neural system. Antler growth is very sensitive to alterations of the neural
and endocrine systems which appear to be the major control systems of the
growth patterns. From the standpoint of the present paper, the kinematics of
antler growth is relatively simple since an external growth surface, G, has little
or no kinematic constraint. We may require �g to be continuous, but any
distribution of magnitude and direction is permissible. But the control and
spatial guidance systems are complex and not fully understood (see Bubenik
and Bubenik 1990, p. 486).

As a simple example of kinematic description of antler growth, consider an
antler which starts with a single central shaft which bifurcates to form
a terminal fork as shown in Fig. 19A. In the present model, only the formation
of the dense cancellous bone layer will be modeled, as shown in the cross-
section of Fig. 19B. The interior of the growing antler contains trabecular
bone, a blood supply and soft tissues which will not be represented in the
present model. At the tip of the growing antler, the main longitudinal growth
takes place. In order for a section below the tip to expand in diameter, it is
necessary to have some removal of hard tissue from the inner surface of the
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Fig. 19. (A) Schematic diagram of antler growth. The growth surface is always the external
surface which expands as the antler grows. (B) Cross-sections of the antler growth shown
in (A)

cortical bone to form the nutrient core for further extension of the antler. This
is achieved in the present modeling by considering both the inner and outer
surfaces of the cortical bone as growth surfaces and specifying an appropriate
negative growth velocity on the inner surface.

Since the several layers of the velvet coat on a growing antler are parallel
to the external surface of the antler, and growth is predominantly normal to
the growth surface (Bubenik and Bubenik 1990). In the computer model,
growth is assumed to be normal only so that the entire growth in the model is
controlled by specifying the magnitude of the surface growth velocity, �g, as
a function of surface coordinates h

1
, h

2
. The growth surface itself is labeled as

h
3
"f (t), so h

3
is constant over the entire growth surface at any time. The

ranges of h
1

and h
2

are held fixed throughout the growth, but the transforma-
tion to spatial coordinates

xG
i
"xG

i
(h

1
, h

2
, t) (65)

generates the successive growth surfaces. Bifurcation is produced by reducing
the growth rate at the tip point to zero and generating two symmetric centers of
growth on either side of it. The resulting bifurcated structure is shown in Fig. 20.

Example 3.11. Turbinate shell

Seashells present a large variety of shapes, which are all grown by a soft tissue
called the mantle, which forms a moving growth surface. The forms of
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Fig. 20. Computer generated view of a two prong antler produced by surface growth at the
external surface. The growth velocity is assumed to be normal to the external surface at
every point at all times. The magnitude of the growth velocity is varied in space and time

seashells tend to be self-similar at different ages. This similarity is largely due
to the growth velocity being directed at a constant angle, producing logarith-
mic spirals as cell tracks. The constancy of the spiral angles of several shells
and the prevalence of the logarithmic spiral in seashells is extensively
documented in D’arcy Thompson’s book (1942). Pattern formation on
molluscs is discussed by Meinhardt and Klinger (1987).

The self-similarity which results from logarithmic spirals has also formed
the basis of computer-generated images which can reproduce many shell
shapes. (See Illert 1992a, b for examples and references.) But most such
computations have generated only the external surfaces of the sea-shell shapes
without the mathematical formulation of growth velocities and computations
based directly on the vector growth velocities treated in the present paper.
Further, the discussion of cell tracks and the movement of generating cells on
the growth surface have not been previously expressed in the mathematical
forms of the present paper.

As an example of the growth of a univalve seashell, consider the turbinate
shell shown in the sketch in Fig. 21. The generating surface is along the edge of
the opening of the spiral. The generating curve is a closed loop whose shape is
self-similar as growth proceeds. In general, it need not be plane or a regular
shape like a circle or ellipse although it may approximate these. In the case
shown in Fig. 21, it is implied the growth surface is plane and always
self-similar. The coordinates h

1
, h

2
have fixed values at corresponding points

of the growth surfaces as growth proceeds, and each growth surface has
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Fig. 21. Sketch of a univalve turbinate shell. (From Dárcy Thom-
pson 1942, by permission)

a constant h
3
. The successive growth surfaces Hq may be seen as faint ridges or

color markings on many shells. They are called ‘‘generating curves’’ by D’arcy
Thompson (1942) and he calls each line with h

1
, h

2
"constants, a generating

line or generating spiral. These are called cell tracks here.
The self-similar shell form is produced by holding the angle of the growth

velocity, �g , constant at each point of the growth surface, i.e. at each h
1
, h

2
"

constant. The angle of �g is constant in the sense that the angles it makes with
a normal vector to G and with the axis of the shell are constant. The
magnitude of �g at each point of the growth surface is adjusted so that relative
to G, the shell has a rigid body motion. Figure 22 shows a turbinate shell
generated by a computer program using these guidelines.

