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Abstract. If in the classical Turing model the diffusion process (Brownian
motion) is replaced by a more general correlated random walk, then the
parameters describing spatial spread are the particle speeds and the rates of
change in direction. As in the Turing model, a spatially constant equilibrium
can become unstable if the different species have different turning rates and
different speeds. Furthermore, a Hopf bifurcation can be found if the repro-
duction rate of the activator is greater than its rate of change of direction, and
oscillating patterns are possible.
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1 Introduction

Reaction—diffusion equations

u
t
"Dnu#f (u) (1)

model the interaction of particles moving in space, where u (t, x)"
(u

1
(t, x), . . . , u

n
(t, x)) is a vector of densities of n types of particles.

The reaction alone is described by the reaction equation

uR "f (u) , (2)

where f : RnPRn is continuously differentiable. Spatial spread is governed by
the diffusion equation

u
t
"Dnu .

The diffusion coefficient D"diag (d
1
, . . . , d

n
) is a diagonal matrix with

non-negative entries d
j
70, j"1, . . . , n.



Reaction—diffusion equations have been studied both theoretically and in
connection with applications by numerous authors (see, in particular the
monographs by Henry [10], Rothe [20], Smoller [21], Temam [23] and
others).

A natural approach is to first study the pure reaction equation. If there is
a stable stationary solution one might guess that the reaction diffusion system
(1) has a stable equilibrium as well. As Turing [24] pointed out, this conjecture
is wrong even for linear systems. If different species have different diffusion
rates then pattern formation may occur.

Of course the deterministic system (1) is based on the assumption that the
particle number is large and the mean free path length is small. In the diffusion
equation it is assumed that the particle speed can be arbitrarily large. This
assumption may be appropriate in chemical reactions but in other contexts,
e.g. biological populations such as microorganisms or bacteria, the assump-
tion of finite speed is more appropriate. Consequently other models for
motion should be studied, e.g. correlated random walks. In this paper we
address the question of Turing instabilities, if the diffusion process is replaced
by correlated random walk.

Correlated random walks for a single species in one space dimension, and
the corresponding hyperbolic system, have been studied in detail by Taylor
[22], Goldstein [6] and Kac [13]; see also Zauderer [25]. Kac has found an
equivalence with the telegraph equation. In connection with problems of
reaction and spatial spread rather general systems (velocity jump processes)
have been studied by Othmer, Dunbar and Alt [17].

Dunbar and Othmer [2], and Dunbar [1] studied correlated random
walks in connection with branching random walk processes and McKean’s
probability of the most advanced particle. They derived semilinear hyperbolic
systems that describe this probability.

Holmes [12] considered a hyperbolic analog of Fisher’s equation [3]
which describes population growth and motion according to a correlated
random walk.

Hadeler [7, 8] defined several such problems and derived corresponding
reaction telegraph equations. He proved the existence of travelling front
solutions.

1.1 Correlated random walk

First we consider a correlated random walk of one species on the real axis. We
assume that particles with density u have constant speed c and constant
turning rate k. We split u"a#b into a particle density a of particles that
move to the right and a particle density b of particles that move to the left. The
correlated random walk is described by the following system,

a
t
#ca

x
"k (b!a) ,

b
t
!cb

x
"k (a!b) .

(3)
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The conservation laws a
t
#ca

x
"0 and b

t
!cb

x
"0 describe particles mov-

ing with constant speed c to the right or left, respectively. The right hand side
of this system can be interpreted in terms of a birth—death process. An
a particle that moves to the right dies with rate k and is reborn as a particle
moving to the left.

The diffusion equation appears as a limiting case. Indeed, if we differenti-
ate the equations with respect to t and x, eliminate the mixed derivatives a

tx
,

b
tx

and consider u"a#b, then we get a telegraph equation u
tt
#2ku

t
"

c2u
xx

(Kac [13]). If we divide this equation by 2k and consider the formal limit
c, kPO, lim c2/2k"d(O, we obtain the diffusion equation u

t
"d u

xx
.

In the correlated random walk model we have finite speed and finite
turning rates. In the limit of Brownian motion we have particles that move
very fast and turn very often. One can conjecture that the solutions of (3) are
close to solutions of the diffusion equation if k and c are large and c2/2kBd .
On the other hand one expects that (3) and the diffusion equation behave very
differently if c is large and k is small. Overall one will expect that correlated
random walk systems show a greater variety of phenomena than reaction
diffusion systems.

1.2 Correlated random walk with reaction

Now we consider the reaction diffusion equation for one species in one space
dimension

u
t
"du

xx
#f (u) (4)

with a positive diffusion coefficient d.
Following [8] we distinguish several ways in which the reaction term

interacts with motion. Whereas in the transition of the ordinary differential
equation (2) to the reaction diffusion equation (4) the reaction term is not
affected, in the correlated random walk case, due to the partition according to
velocity, the nonlinearity can be split in various ways depending on the
following modeling assumptions.

(a) First we assume that reaction does not depend on the direction of
motion and we further assume that new particles choose either direction with
the same probability. Then the system reads

a
t
#ca

x
"k (b!a)#1

2
f (a#b) ,

b
t
!cb

x
"k (a!b)#1

2
f (a#b) .

(5)

(b) If, however, we assume that the reaction is described by a birth—death
process uR "f (u)"h(u)!ug(u), where h(u) is the reproduction term and g(u)
is the mortality, then in the first equation only particles that move to the right
will disappear. The model equations are then

a
t
#ca

x
"k (b!a)#1

2
h (a#b)!a g(a#b) ,

b
t
!cb

x
"k (a!b)#1

2
h(a#b)!b g (a#b) .

(6)
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(c) If we assume that the direction of newborn particles is correlated to the
direction of mother particles we arrive at the following system

a
t
#ca

x
"k (b!a)#(qa#(1!q)b) m(a#b)!ag (a#b) ,

b
t
!cb

x
"k (a!b)#((1!q)a#qb)m(a#b)!bg (a#b) .

(7)

Here the reproduction term is written as h (u)"um(u). The parameter q,
06q61, measures the correlation. The uncorrelated case corresponds to
q"1

2
, large values of q describe positive correlation.

