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Abstract. A generalized transport model is derived for cell migration
in an anisotropic environment and is applied to the speci"c cases of
biased cell migration in a gradient of a stimulus (taxis; e.g., chemotaxis
or haptotaxis) or along an axis of anisotropy (e.g., contact guidance).
The model accounts for spatial or directional dependence of cell speed
and cell turning behavior to predict a constitutive cell #ux equation
with drift velocity and di!usivity tensor (termed random motility tensor)
that are explicit functions of the parameters of the underlying random
walk model. This model provides the connection between cell locomo-
tion and the resulting persistent random walk behavior to the observed
cell migration on longer time scales, thus it provides a framework
for interpreting cell migration data in terms of underlying motility
mechanisms.
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1. Introduction

The active migration of blood and tissue cells is essential to a number
of physiological processes such as wound healing, in#ammation, meta-
stasis, and embryogenesis. A salient feature of the blood and tissue cell
locomotion (and that of and some amoebae) is a polarized morphology
as illustrated in Fig. 1A. Locomotion requires the coordination of
several complex physicochemical processes to yield a displacement in
the direction of cell polarity. Typically, a crawling tissue cell extends
pseudopods from the leading edge which subsequently adhere the



Fig. 1. Cell locomotion. A A schematic of a blood or tissue cell crawling on a surface.
Pseudopods extend from the leading edge, adhere to the substratum via the binding of
cell surface receptors to adhesion ligands, and contract to pull the cell in the direction
of polarity. Pseudopodial extension and contraction may be mediated by binding of
chemotactic receptors to chemoattractant ligands. B A schematic of a swimming
bacterium. During a &&run'', the #agella align and rotate to propel the cell in the
direction of cell polarity until the next &&tumble'', where the #agella rotation direction is
reversed causing them to slay and the cell to rotate in place for a short time before the
subsequent run. Although not shown, receptor binding to chemoattractants may also
mediate the average time length of a run.

surrounding substratum and contract to pull the cell forward (see
Fig. 1A). The contractile force is generated in an intracellular contrac-
tile protein network and is transmitted to the substratum via bound
adhesion receptors, which create a cross-membrane linkage between
extracellular adhesion molecules and the cell cytoskeleton. The exten-
sion and retraction of pseudopods may be stimulated by the binding of
another class of cell surface receptors to soluble extracellular molecules
known as chemoattractants (For reviews of tissue cell motility, see, e.g.,
Trinkaus (1984) and Lau!enburger (1991)).

The motility mechanisms of a swimming bacterium such as
Escherishia coli di!er from those of blood and tissue cells (Berg and
Brown, 1972). The path of a swimming E. coli bacterium is a sequence
of &&runs'' and &&tumbles''. As illustrated in Fig. 1B, the rotation of
several coiled "laments on the cell surface, called -agella, propels the
cell through a liquid medium. During a run the #agella align for
e$cient swimming in the direction of the cell polarity. However, during
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Fig. 2. Cell trajectories showing discrete and continuous cell turning. A The path of
a K1735 murine melanoma cell on a surface coated with adhesion ligands (from
Dickinson and Tranquillo (1993b)). Notice that cell turning results primarily from the
accumulation of small changes in the movement direction between time points. B Two-
dimensional projection of the path of an Escherichia coli bacterium swimming in three
dimensions in water (from Berg and Brown (1972)). In this case, cell turning results
primarily from discrete changes in orientation direction.

a tumble, the rotation direction of the #agella is reversed, splaying the
#agella in various directions, which results in a change in orientation
before the subsequent run. Bacterial motility may also be mediated
by receptor binding to chemoattractants, which alters the frequency
of tumbles when the cell is exposed to an increasing concentration of
chemoattractant (Berg and Brown 1972).

Although the short term result of both general types of motility is
locomotion in the direction of the cell's polarity, cumulative changes in
the direction of motion on a longer time scale lead to a meandering
path, which has often been modeled as a persistent random walk
(Furth 1920; Gail and Boone 1970; Hall 1977; Dunn, 1983). Depending
on the type of cell and its environment, this meandering path results
from both continuous and discrete changes in cell orientation, as
shown in Fig. 2, which compares paths of a crawling tumor cell and
a swimming bacterium. On a time scale much longer than the charac-
teristic time of directional persistence, cell migration can be modeled as
a spatial di!usion process (Furth 1920; Gail and Boone 1970; Keller
and Segel 1971). Following the time scale classi"cations used in
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Dickinson and Tranquillo (1995), we label these three time scales in
this paper as locomotion, translocation, and migration, respectively. On
the shortest time scale of locomotion, the cell's dynamic motility ma-
chinery propel the cell forward. However, #uctuations in velocity and
turning on the locomotion time scale lead to the meandering path
observed on the time scale of translocation. These random changes in
orientation on the translocation time scale ultimately lead to the
di!usive behavior observed on the time scale of migration.

In an isotropic environment, the correlated random walk behavior
is termed random motility. The rate of cell dispersal by random motility
can be quanti"ed by the random motility coe.cient, k (Keller and Segel
1971), analogous to the di!usion coe$cient for molecular di!usion.
However, the presence of a directional cue such as a concentration
gradient of chemoattractant or adhesion ligands, or a structural cue
such as aligned grooves etched into a surface (Matthes and Gruler
1988; Dunn and Brown 1986) or aligned "brils in a collagen matrix
(Dunn and Ebendal 1978; Dickinson et al. 1993), may cause cells to
exhibit a net directional bias in their motion. (Hereafter, for generality,
the factor a!ecting the motility is be referred to as the stimulus, which
may be spatially non-uniform or directionally anisotropic.) A uni-
directional migration bias in the direction of a gradient of a stimulus is
generally known as taxis (Tranquillo and Alt 1990) (e.g., chemotaxis for
a response to a chemoattractant concentration gradient, haptotaxis for
a response to a adhesion ligand concentration gradient, galvanotaxis
for a response in gradient of electrical potential, etc.), and the unidirec-
tional bias in migration can be quanti"ed by the drift velocity vector,
< (Keller and Segel 1971). A number of di!erent modi"cations of the
cell path have been suggested to contribute to the net taxis drift
velocity (Tranquillo and Alt 1990). These include a bias in turning
toward the gradient direction, a response known as tropotaxis; a direc-
tionally-dependent cell speed or random turning frequency, termed
orthotaxis and klinotaxis, respectively; or a dependence of cell speed
or turning frequency on the magnitude of the stimulus, termed
orthokinesis and klinokinesis, respectively. The migration bias due to
orthokinesis and klinokinesis does not result from the directional an-
isotropy of the stimulus, per se, rather from a dependence of the
random walk behavior on cell position due to the non-uniform distri-
bution of the stimulus (Wilkinson 1988).

A bi-directional cell migration bias along an axis of structural
anisotropy is known as contact guidance, and can be characterized by
a directionally-dependent random motility coe$cient (Dickinson et al.
1993). For example, the rate of dispersion of migrating "broblasts in
gels of aligned collagen "brils was shown to by greater along the axis of
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"ber alignment, and lower in the orthogonal direction, and this bias
increased with increasing degree of "ber alignment (Dickinson et al.
1993). Hence, in an anisotropic environment, directionally-dependent
cell dispersal is more generally characterized by a random motility
tensor, M (Dickinson and Tranquillo 1995).
< and M appear in a constitutive #ux equation for the di!usive

motion of cells of the form

J
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Because of the exact analogy between the concentration of non-inter-
acting cells and the probability density function, p (r, t), of the position
of one cell, c(r, t) and p (r, t) are interchangeable in Eqs. (1.1}2).

