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Abstract. In this paper we study the existence of one-dimensional travelling
wave solutions u (x, t)"/ (x!ct) for the non-linear degenerate (at u"0)
reaction-diffusion equation u

t
"[D(u)u

x
]
x
#g(u) where g is a generalisation

of the Nagumo equation arising in nerve conduction theory, as well as
describing the Allee effect. We use a dynamical systems approach to prove:
1. the global bifurcation of a heteroclinic cycle (two monotone stationary
front solutions), for c"0, 2. The existence of a unique value c*'0 of c for
which /(x!c* t) is a travelling wave solution of sharp type and 3. A con-
tinuum of monotone and oscillatory fronts for c9c*. We present some
numerical simulations of the phase portrait in travelling wave coordinates and
on the full partial differential equation.

Key words: Sharp fronts — Degenerate diffusion — Hamiltonian — Bifurcation
of heteroclinic trajectories

1 Introduction

In this paper we deal with the problem of looking for travelling wave solutions
(t.w.s.) u (x, t)"/ (x!ct),/ (m) for the equation

Lu

Lt
"

L
Lx CD (u)

Lu

LxD#g(u), ∀ (x, t)3R]R` , (1)

where for a given real number a3 (0, 1), the functions D and g defined on the
interval [0, 1] satisfy the conditions:

1. g (0)"g (a)"g(1)"0, g(u)(0 ∀u3 (0, a), g (u)'0 ∀u3(a, 1),
2. g3C2

*0,1+
, g@(0)(0, g@(a)'0, g@(1)(0 and g@@ (0)'0,

3. D(0)"0, D(u)'0 ∀u3(0, 1],
4. D3C2

*0,1+
, D@(u)'0 ∀u3[0, 1] and D@@(0)'0.

We also require the conditions: u (x, 0)"u
0
(x) with 06u

0
(x)61 where u

0
is

a piecewise differentiable function on R and 06/(m)61 ∀m3(!R, #R).



Note that because of condition 3, equation (1) is of parabolic type for all u'0
and degenerates into an ODE at u"0. The degeneracy of equation (1) results
in two specific features of its solutions which do not appear in equations with
constant diffusion coefficient: 1. the finite speed of propagation through space,
and 2. the existence of weak solutions, particularly those solutions with
discontinuous space derivative.

Note that u
1
(x, t),0, u

2
(x, t),a and u

3
(x, t),1 are homogeneous and

stationary solutions of equation (1). They play a key role in the asymptotic
behaviour of the t.w.s. of this equation.

Given the appropriate physical interpretation of u in equation (1) this can
be seen as a generalization of those equations arising as models for different
biological systems. Thus (1) could represent the space-time dynamics of
a population (with population density u) showing an Allee effect and whose
individuals disperse to avoid crowded areas (see [3, 4, 6, 9, 17]). Meanwhile, if
we interpret u as the probability of occurrence of the allele A in a population
with two alleles (A and a), equation (1) is a generalization of that describing
the dispersion of the gene A in the heterozygote inferior case (see [2, 18]).
Finally, if we interpret u as a membrane potential in a nerve axon, equation (1)
is a generalization of Nagumo’s equation arising in nerve conduction models
(see [16]).

Although very detailed analysis of travelling wave solutions (t.w.s.) to the
constant diffusion equation with non-linear kinetic term having the geometric
properties 1—2 above already exists in the literature, this is not the case for
generalized degenerate non-linear Nagumo reaction-diffusion equations.

Since the classic papers [10, 15] on t.w.s. for a constant diffusion equation
with quadratic-like kinetic part, much research has been developed to try to
extend this analysis to more general reaction-diffusion equations. Particular
cases of a density-dependent diffusion coefficient vanishing at u"0, with
reactive part having the qualitative properties listed above, have also
been studied. For example, several authors have analysed the equation
u
t
"[um]

xx
#u (1!u) (u!a), where m'1 and a3 (0, 1), for specific values of

m (see [3, 11, 13, 14]). Their results focus on the existence of a critical value,
c*'0, of c for which the above equation has a sharp type solution and on the
convergence to t.w.s.

In this paper we extend previous analysis on existence of different types of
t.w.s. to the general equation (1). We use a dynamical systems theory ap-
proach, in which the problem of finding t.w.s. for (1) satisfying suitable
boundary conditions, is equivalent to determining the set of parameters
(which includes the speed c) for which there exist heteroclinic (or homoclinic)
trajectories for an autonomous system of two ordinary differential equations
(ODEs). This system arises from transforming the original problem into
travelling wave coordinates.

