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Abstract. A disease transmission model of SEIRS type with exponential
demographic structure is formulated. All newborns are assumed susceptible,
there is a natural death rate constant, and an excess death rate constant for
infective individuals. Latent and immune periods are assumed to be constants,
and the force of infection is assumed to be of the standard form, namely
proportional to I(t)/N(t) where N (t) is the total (variable) population size and
I(t) is the size of the infective population. The model consists of a set of
integro-differential equations. Stability of the disease free proportion equilib-
rium, and existence, uniqueness, and stability of an endemic proportion
equilibrium, are investigated. The stability results are stated in terms of a key
threshold parameter. More detailed analyses are given for two cases, the SEIS
model (with no immune period), and the SIRS model (with no latent period).
Several threshold parameters quantify the two ways that the disease can be
controlled, by forcing the number or the proportion of infectives to zero.

Key words: Epidemic model — Integro-differential equation — Delay equation
— Epidemic threshold

1 Introduction

In modeling disease transmission, it is often convenient to divide the popu-
lation being considered into disjoint classes of susceptible, exposed, infective
and recovered individuals, with numbers at time t denoted by S(t), E (t), I (t),
R(t), respectively. For some diseases (e.g. tuberculosis, influenza, measles), on
adequate contact with an infective, a susceptible individual becomes infected
but is not yet infective. This individual remains in the exposed class for
a certain latent period before becoming infective. Once infective, an individual
may either die due to the disease or, after an infective period, pass into the
recovered class. Some diseases confer temporary immunity, and the individual
cycles back into the susceptible class after an immune period. The common



cold may be considered an example, although the frequently repeated attacks
may be due to the multiplicity of agents or to other causes.

We formulate and analyze an SEIRS disease transmission model that also
has exponential demographic structure. All newborns are assumed sus-
ceptible, and the natural disease-independent death rate constant is the same
throughout the population. A constant disease-related death rate of infectives
is included. We assume that the latent and immune periods are constants,
denoted by u and q, respectively. Thus the probability that an individual
remains in the exposed group t units after becoming exposed is given by the
step function with value 1 for t6u, and 0 for t'u. For a recovered
individual the corresponding probability has value 1 for t6q, and 0 for t'q.
The waiting time in the infective class is assumed to be exponentially dis-
tributed (probability e~ct) with mean waiting time 1c . Thus our model is
formulated as an integro-differential equation system. By contrast, the more
common assumption that the waiting times in the exposed, infective and
recovered classes are all exponentially distributed, leads to an ordinary
differential equation system.

As the total population N (t)"S(t)#E (t)#I (t)#R(t) varies and we
assume the standard incidence, it is convenient to work with proportional
variables, for example the proportion of infective individuals is
i(t)"I (t)/N (t) . We show that the proportional variables satisfy an integro-
differential equation system, which is equivalent to a differential-difference
system subject to certain initial integral conditions. For the importance of
proper integral conditions in such systems, see Busenberg and Cooke (1980).

We identify a threshold parameter h, such that the disease free proportion
equilibrium is locally asymptotically stable if h(1, but unstable if h'1. In
the case of no disease related deaths, there is a unique endemic equilibrium of
the proportions exactly when h'1. To examine stability of the endemic
equilibrium, we consider two special cases. For a disease conferring no immunity,
q"0, an SEIS model is appropriate, and in this case (Sect. 5) the endemic
equilibrium is locally asymptotically stable. For a disease with no latent
period, u"0, the SIRS model (Sect. 6) can have periodic solutions arising
from Hopf bifurcation. Control of a disease ‘‘to extinction,’’ obviously a desir-
able goal, may be interpreted to mean either that i (t) or I(t) approaches zero.
In a population of varying size these are not always equivalent, and we also
study the relation between these in our models, giving a summary in Sect. 7.

We believe that this is the first time that an SEIRS model has been
formulated and analyzed for a variable population size with step functions
giving constant latent and immune periods. Distributed delays (with step
functions as special cases) have been included in a variety of constant popula-
tion models. For example, SIS models with a time delay in the infective class
were analyzed by Cooke and Yorke (1973), and Greenberg and Hoppensteadt
(1975). Several SEIS models with time delays in the exposed class and/or
infective class have been analyzed by Busenberg and Cooke (1980), and
Hethcote et al. (1981b). In all these cases the disease either dies out or
approaches an endemic steady state. By contrast, a constant population
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SIRS model with time delay in the removed class (i.e. a constant period of
temporary immunity) can exhibit periodic solutions for some parameter
values, see Hethcote et al. (1981a, 1989).

A delay has been incorporated into a few variable population disease
models. For example, Busenberg et al. (1983) found some periodic solutions in
an SIR model with a maturation delay and vertical disease transmission.
Some models incorporating vertical disease transmission and delays are given
in Busenberg and Cooke (1993, Ch. 4). With generalized logistic demo-
graphics, Brauer found indications of periodic solutions in some models with
delays, see Brauer (1990, 1991). An SIS model with exponential demographic
structure, disease related deaths and a delay corresponding to the infective
period was analyzed by Hethcote and van den Driessche (1995). In this
model, which is closely related to ours, periodic solutions of the proportional
variables occur for some parameter values (albeit only when death due to
the disease is unrealistically large and the contact rate is very high). For
a survey of some epidemiological models with delays, see van den Driessche
(1996).

2 Model formulation

A population of size N(t) is divided into disjoint classes of individuals who are
susceptible, exposed (i.e. infected but not yet infective), infective, and recovered
with temporary immunity; with sizes denoted by S (t), E(t), I (t) and R(t),
respectively. The flow of individuals is depicted in the transfer diagram:

BbN
S &"jSI@N Eu " I &"cI Rq " S

BdS BdE B(d#e)I BdR

The parameter b'0 is the birth rate constant (all newborns are assumed
susceptible and vertical transmission is ignored), d'0 is the natural death
rate constant, e70 is the disease related death rate constant in the infective
class, and c70 is the rate constant for recovery.