A central goal in modeling cell movement is to predict cell migra-
tion behavior, re#ected in Eqs. (1.1}2), based on a mechanistic under-
standing of the processes involved in cell locomotion. This requires
derivation of the governing equations for cell migration in terms of
parameters which re#ect cell movement on the shorter time scales, as
has been done previously for migration in response to a concentration
gradient of chemoattractant (chemotaxis) (Keller and Segel 1971; Alt
1980; Rivero et al. 1989) or of adhesion molecules (haptotaxis) (Dickin-
son and Tranquillo 1993a, 1995). Each of these models develops
a reasonable method to relate the physicochemical motility mecha-
nisms in the presence of a stimulus to the persistent random walk
behavior, then derives a cell #ux expression of the form of Eq. (1.1),
which is valid for a time scale much longer than the characteristic time
of directional persistence. The derived forms of< and M depend on the
number of dimensions (one, two, or three) in which the cell is con"ned
to move, on whether discrete or continuous turning is assumed, and on
the assumed dependence of the parameters in the underlying persistent
random walk model on the magnitude of the stimulus and the
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steepness of the gradient. However, the mathematical similarity of the
approaches and the resulting constitutive equation suggest these mod-
els may be special cases of the long-time-scale approximation of a more
general persistent random walk model in an anisotropic environment.
The purpose of this manuscript is to derive Eq. (1.2) for biased cell
migration in a general anisotropic environment, allowing for both
discrete and continuous turning and a generalized dependence of cell
velocity and turning on cell position and orientation. As is demon-
strated below, many of the previous cell migration models are are
special cases of the more general model derived here.

After derivation of the general model in Sect. 2, the simplest case of
migration in an isotropic environment is examined in Sect. 3. In Sect. 4,
the "rst order biased response to a general anisotropy is determined,
then applied to the speci"c cases of taxis and contact guidance in
Sects. 5 and 6, respectively.

2. Derivation of general model

2.1. Generalized persistent random walk model

As depicted in Fig. 3, the relevant stochastic vector quantities which
describe the cell path are position vector, r(t), and the direction of cell
orientation, H(t) (a unit vector in the direction of cell polarity). While
r(t) is a continuous function of time, both discrete and continuous
transitions in H(t) are allowed, which accounts for the possibility of
both discrete and continuous cell turning. For example, for blood and
tissue cell locomotion, discrete turning may correspond to a spontan-
eous discrete re-polarization of the cell to a new direction. For a swim-
ming bacterium, discrete turning would correspond to a tumble and
initiation of a run in a new direction. In either case, the time required to
complete the discrete turn is assumed negligibly small compared to the
time between discrete turns. During locomotion, #uctuations in the
forces on the cell will lead to #uctuations in the cell's translational
velocity and in the rate of continuous changes in the cell polarity
(hereafter termed &&rotational velocity'', although changes in polarity
do not require the assumption of rigid body rotation). If the #uctu-
ations in cell translational velocity and rotational velocity are uncor-
related with each other and relax quickly relative to the time required
for signi"cant changes in r(t) and H(t), then r(t) and H(t) can be
approximated as a coupled stochastic process on the time scale of
translocation, with r(t) and H (t) being stochastic variables (Dickinson
and Tranquillo, 1995). The time evolution of the joint probability
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Fig. 3. The relevant coordinate system for three-dimensional cell motion. At
time, t, the cell has position vector, r (t)"[xyz]T, and orientation vector,
H(t)"[cos h sin h cosu sinh sinu]T. In the spherical coordinate system, h is the angle
between H and the x-axis, and u is angle between the projection of H in the y-z-plane
and the y-axis. (06h6; 06u62n). Similarly, for a cell moving only in two
dimensions (e.g. on a surface), r(t)"[xy]T, and h (t)"[cosh sinh]T with 06h62n.

density, p(H, r, t ), is governed by the continuity equation,

L
t
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r
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where ¸(H, r, t) and ¸
r
(H, r, t) are linear operators that account for

changes in p (H, r, t) due to turning (changes in the direction of polarity)
and due to translation (changes in position), respectively. The transla-
tion operator, ¸

r
(H, r, t), acts on functions of r, and is de"ned by

¸
r
(H, r, t) f (r),!LT

r
[v (H, r, t) f (r)!B(H, r, t)L

r
f (r)], (2.2)

where v(H, r, t) is the mean velocity of a cell moving in direction H, and
B(H, r, t) is a di!usion tensor resulting from #uctuations in the cell
velocity that lead to a dispersal in cell position. In other words,
Eq. (2.2) accounts for the deterministic and stochastic motion of a cell
with a given orientation, H, with v(H, r, t) accounting for the determin-
istic motion and B (H, r, t) accounting for the dispersion e!ect of short-
time-scale velocity #uctuations. For example, a swimming bacterium
on a run may have #uctuations in cell speed that lead to a spreading
distribution of possible positions over the time of the run, even though
the orientation is "xed. Only if the motion is completely deterministic
(B"0) will the cell position over the time of the run be completely
speci"ed by the mean cell speed. The di!usion tensor, B, re#ects this
spreading distribution. As shown below, B is distinguished from the
random motility tensor, M, which accounts also for changes in H that
lead to cell dispersion on a longer time scale.
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If Mr(t), H(t)N is a Markov process (an assumption made in the
sections to follow but not necessary to the results in this section), then the
turning operator, ¸(H, r, t) , acts on functions of H, and has general form

¸(H, r, t) f (H),!LTH[(u(H, r, t)]H) f (H)!D(H, r, t)LH f (H)]

#P dH@[X(H, H@; r, t) f (H@)!X (H@, H; r, t) f (H)] ,

(2.3)

where u(H, r, t) and D(H, r, t) are the rotational drift velocity vector and
rotational di+usion tensor, respectively, and X(H, H@; r, t) is the probability
per unit time of a discrete reorientation of the cell polarity from direction
H@ to new direction H. The "rst term in Eq. 2.3 accounts for continuous
changes in H(t), and the second term accounts for discrete changes.

Eqs. (2.1}3) allow for a general dependence of the coe$cients,
v, B, u, D, and X, on (H, r, t). In many applications, this dependence is
attributed to the position and orientation in a gradient "eld of a stimu-
lus. For example, a bacterium undergoing chemotaxis in a gradient of
chemoattractant may have the velocity and turning frequency that
depend on magnitude of chemoattractant concentration, . (r, t), as well
as its perceived temporal gradient (Berg and Brown 1972, Alt 1980, Alt
1981), given by

D
t
. (r, t),L

t
. (r, t)#vTL

r
. (r, t). (2.4)

If .(r, t) is a known function of (r, t) such that L
t
. (r, t) and L

r
. (r, t) are

known, then v(. (r, t), D
t
. (r, t)) is an implicit function of (H, r, t) and

can be simply written as v (H, r, t). Likewise, all other coe$cients in
Eqs. (2.1}3) that depend on (. (r, t), D

t
. (r, t)) can be written as explicit

functions of (H, r, t). In other applications, such as contact guidance,
v, B, u, D, and X may be explicit functions H because of a directionally
anisotropic property the cell's environment.

In the following section, we examine the asymptotic behavior of
Eq. (2.1) to derive a di!usion equation of the form of Eq. (1.2). First, we
consider the case where the parameters v, B, u, and X are not explicit
functions of time. The time-inhomogeneous case is deferred to Sect. 2.4
where it is shown that the same resulting di!usion equation holds as long
as the parameters vary slowly in time relative to the relaxation time of H.

2.2. Diwusion approximation

To describe cell motion on the time scale of migration, we seek an
approximate equation of the form in Eq. 2.1, which governs the
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probability density of r(t) alone, i.e. p(r, t),: dHp (H, r, t), and is valid
for times much larger than the characteristic relaxation time of H(t).
On this time scale, deviations of p (H, r, t) from p(r, t)p

s
(H; r) relax

quickly, where p
s
(H; r) is the pseudo-stationary density of H for "xed r,

de"ned by the solution to

¸ (H, r, t)p
s
(H; r)"0. (2.5)

Our approach is to apply an adiabatic elimination of fast variables
procedure with projection operator formalism developed in Kubo et al.
(1991) and Gardiner (1983).

