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Abstract. We study the qualitative properties of degenerate diffusion equa-
tions used to describe dispersal processes in population dynamics. For sys-
tems of interacting populations, the forms of the diffusion models used
determine if the population will intermix or remain disjoint (segregated). The
dynamics and stability of segregation boundaries between competing popula-
tions is analyzed. General population models with segregation and mixing
interactions are derived and connections to behavior in fluid mechanical
systems are addressed.

Key words: Population dynamics — Nonlinear diffusion — Porous media
equation — Degenerate diffusion — Dispersal

1 Introduction

We study the qualitative properties of different models used to describe
dispersal processes in population dynamics. Our focus is the use of models
based on nonlinear degenerate parabolic partial differential equations, also
called porous media equations. It will be shown that problems with systems of
interacting populations can yield different types of behavior depending on the
forms of the models used. Following a brief review of reaction-diffusion
systems for population dynamics, we will study two important phenomena
exhibited by such models — segregation and mixing. Examples of biological
systems displaying these behaviors will be given. Strong parallels between
population dynamics models and flows of thin films of viscous fluids will be
examined. We conclude with a formulation of population dynamics systems
that describe such forms of group interactions.

* Supported by a National Science Foundation postdoctoral fellowship
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1.1 Dynamics of a single population

The behavior of large populations, such as herds of animals or colonies of
bacteria, can often be represented by solutions of reaction-diffusion equations.
These equations model the evolution of the population with respect to
dispersal in space and interactions among the individuals, such as birth, death,
competition, and cooperation. Fisher’s equation [9, 1],

o*u

ou

where u(x, t) is the population density, is the most fundamental model for the
evolution of a single population with diffusion, birth, and death processes.
Fisher’s original work considered the spreading of a gene throughout a popu-
lation, but (1) has also been applied to combustion problems [11] and
chemical systems [9]. More detailed descriptions of the behavior of specific
populations can be obtained by using specialized models for the diffusion and
interaction processes. The general form of Fisher’s equation is

ou
i —V-J+ F(u, (2)

where J is the population flux vector and F(u) is the nonlinear interaction
term. Gurney and Nisbet [5, 6] suggest that an important modeling consid-
eration for population dynamics is the desire of individuals to avoid over-
crowded areas. Neglecting random diffusive motion in the population, this
behavior is characterized by the flux J = uv, where the dispersal velocity v is
a vector opposite to the direction of maximal population density increase,
v oc —Vu. In general, we should allow both local density and local gradients to
contribute to anti-crowding dispersal, therefore the velocity can be written as

v= —k(u)Vu, (3)

where the dispersivity k(u) is an increasing function of the population density,
say k(u) = u"" !, for n = 1, then the flux may be written as

J= —u"Vu, 4)

and for n = 1 we recover the “directed motion” model of Gurney and Nisbet.
We note that this flux can also be written as

J= —Du)Vu, (5)

where the diffusion coefficient is D(u) = u". Neglecting the interaction term in
(2), this flux model yields a nonlinear diffusion equation called the porous
media equation [2],

u

5= Vv, 6)
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which has applications to many physical systems [1, 2, 17] including the fluid
dynamics of thin films [12, 14-16]. Murray [9] describes how this model has
been used to represent “population pressure” in biological systems. Equation
(6) is called a degenerate parabolic differential equation because the diffusion
coefficient D(u) = u" does not satisfy the condition for classical diffusion
equations, D(u) > 0 [18]. Population distributions for equation (6) can have
distinct boundaries, called interfaces, beyond which the population density is
identically zero. This property is illustrated by the well-known exact solution
of (6) in one dimension [19]

n X2 +\ 1/n
=g e [ [ )0

where C > 0 is an arbitrary constant and [w]™ = max(w, 0) (see Fig. 1). Also
note that the interfaces of solutions to (6) move with finite speed for t > 0;

for (7), the interfaces are given by x,(t) = + ./Ct'"*?. This characteristic
makes model (4) particularly attractive for problems in population dynamics;
it explicitly enforces the idea that a population should spread with a finite
speed if all of the individual members move with finite speeds. In contrast,
solutions of models like (1), with linear, classical diffusion, do not have sharp
interfaces and instantaneously spread to cover the entire domain. For the
study of the spread of a disease, the existence of a well-defined, sharp interface
is important for separating infected and un-infected populations. This charac-
teristic will be fundamental to our later discussion of segregation. The choice
of the exponent n in (4) and (6) can be determined from an underlying physical
model or from empirical data. For the motion of thin viscous films, (6) with
n =3 can be derived from the Navier-Stokes equations [16]. Lacking a
physical law to describe the complex behavior in a system, an appropriate

u(z, 1)