We will call each of the systems (5), (6) and (7) a reaction random walk
equation. In the sequel we only investigate system (5), see also [8] for dis-
cussion of travelling front solutions for equations (5) and (6).

From the point of view of modeling physical processes the distinctions
make sense only if the reaction process and the motion process act on similar
time scales.

1.3 Neumann boundary conditions

We consider equation (4) on a compact interval [0, l] and we assume homo-
geneous Neumann boundary conditions, i.e.

u
x
(t, 0)"u

x
(t, l)"0 . (8)

The Neumann boundary condition describes reflection at the boundary x"0
and x"l. We define the corresponding boundary conditions for the hyper-
bolic system (5). As we have split the total amount of u into particles that move
to the right or left we must now assume that particles a arriving at x"l are
reflected and thus turned into particles b and similarly at x"0. Thus the
appropriate Neumann boundary condition for the reaction random walk
equation (5) reads

a (t, 0)"b (t, 0), b (t, l)"a (t, l) . (9)

If a and b satisfy (5) with boundary conditions (9) then the particle density
u"a#b and the net particle flow density v"a!b satisfy the equation

u
t
#cv

x
"f (u) ,

v
t
#cu

x
"!2kv ,

(10)

with boundary condition
v (t, 0)"v (t, l)"0 . (11)

On the other hand, if (u, v) is a solution of (10), (11) then a:"(u#v)/2 and
b :"(u!v)/2 satisfy (5), (9).

We assume that u and v are twice continuously differentiable solutions of
(10). We differentiate the first equation of (10) with respect to t, the second
equation with respect to x and eliminate the derivatives v

tx
and v

x
to get

a reaction telegraph equation

u
tt
#(2k!f @ (u)) u

t
"c2u

xx
#2k f (u) . (12)
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The boundary condition (9) transforms as follows. Since v(t, 0)"0 for all
t70 also v

t
(t, 0)"0 for all t70. From the second equation of (10) one gets

u
x
(t, 0)"0, similarly for x"l. The transformed boundary condition is exactly

the Neumann condition (8)

u
x
(t, 0)"u

x
(t, l )"0 . (13)

For systems (6) and (7) the transition to a reaction telegraph equation is not
possible in general.

The correspondence of system (10) and equation (12) is as follows. We
assume that all solutions are twice continuously differentiable:

(a) If (u, v) is a solution of (10) then u is a solution of (12).
(b) If u is a solution of (12) there exists a one parameter family of functions

Mv
c
N
c|R such that (u, v

c
) solves (10).

(c) If (u, v) solves (10) with Neumann boundary conditions (11) then
u satisfies (12) with boundary condition (13).

(d) If u is a solution of (12), (13) then there exists a function v such that
(u, v) is a solution of (10), (11) if and only if the following compatibility
condition for the initial data is satisfied

P
l

0

( f (u(0, x) )!u
t
(0, x) ) dx"0 .

2 Reaction random walk systems

Now we return to the reaction diffusion equation (1) for n species moving in
one space dimension x3R. Writing (1) in coordinates one has

u
jt
"d

j
u
jxx

#f
j
(u

1
, . . . , u

n
) ,

where the subscript j"1, . . . , n numbers the species and the subscripts t and
x denote partial derivatives.

We split each particle density u
j
"a

j
#b

j
into particle densities for left

and right moving particles and consider for each j"1, . . . , n in analogy to
(5) the corresponding reaction random walk equation

a
jt
#c

j
a
jx
" k

j
(b

j
!a

j
)#1

2
f
j
(a

1
#b

1
, . . . , a

n
#b

n
) ,

b
jt
#c

j
b
jx
" k

j
(a

j
!b

j
)#1

2
f
j
(a

1
#b

1
, . . . , a

n
#b

n
) .

(14)

Each species has a speed c
j
'0 and a turning rate k

j
'0.

We introduce diagonal matrices

C :"A
c
1

}
c
n
B , M :"A

k
1

}
k
n
B ,

vectors of the dependent variables

a :"(a
1
, . . . , a

n
)T , b :"(b

1
, . . . , b

n
)T
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and a function f : RnPRn

f (u)"( f
1
(u

1
, . . . , u

n
), . . . , f

n
(u

1
, . . . , u

n
) )T ,

to get the more transparent notation for (14)

a
t
#Ca

x
"M (b!a)#1

2
f (a#b) ,

b
t
!Cb

x
"M (a!b)#1

2
f (a#b) .

(15)

This equation is called a reaction random walk system.
We introduce Neumann boundary conditions at [0, l]

a (t, 0)"b (t, 0), b (t, l )"a (t, l ) . (16)

We can proceed as before to arrive at a reaction telegraph system. Introduce
u :"a#b and v :"a!b as new dependent variables; then the system reads

u
t
#Cv

x
"f (u) ,

v
t
#Cu

x
"!2Mv ,

(17)

with boundary conditions equivalent to (16)

v (t, 0)"v (t, l)"0 . (18)

If we differentiate the first equation of (17) with respect to t, the second
equation of (17) with respect to x and eliminate the derivatives v

tx
and v

x
, then

we arrive at the reaction telegraph system

u
tt
#(2M!f @(u)) u

t
"C2u

xx
#2M f (u) (19)

where f @ (u) is the Jacobian of f at u. To consider the limit of Brownian motion
we multiply this equation by (2M)~1

(2M)~1u
tt
#(I!(2M)~1 f @(u)) u

t
"(2M)~1C2u

xx
#f (u) .

We let the speeds c
j
and the turning rates k

j
go to infinity in such a way that

the limits c2
j
/(2k

j
)Pd

j
exist. Define D"diag(d

1
, . . . , d

n
). As a formal limit we

obtain the reaction diffusion equation (1).

2.1 Linear analysis

Let the reaction equation uR "f (u) have a stationary state u' 3Rn and let
A :"f @(u' ) be the Jacobian of f at this point. Then there is a steady state for the
corresponding reaction random walk system (15) with Neumann boundary
conditions (16)

(aN (x), b1 (x))"A
u'
2
,
u'
2B .