Let ¹
0

be the time scale on which cell migration is observed,
assumed much longer than the relaxation time of H as measured by j

1
,
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parameter that re#ects the disparity in time scales (g<1). Also, we
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further assume that the contribution of short time scale velocity #uctu-
ations is small relative to deterministic motion, such that v(H, r)
R

0
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form as
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where dimensionless ¸(H, r) is de"ned as in Eq. (2.3), and now
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The analysis to follow assumes that all terms in Eqs. (2.6}7) have been
scaled appropriately to be proportional to the powers of g and c~1 as
shown. This assumption also requires that v (H, r) and B(H, r) are
su$ciently weak functions of r such that dimensionless LT

r
v (H, r) and

LT
r
B(H, r) are O(1).
We now examine the asymptotic behavior of Eq. (2.4) based on the

above assumptions. Let fM (r) be the pseudo-stationary mean of any
function f (H, r) under the pseudo-stationary density, p
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and
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Let P be a projection operator that projects any function, f (H, r, t),
into the subset of functions proportional to p

s
(H; r); i.e.,
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where we have noted that P¸"¸P"0, P¸@
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which is substituted into Eq. 2.12 to give
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Upon dividing through Eq. (2.15) by p
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We now wish to represent the right hand side of Eq. (2.16) in terms of
the conditional probability, p(H, qDH

0
, 0; r), which is the probability

density of the cell having orientation, H, at time, q, given a speci"ed
initial orientation, H

0
, at time zero (for "xed r). Because p (H, qDH
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and because
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we have
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2.3. Generalized diwusion equation

Eq. (2.21) is recognizable as a di!usion equation when written as

L
t
p(r, t )"!LT

r
[< (r)p (r, t)]#LT

r
[M(r)L

r
p (r, t)]

#O(g~2)#O (c~1g~1). (2.22)

where the O(c~1g~1) results from the O(c~1) term in Eq. (2.10). Here,
M(r) and <(r) are the random motility tensor and drift velocity vector,
respectively, given by
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; r), which appear in Eqs. (2.23}4), have

physical signi"cance related to the persistent motion of the cell with
given initial orientation, H

0
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; r) is labeled the persistence displacement, de"ned by
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and can be interpreted as is the mean displacement relative to expected
position, vN (r) t, due to persistence of a cell with initial direction H

0
.

Note that in deriving Eq. (2.22), we have not required that
Mr(t), H(t)N be a Markov process nor that ¸ be of the form in Eq. (2.3).
The requirements on ¸ in deriving Eq. (2.22) are only that it is a linear
operator on functions of H, that its eigenvalues are non-positive, and
that a non-trivial solution to ¸p

s
(H; r)"0 exists.

2.4. Time-inhomogeneous case

We now drop the assumption that coe$cients, v, B, u, and D, are
independent of time to derive a more general form of Eq. (2.22).
However, these parameters are assumed to evolve on a time scale much
slower than the relaxation time of H. To remove the explicit depend-
ence of the coe$cients on time, t is replaced in ¸ and ¸
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1
be a new

operator de"ned by

¸
1
(r, t

1
), M̧

r
(r, t

1
) f (r, t

1
)!Lt

1
f (r, t

1
). (2.28)

From here, the asymptotic analysis proceeds as above with the deriva-
tion of Eq. (2.21) for the time-homogeneous case, only (r) is now
replaced with (r, t

1
), and ¸

r
(r) is replaced with ¸

1
(r, t

1
). The resulting

analog to Eq. (2.21) is

L
t
p (r, t

1
, t)" M̧

1
(r, t

1
)p(r, t

1
, t)#

1
gP dHP dH

0P
=

0

dq

]¸@
r
(H, r, t

1
)p(H, qDH

0
, 0; r, t

1
) (¸@

r
(H

0
, r, t

1
)

# M̧
r
(r, t

1
))p

s
(H

0
; r, t

1
) p(r, t

1
, t)#O(g~2). (2.29)

(Note that M̧
r

instead of ¸
1

appears in the integral in Eq. (2.29)
because (1!P)Lt

1
P"0 [cf. Eq. (2.15)].) Reverting back to the time-
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inhomogenous form by eliminating t
1

in terms of t, we have

L
t
p(r, t)" M̧

r
(r, t)p(r, t)#

1
gPdHPdH

0P
=

0

dq¸@
r
(H, r, t)p(H, qDH

0
, 0; r, t)

](¸@
r
(H

0
, r, t)# M̧

r
(r, t))p

s
(H

0
; r, t)p (r, t)#O (g~2). (2.30)

Eq. (2.30) is identical to Eq. (2.21), except for the explicit time-
dependence of v, B, u, D, and X appearing in the operators ¸, ¸@

r
, and

M̧
r
. The resulting di!usion equation is

L
t
p(r, t)"!LT

r
[<(r, t)p(r, t)]#LT

r
[M(r, t)L

r
p(r, t)]

#O(g~2)#O(c~1g~1). (2.31)

where M(r, t) and <(r, t) are de"ned as in Eqs. (2.23}4), except that
C(H

0
; r, t ) and D(H

0
; r, t ) are now explicit functions of time. The con-

clusion is that the time-inhomogenous case requires no special consid-
eration, as long as stimulus "eld varies slowly relative the relaxation
time of H. Hereafter, the possible dependence of the various para-
meters on time is not shown explicitly, but is implied.

2.5. Examples

To illustrate were cell path modi"cations contribute to the net drift
velocity, we examine three special cases as examples. (Hereafter, the
equations are re-scaled to remove the explicit dependence on g and c.)

Example 1. Let ¸ and therefore p
s
(H) be independent of r and let

v(H, r) be given by v(H, r)"S (r)H, where S (r) is the cell speed. In this
case, Eq. (2.23) simpli"es to

M(r)"S(r)2¹#BM (r) (2.32)

where ¹ is the directional persistence tensor (Dickinson and Tranquillo,
1995), which re#ects the mean time of directional persistence in any
direction relative to the mean direction, H1 ,: dH

0
H

0
p
s
(H

0
), and is

given by

¹,P
=

0

dqP dH
0 PdH(H!H1 )HT

0
p(H, qDH

0
, 0)p

s
(H

0
)

,P
=

0

dqSH(q), H(0)T. (2.33)
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Here SH (q), H(0)T is the directional autocorrelation tensor, de"ned by

SH(q), H(0)T,P dH
0P dH (H!HM )HT

0
p(H, qDH

0
, 0)p

s
(H

0
). (2.34)

The drift velocity in this case is

<(r)"S (r)HM !S (r)¹L
r
S (r). (2.35)

In this case, a directional orientation bias re#ected in non-zero H1 and
a dependence of cell speed on position contributes to the net drift
velocity. The former is consistent with the de"nition of taxis, and the
latter is consistent with the de"nition of orthokinesis. As shown in the
sections to follow, the directional orientation bias can result from
a bias in the direction of turning (tropotaxis) or a direction-dependent
frequency of turning (klinotaxis), both of which may result in a direc-
tionally non-uniform p

s
(H; r).

Example 2. Let ¸ be de"ned such that p
s
(H; r) is a directionally

uniform distribution (i.e. p
s
(H; r) is a constant, p(0)

s
, which is indepen-

dent of H as well as r), making HM "0. Let v(H) be independent of r but
depend on H in the form of v (H)"SH#v@(H), where v@(H) represents
the additional cell velocity attributed to a dependence of velocity on
the direction of cell polarity in an anisotropic environment. The drift
velocity is then

<(r)"v@"P dH@v@(H@)p(0)
s

. (2.36)

Although there is no bias in directional orientation in this case, the
dependence of cell velocity on the direction of orientation (orthotaxis),
re#ected in vN @, can lead to a separate contribution to <.