Example 3.12. Bivalve shell

In bivalves, such as clams, oysters, and scallops, there are two growth surfaces,
one on each leaf of the shell on the plane or curve on which the leaves meet.
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Fig. 22. Computer generated turbinate shell. See text for assump-
tions of growth velocity directions and magnitudes. The spiral lines
shown are computer generated cell tracks

Bivalves tend to be self-similar in form at different ages and it follows that the
cross-sections are approximately logarithmic spirals as discussed by D’arcy
Thompson (1942). A sketch of a bivalve, Cardium edule, is shown in Fig. 23. In
this sketch, the current growth surface is called a directing curve and earlier
growth surfaces are called incremental lines. The cell tracks are called ‘‘costa’’
and are generally curved, but are quite straight near the central section. As
shown in Fig. 23C, the cross-section along a straight cell track is close to
a logarithmic spiral. The angle a (Fig. 10) is relatively small in bivalves, and
only a small portion of one complete turn of the spiral is traversed in
a complete shell.

The self-similar form of a bivalve shell is produced mathematically in the
same fashion as a univalve. The growth surface is always self-similar and has
the same range of h

1
, h

2
while it expands and rotates in x

i
space. At each point

h
1
, h

2
"constant, the angles that �g makes with the normal to G and to the

hinge axis (Fig. 23A) are held fixed with respect to time. The magnitude of �g at
each point of the growth surface is adjusted so that relative to G, the motion of
the shell is that of a rigid body. Figure 24 shows a bivalve shell generated by
a computer program using these rules. In Fig. 24, the edge of the growth
surface was taken to be a smooth curve. The cell tracks then generate
a smooth surface like a clam. Production of ridges such as the cell tracks
shown in Fig. 23 requires the growth surface edge to be serrated and to
preserve these serrations as the shell grows. The growth in the surface G needs
only to be isotropic, which automatically preserves the general form as well as
the details of the raised cell tracks (costa).
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Fig. 23. Sketches of one leaf of a bivalve (cardium edule). (A) The ‘‘directing curve’’ is the
current growth surface. (B) The ‘‘costa’’ follow cell tracks. The ‘‘incremental lines’’ are
previous growth surface Hq. (Fig. 1B). (C) The cross-section is a logarithmic spiral. (From
Vilmann et al. 1981, by permission)

Fig. 24. Computer generated view of a model of a bivalve leaf similar to the sketches in
Fig. 23. All cell tracks are logarithmic spirals with the same constant angle a
(Fig. 10)
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Example 3.13. Teeth

The growth of teeth represents a general category of surface growth in which
two growth surfaces, which start from the same surface, grow outward and
inward from the initial surface. The inward-growing surface deposits dentin
and the outward growing surface deposits enamel, as shown in the sketch of
the tooth cross-section in Fig. 25. Enamel has a distinct prism structure, each
prism having been formed by one cell (ameleoblast) so prisms are, in fact, cell
tracks. The prisms run approximately normal to each growth surface, but
there are some undulations. Prisms run parallel to each other in bands
(Hunter—Schreger bands), but the bands decussate with adjacent bands in the
inner third of the enamel. The growth surfaces at various stages (called Hq in
Sect. 2, above) are known as incremental lines in enamel or the lines of Retzius.
The discussation (crossed orientations) of successive layers may improve the
fracture toughness and is found in the structure of seashells also. In the present
vocabulary, the existence of discussating layers implies that the angle which �g

makes with the tangent plane to the growing surface of the tooth varies at the
scale of prisms of enamel, which are basically at the cellular level. In the
computer model of a tooth shown in Fig. 26, the undulation of the growth
velocity �g and the resultant Schreger lines are not represented; Schreger’s

Fig. 25. Diagram of a section through the entire length of a human tooth (premolar). (From
Moss-Salentijn and Hendricks-Klyvert 1990, by permission)

Kinematics of surface growth 901



Fig. 26. Computer simulation of the growth of the crown of a tooth (incisor). The enamel
and dentin arise from opposite sides of a common surface. The growth of both the enamel
and dentin is assumed to be normal to their growth surfaces

lines could be generated by this model by including a very fine variation of
direction of �g .

The cell tracks (generated by odontoblasts) in dentin, which grows inwards
from the initial growth surface (interlobular space of Owen), are also primarily
normal to the growth surface as indicated by the striations in Fig. 25. The
growth surfaces at various times (Hq) can be observed in sections of teeth and
are called contour lines or lines of Owen.