In the u, v notation the equilibrium of (17) with boundary conditions (18) is

(uN (x), vN (x))"(u' , 0) .
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The linearisation of (17) with boundary condition (18) at this point is

u
t
#Cv

x
"Au ,

v
t
#Cu

x
"!2Mv ,

(20)

with boundary condition

v (t, 0)"v (t, l)"0 . (21)

Using the Lumer—Phillips-Theorem (see Pazy [18]) one can show that (20)
with (21) defines an operator semigroup in (¸2[0, l]]¸2[0, l])n ([11]). The
generator has a pure point spectrum. A similar result was pointed out by
Neves, Ribeiro and Lopes [16]. Thus the stability of the spatially constant
solution is determined by eigenvalues j of the corresponding eigenvalue
problem

ju#Cv
x
"Au ,

jv#Cu
x
"!2Mv ,

(22)

with boundary condition
v(0)"v (l)"0 . (23)

If all eigenvalues of (22), (23) have negative real parts then the zero solution of
(20), (21) is stable. If there is an eigenvalue j with Re j'0 then it is unstable.

We solve for the derivatives and put

R(j) :"!C~1(2M#jI), S (j) :"C~1(A!jI) ,

where I is the identity. The eigenvalue problem assumes the form

A
u
vB

@
"A

0 R (j)
S (j) 0 B A

u
vB , (24)

with boundary condition
v(0)"v(l)"0 , (25)

where we used @ for the spatial derivative.
Since we are interested in the possible existence of eigenvalues j with

Rej70 we can assume that Re j'max
j/1, . . . , n

M!2k
j
N. Then R(j) is

regular. From (24) we have u@(x)"R (j) v (x), then the boundary condition (25)
for v is equivalent to the boundary condition

u@(0)"u@(l)"0 . (26)

It is useful to consider the second derivative of (u, v)

A
u
vB

A
"A

R (j)S(j) 0
0 S (j)R(j)B A

u
vB , (27)

with boundary conditions (25) and (26). Here the equations for u and v are
separated, and one may write the solution of (24) as

A
u(x)
v (x)B"expAx A

0 R (j)
S (j) 0 BB A

u (0)
v(0)B .
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We evaluate this solution at x"l, use the boundary conditions (25), write
down the exponential series and sort even and odd exponents. Then we arrive
at a nonlinear equation in j

detA
=
+
k/0

l2k`1

(2k#1)!
(S (j)R(j))kS (j)B"0 . (28)

Lemma 2.1 ¹he complex number j with Re j'max
j/1, . . . , n

M!2k
j
N is an

eigenvalue of (22), (23) if one of the following conditions is satisfied.
1. (24), (25) has a nontrivial solution,
2. (27), (25), (26) has a nontrivial solution,
3. Equation (28) is satisfied.

3 The Turing model

Some interesting effects of destabilization by diffusion occur in the classical
Turing model (Turing [24], Maginu [14], Murray [15])

u
1t
"D

1
u
1xx

#f
1
(u

1
, u

2
) ,

u
2t
"D

2
u
2xx

#f
2
(u

1
, u

2
) ,

(29)

where u
1

and u
2

are densities of two species and D
1
, D

2
are the corresponding

diffusion rates. The functions f
1

and f
2

describe the reactions between these
species

uR
1
"f

1
(u

1
, u

2
) ,

uR
2
"f

2
(u

1
, u

2
) .

(30)

We consider homogeneous Neumann boundary conditions on the compact
interval [0, l]

u
1x

(t, 0)"u
1x

(t, l )"u
2x

(t, 0)"u
2x

(t, l )"0 . (31)

Let (u'
1
, u'

2
) be a steady state of (30). Then system (29) with boundary condi-

tions (31) has a spatially constant equilibrium at (uN
1
(x), uN

2
(x)),(u'

1
, u'

2
).

Let

A"A
a
1

a
2

a
3

a
4
B"A

L
1

f
1
(u'

1
, u'

2
) L

2
f
1
(u'

1
, u'

2
)

L
1

f
2
(u'

1
, u'

2
) L

2
f
2
(u'

1
, u'

2
)B (32)

be the Jacobian of ( f
1
, f

2
) at (u'

1
, u'

2
).

Under suitable assumptions on the parameters the spatially constant
equilibrium (uN

1
, uN

2
) of (29) can be destabilized by choosing different diffusion

rates D
1
, D

2
. We assume

(H1) (u'
1
, u'

2
) is a stable equilibrium of (30), i.e. a

1
#a

4
(0 and

a
1
a
4
!a

2
a
3
'0.

(H2) a
1
'0, a

4
(0,

and thus a
2
a
3
(0. The choice of the signs in (H2) corresponds to the usual

activator inhibitor system (Murray [15], Gierer and Meinhardt [5]).
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Theorem 3.1 (Turing) Assume (H1) and (H2) are satisfied. ¹he spatially
constant equilibrium is unstable if and only if

(a) S
D

2
D

1

'

JdetA#J!a
2
a
3

a
1

,

(b) ¹here exists a mode k3N such that
Jh

1
l

n
(k(

Jh
2
l

n
, where

h
1,2

"

1

2D
1
D

2
AD1

a
4
#D

2
a
1
$J(D

1
a4!D

2
a
1
)2#4D

1
D

2
a
2
a
3B (33)

Remarks:
1. Turing [24] found the effect of pattern formation, but he did not really

state a theorem in the above way. He modeled reacting morphogens which
diffuse in a ring of cells. His model is a special case of (29) with periodic
boundary conditions (Maginu [14]). The case with Neumann boundary
conditions is considered in Murray [15] and stability conditions are
derived. In Theorem 3.1 we use a form of the stability condition proposed by
Hadeler [9].