The paper is organized as follows: Sect. 2 contains a result on the sign of
the speed c of the t.w.s. of equation (1). There we also state the main result of
this paper. In Sect. 3 we outline the non-linear local analysis to obtain the
local phase portrait of the transformed system of ODEs for the case c70. In
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Sect. 4 we carry out the global analysis for the case c"0. We exhibit there the
bifurcation of a heteroclinic cycle and illustrate our results with an example. In
Sect. 5 we begin the analysis of the whole phase portrait of the ODE system
for c'0 by obtaining some results on global behaviour which are related to
the existence of some t.w.s. of front (oscillatory and monotone) type. In Sect. 6
we use a couple of previous results obtained by the authors (see [20]) to prove
the existence and uniqueness of a critical value, c*, of c for which there exists
a travelling wave solution of sharp type. We illustrate the analytical results of
the paper by considering an example.

Since the proofs of some results of this paper use similar techniques
developed in a previous publication ([20]), we will be concerned here more
with the consequences of the theory, rather than with developing the method-
ological aspects. In this sense the present work can be seen as an extension of
the aforementioned reference. Full details can be found in [19].

2 Statement of the main result

Our analysis starts by calculating the sign of the speed of t.w.s. of (1). For this
let D: [0, 1]PR be the function defined as:

D (/)"P
”

0

D (w) g (w) dw , (2)

where w"/ (m).

Proposition 2.1. Suppose sufficient conditions of smoothness of the functions
D and g on the interval [0, 1]. Assume that equation (1) has t.w.s. whose
behaviour is as sketched in Fig. 1. For Figs. 1(a—c), c'0. For Fig. 1(d), c'0 if
and only if D(1)'0.

Proof. This can be obtained following a similar methodology to that given in
[20]. We omit the details. K

Before we state the main result of this paper, we must mention that we
have adopted here the definition of sharp type solution of equation (1) from
[20], which corresponds to a weak solution type for equation (1).

Our theorem is:

Theorem 1. If the functions D and g satisfy conditions 1—4 given in Sect. 1, then
there exists a unique value, c*'0, of the speed c, such that equation (1):

1. has for c"0: (a) an isolated pulse based at P
0
ifD (1)'0; (b) an isolated

pulse based at P
1

if D (1)(0; (c) two stationary monotonic fronts: one
connecting the states 0 and 1 and the other connecting 1 to 0 if D (1)"0,

2. has an oscillatory front from 0 to a and another from 1 to a for each c such

that 0(c(c*(J4D(a)g@(a) ,
3. has a unique travelling wave solution of sharp type from 1 to 0 for

a critical value, c*, of the speed c. For this value of c there exists an
oscillatory travelling wave from 0 to a,
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Fig. 1a–d. Different behaviours of t.w.s. for equation (1) depicted by continuous and
broken lines. For the waves depicted in a–c the speed c is greater than zero. For d, c'0 if
and only ifD(1)'0. The solution shown here is the so-called sharp type travelling wave (see
[20] for the definition)

4. does not possess t.w.s. connecting the homogeneous and stationary steady
states: i) u (x, t),1 and u(x, t),0, for D(1)60 and c'0 and
ii) u (x, t),0 and u(x, t),1 for D(1)'0,

5. has two oscillatory travelling fronts for c*(c(J4D(a)g@(a): one from
0 to a and another from 1 to a,

6. has a monotonic decreasing front from 1 to a for each c such that

c7J4D(a) g@(a) .

For the same values of c it has a monotonic increasing front from 0 to a.

In the following sections we outline the proof of Theorem 1 and refer the
reader to [19] for fuller details.

3 Local phase portrait for c70

We follow the aforementioned classical t.w.s. analysis introduced in [15]. The
ODE system can be obtained as follows. If a travelling wave solution
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u(x, t)"/ (x!ct) of (1) exists, it must satisfy the ODE equation

D(/ (m))/@@(m)#c/@ (m)#D@ (/) [/@(m)]2#g(/ (m))"0 , (3)

where the dash on D means the derivative with respect to /, while that on
/ means the derivative with respect to m. By setting v"/@ equation (3) can be
written as the singular (at /"0) ODE system

/@"v
(4)

D (/)v@"!cv!D@(/ )v2!g (/) .

The singularity can be removed by introducing (see [3, 20]) the parameter
q"q(m) into (4) such that

dq
dm

"

1

D(/ (m))
.