A computer simulation of a growing tooth is shown in Fig. 26 in which �g

has been adjusted so that �g is always parallel to the normal to the current
growth surface both on the dentin growth surface and the enamel growth
surface to arrive at the cell tracks similar to those in Fig. 25. The magnitude of
�g is varied in time and space to produce the changing forms as growth
proceeds. The initial growth surface for dentin and enamel is the common
growth surface G

0
(interlobular space of Owen). On this surface, h

1
and

h
2

values are assigned and the growths of dentin and enamel are modeled as
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two separate growth sequences, so that surfaces h
3
"q are a pair of surfaces,

Hq , one in enamel and one in dentin which locates the growth surfaces which
existed simultaneously at time t"q.

4 Residual stress due to surface growth

In the theory of Sect. 2 and the examples of Sect. 3, it is assumed that the
surface growth considered is compatible and causes no residual stress. The
meaning or definition of compatibility, in the case of a general surface growth,
is not explicitly discussed in the usual continuum mechanics literature and
also does not fall within the discussion of compatibility of volumetric growth
(Skalak et al. 1995). The question to be answered can be stated as follows:
Given a growth surface, G, and a growth velocity distribution �g on G, what
conditions should G and �g satisfy to qualify as a compatible surface growth?
The physical ideas of compatibility may be regarded as analogous to the
requirements of 3-D elasticity: The growth should not create any holes, tears,
overlaps and should not cause residual stresses. The problem is to translate
these ideas into mathematical criteria.

The definition of compatibility for surface growth as stated above is not
directly comparable to the usual discussion of compatibility in the theory of
elasticity, where conditions on a proposed strain field are sought in order to
have a single-valued displacement field. The compatibility of surface growth
could be discussed in analogous terms, i.e., under what conditions of a surface
strain field on G, does a single valued displacement of G exist? This level of the
discussion is avoided here by assuming that �g is a continuous velocity
distribution postulated to exist a priori. The compatibility of growth strains
within G may be a separate question of some interest, but does not correspond
to the entry level of the discussion posed here.

Consider first the case of surface growth on an external surface such as in
the growth of antlers. The normal component of �g specifies a local rate of
mass accretion (Eq. (29)). Assuming the new material is deposited in an
unstressed condition, there does not appear to be any mechanism to cause
residual stress. However, if the newly added material is somehow made to
shrink or expand after it is placed, then residual stress may be induced. Such
cases will be discussed later in this section.

In the cases of external surface growth, such as in antlers or seashells, the
tangential component of �g (tangential to G) may be ascribed to motion of the
generating cells, assuming that the growing body itself is fixed in space, as
explained in Sect. 2 and illustrated in the examples of Sect. 3. Thus, it appears
that if �g is a continuous vector field over any continuous G which is an
external surface, then no further requirements need be placed on �g for
compatibility.

A more obvious and direct way that surface growth may induce residual
stresses can occur when the surface growth takes place on an internal surface
such as at the base of growing horn. In the horn Examples 3.1—3.9 discussed in
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the previous section, the growth velocities �g assumed were compatible with
rigid body motions of the horns relative to the skulls which were also
considered to be rigid. As long as the growth velocities �g are compatible in
this way, no residual stress is necessary. Residual stresses will be necessary if at
some point, the growth velocity �g on G is not compatible with a rigid body
motion of the horn relative to the skull. To postulate a specific example,
consider the Example 3.1 again in which the growth velocity is assumed to be
a uniform vector over G (Eq. (30)). Suppose that after some time, the growth
velocity changes so that for a period from t

1
to t

2
the growth velocity is

�g"v
0A1#b cos

nr

2aB i
3

, (66)

where r is the cylindrical coordinate and b is a constant. After time t
2
, it is

assumed the growth velocity �g reverts to Eq. (30). Since the growth velocity �g

given by Eq. (66) is not compatible with rigid body motion, residual stresses
will be required to maintain the continuity of the horn and skull. The problem
to be solved to find the residual stresses is illustrated in Fig. 27. The uniform
growth up to time t

1
is shown in Fig. 27A. For a time t during the interval

t
1
(t(t

2
, the uninhibited growth assumed (Eq. (66)) would produce the

incompatible parts shown in Fig. 27B. Residual stresses are required to
maintain continuity of the horn and skull as shown in Fig. 27C. In the
problem posed in Fig. 27, residual stresses are required beginning at t"t

1
and

they will be changing with time thereafter due to the continued incompatible
growth.

In the above discussion, it is assumed that the cells producing growth are
capable of producing the assumed growth velocity �g , Eq. (66) against the
influence of the residual stresses that such incompatible growth produces. In
real life it may be expected that such residual stresses will influence the rate of
growth and tend to force it into a compatible mode.

In summary, a compatibility rule for surface growth on an interior surface
may be stated as follows: A vector field of surface growth �g is compatible on
an interior surface G if �g is of the form of a Volterra dislocation, i.e. Eq. (21).
In this case, the relative motion of the two parts of the body, either side of the
growth surface, are rigid body motions.