The force of infection is assumed to be of the standard type, namely jI/N,
with j'0 the effective per capita contact rate constant of infective indi-
viduals. Here j is the product of the average number of contacts of an
individual per unit time and the probability of transmitting the disease during
one contact by an infective. Thus individuals leave the susceptible class at
a rate jSI/N. There is a constant u70 period of latency and a constant q70
period of temporary immunity.

In the limit when u"0, an SIRS model results; in the limit when q"0, an
SEIS model results. Both periods equal to zero gives an SIS model with no
delays. The total variable population size is

N (t)"S(t)#E(t)#I(t)#R(t) . (2.1)
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The disease is assumed to have been in the population for at least a time
qN"maxMu, qN, so that initial perturbations have died out. The equations for
the model thus take the following forms for t'qN .

S@(t)"bN(t)!dS(t)!
jS(t)I(t)

N (t)
#cI (t!q)e~dq , (2.2)

E (t)"P
t

t~u

jS(u)I (u)

N (u)
e~d(t~u) du , (2.3)

I@(t)"
jS(t!u)I(t!u)

N (t!u)
e~du!(e#c#d)I (t) , (2.4)

R(t)"P
t

t~q
cI (u)e~d(t~u) du . (2.5)

It is convenient to shift time by qN , so that (2.2)—(2.5) hold for the new time t'0,
with given nonnegative initial conditions,

S (t)70 on [!u, 0], E (t)70 on [!u, 0] ,

I (t)70 on [!qN , 0], R(t)70 on [!q, 0], and N (t)'0 on [!qN , 0] .

System (2.2)—(2.5) is an integro-differential equation system. Differentiating
(2.3), (2.5) gives

E@(t)"
jS(t)I(t)

N(t)
!

jS (t!u)I(t!u)

N (t!u)
e~du!dE(t) , (2.6)

R@(t)"cI (t)!cI (t!q) e~dq!dR(t) . (2.7)

System (2.2), (2.4), (2.6), (2.7) is a differential-difference equation system. The
relationship of these two systems is given in the following.

Theorem 2.1 A solution of the integro-differential system (2.2)—(2.5) satisfies
(2.6) and (2.7). Conversely, let S(t), E (t), I (t), R(t) be a solution of the differential-
difference equation system (2.2), (2.4), (2.6), (2.7), with N (t) given by (2.1), and
initial conditions given on the intervals as stated above. If, in addition,

E (0)"P
0

~u

jS(u)I(u)

N(u)
edu du , (2.8)

R (0)"P
0

~q
cI(u) edudu , (2.9)

then this solution satisfies the integro-differential equation system (2.2)—(2.5).
Moreover, for all t70, the solution exists, is unique, has S (t)70, E(t)70,
I(t)70, R(t)70 and N(t)'0.
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Proof. The first assertion is clear. Conversely, from (2.6)

edt(E@(t)#dE(t))"edtA
jS (t)I (t)

N (t)
!

jS(t!u)I(t!u)

N(t!u)
e~duB ,

which, on integrating, gives

edtE (t)"E (0)!P
0

~u

jS (u)I (u)

N (u)
edudu#P

t

t~u

jS (u)I(u)

N(u)
edu du .

By (2.8), equation (2.3) results. Similarly, on integrating (2.7) and using (2.9),
equation (2.5) results for R(t), completing the integro-differential equation
system. The system of differential-difference equations is of standard form, and
so standard results (Bellman and Cooke (1963), Hale and Verduyn Lunel
(1993)) ensure the local existence and uniqueness of solutions, provided the
denominators N (t) and N(t!u) do not go to zero. To show this, add
equations (2.2), (2.4), (2.6), (2.7), and use (2.1) to obtain

N@(t)"(b!d)N(t)!eI (t)

7(b!d!e)N(t) . (2.10)

Thus
N(t)7N(0)expM(b!d!e)tN .

Since N (t)'0 on [!qN , 0] by assumption, N (t)'0 for all t70.
On the face S (t)"0, S@(t)70 by (2.2); on I (t)"0, I@(t)70 by (2.4). From

(2.3) and (2.5), it is clear that E (t)70, and R(t)70; thus the nonnegative
orthant is invariant. Also from (2.10)

N(t)6N (0)expM(b!d)tN ,

and thus N(t) cannot blow up to R in finite time. Consequently, the solution
exists globally for all t'0 and is unique. K

From (2.10), a nontrivial equilibrium solution of (2.2), (2.4), (2.6), (2.7) with
constant population is possible only when the parameters of the model satisfy
a special relation. Since this does not hold in general, interest is in variable
population size, so it is convenient to work with proportions of individuals in
each class by defining

s(t)"
S (t)

N(t)
, e (t)"

E (t)

N (t)
, i (t)"

I (t)

N(t)
and r (t)"

R(t)

N(t)
.

System (2.2)—(2.5) leads to the following integro-differential equation system
for t'0

s@(t)"b!js (t)i (t)#ci (t!q)expA!P
t

t~q
m(p) dpB!m (t)s (t) , (2.11)
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e(t)"P
t

t~u
js(u)i(u)expA!P

t

u

m(p) dpB du , (2.12)

i @ (t)"js(t!u) i (t!u)expA!P
t

t~u
m(p) dpB!(e#c)i(t)!m(t) i (t) , (2.13)

r(t)"P
t

t~q
ci(u)expA!P

t

u

m(p) dpB du , (2.14)

with
m(t)"b!ei(t) , (2.15)

and
N@(t)"(b!d!ei)N (t) . (2.16)

The expression in (2.15) appears in the solution of (2.16), namely

N (t)"N(0)expA!dt#P
t

0

m (p) dpB , (2.17)

thus
N(u)

N(t)
"expG!d (u!t)!P

t

u

m(p) dpH, u6t .