Fig. 1. The dynamics of a finite spreading population (7) for equation (6)
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value for the parameter n can be determined by comparing known solutions,
like (7), with empirical data. This approach is often used to study groundwater
diffusion in porous media [12], and it could be used in population dynamics
to improve qualitative and quantitative agreement of models. Effects of the
exponent n include controlling the structure of the population distribution
near the interface (see Fig. 2). Newman [1, 8, 10, 11] has found traveling wave
solutions with sharp interfaces for Fisher’s equation (2) with flux (4). We have
studied merging behavior for two initially separated populations of the same
species as they spread into the same region [13] (see Fig. 3). When the two

T x
xr

Fig. 2. The population density distribution near the interface for different values of n in
solution (7)

Fig. 3. Merging populations for a porous-Fisher’s equation
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populations of indistinguishable animals spread into the unpopulated area,
the sharp interfaces at the leading edge of each herd disappear as the two
groups merge into one larger population.

1.2 Dynamics of interacting populations

The study of the dynamics of several interacting populations generally in-
volves the use of a system of reaction-diffusion equations and can yield a much
broader variety of effects. Consider an environment containing N distinguish-
able populations, u;(x,t), i =1... N; the evolution of this system could be
given by the model

M Vg Py ®
ot
where J; is the flux of population u;. This is a very general model that can
encompass a broad range of possible behaviors and applications; we will
specialize it to forms that describe various biological systems. The classical
model of a reaction-diffusion system for a two-species problem is [21]

% =D V?u; + Fi(uy,u), % = DyV>2u, + Fy(ug,u) . )
In this model, coupling between u; and u, occurs only through the interaction
terms. Extensive studies of model (9) neglecting diffusive effects exist in the
literature [9]. In this article, we will focus on the modeling of the diffusive
terms, and will for the most part neglect the nonlinear reaction terms that
represent birth and death processes. In the absence of the coupling through
the F; terms, the populations in (9) would diffuse independently of each other.
A biological interpretation of this model suggests that it contains only weakly
interacting populations; it could represent two species that live in the same
region but do not compete for the same type of “ecological niche” or living
space. An example is a region of the ocean inhabited by fish (in the water) and
sea birds in the air above. In describing populations vying for space in the
same habitat, Gurtin and Pipkin [7] state the principle that groups seeking to
avoid crowds will move opposite to the gradient of the total population. In
[7], it is also remarked that a weighted sum

U(xs t) = g‘, piui(x’ [) ’ (10)

might be used as a measure of the total effective population density. This
construction can be motivated by considering a set of species with different
characteristics; small, quiet animals should be assigned a low relative weight,
while larger, more aggressive species consume more resources, require more
space per capita, and should have a large weighting in (10). We conclude that
all of the populations u; in (8) will have J; occ — VU. We will now consider
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how different choices for the functional forms of diffusion coefficients in the
population fluxes can yield qualitatively different behaviors. We will begin
with a discussion of a simple model that has been studied extensively in the
literature.

2 A simple segregation model

Bertsch et al. [4, 3] have rigorously analyzed certain properties of the popula-
tion dynamics model given in one dimension by the equations,

ou, 0 ou

51‘_6x<u16x>’ (11)
Ou, 0 ou

o ka_< a) : (12

where the total populationis U = u; + u, and k > 0 is a dispersivity constant.
If the populations are disjoint or separated, where population u; is nonzero,
u, is identically zero, and vice versa, then the total population reduces to
U =u,; and U = u, respectively (see Fig. 4). While the populations are
separated by unpopulated regions, each of (11, 12) reduces to a porous media
equation (6) with n = 1, and the populations will diffuse independently for
a finite time until their interfaces meet [12]. Bertsch et al. have proved that
even when u; and u, share a common interface, the populations will remain
disjoint or “segregated” for all times (see Fig. 5). It is easy to demonstrate this
principle with an example. If k = 1, then (11, 12) can be added together to yield
a porous media equation (6) with n = 1 for the total population density U (x, )
[3,4]. Solving for U (x, t), we may then determine u; and u, independently; the
equation for u; becomes

ou; 0U duy 02U

et = . 13

o ox ox  lax? (13)
This is a quasilinear equation for u4(x, ) in terms of the known total popula-
tion U(x,t) and can be expressed in characteristic form [20] as