It is also possible to generate an incompatibility due to tangential compo-
nents of �g if cells on G and G itself are assumed to be fixed in location, but
there are tangential components of �g . For example, a radial outward com-
ponent of �g as given in Example 3.3 (Fig. 7) by Eq. (34) would be incompatible
if xR G

i
were assumed to be zero instead of the result given by Eqs. (43) and (44).

A general rule may be given in the case that it is assumed that G is fixed
and the growth-producing cells are fixed in location on G. As already dis-
cussed in Sect. 2, the entire growth velocity field �g on G must have the form of
a Volterra dislocation, Eq. (21).

Returning now to the possibility of residual stresses being produced by
contraction or expansion of tissue after it is deposited on an external surface

904 R. Skalak et al.



Fig. 27. Schematic illustration of origin of possible residual stresses due to surface growth.
(A) Uniform growth without residual stresses up to time t"t

1
. (B) Incompatible growth

due to non-uniform surface growth, assuming no residual stresses. (C) Resulting shape if
residual stresses are assumed to maintain compatibility of the growing structure

G of a growing body, it may be remarked first that this is not a surface growth
phenomenon. The proposed expansion or contraction of tissue after it is
placed, falls under the general category of volumetric growth which is treated
in a previous paper (Skalak et al. 1996). This case is mentioned here because it
may be biologically important and may, in fact, be taking place only in a thin
layer near the surface of a body. If a thin surface layer on any solid body
contracts or expands without growth or atrophy in the interior of the body, it
may be expected that residual stresses are produced.

An example of residual stress induced by contraction of surface growth
may be found in wound healing. Some tissue is laid down and then it is
contracted to form a scar tissue and induces tension in the surrounding skin.

Another possible example is the origin of residual stress in the walls of
arteries, which are known to have large residual strains in vivo in both the
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circumferential as well as longitudinal directions. As such arteries grow or
hypertrophy due to elevation of blood pressure, or normal growth through
childhood, it may be that the new tissue is laid down first and then contracts
rather than being laid down under the final prestress. These possibilities need
experimental information to verify the actual mechanisms.

5 Discussion and conclusions

The present paper is intended to supply a rigorous vocabulary for the
description of various kinds of surface growth and to illustrate the use and
results of this vocabulary in some common cases of horns, seashells and teeth.
This vocabulary is on one hand rigorous and on the other hand flexible; it
covers the possibilities of fixed or deforming growth surface and the definition
of surface growth velocity is independent of the coordinates chosen. They may
be assumed to be fixed relative to the growth surface or to the body being
generated.

A unique feature of the present treatment is that the surface growth
velocity is assumed at the outset to be either inclined to or perpendicular to
the current growth surface. This allows generation of space-curved structures
such as a spiral horn, without requiring rotation of the growth surface itself. In
the present theory, it is assumed that all the growth is produced by cells which
are aligned parallel to the growth velocity vector. This is not essential to the
theory presented here, but provides motivation for it. This assumption, as well
as the actual motion of growth cells within the growth surface, needs to be
verified in any particular biological case.

The present paper does not provide any biological proof that the descrip-
tions provided apply to any particular biological case. Rather, a rigorous
vocabulary is presented and it remains to be seen by biological observations
and experiments, where such theory does not provide a realistic description.
Of course, in many cases there are observations recorded in the literature
which assure that many of the aspects of the examples presented here are
realistic. For example, it is known that the rhinoceros horn is matted hair, and
hence, it has cell tracks more like Fig. 6 than Fig. 7. On the other hand, the
structure of cows’ horns is known to be more like Fig. 7.

There are two points of the present vocabulary that particularly need to be
confirmed or verified in each biological case. The first is the extent to which
cell tracks (like the costa of Fig. 23) are, in fact, attributable to a single cell or
to a group of cells, in which individual cells divide or die and are replaced by
new cells.

The second aspect which requires experimental information is the nature
and degree of motion of generating cells. (This is the velocity called x5 G in
Eq. (12).) If the surface supporting the generating cells is bone and the
growth of the supporting structure is the reason for the motion of the
generating cells, one possibility is that there is an isotropic growth of the
growth surface G and its supporting structure. Then no residual stresses
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are required. In the examples shown in Figs. 6—24, only such isotropic base
growth is required.

The motion of the generating cells (or its equivalent), may also be produc-
ed by the deformation of soft tissue in which the generating cells reside. This
may be the case for the growth of a whelk shell which has series of periodic
bumps or protrusions on its outer spiral. These must be produced by corre-
sponding variations of the growth surface G as the shell grows. The true
marvel of surface growth, is the control system which must regulate such
undulations in this case and such complexities as 10-point antlers, or the
composite curves of spiral horns. The present paper does not consider these
control mechanisms, but may provide a rigorous kinematic vocabulary for
their discussion.
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