If we define / (m),/(q (m)), v (q),v (q(m)) and denote by dot the derivative
with respect to q, system (4) can be re-written as the following non-singular
system

/Q "D (/ )v
(5)

vR"!cv!D@(/)v2!g (/ ) .

Equation (5), together with the condition 06/ (q)61 ∀ q3 (!R, #R),
constitutes the re-statement in travelling wave coordinates of the original
problem.

We begin the phase portrait analysis by noting that system (5) has three
equilibria: P

0
"(0, 0), P

1
"(1, 0), Pa"(a, 0) and P

c
"(0, !c/D@(0)). As

a consequence of the existence of four equilibria, equations (5) have a greater
richness of dynamics than those of the corresponding ODE system associated
with the degenerate Fisher-KPP equation, which has only three (see [20]).
Nevertheless, some of the techniques developed in that reference can be
extended to the present case.

The local phase portrait of (5) can be obtained by using its local approxi-
mation around each equilibria. For P

1
, Pa and P

c
the linear analysis is

sufficient to determine the local behaviour. However, since P
0

is a non-
hyperbolic point for all values of c, we need higher order terms in the
approximation (see [1] and the application of the Centre Manifold Theorem
(see [7]). The result of the linear and the nonlinear analyses is:

Case 1. If c"0, P
0

is a saddle-like point, Pa a centre and P
1

a saddle
point,
Case 2. If c'0, P

0
is a saddle-node, P

c
and P

1
are saddle points, and Pa is

a locally stable: i) node if c274D(a) g@(a) or ii) focus if c2(4D(a) g@(a).

The local phase portrait of (5) is shown in Fig. 2.
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Fig. 2a–c. Local phase portrait of (5) for different values of c: a c"0, b c2(4D (a) g@(a) and
c c274D (a) g@(a)

In the next sections we determine the global phase portrait of (5) for c70
focusing on determining the existence of different heteroclinic and homoclinic
trajectories. We begin with the case c"0.

4 Bifurcation of a heteroclinic cycle for c""0

We note that multiplying the right-hand side of (5) (with c"0), by D, the
system can be transformed into a hamiltonian-like system whose trajectories
coincide on the first and fourth quadrants of the /v-plane with those of (5).
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The hamiltonian of the modified system is

H(/, v)"1
2
[D (/)v]2#P

”

0

D(w) g (w) dw . (6)

By using the geometrical properties of the level curves H (0, 0),0 and
H(1, 0),D (1) of H (which in turn depend on those of D and g), one can prove
the following lemma which, actually, gives us the proof of item 1 in Theorem 1.

Lemma 4.1. System (5) with c"0 has a:
1. Homoclinic trajectory based in P

0
, if D (1)'0,

2. Heteroclinic cycle from P
0

to P
1

and from P
1

to P
0
, if D (1)"0,

3. Homoclinic trajectory based in P
1
, if D(1)(0.

The solutions of (1) associated with the trajectories mentioned in the above
lemma are illustrated in Fig. 3.

In the following example we illustrate the results contained in Lemma 4.1.

Example 1. Here we consider the equation

Lu

Lt
"

L
Lx C(bu#u2)

Lu

LxD#u (1!u) (u!a) , (7)

where b'0 and a3 (0, 1).

Fig. 3a–c. Sketch of the solutions
u(x, t)"/(x!ct) of (1) for c"0 corresponding
to the different conditions mentioned in Lemma
4.1 for: a D (1)'0, b D (1)"0 and c D (1)(0.
The broken lines represent the periodic solutions
associated with the closed trajectories of (5). In
b the dots at the top of the monotonic fronts
represent the asymptotic behaviour of both
fronts as qP#R and qP!R, respectively
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For c"0 system (5) takes the form

/Q "(b/#/2) v
(8)

vR"!(b#2/)v2!/ (1!/) (/!a ) ,

The condition D (1)":1
0
D(w)g(w) dw"0 holds if and only if a and b are

related as follows

a (b)"
3b#2

3#5b
. (9)

This relationship divides the plane of parameters into regions for which
system (8) has one homoclinic connection based at P

0
or based at P

1
. The

plane of the parameters and the phase portrait of system (8) showing the
bifurcation of the heteroclinic cycle are illustrated in Fig. 4.