2. This Theorem is a result of a linear stability analysis. The linearization

u
1t
"D

1
u
1xx

#a
1
u
1
#a

2
u
2

,
u
2t
"D

2
u
2xx

#a
3
u
1
#a

4
u
2

,
(34)

of (29) at the spatially constant solution defines an operator semigroup in
appropriate function spaces (e.g. ¸2 ([0, l]). With boundary condition (31) the
generator of (34) has pure point spectrum. Thus the stability of the spatially
constant equilibrium is determined by the eigenvalues of the corresponding
eigenvalue problem

ju
1
"D

1
u
1xx

#a
1
u
1
#a

2
u
2

,
ju

2
"D

2
u
2xx

#a
3
u
1
#a

4
u
2

,
(35)

with boundary conditions (31).
The eigenvalues of (35) are discrete and correspond to modes k3N in the

following way:

j is an eigenvalue of (35) if and only if for some k3N

det(j!A!Dh)"0, where h"
k2n2

l2
. (36)

Since (36) defines a quadratic polynomial in j for each mode k3N there are
two eigenvalues j(k). The eigenfunctions are given by

A
º

1
º

2
B (x)"A

c
1

c
2
B cosA

kn
l

xB . (37)

Condition (b) of Theorem 3.1 characterizes the modes k3N such that at least
one of the corresponding eigenvalues j (k) given by (36) has positive real part.
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Condition (a) of Theorem 3.1 guarantees that h
1,2

3R.
3. To consider bifurcations one may vary the length of the interval l or one

of the diffusion rates D
1
, D

2
. We look for bifurcations by increasing D

2
, where

all remaining parameters are fixed.
For small D

2
condition (a) of Theorem 3.1 is not true. If D

2
increases such

that (a) is satisfied, there is an interval (Jh
1
l/n, Jh

2
l/n) of possible modes

k3N. This interval grows with increasing D
2

and there is a first mode
k
0

which is contained in this interval. Then there exists an eigenvalue j(k
0
)

with positive real part and the constant solution becomes unstable. The
eigenfunction (37) of j (k

0
) dominates the shape of the solution. A cosine

pattern of mode k
0

appears.
4. Eigenvalues of the linearization (34) never cross the imaginary axis with

nonvanishing imaginary part. There is no Hopf bifurcation from the spatially
constant solution.

5. Remark 4 does not exclude the existence of oscillating spatial patterns
in general reaction diffusion systems, e.g. the Brusselator (Prigogine, Nicolis
[19]). In that situation the reaction equation shows oscillatory behavior for
appropriate parameters, i.e. (H1) and (H2) are not satisfied.

Furthermore secondary bifurcations may occur which lead to oscillating
patterns, independent of the conditions (H1) and (H2).

Now we perform the transition to correlated random walks. For each
j"1, 2 split the particles into right and left moving particles u

j
"a

j
#b

j
.

Assume that each particle moves with a constant speed c
j

and changes
direction with rate k

j
, j"1, 2. Let

u :"A
u
1

u
2
B , a :"A

a
1

a
2
B , b :"A

b
1

b
2
B ,

C :"A
c
1
0

0 c
2
B, M :"A

k
1
0

0 k
2
B . (38)

Then the reaction random walk system corresponding to (29) with boundary
conditions (31) is given by (15) with Neumann boundary conditions (16).

4 Linear analysis of the random walk Turing model

For linear analysis we use the characterization 2. of Lemma 2.1 for j to be an
eigenvalue. The matrices occurring in (27) are

R(j)"A
!

1

c
1

(2k
1
#j) 0

0 !

1

c
2

(2k
2
#j)B ,
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S(j)"A
1

c
1

(a
1
!j)

a
2

c
1

a
3

c
2

1

c
2

(a
4
!j)B .

With the notation

i
1
"

1

c2
1

(j#2k
1
) (a

1
!j) , i

2
"

1

c2
2

(j#2k
2
)(a

4
!j) ,

m
1
"

1

c
1

(j#2k
1
) , m

2
"

1

c
2

(j#2k
2
) ,

aJ
2
"

a
2

c
1

, aJ
3
"

a
3

c
2

.

(39)

we have

R(j)S (j)"A
!i

1
!aJ

2
m

1
!aJ

3
m

2
!i

2
B , S(j) R (j)"A

!i
1

!aJ
2
m

2
!aJ

3
m

1
!i

2
B .

In system (27) as well as in the boundary conditions (25), (26) u and v separate.
We investigate the equations for u alone and determine conditions on j such
that a nontrivial solution of (27) exists. Then we consider the equations for
v and compare the solvability condition to the first case.

4.1 Equation for u

The equation for u in (27) is

A
u@@
1

u@@
2
B"A

!i
1

!aJ
2
m

1
!aJ

3
m

2
!i

2
B A

u
1

u
2
B (40)

with boundary condition (26)

u@
1
(0)"u@

1
(l)"u@

2
(0)"u@

2
(l )"0 , (41)

and i
1
, i

2
, m

1
, m

2
, aJ

2
, aJ

3
as in (39). Let the matrix in (40) be called B.

To solve (40) we calculate the eigenvalues and the corresponding eigen-
vectors of B. The eigenvalues are

p
1,2

"!

i
1
#i

2
2

$

1

2
JD , (42)

with discriminant
D"(i

1
!i

2
)2#4aJ

2
aJ
3
m

1
m

2
.

It is convenient to write the corresponding eigenvectors in the form

m
1
"A

!aJ
2
m

1
1
2

(i
1
!i

2
)#1

2
JDB , m

2
"A

!aJ
2
m

1
1
2

(i
1
!i

2
)!1

2
JDB .
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If D90 then the two eigenvectors m
1
, m

2
are linearly independent.

The discriminant is, in explicit form,

D"A
1

c2
1

(j#2k
1
) (a

1
!j)!

1

c2
2

(j#2k
2
) (a

4
!j)B

2

#

4a
2
a
3

c
1
c
2

(j#2k
1
) (j#2k

2
)

In Sect. 2.1 we assumed Re j'maxM!2k
1
, !2k

2
N, hence D90 and m

1
, m

2
are linearly independent.

Under this assumption the general solution of (40) is

A
u
1

u
2
B (x)"(g

1
eJpÇx#g

2
e~JpÇx)m1#(g

3
eJpÈx#g

4
e~JpÈx)m2

and its first derivative is

A
u@
1

u@
2
B (x)"(p

1
eJpÇx!p

2
e~JpÇx)m1#(p

3
eJpÈx!p

4
e~JpÈx)m2, (43)

with p
1
"g

1
Jp

1
, p

2
"g

2
Jp

1
, p

3
"g

3
Jp

2
, p

4
"g

4
Jp

2
.