Example 3. Let v (H) be independent of r, but let p
s
(H; r) depend on r as

well as on H. In this case, Eq. (2.24) reduces to

<(r)"vN (r)!SD(H)vT (H)L
r
lnp

s
(H; r)'. (2.37)

Here, cell speed is independent of position, but the dependence of
p
s
(H; r) on position contributes to the total drift velocity. This contri-

bution results from a dependence of turning behavior on the position
of the cell in the anisotropic environment, hence on the magnitude of
the stimulus, which is consistent with the de"nition of klinokinesis.
Note, however, that the second term in Eq. (2.37) can only contribute
to <(r) when p

s
(H; r) is not a uniform distribution, for which p

s
(H; r)

would be a constant, p
s0

, thus independent of both r and H.
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2.6. Fourier expansions

Explicit expressions for M(r) and< (r) require solutions to Eq. (2.5) and
Eq. (2.17) for the probability densities, p

s
(H

0
; r) and p(H, qDH

0
, 0; r),

respectively, with initial condition, p(H, 0DH
0
, 0; r)"d(H!H

0
), for

the latter. In the speci"c cases of the following sections, these solutions
are obtained by expanding all functions of H into Fourier series of
orthonormal circular or spherical harmonic functions, written gener-
ally as M(k(H)N. For two-dimensional motion, H"[cosh sinh]T and
the M(k(H)N are M 1

J2n
eimhN, with !R(m(R. For three-dimen-

sional motion, H"[cosh sin h cosu sinHsinu]T, M(k (H)N are the
spherical harmonics, M>l

m
(H, u)N, given by

>l
m
(h, u)"C

(2m#1)
4n

(m!DlD) !
(m#DlD) !D

1@2
PD l D

m
(cos h) eilr, (2.38)

where 06m(R, !m6l6m, and MPl
m
N are the associated Leg-

endre functions. In general, all functions of H are expanded as
a Fourier series: f (H)"+k fkWk (H) with the Fourier coe$cients given
by fk": dH@W*k (H@) f (H@). Furthermore, the conditional probability,
p(H, qDH

0
, 0; r), is doubly expanded as

p (H, qDH
0
, 0; r)"+

k
+
l
pk,l(q; r)Wk (H) Wl (H0

)*. (2.39)

Transformation of Eq. (2.17) provides the governing equations for the
coe$cients, pk,l (q; r):

dqpk,l (q; r)"+
i

kji (r)pi,l(q; r) (2.40)

where the coe$cients Mkji(r)N are de"ned by

kji(r),PWk (H@)*¸(H, r)(i (H@). (2.41)

Transformation of the initial condition, p(H, 0DH
0
, 0; r)"d (H!H

0
),

implies that the initial condition for Eq. (2.40) is pk,l(0; r)"dk,l , where
dk,l is the Kronecker delta. Also, the stationary probability density,
p
s
(H; r), is expanded as

p
s
(H; r)"+

k
p
s,k(r)Wk (H). (2.42)

Note that

p
s
(H; r)" lim

q?= P dH
0
p(H, qDH

0
, 0; r), (2.43)
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which, from Eq. (2.39), implies

p
s,k (r)" lim

q?=
pk,0 (q; r)W

0
. (2.44)

From Eqs. (2.23}4), the migration parameters, M(r) and <(r), can
be written in terms of the Fourier coe$cients of D, C and B, as

M (r)"+
k

Dk (r)*Ck (r)T#Bk (r)*p
s,k (r) (2.45)

and

<(r)"W~1
0
C
0
(r)!+

k
Dk (r)*LT

r
Ck (r), (2.46)

respectively, with Dk (r) and Ck (r) given by

Dk(r)"+
l

vl (r)P
=

0

dq Cpl,k(q; r)*!dk,0W~1
0

p
s,l (r)*D (2.47)

and

Ck(r)"P dH@Wk (H@)*v(H@, r)p
s
(H@; r)

"+
l

p
s,l (r)P dH@Wk (H@)*v (H@, r)Wl(H@), (2.48)

respectively. The primary bene"t of representing M and < in this form
is that now only the coe$cients Mpk,l (q)N are required, which can be
obtained by solving Eq. (2.40).

In the following section, these general results are "rst applied to
examine cell migration in an isotropic environment, where the analysis
is greatly simpli"ed by the fact that MWkN are eigenfunctions of ¸, which
uncouples the in"nite set of di!erential equations represented in
Eq. (2.40). In the later sections, the more complex cases of taxis and
contact guidance are addressed, where we apply a small bias approxi-
mation to "nd "rst-order corrections of solution for an isotropic
environment.

3. Cell migration in an isotropic environment

In this section, the random motility tensor, M, as de"ned in Eq. (2.23)
and evaluated in Eq. (2.45), is determined for cell migration in a two- or
three-dimensional isotropic environment. Let ¸(0) be ¸ (H; r) [de"ned
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in Eq. (2.3)] for an isotropic environment, with the general form

¸(0)p(H)"D(0)h L2Hp (H)#P dH, [X(0)(H, H@)p(H@)!(X(0) (H@, H)p (H)],

(3.1)

where D(0)h and X(0)(H, H@) are the rotational di!usion coe$cient (scal-
ar) and random turning kernel, respectively, in the isotropic environ-
ment. Assuming random turning is symmetric about the direction of
cell polarity then X(0) (H@, H)"X(0) (H, H@), which implies X(0) (H, H@)
can be expanded as

X(0) (H, H@)"+
k

XkWk(H@)*Wk(H)"+
k

XkWk(H@)*Wk (H)*. (3.2)

Because MWkN are eigenfunctions of ¸(0) with eigenvalues obtained from

j(0)k "PdH@Wk (H@)*¸(0)Wk (H@), (3.3)

the coe$cients ijk are equal to dk,ij(0)k .

3.1. Two-dimensional isotropic migration

For two-dimensional movement, Eq. (3.1) becomes

¸(0)p(h)"D(0)h L2hp(h)#P
2n

0

dh@[X(0)(h, h@)p(h@)!X(0)(h@, h)p (h)], (3.4)

and the turning kernel, X(0)(h, h@), can be expanded as

X(0)(h, h@)"
=
+

m/~=

X
m

e~im(h{~h) , (3.5)

with X
m
"X

~m
because of symmetry in turning about H. From

Eq. (3.3), the eigenvalues of ¸(0) are

j(0)
m
"!m2D(0)h !(X

0
!X

m
). (3.6)

The solution to Eq. (2.40) is simply

p(0)
m,n

(q)"d
m,n

ej(0)
m

q, (3.7)

and because j(0)
0
"0 and p(0)

s,m
"limq?=

p
m,0

(q)W
0
, then p(0)

s,m
"d

m,0
1

J2n
.

Furthermore, because v (h, r)"S(0)H in an isotropic environment,
the Fourier coe$cients of v (h) can be written as v(0)

m
"S(0)H

m
where
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MH
m
N are the moments of H, given by

H
m
,P

2n

0

dh
1

J2n
e~imhC

cos h
sin h D"S

n
2Adm,~1C

1
i D#d

m,1C
1
!iDB .