The corresponding differential-difference equation system is (2.11), (2.13) to-
gether with

e@(t)"js(t) i (t)!js (t!u) i(t!u)expA!P
t

t~u
m(p) dpB!m(t)e(t) , (2.18)

r@(t)"ci(t)!ci (t!q)expA!P
t

t~q
m (p) dpB!m(t)r (t) . (2.19)

Corollary 2.1 ¸et S (t), E (t), I(t), R(t) be the solution of (2.2)—(2.5) on t70 with
initial conditions nonnegative and N(t)'0 on the initial interval. ¹hen s (t), e (t),
i(t), r (t) is the solution of (2.11)—(2.14) with initial conditions corresponding to
those for the above system, and is also the solution of the differential-difference
equation system (2.11), (2.13), (2.18) (2.19) with

e(0)"P
0

~u
js(u)i (u)expA!P

0

u

m(p) dpB du , (2.20)

r (0)"P
0

~q
ci(u)expA!P

0

u

m(p) dpB du . (2.21)

Also s(t), e(t), i(t), r(t)70. If s (t) and i(t) are positive on the initial interval, then
s(t) and i (t) are positive for all finite t70. K

Proof. The first assertion and the fact that the variables are nonnegative
follow from Theorem 2.1. If s (t)'0, i(t)'0 on the initial interval, define

t
1
"infMt'0: s (t) i (t)"0N .
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If t
1

is finite, either s(t
1
)"0 or i (t

1
)"0. If s (t

1
)"0 then s@(t

1
)'b'0 by

(2.11), which is a contradiction. If i (t
1
)"0 then i @(t

1
)'0 by (2.13), also

a contradiction. K

The system (2.11), (2.13), (2.18), (2.19) defines a functional differential
equation for v"(s, e, i, r)T;

v@(t)"F(v
t
) (2.22)

where v
t

has the usual meaning, v
t
(/)"v(t#/) for !qN6/60, t70.

If it is assumed that S, E, I, R are solutions of system (2.2)—(2.5) or of (2.2), (2.4),
(2.6), (2.7), and s, e, i, r are defined as above, then the equation

s (t)#e(t)#i (t)#r (t)"1 (2.23)

holds for t70, by definition. On the other hand, since we will be doing
much of our analysis on system (2.22) or on the integro-differential system
(2.11)—(2.14), we need to know which solutions of those systems satisfy the
biologically meaningful condition (2.23). It is not true that every solution of
(2.22) satisfies (2.23). The following theorem answers this question. Let
v
0

denote the initial function for (2.22) on [!qN , 0]. Although the initial
conditions for some of the variables may be given on a smaller interval, we
may extend these initial functions over [!qN , 0] without affecting the solution.
Let

D"M(s, e, i, r): s70, e70, i70, r70, s#e#i#r"1N .

We will say that v
t
is in D if v (t#/) is in D for !qN6/60.

Theorem 2.2 ¸et v(t)"(s(t), e(t), i (t), r(t))T be a solution of (2.22) with initial
conditions v

0
on [!qN , 0] that are nonnegative and for which v

0
is in D.

Moreover, assume that (2.20) and (2.21) hold. ¹hen the solution of (2.22) exists
for all t70 and v

t
lies in D for all t70. Furthermore, a solution of the

integro-differential system (2.11)—(2.14) with initial condition in D is a solution of
(2.22) for which (2.20) and (2.21) are satisfied, so that if the initial function is in
D then the solution exists for t70 and remains in D.

Proof. Let v(t)"(s(t), e(t), i (t), r(t))T be a solution of (2.22), that is, of (2.11),
(2.13), (2.18), (2.19). Let n (t)"s(t)#e (t)#i (t)#r(t). Adding the four equa-
tions, we obtain n@(t)"m(t) [1!n(t)]. Since n (0)"1, we conclude that
n(t)"1 for all t for which n (t) exists. Because (2.20) and (2.21) have been
assumed to hold, it can be proved that v(t) is also a solution of the system
(2.11)—(2.14), by using the kind of argument that was used in the proof of
Theorem 2.1. Non-negativity of s (t), e (t), i(t), and r(t) follows from
(2.11)—(2.14). Then since n (t)"1, it follows that s(t), e(t), i(t), and r(t) are
bounded. Therefore, the solution exists for all t70 and v

t
is in D. To establish

the last statement of the theorem, suppose that v (t) is a solution of (2.11)—(2.14)
with v

0
lying in D. From (2.12), (2.14) it follows that (2.20), (2.21) hold, and

(2.22) is satisfied. By the first part of the proof, the solution exists and is in
D for t70. K
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The above theorem says that we can be sure that the solution remains in
the biologically meaningful set s#e#i#r"1 provided (2.20) and (2.21) are
satisfied.

3 Disease-free equilibrium

When the infective fraction i"0, then e"r"0, and s"1; this is the disease
free equilibrium (DFE) for proportions. This is the only equilibrium on the
boundary of D. The following theorem determines linear stability of the DFE
in terms of a threshold parameter

h"
j exp(!bu)

(e#c#b)
. (3.1)

The standard approach to studying stability of an equilibrium for a system of
functional differential equations (2.22) is to compute the ‘‘Jacobian matrix’’, or
rather the linearized operator, and to study the eigenvalues of the operator.
This is equivalent to allowing arbitrary small perturbations near the equi-
librium. Here, however, only perturbations within the set D are relevant, not
arbitrary perturbations, and the linear system obtained by the standard
method does not have the property that its solutions remain in D. It will be
convenient to use a slightly modified approach here.

Theorem 3.1 ¹he system (2.11)—(2.15) always has the disease free proportion
equilibrium (s(t), e(t), i(t), r(t))"(1, 0, 0, 0). If h(1, then it is locally asymp-
totically stable; if h'1, then it is unstable.

Proof. Equations (2.11), (2.13), (2.18) are decoupled from the equations for r.
Suppose that s (t), e (t), i (t), r (t) is a solution of the full system, with initial
condition in D and close to the DFE. Then s(t), e(t), i (t) satisfy the reduced
system (2.11), (2.13), (2.18), with initial conditions near the equilibrium (1,0,0).
Moreover, any such solution determines r(t) by (2.14) in such a way that
(s(t), e(t), i (t), r (t)) is in D (see Theorem 2.2). If we compute the linearization of
the reduced system near (1, 0, 0), we find that the characteristic equation has
a double root !b and solutions z of the quasipolynomial equation

z#e#c#b!j exp(!u(b#z))"0 . (3.2)

It is shown in Theorem A.2 in the Appendix that (3.2) (with a"e#c#b)
has a positive root z"x'0 if and only if j exp(!bu)'e#c#b, but has
no root z"x#iy with x70 if j exp(!bu)(e#c#b.