Substituting (43) into the boundary conditions (41), we obtain the linear
system for (p

1
, p

2
, p

3
, p

4
):

u@
1
(0)"0: (p

1
!p

2
) (!aJ

2
m

1
)#(p

3
!p

4
) (!aJ

2
m

1
)"0

p
1
!p

2
#p

3
!p

4
"0

u@
1
(l )"0: (p

1
eJpÇl!p

2
e~JpÇl) (!aJ

2
m

1
)#(p

3
eJpÈl!p

4
e~JpÈl) (!aJ

2
m

1
)"0

(p
1
eJpÇl!p

2
e~JpÇl)#(p

3
eJpÈl!p

4
e~JpÈl)"0

u@
2
(0)"0: (p

1
!p

2
) (1
2
(i

1
!i

2
)#1

2
JD)#(p

3
!p

4
) (1
2
(i

1
!i

2
)!1

2
JD)"0

u@
2
(l)"0: (p

1
eJpÇl!p

2
e~JpÇl ) (12

(i
1
!i

2
)#1

2
JD )

(p
3
eJpÈl!p

4
e~JpÈl ) (12

(i
1
!i

2
)#1

2
JD )"0 (44)

To get a more comprehensible view, we define the quantities

r"1
2

(i
1
!i

2
), s"1

2
JD .

Then the determinant of the linear system (44) is

detA
1 !1 1 !1

eJpÇl !e~JpÇl eJpÈl !e~JpÈl

r#s !(r#s) r!s !(r!s)
(r#s) eJpÇl !(r#s) e~JpÇl (r!s) eJpÈl !(r!s) e~JpÈlB
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"det A
1 !1 1 !1

eJpÇl !e~JpÇl eJpÈl !e~JpÈl

0 0 !2s 2s
0 0 !2seJpÈl 2se~JpÈl B

"det A
1 !1

eJpÇl !e~JpÇlBdetA
!2s 2s

!2seJpÈl 2se~JpÈlB (45)

To get the first equality add !(r#s) times the 1st row to the 3rd and
!(r#s) times the 2nd row to the 4th.

System (44) has a nontrivial solution for (p
1
, p

2
, p

3
, p

4
) if the determinant

(45) is zero. Since s90, this is equivalent to

!e~JpÇl"!eJpÇl, or !e~JpÈl"!eJpÈl

8 e2JpÇl"1, or e2JpÈl"1

8&k3Z : 2Jp
1
l"2kni, or 2Jp

2
l"2kni (46)

8&k3N : !

1

2
(i

1
#i

2
)#

1

2
JD"!

k2n2

l2
, or

!

1

2
(i

1
#i

2
)!

1

2
JD"!

k2n2

l2
,

8&k3N : (i
1
!i

2
)2#4aJ

2
aJ
3
m

1
m

2
"Ai1

#i
2
!

2k2n2

l2 B
2

8&k3N : !4i
1
i
2
#4aJ

2
aJ
3
m

1
m

2
#4(i

1
#i

2
)
k2n2

l2
!4

k4n4

l4
"0 (47)

The terms of this equation contain j in several ways, see (39). We recall the
terms for the trace and determinant and for k3N we introduce h

q"!(a
1
#a

4
), d"a

1
a
4
!a

2
a
3
, h"

k2n2

l2
.

After some calculations we get a statement equivalent to (47).

Lemms 4.1 For given j with Re j'max(!2k
1
, !2k

2
) the system (44) has

a nontrivial solution if and only if there is a k3N, and thus a h, such that
F(j)"0, where

F (j)"j4#F
3
j3#F

2
j2#F

1
j#F

0
,

with
F
0
"4 d k

1
k
2
!2h (c2

2
k
1
a
1
#c2

1
k
2
a
4
)#c2

1
c2
2
h2 ,

F
1
"2 d (k

1
#k

2
)#4 q k

1
k
2
!h[c2

2
(a

1
!2k

1
)#c2

1
(a

4
!2k

2
)] ,

F
2
"d#2(k

1
#k

2
) q#4k

1
k
2
#(c2

1
#c2

2
) h ,

F
3
"2(k

1
#k

2
)#q .

(48)
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If j satisfies F (j)"0 then the coefficients p
1
, . . . , p

4
, resp. g

1
, . . . , g

4
can be

determined as follows.
From the 1st and the 3rd equation of (44) it directly follows that p

1
"p

2
and p

3
"p

4
.

From (46) it follows that kni/l"Jp
1

or kni/l"Jp
2
.

In the case kni/l"Jp
1

a solution is given by g
1
"g

2
, g

3
"0, g

4
"0:

A
u
1

u
2
B (x)"g

1
(eiknx@l#e~iknx@l) m

1
"

g
1
2

cosA
kn
l

xB m
1

.

If kni/l"Jp
2

then the solution is

A
u
1

u
2
B (x)"

g
3
2

cosA
kn
l

xB m
2

.

In general we have

Lemma 4.2 ¸et k and j satisfy F(j)"0 then

A
u
1

u
2
B (x)"A

c
1

c
2
B cosA

kn
l

xB
is a solution of (40). ¹he quotient c

1
/c

2
depends on j.

4.2 Equation for v

We recall (27) and consider the system for v

A
v@@
1

v@@
2
B"A

!i
1

!aJ
2
m

2
!aJ

3
m

1
!i

2
B A

v
1

v
2
B , (49)

with boundary condition (25)

v
1
(0)"v

2
(0)"v

1
(l)"v

2
(l)"0 .

Let the matrix in (49) be called C. The eigenvalues and eigenvectors of C are as
follows (again D is the discriminant (42)).

q
1,2

"!

i
1
#i

2
2

$

1

2
JD"p

1,2
,

f
1
"A

!aJ
2
m

2
1
2
(i

1
!i

2
)#1

2
JDB, f

2
"A

!aJ
2
m

2
1
2
(i

1
!i

2
)!1

2
JDB .

The general solution of (49) is

A
v
1

v
2
B (x)"(g

1
eJqÇx#g

2
e~JqÇx) f1#(g

3
eJqÈx#g

4
e~JqÈx) f2 .