du, 02U dx U

W_MIW on pri (14)
If we denote the interface position by x, (), we can parameterize the boundary
between the two populations that are segregated at time ¢, in terms of the
density u; as X, (uy, to) = X4(to) for all 0 < u; < U (see Fig. 5). For this initial
condition at t = t, the segregation boundary is explicitly independent of the
population density u;. Since the differential equation for the characteristic
curve (14), is independent of the parameter u;, the interface position will
remain independent of u; for all times, segregation will be preserved. This
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Fig. 4. Two initially separated populations, u; and u,
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Fig. 5. Two segregated populations and the motion of the common interface, or segrega-

tion boundary

behavior can be interpreted as having the two populations pushing on the
opposite sides of a movable but impenetrable rigid wall; the presence of the
“wall” is a consequence of the functional forms of the population fluxes in
(11, 12). This model could be used to describe two hostile populations
involved in a battle over a territorial boundary. It is possible to analyze the
motion and stability of this boundary to yield an understanding of some of the
qualitative properties of the solutions of (11, 12).
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2.1 Dynamics of the interface

As described above, the motion of the segregation boundary is given by

dx ou

dt — ox’
this is a simple gradient system. The motion of the interface is governed by the
local gradient of the potential function U, which for our problem is the total
population. For time-independent potentials, U = U(x), equation (15) is
a classical problem and the behavior of the solutions is understood in terms of
dynamics in a one-dimensional phase space, x,(f) will move towards a local
minimum of U (x). For time-dependent potentials U (x, t), solutions of (15) can
have more complicated behaviors [22,23]; here we will focus on one class of
these solutions. It is clear that a fixed interface x, can only exist at a fixed
maximum or minimum of U(x, t) — at a time-independent critical point, where
U.(x4 t) =0 for all £ > 0. As in the study of autonomous systems, the next
step in the analysis is to determine the stability of the fixed point.

In [3], Bertsch et al. prove that segregated solutions of (11, 12) remain
segregated for all times, but they leave the problem of non-segregated initial
data as an open question. Non-segregated or “mixed” populations contain
a region of overlap where both populations are nonzero (see Figs. 6, 7). The
overlap region contains populations of varied local composition, in the ratio
u; to u,. Analogous descriptions are used in the study of pure liquids mixing
under favorable thermodynamic conditions to form a single locally homo-
geneous “mixed” phase. The stability of the segregation boundary determines
if the overlap region of a slightly mixed population will increase or decrease.
Mixing perturbations could be introduced into segregated solutions from
external effects, such as nonlinear interaction terms, convective terms, or
spatial inhomogeneitities that are not included in the basic model (11,12).
Consider a perturbed initial condition for the interface,

(15)

Xelug,t = 0) = x, + 6X(uy) , (16)

where 0 < ¢ < 1is a small parameter (see Figs. 6, 7, where a tanh-like function
is used for the perturbation X(u,)). From linear stability analysis, we can show
that the asymptotic behavior of X, is determined by U (x,). If U, > 0 then
the interface is stable, X,.(t - o0 ) — x,, (see Fig. 6); if U, < 0, the interface is
unstable (see Fig. 7). The local concavity of the total population, U,,, can be
related to the local gathering or dispersal and corresponding increase or
decrease of the local population density, see (14);. We are able to conclude
that dispersing populations tend to mix, while merging populations tend to
segregate! This is a rather surprising result, but it is a fundamental conse-
quence of the form of model (11, 12). The dynamics of the interface can be
reasoned by relating the motion of population u; (13) to a population
described by a nonlinear convection-diffusion model, like Burgers’ equation.
In the dispersing case, the interface is the trailing edge of the population and
has a tendency to broaden (see Fig. 6). In the merging case, the interface is the
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Fig. 7. Stability of a perturbed interface in a merging population with U,, > 0

leading edge of the advancing population and tends to steepen (see Fig. 7). In the
next section we will derive the general form of models that preserve segregation.