Now suppose that h(1. Then j exp(!bu)(e#c#b, and consequently
(1, 0, 0) is locally asymptotically stable for the reduced system, that is,
s(t)P1, i (t)P0, e(t)P0 as tPR. It follows from (2.14) that r(t)P0. Hence
the first part of the conclusion has been proved.

On the other hand, suppose that h'1. Then j exp(!bu)'e#c#b,
from which it follows that (1, 0, 0) is unstable for (2.11), (2.13), (2.18). In fact,
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there is a positive x and a manifold of solutions, growing locally like exp(xt)
(for the linear system), of the form (s, e, i)T"(1, 0, 0)T#exp(xt) (c

1
, c

2
, c

3
)T

where the eigenvector (c
1
, c

2
, c

3
) is determined from the equations

!(b#x)c
1
#[!(j!e)#c exp(!(b#x)q)]c

2
"0

[!(e#c#b#x)#j exp(!(b#x)u)]c
2
"0

j[1!exp(!(b#x)u)]c
2
!(b#x)c

3
"0 .

The middle equation is satisfied by definition of x. The last equation
shows that c

2
and c

3
have the same sign, say positive, and the first equation

gives

(b#x)c
1
"[!(j!e)#c exp(!(b#x)q)]c

2
.

Since h'1, we have c#e(j, hence the expression in brackets is
negative and c

1
(0. We claim that the vector (c

1
, c

2
, c

3
) from the point

(s, e, i)"(1, 0, 0) points into the tetrahedron

M(s, e, i): s70, e70, i70, s#e#i61N .

Then the unstable direction of solutions projects onto an unstable direction of
solutions lying on the set s#e#i#r"1, proving the second part of the
theorem. To prove the claim, note that the equation for x implies

j exp(!(b#x)u)"b#x#e#c'e#c exp(!(b#x)q) ,

hence c
2
/Dc

1
D(1. Also, it is clear that

j!e!c exp(!(b#x)q)'j exp(!(b#x)u)!e!c"b#x ,

so that c
2
/Dc

1
D(1. These inequalities and the sign conditions c

1
(0, c

2
'0,

c
3
'0, establish the claim. K

This threshold parameter h is a measure of the relative strength of the
disease transmission versus dilution of infectives. The quantity 1/(e#c#b) is
the mean waiting time in the infective class i, thus h is the average number of
adequate contacts of an infective during the average time in the i class. The
contact rate j is modified by the lag u and births, exp(!bu) is the fraction
surviving the e class. The mean waiting time in I is 1/(e#c#d), for b9d this
is not the same as in i because the population size is changing. In a constant
size population (b"d, e"0) the threshold parameter is j exp(!du)/(c#d).

A global stability result for a restricted set of parameter values can be
given by considering the following Lyapunov function ». See, for example,
Hale and Verduyn Lunel (1993).

Theorem 3.2 For j(e#c#b all solutions of the system (2.11)—(2.15)
starting in D approach the disease free proportion equilibrium as tPR.
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Proof. Let s(t), e(t), i (t), r(t) be a solution of the integro-differential system in
D, and let » (t)"i (t)#e(t). From the equations for e@(t) and i @(t), we get

» @(t)"js(t) i(t)!(e#c#b) i(t)!be(t)#ei(t) [1!s(t)!r (t)]

"(j!e)s (t) i (t)!(c#b) i (t)!be(t)!ei(t)r (t) .

If j6e, we have

» @ (t)6!(c#b) i(t)!be(t)6!b[i(t)#e(t)]"!b»(t) .

If j'e, we have (j!e)s (t)i (t)6(j!e)i (t), hence

» @(t)6(j!e!c!b)i (t)!be(t) .

Assume that j(c#b#e. Then » @ (t)60 and

» @(t)6!d» (t) ,

where d"minMb, !j#e#c#bN is positive. Thus »(t) is nonnegative and
nonincreasing with limit zero as tPR. Thus i(t) and e(t) tend to zero, and
r(t)P0 from (2.14). Hence s (t)"1!e(t)!i(t)!r (t) tends to 1. K

Note that this global stability result is for only a subset of parameters for
which local stability has been proved (namely, j((e#c#b)exp(bu)) in
Theorem 3.1.

4 Endemic equilibria

Let s*, e*, i*, r* be an endemic equilibrium in the interior of D, with
m*"b!ei* from (2.15). If e"0 then m*'0. If e'0 and m*"0, then
i*"b/e with e'b. So s*"(c`e)

j
, e*"js*i*u, r*"ci*q from (2.11), (2.12) and

(2.14). But, using (2.23), this means that

s*#e*#i*#r*"1"
c#e

j A1#
jbu
e B#

b

e
(1#cq)

which is in general not true. Thus i*"b/e cannot produce an acceptable
equilibrium for the system; therefore m*90. From the proportion equations,
an equilibrium must satisfy

0"b!js*i*#ci* exp(!m*q)!m*s* , (4.1)

e*"js*i*(1!exp(!m*u))/m* , (4.2)

0"js*i*exp(!m*u)!(e#c)i*!m*i* , (4.3)

r*"ci*(1!exp(!m*q))/m* . (4.4)

Adding (4.1) and (4.3) gives

0"m*(1!s*!i*)!js*i*(1!exp(!m*u))!ci*(1!exp(!m*q)) ,
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which, as m*90, can be written as

js*i*
(1!exp(!m*u))

m*
#ci*

(1!exp(!m*q))
m*

"1!s*!i*.

Therefore when e* and r* are given by (4.2) and (4.4), any equilibrium solution
(with m*90) lies on the required manifold (2.23). From (4.1), note that
b#(j!e)i*90 (since that would imply that b#ci*exp(!m*q)"0). Thus
(4.1) gives

s*"
b#ci*exp(!m*q)

b#(j!e)i*
"g

1
(i*) , (4.5)

and from (4.3), with i*'0,

s*"exp(m*u) [(e#c#b)!ei*]/j"g
2
(i*) . (4.6)

As s*(1 at endemic equilibrium, (4.5) implies that j'e#c exp(!m*q)'e
for such an equilibrium to exist.