(3.8)

This implies that the only non-zero coe$cients C(0)
m

from Eq. (2.48) are

C(0)
$1"

S(0)

2n
H

$1 . (3.9)

It can be shown immediately from Eq. (2.46) that because C(0)
0
"0, then

<"0, and from Eq. (3.8) that HM "0, implying there is no drift velocity
nor directional orientation bias in an isotropic environment. Upon
integrating Eq. (2.47) and applying Eqs. (3.7}8), the only non-zero
expansion coe$cients of D(H) are

D(0)
$1"

S(0)

!j(0)
1

H
$1 . (3.10)

Finally, if #uctuations in cell velocity on the time scale of locomotion
re#ected in B are assumed to occur only in the direction of cell polarity,
then B(0)(H)"b(0)HHT such that

B (0)
m
,P

2n

0

dhW
0
B(0)(h)"b(0)S

n
2 Adm,0

I
2
#d

m,~2C
1
i

i
!1D

#d
m,2C

1
!i

!i
!1DB , (3.11)

where I
2

is the two-dimensional identity tensor.
Combining the above terms with Eq. (2.45) provides:

M(0)"D(0)*
~1

C(0)
~1

#D(0)*
1

C(0)
1
#B(0)

0
p
s,0

"

1
2 A

S(0)2

D(0)h #(X
0
!X

1
)
#b(0)BI

2
,kI

2
, (3.12)

where k is the random motility coe$cient (a scalar). This result is
similar to that derived previously by Dickinson and Tranquillo (1995),
which also accounted for velocity #uctuations (leading to the b(0) con-
tribution), but did not account for discrete turning. The inclusion of
discrete turning in the underlying random walk model results in the
additional (X

0
!X

1
) term in the denominator, e!ectively decreasing

the random motility coe$cient. Physically, X
0

is the overall frequency
of discrete turns, and X

1
/X

0
"Scos(h!h@)T re#ects the average

magnitude of the discrete turns.
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The directional persistence tensor for the isotropic environment,
¹(0) [c.f. Eq. (2.33)], can also be found by applying Eqs. (2.34) and (3.7).
In terms of the expansion coe$cients, H

m
, the autocorrelation function

of H is

SH(q), H (0)T"P dH@+
m

H*
m
W

m
(H@)*ej (0)

m
qH@Tp(0)

s

"

1
2n

+
m

H*
m
HT

m
ej(0)

m
q
"

1
2

ej (0)
1

qI
2
, (3.13)

therefore

¹(0)"Pdq
1
2

ej (0)
m

qI
2
"

1
2
[D(0)h #(X

0
!X

1
)]~1I

2
. (3.14)

By combining the above, we see that M(0)"S(0)2¹(0)#1
2
b(0)I

2
.

3.2. Three-dimensional isotropic migration

For three-dimensional cell movement in an isotropic environment,
¸(0) has the form

¸(0)p(h, u)"D(0)h
1

sin2 h
L2u p(h, u)#

1
sinh

Lh[D(0)h sin hLhp (h, u)]

#P
2n

0

du@P
n

0

dh@ sinh@[X(0)(h@, u@, h, u)p(h@, u@)

!X(0)(h, u, h@, u@)p (h, u)], (3.15)

where we have noted that the rotational di!usion tensor is isotropic
with respect to turning direction, such that D(0)u "D(0)h . Also, because of
turning symmetry, the turning kernel, X(0) (h@, u@, h, u), can be ex-
panded as

X(0) (h@, u@, h, u)"
=
+

m/0

m
+

l/~m

X
m
>~l

m
(h@, u@)>l

m
(h, u). (3.16)

The eigenvalues of three-dimensional ¸(0) are then

j(0)
m
"!m(m#1)D(0)h !(X

0
!X

m
). (3.17)
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The normalization condition requires p(0)
s
">02

0
"1/4n , such that

pl (0)
s,m

"d
m,0

d
l,0

1/J4n . Also, the modes of H are

Hl
m
,P

2n

0

duP
n

0

dh sin h>~l
m

(h, u)

cos h

sin h cosu

sin h sinu

"d
m,1S

2n
3 A d

l,0

J2

0

0

#d
l,1

0

1

!i

#d
l,~1

0

1

i B . (3.18)

Eqs. (2.47}8) and (3.18) imply that the non-zero expansion coe$cients
of Cl(0)

m
and Dl (0)

m
are

Cl (0)
1
"

S(0)

4n
Hl

1
(3.19)

Dl (0)
1
"

S(0)

2D(0)h #(X
0
!X

1
)
Hl

1
(3.20)

for l"M!1, 0, 1N. Also, if B(0)(H)"b(0)HHT, then

B(0)
0
"P

2n

0

du P
n

0

dh sin h W
0
b(0)HHT"

2Jn
3

b(0) I
3

(3.21)

Combining the above into Eq. 2.41, we have

M(0)"
1
3 A

S(0)2

2D(0)h #(X
0
!X

1
)
#b(0)B I

3
,kI

3
. (3.22)

The only di!erences between this result and the two-dimensional
motility tensor are pre-factor of 1

3
instead of 1

2
, and 2D(0)h instead of

D(0)h in the denominator. These di!erences result from the additional
degree of freedom in translation and rotation, respectively.

Eq. (3.22) is a generalization of results derived previously by
others. For example, for the special case with negligible #uctuations in
translational and rotational velocities on the time scale of loco-
motion such that b(0) and D(0)h are zero, this result reduces to
M(0)"(1/3)S(0)2/(X

0
!X

1
)I

3
, which is equivalent to the well-known

result for the random motility coe$cient derived by Lovely and
Dahlquist (1975). In the more general model presented here, the e!ect
of small #uctuations in cell orientation and speed during a run are now
also accounted for in D(0)h and b(0), respectively.
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Proceeding as in the two-dimensional case [Eqs. (3.13}4)], the
directional autocorrelation function and directional persistence tensor
for the three-dimensional isotropic environment are

SH(q), H(0)T"1
3
e[!2D(0)h!(X

0
!X

1
)]q I

3
(3.23)

and

¹(0)"1
3
[2D(0)h #(X

0
!X

1
)]~1I

3
, (3.24)

respectively.
These results indicate that for two- or three-dimensional migration

(n
d
"2 or 3), the general result is M"S(0)2

¹(0)#1/n
d
b(0)In

d
, where the

tensor ¹ (0) is given by Eq. (3.14) or Eq. (3.24) respectively [see also
Eq. (2.32)]. If #uctuations in cell speed are negligible (b(0)"0), and
de"ning the directional persistence time, P

t
as the scalar trace of ¹(0),

then we have the well-known result k"1/n
d
S(0)2P

t
(Dunn, 1983).

However, the more general form of the directional persistence time
derived here accounts for both discrete and continuous random turn-
ing and velocity #uctuations.

Another de"nition of directional persistence time proposed by Alt
(1990) is

P,

:=
0

dqq Sv (H(q))Tv(H (0))T
:=
0

dq Sv (H(q))Tv(H (0))T
. (3.25)

However, because Sv (H(q))Tv(H (0))T"S(0)2ej (0)
1

q , both de"nitions of
directional persistence time yield the same result in this case.

These results for migration in an isotropic environment serve as
a basis for the following sections where M and < are derived for an
anisotropic environment.

4. Cell migration in an anisotropic environment

M(r) and < (r) are evaluated in an anisotropic environment by assign-
ing a bias parameter, e, to re#ect the magnitude of the cell response to
the anisotropy. The turning operator, ¸(H, r) can then be expanded in
powers of e, i.e.,

¸(H, r)"¸(0)(r)#e¸(1) (H, r)#e2¸(2)(H, r)#2 , (4.1)

where ¸(0) (r) has the same form as in the previous section, but evalu-
ated at the stimulus "eld encountered at position r. Similarly, the
coe$cients, Mljk (r)N can be expanded as

ljk (r)"lj(0)k (r)#elj(1)k (r)#e2 lj(2)k (r)#2 (4.2)
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where

lj(j)k (r),P dH@Wl (H@)*¸(j) (H@, r)Wk (H@) . (4.3)

For two-dimensional cell motion, these coe$cients are

n
j(j)
m

(r)"
1
2nP

2n

0

dh@e~inh{¸(j) (h@, r) eimh{ , (4.4)

and for three-dimensional motion, they are

k
n
jl ( j)
m

(r)"P
2n

0

du@P
n

0

dh@ sinh@ >~k
n

(h@, u@)¸(j) (h@, u@, r)>l
m
(h@, u@) .