2.2 General segregation models

Before proceeding to the analysis of general nonlinear segregation systems,
we consider the general case of system (11,12) with k & 1. For k + 1, the
equation for U can not be decoupled from u(x, 1),

ou 2 ou
== a((kU + (1 = k)uy) E) , 17)
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As shown in [3], the solution of this equation is a weak solution; U(x, ?)
is continuous but it is not smooth, U(x,t) e C°(x). The total population is
continuous at the segregation boundary, U(x,) = u;(x;) = u(x,), but it has
a discontinuity in the first derivative, U (x,) = kU .(x,). This fact makes (17)
awkward to solve; it is advisable to solve system (11, 12) directly, as a moving
boundary problem with the above continuity conditions at the interface.
Solving for u; and u, and then constructing U from their sum, we can still
write (11) in a characteristic form like (14), though more care is required since
U is a weak solution. The resulting complications however do not change the
fundamental fact that the equation for the characteristic curves (15) is inde-
pendent of uq; hence from the argument made in Sect. 2, it is clear that the
condition for the preservation of segregation will still be satisfied. Both cases
k =1 and k # 1 are of interest in describing population dynamics problems.
As mentioned above, the k = 1 problem can describe the interaction of two
competing hostile groups of the same species. For k + 1, the two groups still
belong to the same species, since their dispersivities have the same functional
form, but they are different breeds, with one group being of a faster moving
variety of animals, for k > 1.

To determine the general form of diffusion models that preserve segrega-
tion, consider the system

Ou, 0 ou
W_ a<D1(“1, U)g>’ (18)
Ou, 0 oU
E = a(Dz(uz, U) a) > (19)

where D and D, are diffusion coefficient functions. This generalized model is
somewhat more broad than a form discussed in [7]; these equations will be
considered in more detail in the following section. As in system (11,12),
summing (18, 19) yields a diffusion equation for the total population,

ou 0 ou

where D(uqy, U) = Dy(uy, U) + D5(U — uy, U). Assuming that we can obtain
the solution U(x,t), possibly as a weak solution, we can write (18) as
a quasilinear equation for u,(x,t) in terms of U(x,t),

ou; 0Dy 0U 0u, 0’U oD, [0U\?
———————=D U)— + — | — 21
3t du, ox ox - DU\ a ) @1)
and in characteristic form as
du1 @ZU 5D1 aU 2 dx @Dl ﬁU
— =D s e —_—= - 22
i = D Uaa 5y (ax> o T Tamoax P
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To insure preservation of segregation, we require that the differential equation
for the characteristic curves (22), be independent of u;, and we find that
D, must take the form

Dy(uy, U)= A,(U) uy + B;(U), (23)

where 4,(U) and B4(U) are arbitrary functions of the total population. To
guarantee that (18) is a degenerate diffusion equation, we require that
Di(uy,uy) = 0when u; = 0,s0 B1(0) = 0 and 4,(0) is finite. Applying the same
analysis for the motion of the segregation boundary to the equation for
population u,, we similarly find that

Dy(uz, U) = Ax(U) u; + By(U) , (24)

where A,(U) and B,(U) are other arbitrary functions satisfying the above
conditions. Since the segregation boundary x,(f) is common to both
populations, its characteristic equation must satisfy

tu_ _DeU| oDy o
dt Ouy Ox |y, Ouy 0 |y~
or
A1(U) Uy(xy) = A(U) U(xy) (26)

If we require that U(x,t) is a smooth, classical solution of (20), then
U.xy) = U.(x;) and A,(U) = A,(U) for all U. Moreover, we find that the
diffusion coefficient for equation (20) must be a function of only the total
population,

D(U)=A(U) U + B(U), (27

where A(U) = A,(U) = A,(U) and B(U) = By(U) + B,(U). If A;(U) = A,(U)
then U will be a weak solution satisfying the condition (26) on its derivative at
X, In this case, the diffusion coefficient for (20) can be written in the form

D(uy, U) = A(U)u, + B(U), (28)

where A(U) = A,(U) — A,(U) and B(U) = B(U) + A,(U) U. These two cases
are the natural generalizations of the k = 1 and k % 1 problems for system
(11,12). Note that equation (17) for system (11, 12) with k = 1 has a diffusion
coefficient of the form (28). Here we have shown that if the total population is
a smooth function, then its evolution is independent of the dynamics of the
internal conflict between the segregated groups. These two groups need not be
identical in nature; their diffusion coefficients can differ by a function of the
total population, B,(U) — B{(U). We now conclude with a discussion of more
general models and the importance of mixing interactions.

3 Mixing in general population models

In modeling the dynamics of a single population we have described some of
the important qualitative differences between linear and degenerate diffusion.
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The influence on the population density profile of different choices for the
diffusion coefficient was also addressed (recall Fig. 2). With these two consid-
erations, a good model for the general dispersive behavior in a single popula-
tion can be determined. For systems of interacting populations, developing
a reaction-diffusion model that fully describes the possible range of behaviors
requires more in-depth studies.