Now we introduce p
1
"g

1
, p

2
"!g

2
, p

3
"g

3
, p

4
"!g

4
, evaluate the

boundary conditions and compare with the result for the u—equation (43), (44).
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We get exactly the same results as before (44)-(46) and straightforwardly we
get the same condition for existence of an eigenvalue F (j)"0.

The corresponding solution is

A
v
1

v
2
B (x)"A

c
1

c
2
B sinA

kn
l

xB .

We summarize the above observations in a theorem.

Theorem 4.3 j is an eigenvalue of the linearization (20), (21) if and only if there is
a mode k3N such that F (j)"0, where

F (j)"j4#F
3
j3#F

2
j2#F

1
j#F

0
,

with coefficients as in (48).
¹he corresponding eigenfunction is of the type

u
1
(x)"c

1
cosA

kn
l

xB, u
2
(x)"c

2
cosA

kn
l

xB ,

v
1
(x)"c

3
sinA

kn
l

xB, v
2
(x)"c

4
sinA

kn
l

xB .

(50)

For each mode k3N there are four eigenvalues j(k) of the linearization (20),
(21), given by the roots of F (j).

5 Discussion of the characteristic equation

5.1 Stability domain

We are interested in situations where the uniform stationary state changes its
stability. A bifurcation can occur if roots of F (j) cross the imaginary axis. The
roots of the polynomial

F (j)"j4#F
3
j3#F

2
j2#F

1
j#F

0

have all negative real parts if and only if the Routh—Hurwitz criterion is
satisfied (Gantmacher [4]).

n
1
"F

3
'0 ,

n
2
"F

2
F
3
!F

1
'0 ,

n
3
"(F

2
F
3
!F

1
)F

1
!F2

3
F

0
'0 ,

n
4
"F

0
n

3
'0 .

(51)

One immediately sees that these conditions are equivalent to

F
0
'0, F

1
'0, F

2
'0, F

3
'0,

(52)
F

1
F
2
F
3
!F2

3
F

0
!F2

1
'0 .
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Fig 1. Stability domain

All these expressions are polynomials of maximal degree 2 in the variable h.
The condition (51) or (52) describes the stability domain. If we start from
within the stability domain and vary the parameters we will eventually leave
this domain. Then at least one of these conditions is violated. Therefore one
should consider the change of only one single inequality in that region,
whereas the other inequalities remain satisfied.

Since q and d are positive ((H1), (H2)) F
2
and F

3
are positive for all positive

h. Hence we can describe the stability domain by the following inequalities:
(a) F

0
'0,

(b) F
1
'0,

(c) n
2
"F

2
F
3
!F

1
'0,

(d) n
3
"(F

2
F
3
!F

1
)F

1
!F2

3
F

0
'0.

In Fig. 1 we show the stability domain for fixed F
2
, F

3
in an (F

1
, F

0
)—plane.

The conditions (b) and (c) are redundant. Indeed, assuming that (a) and (d)
are satisfied, it follows that (F

2
F
3
!F

1
)F

1
'0. Since F

2
and F

3
are positive,

the factors F
2
F
3
!F

1
and F

1
are not simultaneously negative. Thus they are

both positive.
The stability domain is determined by conditions (a) and (d), and the

boundary of the stability domain is given by
(a) F

0
"0 and 06F

1
6F

2
F
3

at the F
1
—axis, and

(b) F
0
'0 and F

0
"(F

2
F
3
!F

1
)F

1
/F2

3
at the parabolic arc.

In the next lemma we show that this boundary consists of bifurcation points.

Lemma 5.1. 1. If F
0
"0 and 06F

1
6F

2
F
3

then F (j) has a root at j"0.
2. If F

0
'0 and F

0
"(F

2
F
3
!F

1
) F

1
/F2

3
then F (j) has a root j"il90.

Proof . 1. F
0
"0NF(j)"j (j3#F

3
j2#F

2
j#F

1
) .

2. Since F
2
, F

3
'0 and (F

2
F
3
!F

1
)F

1
"F

0
F2
3
'0 it follows that

F
1
'0.
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We show that j"il with l2"F
1
/F

3
is a purely imaginary root of F(j).

F (il)"l4!l2F
2
#F

0
#il(F

1
!l2F

3
)

"

1

F2
3

F
1
(F

1
!F

2
F
3
)#F

0

"0 . K

5.2 Stability conditions

Now we keep all parameters fixed, assume (H1) and (H2) and discuss stability
in terms of h. Here we ignore the fact that h attains discrete values
k2l2/n2, k3N only and treat h as a nonnegative continuous parameter. We
recall the conditions (a) and (d).

The stability conditions are

(S1) F
0
(h)"4dk

1
k
2
!2h(c2

2
k
1
a
1
#c2

1
k
2
a
4
)#c2

1
c2
2
h2'0,

(S2) n
3
(h)"q

0
#q

1
h#q

2
h2'0, with

q
2
"2(c2

1
!c2

2
)2 (a

1
!2k

1
) (a

4
!2k

2
),

q
1
"2F2

3
(c2

2
k
1
a
1
#c2

1
k
2
a
4
)#F

3
(c2

1
#c2

2
) (2d(k

1
#k

2
)#4qk

1
k
2
)

!¼ [2q(k
1
#k

2
)F

3
#(2(k

1
#k

2
)!q) (4k

1
k
2
!d)],

q
0
"2(k

1
#k

2
) q [(d#4k

1
k
2
)2#2(k

1
#k

2
) (d#4k

1
k
2
) q#4q2k

1
k
2

#4d(k
1
!k

2
)2],

with ¼ :"c2
2
(a

1
!2k

1
)#c2

1
(a

4
!2k

2
) and F

3
"2(k

1
#k

2
)#q.

From assumption (H1) it follows that q
0

is positive.
We check successively the conditions (S1) and (S2):

(S1) Since we are interested in the sign of F
0
we consider G(h)"F

0
(h)/(4k

1
k
2
)

and identify d
j
"c2

j
/(2k

j
), j"1, 2. The stability condition is

G(h)"h2d
1
d
2
!h(d

2
a
1
#d

1
a
4
)#d'0 .