(4.5)

Recall that MWk(H)N are eigenfunctions of ¸(0) with eigenvalues, j(0)k (r),
such that lj(0)k (r)"dk,lj(0)k (r). (Hereafter, to simplify notation, the de-
pendence of the Fourier coe$cients and eigenvalues on r is not shown
explicitly.)

Our goal is to "nd a "rst-order approximation for the biased
migration response by determining M(r) and < (r) to "rst-order of e,
although this procedure can be used to sequentially determine terms of
higher order of e, too. The coe$cients vk, Bk, Dk, Ck, and p

s,k are now
general functions of r. We proceed by expanding these coe$cients into
powers of e then substituting these series into Eqs. (2.45) and (2.46). The
results are

M(r)"M(0)(r)#+
k

e [D(1)*k C(0)k #D(0)*k C(1)k ]

#W
0
eB(1)

0
#e+

k
B(0)k p(1)

s,k#O(e2) (4.6)

< (r)"W~1
0
eC(1)

0
!+

k
D(0)*k L

r
C(0)k !e +

k
[D(1)*k L

r
C(0)k

#D(0)*k L
r
C(1)k ]#O (e2). (4.7)

Note that if the bias parameter, e, is proportional to the magnitude of
a gradient of a stimulus, . (r) , (e.g., chemoattractant concentration),
then L

r
"d./dr L. is O (e) which makes the "nal term in Eq. (4.7) also

O(e2).
To obtain the perturbation coe$cients of Ck and Dk , the

coe$cients, pk,l(q), are solved by expanding in the form pk,l"
p(0)k,l#ep(1)k,l#2 , substituting the expansions of pk,l and ljk into Eq.
(2.40), collecting terms of equal order of e, then sequentially solving the
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resulting ordinary di!erential equations for increasing orders of e. To
lower order, we have

p(0)k,l (q)"dk,le
j (0)k q . (4.8)

Upon substitution of p(0)k,l (q) into Eq. (2.40), the di!erential equation for
"rst-order terms becomes

dqp(1)k,l (q)"kj(1)l ej (0)l q
#j(0)k p(1)k,l (q), (4.9)

which, for j(0)l Oj(0)k , has the solution

p(1)k,l(q)"
kj(1)l

j(0)l !j(0)k
(ej (0)l q

!ej (0)k q ), (4.10)

and, for j(0)l "j(0)k , has the solution

p(1)k,l(q)"kj(1)l qej (0)k q . (4.11)

From Eqs. (4.8) and (4.11), the zeroth and "rst-order coe$cients of
p
s
(H) are, for kO0,

p(0)
s,k"0 (4.12)

p(1)
s,k" lim

q?=

p(1)k,0 (q)W
0
"W

0
kj(1)0

!j(0)k
, (4.13)

and for k"0,

p(0)
s,0

"W
0
. (4.14)

The Fourier coe$cients, vk, Bk, Dk and Ck are now expanded into
powers of e. From Eq. 2.47, the "rst two terms of Dk , are

D(0)k "

S(0)

!j(0)k
Hk (4.15)

D(1)k "

v(1)k
!j(0)k

#+
l

S(0)HlAcl,k lj(1)*k
(j(0)k )2

#(1!cl,k)
lj(1)*k

j(0)l !j(0)k A
1

j(0)l
!

1
j(0)k BB ,

(4.16)

where cl,k"1 if j(0)l "j(0)k , otherwise, cl,k"0. From Eq. (2.48), the
zero and "rst-order terms of Ck are

C(0)k "W2
0
S(0)Hk (4.17)

C(1)k "W2
0
v(1)k #S(0) +

l
W

0
lj(1)0

!j(0)l P dH@W k (H@)*H@Wl (H@). (4.18)
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We can reduce Eqs. (4.16) & (4.18) further by taking advantage of the
results in the previous section for the isotropic environment. For
two-dimensional motion, we found that the only non-zero coe$cients
of D(0)

m
and C(0)

m
were for m"$1. This implies only D(1)

$1 and C(1)
$1 are

needed to evaluate Eqs. (4.16}7). From Eqs. (4.16) and (4.18), these
coe$cients are

D(1)
$1"

v(1)
$1

!j(0)
1

#

S(0)

(j(0)
1

)2
(
~1

j(1)*
$1H~1

#
1
j(1)

*
$1 H1

) (4.19)

C(1)
$1"

1
2nAv(1)$1#

$2j(1)0
!j(0)

2

S(0)H
G1B. (4.20)

We also found in the previous section that j(0)
m
"j(0)

~m
, D(0)

1
"D(0)*

~1
and

C(0)
1
"C(0)*

~1
. Noting that v(1)

1
"v(1)*

~1
and

n
j(1)
m
"

~n
j(1)*
~m

, which imply
D(1)
1
"D(1)*

~1
and C(1)

1
"C(1)*

~1
, we have D(1)*

1
C(0)
1

T
#D(1)*

~1
C(0)T
~1

"

2R(D(1)*
1

C(0)
1

T) and D(0)*
1

C(1)
1

T
#D(0)*

~1
C(1)T

~1
"2RMD(0)*

1
C(1)T
1

N. There-
fore, combining the above into Eq. (4.6) yields the "rst-order correction
to the random motility tensor for two-dimensional motion in a general
anisotropic environment:

M"M(0)#e
1
2n

S(0)

!j(0)
1

2RGH~1
v(1)
1

T
#v(1)

~1
H

1
T#S(0) 2

j(1)
0

!j(0)
2

H
~1

HT
~1

# 1
j(1)
1

!j(0)
1

H
~1

HT
1
#~1

j(1)
1

!j(0)
1

H
1
HT

1H
#e

1

J2nAB(1)
0
#2RGB(0)

2
2
j(1)
0

!j(0)
2
HB#O(e2), (4.21)

where M(0) is given by Eq. (3.12).
Evaluation of <(r) requires C(1)

0
, which, from Eq. (4.18), is

C(1)
0
"

1
2nAv(1)0

#S(0)2RG 1
j
0
(1)

!j(0)
1

H
~1HB. (4.22)

Introducing Eq. (4.22) into Eq. (4.7) yields

<(r)"
1

J2n
eAv(1)0

#2S(0)RG 1
j(1)
0

!j(0)
1

H
~1HB

!

1
2

S(0)

!j(0)
1

L
r
S(0)!2eRMD(1)

~1
L
r
C(0)
1
#D(0)

~1
L
r
C(1)

1
N#O(e2),

(4.23)
where, again, the "nal term is O(e2) if L

r
is O(e).
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For three-dimensional biased migration, the coe$cients of Dl
1

and
Cl
1

are similarly evaluated from Eqs. (76) and (78) to be

Dl
1

(1)
"

vl
1

(1)

!j(0)
1

#

S(0)

(j(0)
1

)2
(0
1
jl
1

(1)*H0
1
#1

1
jl
1

(1)*H1
1
#~1

1
jl
1
(1)*H~1

1
) (4.24)

for l"!1, 0, 1, and

C0
1

(1)
"

1
4n

v0
1

(1)

#S(0) AS
4
5

0
2
j0(1)

0
!j(0)

2

H0
1
#S

3
5

1
2
j0(1)

0
!j(0)

2

H~1
1
#S

3
5

~1
2
j0(1)

0
!j(0)

2

H1
1B
(4.25)

C$1

1
(1)
"

1
4n

v$1

1
(1)

#S(0)AS
6
5

$2

2
j0(1)

0
!j(0)

2

H0
1
!S

1
5

0
2
j0(1)

0
!j(0)

2

H$1

1
#S

3
5

$1

2
j0(1)

0
!j(0)

2

H0
1B .