Study of an endemic equilibrium is complicated by the presence of
m*"b!ei* in the exponential terms in (4.5) and (4.6). Consideration is now
restricted to the special case e"0, that is, no excess death due to disease.
However, for b9d, the total population N (t) is growing or decaying exponen-
tially (see (2.10)).

Theorem 4.1 ¹he system (2.11)—(2.15) with e"0 has a unique endemic
equilibrium (in the interior of D) if j exp (!bu)/(c#b)"h'1. If h61, then
there is no endemic equilibrium.

Proof. With the assumption e"0, the endemic susceptible proportion can be
found explicitly from (4.6) as

s*"
c#b

j exp(!bu)
"

1

h
. (4.7)

This is in the interior of D exactly when 1(h"j exp(!bu)/(c#b). In this
case (4.5) gives

i*"
b[j exp(!bu)!(c#b)]

j[(c#b)!c exp(!b(u#q))]
, (4.8)

and e* and r* are given by (4.2) and (4.4) respectively. As hP1`, this
equilibrium tends to the disease free equilibrium. K

Continuing with the assumption e"0, and h'1, local stability of the
unique endemic equilibrium is now investigated. This is governed by the
Jacobian matrix in s, i variables from (2.11) and (2.13) with s"s*, i"i* and
m*"b. This leads to the quasipolynomial equation in the variable z given by

0"K
!ji*!b!z !js*#c exp(!q(b#z))

ji* exp(!u(b#z)) js* exp(!u(b#z))!(c#b)!z K ,
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which can be written as

0"(z#c#b) (z#b#ji*)

!j[zs*#bs*#ci*exp(!q(b#z))]exp(!u (b#z)) . (4.9)

There is a root z"0 if and only if h"1; for h'1, the constant term is
positive. For general lags u, q, equation (4.9) is complicated. Thus, in the next
sections, two special cases are considered, the case q"0 (the SEIS model), and
the case u"0 (the SIRS model).

5 The SEIS model

Setting q"0 in the model of Sect. 2 gives an SEIS model with no immunity.
In this case s#e#i"1 and the positively invariant set is

DI "M(s, e, i): s70, e70, i70, s#e#i"1N (5.1)

(under the assumption that (2.20) holds). Theorems 3.1 and 3.2 hold as stated
for the disease free proportion equilibrium (s, e, i)"(1, 0, 0). To analyze this
SEIS model further, assume b'e, that is the birth rate is greater than the
disease related death rate. (This includes the case e"0 as assumed near the
end of Sect. 4). As before, m*'0. An endemic equilibrium (s*, e*, i*) is given
from (4.5) (with q"0) and (4.6), with j'e#c being necessary for such an
equilibrium to exist. The quantity i*#s*"i*#g

1
(i*) must be (1, since

s*90 and e*'0 by (4.1), (4.2). But by (4.5)

i*#g
1
(i*)"

bi*#(j!e)i*2#b#ci*
b#(j!e) i*

,

which is (1 exactly when i*(c where

c"1!
(b#c)
(j!e)

. (5.2)

If h'1, then j'e#c#b, hence 0(c(1. Thus for an endemic equilib-
rium, i*3(0, c). A result analogous to Theorem 4.1 follows.

Theorem 5.1 Consider the SEIS system (2.11)—(2.15) with q"0 (and r (t)"0),
under the assumption b'e. ¹hen there is a unique endemic equilibrium (in the
interior of DI ) if h'1. If h61, then there is no endemic equilibrium.

Proof. Define

h (i)"j[b#(j!e)i]exp(eiu) (g
1
(i)!g

2
(i)) , (5.3)

where g
1
(i) is given by (4.5) with q"0, i*"i, and g

2
(i) is given by (4.6) with

i*"i. Then

h(i)"j (b#ci)exp(eui)![b#(j!e)i][e#c#b!ei]exp(bu)

h(0)"b (e#c#b)exp(bu) (h!1) .
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If c(0, then i*(0 by (5.2), which is not a case of interest. Therefore we
assume that c'0, and find that h(c)(0 if b'e, and h@@(i)70 ('0 if e'0) if
j'e. Thus if h(1, there is no positive root of h (i)"0; if h"1, then i"0 is
a root; whereas if h'1, then there is a unique root i"i*3 (0, c). From this
value, s* can be obtained from g

1
(i*) or g

2
(i*), and e* from (4. 2). K

Local stability of this endemic equilibrium is governed by a complicated
quasipolynomial. For the case e"0, this is given by (4.9) with q"0, and
yields the following result.

Theorem 5.2 Consider the SEIS system (2.11)—(2.15) with q"0 and no disease
related death (e"0). If h"j exp(!bu)/(c#b)'1, then the unique endemic
equilibrium is locally asymptotically stable.

Proof. Existence of the unique endemic equilibrium is guaranteed by
Theorem 4.1 or Theorem 5.1. Local stability is governed by (4.9) with q"0,
namely

0"(z#c#b)(z#b#ji*)

!j (zs*#bs*#ci*)exp(!u(b#z))"Hu(z) . (5.4)

Setting z"0, and using (4.8) gives

Hu (0)"bj(1!s*)exp(!ub)'0 .

Setting u"0, gives

H
0
(z)"z2#(c#2b#ji*!js*)z#b (c#b#ji*!js*) ,

wherein s* and i* have the values given by (4.7), (4.8) with q"u"0, thus
s*"(c#b)/j . This has all coefficients positive, and so both roots of the
polynomial have negative real parts. Therefore in the limit as uP0, equation
(5.4) is stable. By Lemma A.1 in the Appendix, instability can occur for u'0
only by roots crossing the finite imaginary axis. Without loss of generality,
(here i is the imaginary unit, i2"!1) assume z"iy, y'0 (y"0 has been
ruled out above). Then (5.4) can be written as

(iy#c#b) (iy#b#ji*)"

s*jAiy#b#
ci*
s* Bexp(!bu)[cos(uy)!i sin(uy)] .