In systems of two or more populations there are more qualitative features
that need to be incorporated into the model. In the previous sections we
focused on the segregation property for a class of degenerate diffusion equa-
tions; examples of systems that might be accurately described by these models
were mentioned. Yet, there are also many systems where such models would
be inappropriate; often, naturalists will relocate a small population of an
endangered species to another area near a larger population of the species.
Hopefully, the new animals would be accepted by the main population and
allowed to mix-in freely. However, if a segregation model described these
populations, then the relocated group would not integrate with the main
population, and thus would effectively remain isolated. Clearly, problems like
this, the use of “tagged” animals to follow herds, and many other situations
require models that allow mixing behavior.

We will now give a general framework for formulating population dynam-
ics models that allows for mixing and other considerations. As described in
Sect. 1.2, it is important to specialize general reaction-diffusion systems like (8)
to describe the fundamental dynamics of interacting population, yet it would
also be desirable to have a model that is sufficiently general to be applicable to
a range of different related problems. Our generalized model for the flux of
population u; is

J— f o, du (29)

where v; is the dispersal velocity, and is given by
v, = — ki(ua uiauj: U)VU, (30)

where k; is the dispersivity of population u;. Observe that if k; is a constant,
then (29) yields J; = — k;u; V U, the directed motion model of Gurney and
Nisbet; therefore it becomes clear that (11, 12) is the simplest of a large array of
possible models. Flux (29) can also be expressed as a generalization of (5),

Ji= _Di(uivujaU)VU’ (31)
where the diffusion coefficient is given by
Di(u;,uj, U) = J ki(u, s, uj, U)du . (32)

The dispersivity in (30) and (32) is given as a very general functional form in
order to represent many possible influences on the rate of dispersal, such as:

a) the overall level of crowding (the U dependence),
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b) the local density of other friendly or hostile species (the u; dependence),
¢) the local density of competitors within the group (the u; dependence).

There are also a number of constraints on the model:

a) the dispersivities of different populations of the same species should have
the same functional form,

kl(uauls U) = kZ(u’ U, U)
a) to be degenerate, the diffusion coefficients should satisfy the condition
D;(0,0,0) =0

¢) in isolation, different populations of the same species should have the same
diffusion coefficient,
Dy(uy,0,uy) = Dy(uz,0,u,)

d) the diffusion coefficient for a total population entirely composed of groups
of the same species must be the same as the diffusion coefficient for the
isolated species,

D(U) = zDi(uia ujn U)’ U = Zui N

D(u) = Dy(u,0,u) for all i

The last constraint is the most restrictive condition, as it suggests a nonlinear
superposition principle. It represents the assumption that a single homogene-
ous population can be arbitrarily subdivided into smaller subgroups without
changing the dynamics of the population. In situations where this assumption
is not valid, condition (d) can be relaxed.

Other significant features of this model are the use of integrals over
populations, and ordering of the populations. The flux (29) is given by an
integral of the dispersal velocity over the population; this can be used to allow
for density-dependent distributions of the dispersal velocity in the group; this
is the source of the u dependence in k;. Similar approaches might be used to
incorporate age-structuring of populations [7,6]. In an attempt to better
classify the types of interactions that can occur within the total population, we
also allow for a representation of a social hierarchy or “pecking order” among
the groups. The groups can be ordered in terms of some measure of their
territorial dominance or influence, from most important to least important,
Ui, Uy, . . . ,un. This type of behavior occurs in many populations and has
obvious implications for dispersal in the system. Consider two groups of the
same species occupying the same region; a dominant, established population,
uy, and a newly introduced group, u,. We might imagine a case where the
dominant group’s dispersal is unaffected by the presence of u,, while the new
group is forced to “move around” u;. A simple model for this system with
k = k(u) yields the fluxes

J = — VUJulk(u)du — — D,)VU, (33)

0
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I, = — VULulwzk(u)du — —(D(U)=Du)VU , (34)

and the diffusion system |
% —V-(D(u)VU), (35)
% =V-(DU)—-Du)VU), (36)

Clearly, (35, 36) satisfies the superposition constraint (d). Observe that system
(11,12) with k = 1is a special case of (35, 36) with D(u) = u. This linear form of
the diffusion coefficient is responsible for segregation in (11, 12). From (22),,
we see that other functional forms of D (u) will introduce u; dependence in the
equation for the characteristic curves and hence segregation interfaces will
generally deform to generate mixing, even without initial perturbations. In the
following example we will demonstrate this type of behavior and examine the
parallels between population dynamics and fluid mechanics of lubrication
flows.