(4.26)

Combining these coe$cients into Eq. (4.6) and noting that
H$1

1
[H0

1
]T"H0

1
[H$1

1
]T"0 yield the general "rst-order correction

for M in an anisotropic environment:

M"M (0)#
e

4n
S (0)

!j (0)
1
AH0

1
[v0(1)

1
]T#v0(1)

1
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1
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J5
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2
j0(1)

0
!j(0)

2

#

0
1
j0(1)

1
!j(0)

1
D H0

1
[H0

1
]T

#2RMH~1
1
v1(1)T

1
#v~1(1)

1
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1
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#2S(0)RGCS
6
5

~2
2
j0(1)

0
!j(0)

2

#

~1
1
j1(1)

1
!j(0)

1
D H1

1
[H1

1
]T

#S (0)C
1
1
j1(1)

1
!j(0)

1

!S
1
5

0
2
j0(1)

0
!j(0)

2
DH~1

1
[H1

1
]THB

#

e

J4n AB0(1)

0
#B0(0)

2

0
2
j0(1)

0
!j(0)

2
B#O (e2) . (4.27)

Evaluation of the three-dimensional drift velocity requires

C(1)
0
"

1
4nAv(1)0

#S(0)
0
1
j0(1)

0
!j(0)

0

H0
1
#S(0)2RG

1
1
j0(1)

0
!j(0)

1

H~1
1HB , (4.28)
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which, combined with Eq. (4.7), yields

< (r)"
1

J4n
eAv0(1)

0
#S(0)

0
1
j0(1)

1
!j(0)

0

H0(0)

1
#S(0)2RG

1
1
j1(1)

1
!j(0)

1

H~1
1HB

!

1
3

S(0)

!j(0)
1

L
r
S(0)!e[D0

1
(1)L

r
C0(0)

1
#D0(0)

1
L
r
C0

1
(1)]

!2eRMD(1)
~1

L
r
C1(0)

1
#D(0)

~1
L
r
C1(1)

1
N#O (e2). (4.29)

To this point, no assumptions have been made as to the type or the
directionality of the anisotropic stimulus. However, the small bias
approximation provides equations for "rst-order corrections in M and
< which only require the Fourier coe$cients of B(1) and v(1) and
determination of the coe$cients, ljk, appearing in Eqs. (4.21), (4.23),
(4.27), and (4.29). As shown in the following sections, these coe$cients
can be evaluated if the dependence of ¸(1) on H is known. In the cases
to follow, we propose appropriate forms for these dependencies for
two- and three-dimensional taxis and contact guidance in the anisot-
ropic environment.

5. Biased cell migration by taxis

In this section, the above general results are applied to the speci"c case
of biased cell migration by taxis in a spatial gradient of a stimulus. Let
e re#ect the magnitude of the response, assumed to be proportional to
the steepness of the gradient, and assign the x-direction as the gradient
direction. In this case, we assume v, B, X, and ¸ depend on both H
and x.

5.1. Two-dimensional taxis

For two-dimensional migration, ¸(h, x) is assumed to have the form

¸(h, x) f (h),!Lh [uh (h, x) f (h)!Dh(h, x)Lh f (h)]

#P
2n

0

dh@[X(h, h@;x) f (h@)!X (h@, h;x) f (h)], (5.1)

where uh(h, x) and Dh(h, x) are the rotational drift velocity (scalar) and
rotational di!usion coe$cient, respectively. The h-dependence of
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uh, Dh, B, and v are approximated by expanding in the various param-
eters terms of e:

uh (h, x)"!u(1)h (x) e sin h#O (e2) (5.2)

Dh(h, x)"D(0)h (x)#D(1)h (x) ecos h#O(e2) (5.3)

B(h, x)"(b(0)(x)#b(1)(x) ecos h)HHT#O (e2) (5.4)

v(h, x)"(S(0)(x)#S(1)(x)ecos h)H#O(e2). (5.5)

To simplify the analysis somewhat, we have again assumed in
Eqs. (5.4}5) that the cell velocity is con"ned to the direction of cell
orientation, thus allowing v and B to have only components propor-
tional to the vector H and the dyadic HHT, respectively. The cosh and
sinh dependencies result from the parameter being symmetric func-
tions ( f (h)"f (!h)) or anti- symmetric functions ( f (h)"!f (!h))
of h, respectively, about the gradient direction, h"0. Furthermore,
X(h, h@) is assumed to have the form

X(h, h@;x)"X(0)(h, h@) (1#e[a(x) cos h!b(x) cos h@])#O(e2), (5.6)

where X(0)(h, h@) is given by Eq. (3.5). The factor a (x) cos h re#ects the
enhanced probability of turning to new direction with a component in
the gradient direction, and b (x) cosh@ re#ects the decreased probability
of turning from a direction with a component in the gradient direction.

Introducing the above expansions into Eq. (5.1), and collecting
terms of O(e), we "nd

¸(1) f (h)"Lh[u(1)h (x) sinhf (h)]#Lh[D(1)h (x) cos hLh f (h)]

#P
2n

0

dh@[X(0)(h, h@; x) (a(x) cos h!b (x) cos h@) f (h@)

!X(0)(h@, h) (a(x) cos h@!b (x) cos h) f (h)]. (5.7)

Determination of M(x) and <(x) now only requires evaluating the
various necessary coe$cients which appear in Eqs. (4.21) and (4.23).
Upon applying Eq. (4.4), we "nd

2
j(1)
0

"
1
j(1)
1
"

~1
j(1)
1
"0. Also, by

transforming the "rst-order terms in Eqs. (5.4}5), one "nds

v(1)
$1"

1

J2n
S(1)P

2n

0

dheGih cos hH"0,

and

B(1)
0
"

1

J2n
b(1) P

2n

0

dh cos h HHT"0.
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These imply that there is no "rst-order dependence of M on e; i.e.,
M(x)"M(0)(x)#O (e2). Evaluation of <(x) requires

v(1)
0
,

1

J2n P
2n

0

dhS(1)(x) cos h@H@"S
n
2
S(1)(x)C

1
0D (5.8)

and

1
j(1)
0
,

1
2nP

2n

0

dhe~ih¸(1)1"
1
2

[u(1)h #(X
0
!X

1
) (a#b)], (5.9)

which, from Eq. (4.23), yield

<(x)"
1
2 AeS(1)#eS(0)

u(1)h #(X
0
!X

1
) (a#b)

D(0)h #(X
0
!X

1
)

#

S(0)

D(0)h #(X
0
!X

1
)
L
x
S(0)BC

1
0D#O (e2) , (5.10)

where we use the fact that L
x
"O (e) in a gradient of a stimulus, such

that the last term in Eq. (4.23) is O(e2).
The terms in Eq. (5.10) show the contributions to the drift velocity

from the various cell path modi"cations. The "rst term with S(1) results
from the enhanced cell speed of the cell when moving in the gradient
direction and a corresponding decrease in the opposite direction,
consistent with the de"nition of orthotaxis. The second term results
from the directional orientation bias (i.e., non-uniform p

s
(h)), which

results from both continuous and discrete biased turning toward the
gradient direction, re#ected in u(1)h and a, respectively. This response is
consistent with the de"nition of tropotaxis. Non-uniform p

s
(h) also

results from a directional dependence on turning frequency, consistent
with klinotaxis, and re#ected in the parameter, b. The "nal contribu-
tion results from a dependence of the cell speed on the position,
therefore is consistent with orthokinesis.

For a cell with only continuous turning, Eq. (5.10) reduces to

<(x)"
1
2AeS(1)#eS(0)

u(1)h
D(0)h

#

S(0)

D(0)h
L
x
S(0)BC

1
0D#O (e2) , (5.11)

which is the result derived previously in Dickinson and Tranquillo
(1995). For a cell with only discrete turning, Eq. (5.10) becomes

< (x)"
1
2 AeS(1)#eS(0) (a#b)#

S(0)

X
0
!X

1

L
x
S(0)B C

1
0D#O(e2).