Taking absolute values gives

[y2#(c#b)2] [y2#(b#ji*)2]"(s*j)2Cy2#Ab#
ci*
s* B

2

Dexp(!2bu) ,

which can be written as
½2#A½#B"0 ,

where ½"y2,

A"(c#b)2#(b#ji*)2!(s*j)2exp(!2bu) ,
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and

B"(c#b)2(b#ji*)2!(s*j)2Ab#
ci*
s* B

2
exp(!2bu) .

Using (4.7) to substitute for s*, we see that the coefficients A and B
are positive. Thus the equation for ½ can have no positive root, and no
pure imaginary root z"iy can exist. It follows that all roots of (5.4) have
negative real parts, and the endemic equilibrium is locally asymptotically
stable. K

It is conjectured that for h'1, the endemic equilibrium is globally
asymptotically stable in DI !M(1, 0, 0)N. If this is true, then h is a sharp
threshold; when h(1 the disease dies out, when h'1 proportions remain
endemic. In the limit uP0, the model reduces to an (ordinary differential
equation) SIS model that has been shown by Busenberg and van den
Driessche (1990, 1991) to have this global behavior.

In Theorem 5.1 it has been shown that for h'1 there is a unique endemic
equilibrium for disease related death small enough (e(b). As roots of (4.9)
with q"0 are continuous functions of e, Theorem 5.2 shows that this
equilibrium is locally asymptotically stable for sufficiently small e. The stabil-
ity for more general e remains open.

We now determine the asymptotic behavior of N(t) and I (t). The
arguments involve other parameters; see Busenberg and van den Driessche
(1990) for similar thresholds for an SIRS model without delays. We consider
two cases, one in which a positive solution i(t) converges to a positive
equilibrium i*, and the other in which a solution i (t) converges to the DFE
i"0. We define

R
1
"G

b
d`ei* if i(t)Pi* as tPR,

b
d

if i(t)P0 as tPR.
(5.5)

If b'e and h'1, the DFE is unstable and there is a unique endemic
equilibrium that is locally asymptotically stable for sufficiently small epsilon,
and which we conjecture attracts all solutions in DI !M(1, 0, 0)N. Consider
solutions i (t) converging to i*. The limit equation of (2.16) is
N@(t)"(b!d!ei*) N(t), so that N (t)P0 as tPR if R

1
(1, and N (t)PR if

R
1
'1. The rate of decay or growth is asymptotically exponential. Since

I(t)"i(t) N(t), I(t) has the same asymptotic limit as N(t) . We note that the
case NPR, IP0 is impossible.

On the other hand, suppose that b'e and h(1. In this case there is no
endemic equilibrium and the DFE is locally asymptotically stable. We conjec-
ture that it is globally attracting (see Theorem 3.2). Consider a positive
solution i (t) for which i(t)P0. The limit equation of (2.16) is
N@(t)"(b!d)N (t) so that N (t)P0 if R

1
(1, and N (t)PR if R

1
'1. If

N(t)P0 then also I(t)"N (t)i (t) tends to 0, but if N(t)PR then the asymp-
totic behavior of I(t) is not immediately obvious, and indeed another thre-
shold parameter must be introduced.
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It remains to determine the behavior of I(t) when R
1
'1 and N(t)PR.

From (2.4) we have

I@(t)"G
jS(t!u)

N(t!u)

i (t!u)

i(t)

N(t!u)

N (t)
exp(!du)!(e#c#d)HI(t)

where we have used the facts that N (t) and i(t) are not zero in finite
time (see Corollary 2.1). Using the expression for N(t~u)

N(t)
. from (2.17), this

becomes

I@(t)"f (t)I(t) , (5.6)

where

f (t)"js (t!u)
i(t!u)

i(t)
expG!bu#eP

t

t~u
i(p) dpH!(e#c#d) . (5.7)

It is necessary to determine the limiting behavior of i(t~u)
i(t)

when i(t)P0.
Since h(1 the disease free proportion equilibrium is asymptotically stable.
Then by Theorem A.2 there is a characteristic root x

0
satisfying

!(e#c#b)(x
0
(0, and all other roots z satisfy R(z)(x

0
. Since

i(t)P0, the asymptotic behavior of i (t) is given by the dominant charac-
teristic root, that is, i (t)"k exp(x

0
t) (1#o (1)) as tPR. Therefore

i(t~u)
i(t)

"exp(!ux
0
) (1#o (1)), with limit exp(!ux

0
). Hence

lim
t?=

f (t)"j expM!u(x
0
#b)N!(e#c#d) .

We let

R
2
"

j expM!u(x
0
#b)N

(e#c#d)
(5.8)

and conclude that if R
2
(1 then I(t)P0, and if R

2
'1 then I (t)

grows exponentially. Note the difference between h and R
2
. Thus the

two ways of controlling the disease, by forcing the number of infectives or the
proportion of infectives to zero, are not always the same in a population of
varying size.

These results are summarized in Table 1.

Table 1. Threshold criteria and asymptotic behavior when b'e,
where h, R

1
and R

2
are given by (3.1), (5.5), and (5.8), respectively.

The value of R
2

is relevant only in case h(1 and R
1
'1. For

precise interpretation of the table, see the text

h R
1

R
2

iP NP IP

(1 (1 0 0 0
(1 '1 (1 0 R 0
(1 '1 '1 0 R R

'1 (1 i* 0 0
'1 '1 i* R R
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6 The SIRS model

Setting u"0 in the model of Sect. 2 gives an SIRS model with no exposed
class. In this case s#i#r"1 and the positively invariant set is

D@"M(s, i, r): s70, i70, r70, s#r#i"1N (6.1)

(under the assumption that (2.21) holds). Theorems 3.1 and 3.2 hold as stated
with h" j

(e`c`b)
for the disease free proportion equilibrium (s, i, r)"(1, 0, 0).

Now » (t)"i (t) in the proof of Theorem 3.2, and this global result holds for all
parameter values for which h(1.