Let ¹"d
2
a
1
#d

1
a
4

then the roots of G(h) are h
1,2

"(2d
1
d
2
)~1

(¹$ J¹2!4d
1
d
2
d).

(a) If ¹(0 then there is no positive root of G and G (h)'0 for all h70.
(b) If ¹70 and ¹ 2!4d

1
d
2
d(0 then there are no real roots and again

G(h)'0 for all h70.
(c) If ¹'0 and ¹ 2!4d

1
d
2
d'0 then G(h)(0 for all h3 (h

1
, h

2
).

We write these conditions in terms of the original model parameters.
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Lemma 5.2 (violation of (S1)) ¹here exists an interval of h such that condition
(S1) is violated if and only if

S
c2
2

2k
2

2k
1

c2
1

'

Jd#J!a
2
a
3

a
1

. (53)

¹he maximal interval is given by [h
1
, h

2
], where

h
1,2

"

1

2d
1
d
2

(d
2
a
1
#d

1
a
4
$J(d

2
a
1
!d

1
a
4
)2#4d

1
d
2
a
2
a
3
) , (54)

with d
j
"c2

j
/2k

j
, j"1, 2.

(S2) n
3
(h) is a quadratic polynomial in h. We know n

3
(0)"q

0
'0. The

shape of n
3
(h) depends on the sign of the leading coefficient q

2
.

(a) If q
2
(0 then there is exactly one h

3
'0 such that n

3
(h

3
)"0 and

(S2) is violated for all h'h
3
.

(b) Assume q
2
70.

Lemma 5.3 If q
2
70 then q

1
70.

Proof. First assume that c
1
Oc

2
. Then q

2
708k

1
7a

1
/2.

We introduce new notations and recall old notations.

d"a
1
a
4
!a

2
a
3
, q"!a

1
!a

4
, m"4k

1
k
2
, s"2(k

1
#k

2
) ,

¸"c2
2
k
1
a
1
#c2

1
k
2
a
4
, ¼"c2

2
(a

1
!2k

1
)#c2

1
(a

4
!2k

2
) ,

with d, q, m, s'0 and ¼'0 since k
1
7a

1
/2. ¸ can be of either sign. Then

q
1

as a function of q is

q
1
(q)"2¸(s#q)2#(c2

1
#c2

2
) (s#q) (ds#qm)

!¼ [qs(s#q)#(s!q)(m!d)] .

We show (I) q
1
(0)'0 and (II) dq

1
(q)/dq'0.

(I) Let q"0. We sort the terms of c2
1

and c2
2

q
1
(0)"s(c2

1
g
1
#c2

2
g
2
), with

g
1
"(2k

1
!a

1
) (d#4k2

2
)

g
2
"(2k

2
#a

1
) (d#4k2

1
) ,

where we used a
1
"!a

4
(q"0).

Since k
1
7a

1
/2 we have g

1
70 and g

2
'0, hence q

1
(0)'0.

(II) dq
1
(q)/dq"c2

1
f
1
#c2

2
f
2
, with

f
1
"4k

2
a
4
(s#q)#ds#2qm#sm

!(a
4
!2k

2
) [s (s#q)#qs!m#d]

f
2
"4k

1
a
1
(s#q)#ds#2qm#sm

!(a
1
!2k

1
) [s (s#q)#qs!m#d].
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It is easy to check that df
1
/dq'0, df

1
/dd'0 and f

1
Dq/0,d/0

'0, hence f
1
'0.

Since k
1
7a

1
/2 it follows that f

2
'0.

Since q
1
'0 for all parameter configurations satisfying c

1
9c

2
and

k
1
7a

1
/2, by a continuity argument, q

1
70 for c

1
"c

2
. K

If q
2
"0 then n

3
(h) is linear with slope q

1
70. Since n

3
(0)"q

0
'0,

condition (S2) is satisfied for all h70.
If q

2
'0 then q

1
70 (Lemma 5.3) and there are no positive roots of n

3
(h).

Hence condition (S2) is satisfied for all h70.
We summarize these observations

Lemma 5.4 (violation of (S2)) 1. q
2

is negative if and only if c
1
9c

2
and

k
1
(a

1
/2. ¹hen for all h7h

3
condition (S2) is violated, where h

3
"(!q

1
!

Jq2
1
!4q

2
q
0
)/(2q

2
)'0.

2. If q
2
70 then condition (S2) is always satisfied.

Remember that h"k2l2/n2 attains discrete values corresponding to the
modes k3N. Instability of the constant solution in this context means that
there is a mode k3N such that h"k2l2/n2 violates one of the conditions
(S1), (S2).

Theorem 5.5 (instability) Assume (H1) and (H2). ¹he spatially constant solu-
tion of (15), (16) is linear unstable if and only if one of the following conditions is
satisfied

(i) S
c2
2

2k
2

2k
1

c2
1

'

Jd#J!a
2
a
3

a
1

and there exists a mode k3N such that Jh
1
l/n(k(Jh

2
l/n, with h

1
, h

2
as in

(54).

(ii) k
1
(a

1
/2 and c

1
9c

2
. All modes k3N with k'Jh

3
l/n, with h

3
as in

¸emma 5.4, are unstable.

Remarks.
1. With the identification D

j
"d

j
"c2

j
/(2k

j
), j"1, 2 condition (i) of this

theorem coincides with the classical situation (Theorem 3.1). Moreover, in this
situation the random walk Turing system (15) with Neumann boundary condi-
tions produces the same unstable modes k as the well known Turing model (29).
It is remarkable that the instability depends on the quotients D

j
only.

2. The condition (ii) has no analogue in the classical situation. This
condition means that the rate of reversing direction 2k

1
is smaller than the

linearized reproduction rate a
1

of the activator.

5.3 Bifurcations

Now we consider bifurcations. We choose a parameter set (c
1
, k

1
, c

2
, k

2
) in the

stability region, i.e. such that the conditions (S1) and (S2) are satisfied, and
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vary some parameters. Except for degenerate situations there are two
qualitatively different ways to leave the stability domain (see Fig 1).