Fig. 4a–d. Dynamics of the system (8): a a!b parameter space. b The homoclinic
trajectory based in P

0
for D(1)'0 (0(a(a(b)) (thick line). c Heteroclinic cycle from

P
0

to P
1

(thick line) and from P
1

to P
0

for D (1)"0 (a"a (b)) (thick line). d Homoclinic
trajectory based in P

1
for D(1)(0 (a'a (b)) (thick line). Numerically, it is difficult to

pick the stable or unstable manifolds for this case, so we illustrate the trajectory by
hand.
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5 Monotonicity and the existence of some fronts

In this section we prove some monotonicity properties of the paths of the
trajectories of system (5) and the existence of certain types of heteroclinic
connections. We introduce the following notation: Let ¼u

c
(P

1
) and ¼s

c
(P

c
)

denote the left unstable and the right stable manifolds of (5) at P
1

and P
c
,

respectively.
We begin the global analysis by addressing the behaviour of the vertical

null-clines of (5):

»
1
(/)"

!c#Jc2!4D@(/)g(/)

2D@(/)
and »

2
(/)"

!c!Jc2!4D@(/)g(/)

2D@ (/)
.

(10)

Their shape changes with c as is shown in Fig. 5 in which we have also
drawn the vector field defined by (5), the way in which ¼u

c
(P

1
) is leaving

P
1

and the form in which ¼s
c
(P

c
) approaches P

c
.

Before we continue with the proof we first give a brief conceptual overview
of the analysis presented in this and subsequent sections. This can be sum-
marized in the following three cases corresponding to different values of c:

1. For sufficiently small positive values of c, the phase portrait of (5) looks
like that illustrated in Fig. 6(a),

2. For sufficiently large values of c, namely c'0 such that
c27M,max[4D(/)g(/)], where the maximum is taken on [0, 1], the
phase portrait of (5) is as in Fig. 6(b),

3. For intermediate values of c we have a rich dynamics, including the
existence and uniqueness of a saddle-saddle heteroclinic trajectory for
a critical value, c*, of c.

Firstly we eliminate the parameter q in (5). This leads to the equation

dv

d/
"

!cv!D@ (/)v2!g (/)

D (/) v
. (11)

Hereafter v
1

and v
2

will denote two solutions of equation (11) correspond-
ing to two positive values, c

1
and c

2
, of the speed, c, respectively. Clearly,

v
1

and v
2

satisfy v
1
(1)"v

2
(1)"0.

Denoting by @ the derivative of v with respect to /, it is straightforward to
verify that

v@
2
!v@

1
"

(c
1
!c

2
)v

1
v
2
#(v2

1
v
2
!v2

2
v
1
) D@#(v

2
!v

1
)g

Dv
1
v
2

. (12)

We now define the functions G
1

and G
0

such that

G
1
(/)"[v

2
(/)!v

1
(/)]D(/) expC!P

”

a

g (s)

v
1
(s) v

2
(s) D(s)

dsD , (13)
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Fig. 5a–d. Qualitative behaviour of the vertical null-clines of (5) for different values of c:
a c2'M,max[4D@(/)g(/)]. Here » @

2
(0)'0, b c2"M and c c2(M. Continuous line

represents »
1

and broken line represents »
2

andG
0
(/)"!G

1
(/). By noting thatG

1
(/)P0 as /P1~ andG

0
(/)P0 as

/P0` we can prove the following lemma on the monotonicity properties of
the solutions of equation (11) as c changes:

Lemma 5.1. ¸et c
1

and c
2

be two values of c such that c
1
(c

2
. If v

1
and v

2
are

both:

1. Negative on [a, 1) and satisfy v
1
(1)"v

2
(1)"0, then v

1
(/)(v

2
(/)

∀ /3 (0, 1),
2. Positive on (0, a] and satisfy v

1
(0)"v

2
(0)"0, then v

1
(/)'

v
2
(/) ∀ /3 (0, 1),

3. Negative on (0, a] and satisfy v
1
(0)"!c

1
/D@ (0) and v

2
(0)"!c

2
/D@(0),

then v
1
(/)'v

2
(/)∀ /3 (0, 1).

By using the phase portrait of (5) for c"0, the continuity of the vector
field defined in (5) with respect to c, the vector field itself and the above
analysis we can prove the following lemma:
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Fig. 6a, b. Phase portrait of (5) for extremum values of c. a Sufficiently small values of c and
b c27max [4D@(/) g(/)]

Lemma 5.2. For c'0, system (5) does not have a heteroclinic trajectory from:
1. P

0
to P

1
for D (1)'0,

2. P
1

to P
0

for D(1)60.