For t7q, this model can be written as a single integro-differential equa-
tion for i (t). From (2.13) and (2.14) this is

i @ (t)"jC1!i (t)!P
t

t~q
ci(u)expA!P

t

u

m(p) dpBduDi(t)

!(e#c)i (t)!m(t)i (t) , (6.2)

with m(t)"b!ei(t). This is similar to, but more complicated than, equations
studied by Hethcote et al. (1981a) and van den Driessche (1983) for the
number of infectives in a constant size population.

Theorem 6.1 ¸et h" j
(e`c`b)

. If h(1, then all solutions of the SIRS model
starting in D@ approach the disease free proportion equilibrium as tPR. If h'1
and b'e, there is a unique positive equilibrium s*, i*, r* in the interior of D@.

Proof. The first assertion was already discussed in the first paragraph of this
section. To complete the proof, consider equations (4.1), (4.3), (4.4) for endemic
proportions. Now g

1
(i*) is given by (4.5) and g

2
(i*)"e`c`b~ei*

j
. Assume that

h'1 and b'e. As in (5.2), define

c"1!
(b#c)
(j!e)

"

j!e!c!b

j!e
.

From h'1 we have j'e#c#b, hence 0(c(1. Then the function

i*#g
2
(i*)"

e#c#b#(j!e)i*
j

is increasing in i* and c#g
2
(c)"1. Thus c is the upper bound for values of

i* for which i*#s*(1, just as in Sect. 5. With h (i) as in (5.3) and u"0 we
have

h (i)"j[b#ci exp(!q (b!ei))]![b#(j!e)i] [e#c#b!ei] .

We find that h(0)"jb(1!1/h)'0 when h'1. Also

h(c)"jc (j!e!c!b) [exp(!q(b!ec))!1] (j!e)~1 .

Since j'e#c#b, b'e, and c(1, we see that h (c)(0. Therefore there
exists i* with 0(i*(c and h (i*)"0. It is easy to compute h@@ (i) and to see
that h@@(i)'0 for i'0, so that i* is unique. From this value, s* can be
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obtained from g
1
(i*) or g

2
(i*), and r* from (4.4), which establishes existence of

a positive equilibrium. K

If it is assumed that there is no disease related death (i.e. e"0), then the
unique endemic proportion equilibrium is explicitly given by setting u"0 in
(4.7) and (4.8). Stability of the unique equilibrium (s*, i*, r*) when e"0 and
h'1 is governed by (4.9) with u"0, namely

0"z2#z (b#ji*)#jbi*#jci*[1!exp(!q (b#z))] . (6.3)

This equation has been considered by van den Driessche (1983) and can have
purely imaginary zeros for some parameter values. Thus for some q'0,
periodic solutions, arising by a Hopf bifurcation, are possible. The SIRS
model with finite delay in the removed class can thus have more complicated
dynamics than the SEIS model with delay in the latent class, even in the case
of no disease related death.

Consider a solution for which i(t) tends to i*'0. Then from (2.16) the
entries in Table 1 for h'1 are valid here also. We discuss below the case in
which there is a periodic solution. Now suppose that h(1. Since i(t)P0, we
have, just as in Sect. 5, that N(t)P0 or R according as R

1
(1 or '1, and

when N (t)P0 also I (t)P0. We also have I@(t)"f (t)I (t) where f (t) is given by
(5.7) with u"0, that is,

f (t)"js (t)!(e#c#d) . (6.4)

Since s (t) tends to 1, we see that I (t) tends to 0 or R according as R
2
(1 or

'1 where R
2

is given by (5.8) with u"0. So the entries in Table 1 for h(1
remain valid.

On the other hand, suppose that for some q'0 there is a positive periodic
solution of the proportional variables, s"sJ (t), i"iJ (t), r"rJ (t), of period ¹,
which attracts all solutions. Then s (t)"sJ (t) [1#o(1)] as tPR, where sJ (t) has
period ¹, and f (t)"fI (t)#o (1) where fI (t)"jsJ (t)!(e#c#d). Let sN and fM be
the mean values of sJ (t) and fI (t), respectively, so fM"jsN!(e#c#d). From
I@(t)"f (t)I (t) we obtain

I (t)"I(t
0
)expA P

t

tÒ

f (u) duB, t7t
0
'0 (6.5)

and therefore for any t7t
0

I (t#¹ )"I(t)expAP
t`T

t

f (u) duB . (6.6)

Also
1

¹ P
t`T

t

f (u) du"fM#o (1)

so

I(t#¹ )"I(t)exp(¹ fM#o (1))"I(t)exp(¹ fM ) [1#o(1)] . (6.7)
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Let

RM
2
"

jsN
(e#c#d)

,

so that RM
2

is (1, "1, or '1 according as fM is (0, "0, or '0. Then
from (6.7) we obtain the following result.

Theorem 6.2 Assume that h'1 in the SIRS model, and that sJ (t), iJ (t), rJ (t), is
a ¹-periodic solution, 0(sJ (t)(1, that attracts all solutions. ¹hen I(t) is asymp-
totically ¹-periodic if and only if RM

2
"1. If RM

2
(1, I(t) is eventually decreasing,

and if RM
2
'1 then I(t) is eventually increasing. fM is the asymptotic rate constant.

7 Summary

As claimed in the Introduction, we have formulated a variable population
SEIRS disease transmission model with constant latent and immune periods.
We have begun analysis of the resulting complicated integro-differential
equation system. We now summarize results and restrictions with the aim of
indicating problems that remain open.

An important threshold parameter h is identified in (3.1). If h'1,
the proportion of infectives does not tend to zero; if h(1, the disease
free proportion equilibrium is locally asymptotically stable, with global stabil-
ity proved only for the subset h(exp(!bu). An endemic proportion equilib-
rium satisfies (4.5), (4.6); for e"0 (i.e., no disease related death) there is
no such equilibrium if h61, but a unique endemic equilibrium if h'1.
For a disease that confers no immunity or has no latent period, this result
holds under the weaker restriction that e(b. In both of these special cases
local stability of the endemic proportion equilibrium is analyzed under the
restriction that e"0. This equilibrium is shown to be locally asymptotically
stable for the SEIS model, whereas the SIRS model can exhibit periodic solutions.