Diffusive spreading of thin layers of liquids [ 14, 15] under the influence of
gravity is a phenomena similar to population dispersal in a number of ways.
As described earlier, like the population models that we have been studying,
the dynamics of liquid films is given by a porous media equation [16]. For
lubrication problems, the analogue of local population density is the thickness
of the liquid layer, u. We are currently studying lubrication flows of layers of
immiscible liquids [24]; these are problems concerned with the nature of
mixing processes, much like our present study of population dynamics. Like
populations that avoid crowding, fluid layers have fluxes of the form
J;oc — VU, where U is the total “effective” thickness (10). This quantity is in
fact proportional to the local hydrodynamic pressure, which reinforces the
term “population pressure” used earlier. The dynamics of most common fluids
can be given in terms of two physical properties — the density and the viscosity.
If two liquids have the same density and viscosity then they are effectively the
same fluid. The situation in population dynamics is not so clear. It is likely
that more parameters are needed to describe the characteristics of groups.
Indeed, species with different “social structures” might obey radically different
dynamics; within our model (29), these dynamics are given by specifying the
form of the dispersivity. Consider a system with two groups of the same
species, having the common dispersivity

k(u,U) =3 u*> —3uU. (37)

This functional form was derived from a lubrication problem for a flow of two
distinguishable layers of the same liquid, say one layer is marked with a visible
dye [15,24]. For population dynamics, this problem can represent the study
of the relocation and integration of a tagged group of animals into a larger
population of the same species. We note that for problems involving flows of
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genuinely different liquids, the general form k = k(u, u;, u;, U) is needed. From
(37) we derive the fluxes for the two groups u; and u,

Ji= — VUJ lk(u, U)du = — (ui + 3 uiu,)VU , (38)

0

u, +u,
J,= — VUJ k(u,Uydu = — (u3 + 3 uiu, + 3uu3)VU, (39)

Uy

and the degenerate diffusion equations in one dimension,

ouy  0( 5 5, 0U
T g<(“1 + 2uiuy) ox )’ (40)
Ou 0 ou
a—; == <(u§ + 3utu, + 3ugu3) 6x> . (41)
We note that summing (40, 41) yields the equation for the total population
ou 0 ,0U
== (U E) , (42)

and the system obeys the constraints on the diffusion coefficients with
D(u) = Dy(u, 0, u) = D,(u, 0, u) = u. Observe that if we had used a different
form of dispersivity, say k(u) = 3u?, then we would still obtain (42), but with
a different system (40,41). This illustrates the point that it is not sufficient to
know the diffusive behavior of the total population, the nature of the inter-
actions between groups must also be understood.

Writing (40) in characteristic form, we obtain

duy PU L (3UY
W—2u1(3U—ul)W+2u1 a on
dx ou

= —3uQU —u)

i (43)

Ox
We will solve a simple example for (42) and (43) with an initially segregated
population, and the total population given by (7) with n = 3 (see Figs. 8, 9).
Observe that after a short time, the tagged population becomes completely
engulfed by the main group and mixes in as the population continues to
disperse.

We conclude with a brief example of how the ideas given above can be
used to formulate reaction-diffusion systems. Suppose that in the absence of
birth and death the dispersive dynamics of the population is given by (40,41).
Additionally, assume that the full dynamics, including birth and death pro-
cesses, is given by Fisher’s equation for the total population

U _ 0 <U36_U

= =7 ax>+U(1—U). (44)
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u(z,1)

D —
7\

I

Fig. 8. Mixing of initially segregated populations in system (40,41)

z

U2

z

Fig. 9. Detail of the behavior of the distribution of population u, during mixing for system
(40,41)

To determine the dynamics of each group u; and u,, we must determine an
appropriate splitting of the reaction term F(U)= U(1 — U). For the
tagged population uy, it is clear that F; should not contain any growth
terms; while the individuals in the group may reproduce, the “tags” that
we are following certainly will not. Hence, one plausible choice for the
reaction terms is Fy = — u? — uquy, Fy = uy + u, — u3 — uyu,, yielding the
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system
ou 0 ou
a—§=a<(”?+3“f”2)—ax>‘“l‘f’ @)
ou 0 ou
i ((u% +3udus + 3u, u%)§> +U—u,U. (46)

We are currently studying models like (45, 46) for lubrication flows of reactive
liquids [24].
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