In terms of the t.w.s. dynamics of (1), Lemma 5.2 means that for c70 there
are no t.w.s. satisfying: / (!R)"0 and / (#R)"1 for D (1)'0 and 2.
/(!R)"1 and /(#R)"0 for D (1)60. Hence item 4. in Theorem 1 is
proved.

By noting that the function

» (/, v)"1
2

[D(/)v]2#[D (/)!D (a)] (14)

is a Lyapunov function for (5) for the equilibrium Pa and by considering the
behaviour of the trajectories of (5) approaching the horizontal axis coming
from P

0
and from P

1
, we can prove the following lemma:

Lemma 5.3. 1. If D(1)'0 then for each c'0, (5) has a heteroclinic trajectory

from P
0

to Pa which: a) oscillates around Pa if 0(c(J4D(a)g@ (a) or b) is

monotone if c7J4D(a)g@(a).
2. If D (1)60, then for each c'0, (5) has a heteroclinic trajectory from

P
1

to Pa which: a) oscillates around Pa if 0(c(J4D (a) g@(a) or b) is mono-

tone if c7J4D(a) g@(a).

The above lemma contains information on the t.w.s. dynamics of (1) but,
given that the bounds of c will be refined in the next section, we do not state
the result in those terms.

We now proceed to analyse more closely the dynamics of the manifolds
¼ u

c
(P

1
) and ¼ s

c
(P

c
) for the case D(1)'0 as c increases.
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6 The existence and uniqueness of a sharp front

We start by considering large values of c. The following proposition holds:

Proposition 6.1. For c such that c27max [4D@(/)g (/)] the manifold ¼ s
c
(P

c
)

leaves (in reverse time) the region R,M(/, v) D0(/(1, v(0N somewhere on
M(/, v) D/"1, v(0N. Meanwhile for all c70, ¼u

c
(P

1
) enters the region R.

Proof. For the first part the reasoning is similar to that given in [20], Lemma
1. It uses the vector field defined by (5) and the vertical null-clines (10) shown
in Fig. 5. The second part is immediate by using the local linear analysis
around P

1
developed in Sect. 3. h

Proposition 6.1 allows us to conclude that for the above values of c the
manifold ¼ u

c
(P

1
) entering the region R has, in principle, two possible behav-

iours as qPR: either it tends to Pa or it tends to P
0
. Now we clarify the

actual behaviour of ¼ u
c
(P

1
) and ¼ s

c
(P

c
) for c'0.

To begin, note that for all u3[a, 1] equation (1) is a non-degenerate
Fisher-KPP equation and one can use the t.w.s. analysis carried out in [8] and
[12], which reduces the analysis for equation u

t
"[D(u)u

x
]
x
#g(u) to that for

u
t
"u

xx
#D (u)g (u). Hence we can use the result for the ODE system of those

equations, to prove the following lemma:

Lemma 6.1. For each c7cN with cN such that

J4D (a) g@ (a)6cN 6SsupC4
D(/) g(/)

(/!a) D , (15)

where the sup is taken on /3 (a, 1), system (5) has two:

1. Damped heteroclinic trajectories for cN"J4D (a)@(a) : one from P
1

to
Pa and the other from P

0
to Pa ,

2. Monotone heteroclinic trajectories for cN'J4D(a) g@(a) : one from P
1

to
Pa and the other from P

0
to Pa.

Now let us consider small values of c. We can prove the following
proposition:

Proposition 6.2. Suppose that D(1)'0. ¹hen, for sufficiently small (posi-
tive) values of c:

1. ¼u
c
(P

1
)P(0, !R) as qPR,

2. ¼ s
c
(P

c
) leaves (in reverse time) the region R somewhere on (a, 1),

3. ¹he trajectory leaving P
0

ends at Pa.

Proof. Items 1 and 2 follow by using continuity of the solutions of (5) with
respect to the speed c and Lemma 4.1 (items 1 and 2, respectively). Item
3 follows by using Lemma 6.1. h

So far in this section we have analysed the behaviour of ¼s
c
(P

c
) and ¼u

c
(P

1
)

for small and large values of c. Now we consider intermediate values of c. For
this, we can use a couple of results proved previously (see [20]).
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Let (/
c
, v

c
) be the point where the manifold ¼ s

c
(P

c
) leaves (in reverse time)

the region R. We define

c*"inf Mc Dc'0, /
c
"1, v

c
(1)(0N , (16)

to prove the following lemma:

Lemma 6.2 (Existence and Uniqueness). For D(1)'0, there exists a value,
c*'0, of c, such that the trajectory ¼sc* (Pc*) is the unique trajectory connecting
(in reverse time) the point Pc* to the point P

1
.