(a) The first is to satisfy condition (i) of Theorem 5.5, i.e. to cross the
F
1
-axis (see Fig 1). An eigenvalue crosses the imaginary axis at j"0

(Lemma 5.1). As in the classical Turing model (Theorem 3.1, Remark 3) the
spatial constant equilibrium loses its stability if there is a mode k

0
3N with

h
0
"k2

0
n2/l2, h

0
3(h

1
, h

2
). An eigenvalue of the linearization (20), (21) has

Rej'0 and the corresponding eigenfunction is given by (50) (Theorem 4.3).
A cosine pattern of mode k

0
for (u

1
, u

2
) and a sine pattern of this mode for

(v
1
, v

2
) establishes itself.

(b) A second way to destabilize the spatially constant solution is to satisfy
condition (ii) of Theorem 5.5, i.e. to cross the parabola n

3
"0 in Fig 1. An

eigenvalue crosses the imaginary axis at j"il, l90 (Lemma 5.1) and we

observe a Hopf bifurcation. There are infinitely many modes k7Jh
3
l/n, with

h
3
given in Lemma 5.4. The remaining patterns are oscillating Fourier series of

these modes.
In this case a rigorous nonlinear analysis is necessary to figure out the

dominating modes and the stable oscillating states.
This effect does not occur in the classical Turing model (Theorem 3.1,

Remark 4).

5.4 Conclusions

In this paper we have investigated the effects of introducing finite particle
speeds into reaction diffusion mechanisms of morphogenesis, e.g. the Turing
model.

It turns out (Theorem 5.5) that the effect of finite speeds is negligible if the
turning rate of the activator is sufficiently large, i.e. k

1
'a

1
/2, since both

systems, the classical Turing model (29) and the random walk Turing model
(15), produce the same instabilities.

If k
1
(a

1
/2 there is a qualitative difference between these models.

One observes a Hopf bifurcation for (15), which is excluded for solutions
of (29).

What happens becomes clearer if one considers the linearization of the
telegraph equation (19) corresponding to the random walk system (15).
Remember that u"(u

1
, u

2
) is a two component vector and the matrices A, M

and C are defined in (32) and (38).
In the linear situation one can assume that u

2
"0, and assume that the

activator does not produce any inhibitor (i.e. a
3
"0), then u

1
satisfies

u
1tt
#(2k

1
!a

1
) u

1t
"c2

1
u
1xx

#2k
1
a
1
u
1

. (55)

(a) If k
1
'a

1
/2 equation (55) is a wave equation with damping term

(2k
1
!a

1
)'0. Moreover if k

1
is large then the u

1t
—term dominates the

u
1tt

—term (see above) and the equation (55) has diffusion character.
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(b) If the damping term is zero (i.e. k
1
"a

1
/2), then (55) is a undamped

wave equation and has wave character.
(c) If 2k

1
!a

1
(0 then the damping is negative and is enhancing. Oscil-

lating behavior can result.
In other words, one can say that in the situation (ii) of Theorem 5.5 the

random walk system has more wave character than diffusion character. Thus
it is not surprising that oscillations occur.

The analogous term (2k
2
!a

4
) for the inhibitor is always positive, since we

assumed in (H2) that a
4
(0. If this condition is removed (e.g. Brusselator

models), we expect additional effects for k
2
(a

4
/2 (e.g. oscillations or

turbulence).

6 Simulations

In simulations we compare the stationary patterns in the situation of
Theorem 5.5(i) with the corresponding patterns for the classical reaction
diffusion Turing model (29). We choose a cubic nonlinearity often used in
biological applications (e.g. Maginu [14])

f
1
(u

1
, u

2
)"!u3

1
#a

1
u
1
!u

2

f
2
(u

1
, u

2
)"u

1
!u

2

with a
1
"0.6. The constant solution (u

1
, u

2
)"(0, 0) is a stable equilibrium of

the reaction equation (2).
We have a

1
"0.6, a

2
"!1, a

3
"1, a

4
"!1, d"0.4, and q"0.4,

hence the hypotheses (H1) and (H2) are satisfied.
For numerical simulations of the correlated random walk (3) we use a grid

with time steps h'0 and space discretisation o'0 such that c"o/h. Then
an approximation to the correlated random walk equation (3) is given by

u`((n#1) h, x)"pu`(nh, x!o)#qu~(nh, x!o)

u~((n#1) h, x)"pu~(nh, x#o)#qu`(nh, x#o) ,
(56)

with the probability of changing the direction q :"kh and the probability of
keeping the direction p"1!q (see Goldstein [6]).

The initial data are

u
1
(0, x)"G

0.05

0

if l/26x(l/2#c
1
h ,

otherwise ,

u
2
(0, x)"0, v

1
(0, x)"0, v

2
(0, x)"0 .

In Fig. 2 we show the time evolution of the activator density u
1

in a situation,
where condition (i) of Theorem 5.5 is satisfied. The corresponding diffusion
rates D

1
"0.0625 and D

2
"4 lead to unstable modes k3M1, 2, 3N.

We have shown in Theorem 5.5 that the stability of the mode k depends
only on the ratios D

j
"c2

j
/(2k

j
), j"1, 2, but not on the model parameters
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Fig 2. k
1
"2, c

1
"0.5, k

2
"0.125, c

2
"1, l"4, a

1
"0.6

Activator Inhibitor

(a) D
1
"0.0625 D

2
"4

k
1

c
1

k
2

c
2

(b) 2 0.5 0.125 1

(c) 32 2 0.125 1

Fig 3.
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k
1
, c

1
, k

2
, c

2
separately. As we see in the next figure (Fig. 3) the shape of the

resulting pattern depends on all four parameter values (k
1
, c

1
, k

2
, c

2
).

The curves (a), (b) and (c) in Fig. 3 show the activator density u
1

at a time
t"40. In (b) we have chosen the same parameter configurations as in Fig. 2,
whereas in (c) we increased the turning rate k

1
by a factor 16 and the speed

c
1

by a factor 4 such that again D
1
"0.0625. In (a) we show the resulting

pattern for the classical Turing model, where we used a standard discretisation
routine for reaction diffusion systems. The modes of the patterns are the same
but the shapes are different. Observe the plateau at the maximum level for the
activator density in (c). In this case the activator is very fast and turns very
often, thus maintaining near the maximum level but not affecting the pattern
structure.
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