The results on when periodic solutions exist for the SEIS and SIRS models
here are qualitatively the same as those in Hethcote et al. (1981a, b) for
corresponding models with constant population size. In the cases with vari-
able population size, global asymptotic stability of the endemic equilibrium
remains unproved. The full SEIRS model can exhibit periodic solutions for
some parameter values, but appropriate parameter ranges remain to be
explored. The asymptotic behavior as tPR of the number of infectives is
shown to depend on other threshold parameters R

1
, R

2
, RM

2
. These param-

eters, together with h, quantify two ways that the disease can be controlled, as
summarized in Table 1. We note (from (2.4) and Theorem A.2) that another
threshold parameter, namely

R
0
"

j exp(!du)

(e#c#d)
,

determines whether I (t) initially grows or decays if a small number of infec-
tives is introduced into a population of susceptibles.
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Note added in proof. Professor Y. Kuang has pointed out that the Razumikhin
function technique (see [11], Theorem 4.2, page 152 or Y. Kuang, Delay
Differential Equations with Applications in Population Dynamics, Academic
Press, 1993, Section 2.6) can be used to prove the following global result from
(2.4). If R

0
(1 then I (t), E (t), R (t), and N (t)!S (t) tend to zero as t tends to

infinity. Note that if h(1 and b(d, then R
0
(h(1; whereas if R

0
(1 and

b'd, then h(R
0
(1. These results complement those in Table 1. By

applying the Razumikhin method to (2.13) it can be shown that i (t)P0 if
e (e#c#b)~1#h exp(eu)(1, and therefore for h(1 if e is sufficiently small.
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A Appendix

The assertion in Sect. 5 that instability can occur for u'0 only by roots
crossing the finite imaginary axis can be established as in the following
theorem.

Theorem A.1 Consider an equation of form

Pu (z)#Qu (z)exp(!u(b#z))"0

where b'0, Pu and Qu are relatively prime polynomials in z with coefficients
that are continuous functions of u, and the degree of Pu is greater than the
degree of Qu . Suppose that for u"0 all roots lie in R(z)(0. Assume that for
u'0 there are no roots on the imaginary axis. ¹hen all roots lie in R(z)(0 for
u70.

Proof. It is easy to see that each root z varies continuously with u. Now let
u

0
'0 be fixed. We claim that all roots z for 06u6u

0
with R(z)70 lie in

a bounded domain. To see this, let n be the degree of Pu. With no loss of
generality we may assume that 1 is the leading coefficient in Pu . Then

Dz~nPu (z)D"Dz~nQu(z)exp(!u(b#z)) D

"Dz~nQu(z) Dexp(!ub)exp(!uR(z)) .

Choose o
1

so large that Dz~nPu(z) D'1/2 for DzD7o
1
, 06u6u

0
. Since the

degree of Qu is less than n, there is o
2
'0 such that the right side of the above

equation is less than 1/2 for 06u6u
0
, DzD7o

2
, R(z)70. So the equation

cannot hold for DzD7maxMo
1
, o

2
N, R (z)70, hence all roots in R (z)70 with

06u6u
0

lie in Dz D(maxMo
1
, o

2
N. Informally speaking, this shows that

a root cannot suddenly appear in the right half plane from infinity, but only by
moving onto the imaginary axis. Since, by hypothesis, there are no roots on
the imaginary axis for any u'0, all roots must remain in R(z)(0. K
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In order to complete the discussion of equation (3.2), we consider
quasipolynomial equations of the form

z#a!j exp(!u(b#z))"0 . (A.1)

This arises from a differential-delay equation with lag u'0. Parameters a, j
are positive and independent of u and b70. The case with b"0 is well
known in the literature.

Theorem A.2 Consider equation (A.1) with j'0, a'0, b70. ¹here is a
positive zero z"x'0 of (A.1) if and only if j exp(!bu)'a. If
j exp(!bu)(a, then there is a unique real negative zero x

0
; it is on the interval

(!a, 0), and every other zero z satisfies R(z)(x
0
(0.

Proof. Consider z"x as a zero of (A.1), thus

x"j exp(!u(b#x))!a . (A.2)

By examining the graphs we see that there is a solution x'0 exactly
when j exp(!bu)!a'0. There is a solution x"0 exactly when
j exp(!bu)!a"0. When j exp(!bu)!a(0, there is a unique real zero
x
0
, which satisfies !a(x

0
(0. Assume there is a zero of (A.1) z"x#iy

with x"R(z)7x
0
. Taking real and imaginary parts gives

x#a"j exp(!u(b#x))cos(uy) ,

y"!j exp(!u(b#x))sin(uy) .

From the first equation, x#a6j exp(!u(b#x)). When x'x
0

this is less
than j exp(!u(b#x

0
))"x

0
#a, which is a contradiction. If x"x

0
and y is

not a multiple of 2n then cosuy(1, so x#a(j exp(!u(b#x))"x
0
#a,

again a contradiction. Finally, if x"x
0

and y is a multiple of 2n, then the
second equation yields y"0 and z"x

0
. We have shown that every zero

z9x
0

satisfies R(z)(x
0
. K

We examine the quasipolynomial (A.1) further, by assuming there is
a purely imaginary zero, z"iy, y'0. Then

a"j exp(!bu)cos(uy), y"!j exp(!bu)sin(uy) .

Squaring and adding gives

y2"j2exp(!2bu)!a2 .

So if j2exp(!2bu)(a2, then there are no purely imaginary zeros. As all
quantities are positive, this is equivalent to j exp(!bu)(a. Computing
derivatives from (A.2) on the curve j exp(!bu)"a we find

Lx

Lu
(0,

Lx

Lj
'0 .

Thus for fixed, positive a, b, the curve u"1
b
ln (j

a
) in the first quadrant of the

(j, u) plane separates the region of stability on the left from the region of
instability on the right. In the limit b"0, this curve becomes the vertical line
j"a.
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