Proof. This follows the same reasoning as that given in [20], so we omit the
details. h

By using continuity arguments on the solutions of (5) with respect to the
parameter c and all the results proved in the above sections, we can summa-
rize the dynamics of the heteroclinic connections of (5) forD (1)'0 and c'0
as follows:

Lemma 6.3. For D (1)'0, (5) has:
1. No heteroclinic trajectory from P

0
to P

1
for c'0,

2. An oscillatory heteroclinic trajectory (oscillating around Pa) connecting

P
0

with Pa for each c such that 0(c(c*(J4D(a) g@(a) ,
3. ¹wo heteroclinic trajectories for c"c* : one of oscillatory type (oscillat-

ing around Pa ) from P
0

to Pa and one of saddle-saddle type connecting
P
1

with Pc* ,
4. ¹wo oscillatory (oscillating around Pa) heteroclinic trajectories for

c*(c(J4D(a) g@(a): one from P
0

to Pa and the other from P
1

to Pa ,
5. ¹wo heteroclinic trajectories for c7J4D(a) g@(a): one from P

0
to Pa and

the other from P
1

to Pa . Both are damped when equality occurs and they
are monotone in the case of strict inequality.

If we interpret each of the heteroclinic trajectories, whose existence has
already been proved above, as the corresponding different types of t.w.s. for
equation (1), we conclude the proof of Theorem 1. h

We illustrate the analytical results obtained in the above sections by
considering an example:

Example 2. Here we consider equation (1) with D(u)"bu#u2 and
g(u)"u (1!u) (u!a), where b'0 and a3 (0, 1).

The corresponding non-singular ODE system (5) takes the form

/Q "(b/#/2 )v
(17)

vR"!cv!(b#2/)v2!/(1!/ ) (/!a) .

The equilibria for this system are: P
0
"(0, 0), P

1
"(1, 0), Pa"(a, 0) and

P
c
"(0, !c/D@ (0)). Figure 7 shows the phase portrait of (17) for different
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Fig. 7a–d. Phase portrait of system (17) for different values of c: a c"0.1: Here there exists
only the P

0
to Pa connection (thick broken line). b c"0.201: This is an approximation to

the critical value of c for which there exists a saddle(P
1
) -saddle(P

c
) heteroclinic trajectory

(thick line). Also for this value of c we have an oscillatory connection from P
0

to Pa (thick
broken line). c c"0.3: Here there are two oscillatory heteroclinic trajectories; from P

0
to

Pa (thick broken line) and from P
1

to Pa (thick line). d c"1.0: Here there are two
monotonic heteroclinic connections, one from P

0
to Pa (thick broken line) and the other

from P
1

to Pa (thick line)

values of c with b"2 (the qualitative features of the phase portrait do not
change with b). The dynamics shown in Fig. 7 agrees with the analytical
results contained in this paper. Note that for c+0.201 we have the saddle-
saddle heteroclinic connection. Associated with this trajectory we have the
sharp type solution for the corresponding equation (1) with D and g as above
(see [20] for the definition of sharp type solution).

Numerical simulations of the partial differential equation strongly suggest
that the sharp type solution is stable for a step function initial condition and
the final speed attained by the wave agrees very closely with that predicted by
the phase portrait analysis corresponding to the saddle-saddle heteroclinic
trajectory.
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7 Conclusions and discussion

We conclude this paper addressing the points below:
1. The rich dynamics of system (5) comes mainly from the geometric

properties of g. It is remarkable how this leads to a wider range of
heteroclinic and homoclinic trajectories compared with those of the
degenerate Fisher-KPP equation (see [20]). Consequently, equation (1)
exhibits a greater richness of t.w.s. behaviour than that of the degener-
ate Fisher-KPP equation.

2. The degeneracy of equation (1) is responsible for the existence of the
sharp type solution for that equation, while the uniqueness comes from
the monotonicity of the solutions of equation (11) with respect to c.

3. The numerical simulations carried out on the full PDE suggest that for
a step function initial condition, the sharp travelling wave solution of
(1), for D and g given in Example 2, is stable. The rigorous proof of
convergence to the different types of t.w.s. for the general equation (1),
whose existence has been proved in this paper, is still an open problem.
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