(5.12)
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5.2. Three-dimensional taxis

The three-dimensional analog to Eq. (5.1) can be expressed in spherical
coordinates as

¸(h, x) f (h, u),
Du (h, x)
sin2h

L2u f (h, u)!
1

sinh
Lh[uh (h, x) sin hf (h, u)

!Dh (h, x) sin hLh f (h, u)]

#P
2n

0

du@P
n

0

dh@ sinh@ (X(h, u, h@, u@; r) f (h@, u@)

!X(h@, u@, h, u; r) f (h, u)) (5.13)

where Du (h, r) is the rotational di!usion coe$cient in the u-direc-
tion, uh (h, r) is again the rotational drift velocity (scalar) in the h-
direction, and Dh (h, r) is the rotational di!usion coe$cient in the
h-direction. Axial symmetry is assumed around the x-axis (gradient
direction), such that the coe$cients are independent of u and the
rotational drift velocity in the u direction, uu , is equal to zero.

The expansions in Eqs. (5.2}6) are again applied to determine ¸(1),
along with following expansion for Du (h, x):

Du (h, x)"D(0)h (x)#D(1)u (x) ecos h#O(e2) (5.14)

(recalling D(0)u "D(0)h ), to obtain

¸(1)(h, x) f (h, u),
D(1)u (x) cosh

sin2h
L2u f (h, u)#

1
sinh

Lh[u(1)h (x) sinhf (h, u)

#D(1)h (x) cos h sin hLh f (h, u)]

#P
2n

0

du@P
n

0

dh@ sinh@ (X(0)(h, u, h@, u@;x )

][a(x)cos h!b (x) cos h@] f (h@, u@)

!X(0) (h@, u@, h, u; x)

][a(x) cos h@!b (x) cos h] f (h, u)B (5.15)

M(x) and <(x) are determined from Eqs. (4.27) and (4.29). In this case,
v$1(1)

1
, v0

1
(1), B0(1)

0
, 0
2
j0(1)

0
, ~2

2
j2
0

(1), $1
1
j1(1)

1
are all found to be 0, therefore,

for three-dimensional migration, we again have M(x)"M(0)(x)#
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O(e2), where M(0) is given in Eq. (3.22). Evaluation of < requires

v0(1)

0
"

1

J4nP
2n

0

du@P
n

0

dh sin hS(1) cos hH"

J4n
3

S(1)

1

0

0

(5.16)

and

0
1
j0
0

(1)
"P

2n

0

du@P
n

0

dh@ sin h@>0
1
(h@, u@)¸(1)

1

J4n

"

1
3

[u(1)h #(X
0
!X

1
)(a#b)]. (5.17)

Combining the above into Eq. (4.29) yields

<(x)"
1
3 AeS(1)#eS(0)

u(1)h #(X
0
!X

1
) (a#b)

2D(0)h #(X
0
!X

1
)

#

S(0)

2D(0)h #(X
0
!X

1
)
L
x
S(0)B

1

0

0

#O (e2). (5.18)

If the cell only undergoes only continuous turning, this reduces to

<(x)"
1
3AeS(1)#eS(0)

u(1)h
2D(0)h

#

S(0)

2D(0)h
L
x
S(0)B

1

0

0

#O (e2). (5.19)

For a cell with only discrete turning, Eq. (5.18) reduces to

<(x)"
1
3 AeS(1)#eS(0) (a#b)#

S(0)

(X
0
!X

1
)
L
x
S(0)B

1

0

0

#O (e2).

(5.20)

The expression for three-dimensional drift velocity is very similar to
that for the two dimensional drift velocity, with the primary di!erences
being the factor of 1/3 instead of 1/2 and a factor of 2 preceding D(0)h .
These factors again result from the additional degree of freedom for
translation and rotation, respectively, for cell movement in three di-
mensions. As seen in the following section, this similarity between two
and three dimensional cell #ux expressions is not as apparent for
contact guidance.
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6. Biased cell migration by contact guidance

6.1. Two-dimensional contact guidance

In this section, M and < are derived for cell migration by contact
guidance. Here ¸ is assumed to depend only on H, not r (the anisot-
ropy is assumed uniform with respect to position).

For two-dimensional contact guidance, ¸ is assumed to have the
form

¸(h) f (h),!LhCuh(h) f (h)!Dh(h)Lh f (h)D
#P

2n

0

dh@ [X(h, h@) f (h@)!X(h@, h) f (h)]. (6.1)

As in the previous section, the h-dependence of uh, D, B, and v are
approximated by expanding in terms of e, which now re#ects the
magnitude of in#uence of the structural anisotropy on cell movement.
Based on the bi-directional symmetry, the following expansions are
applied for small e:

wh(h)"!w(1)h e sin 2h#O (e2) (6.2)

Dh (h)"D(0)h #D(1)h ecos 2h#O(e2) (6.3)

B(h)"(b(0)#b(1)ecos2h)HHT#O (e2) (6.4)

v (h)"(S(0)#S(1)e cos2h)H#O (e2). (6.5)

Also, we give X(h, h@) the form

X(h, h@)"X(0) (h, h@) [1#e (a cos 2h!bcos 2h@)]#O (e2) , (6.6)

where a and b are de"ned as in the previous section, re#ecting the
increased probability of turning toward the axis of anisotropy, and
decreased probability of turning away from the axis of anisotropy,
respectively. Introducing Eqs. (6.2}6) into Eq. (6.1) provides ¸(1):

¸(1) (h) f (h)"Lh (u(1)h sin 2h f (h)#D(1)h cos 2hLh f (H))

#P
2n

0

dh@ [X(0)(h, h@) (a cos 2h!bcos 2h@) f (h@)

!X(0)(h@, h) (acos2h@!b cos 2h) f (h)]. (6.7)

In contrast to the results for taxis in the previous section, a number of
terms contribute to M(1). The non-zero coe$cients

n
j
m

appearing in
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Eq. (4.21) are

2
j(1)
0
,
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0
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2
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1
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1
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2
)]. (6.9)

Also, v(1)
1

, B(0)
2

and B(0)
0

are non-zero, and given by
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1
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S(1) C
1
i D, (6.10)
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and
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0

dhb(1) cos2hHHT"
1
2S

n
2

b(1)C
1

!i
!i
!1D . (6.12)

Upon combining the above into Eq. (4.21), the "rst-order corrections
to the xx- and yy-components of the random motility tensor become
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This result shows that, in the presence of the bi-directional anisotropic
environment, the xx-component of the random motility coe$cient is
increased and the yy-component is correspondingly decreased by
a number of cell path modi"cations: Enhanced cell speed when moving
along the axis of anisotropy, re#ected in S(1), increases M along this
axis. Because of the analogy to orthotaxis, this e!ect is labeled ortho-
guidance. Preferential turning toward the axis of anisotropy, re#ected
in parameters u(1)h and a, also contributes the enhanced di!usive #ux in
this direction. This e!ect is analogous to tropotaxis, hence it is labeled
tropo-guidance. Finally, a dependence of cell turning frequency on the
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movement direction also contributes, re#ected in parameters D(1)h and
b. Because of the analogy to klinotaxis, this e!ect is labeled klino-
guidance.

For a cell moving only with continuous turns, Eq. (6.13) reduces to
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which was derived previously using a di!erent approach for two
dimensional contact guidance (Dickinson, 1997). For a cell moving
with only discrete turns, Eq. (6.13) becomes
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6.2. Three-dimensional contact guidance

For three dimensional contact guidance, we again apply the expan-
sions in Eqs. (6.2}6), to "nd
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(6.16)

The non-zero coe$cients Mk
n
j l(1)
m

N in Eq. (4.27) are obtained from
Eq. (4.5) to "nd:
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and
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Also required are
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Finally, the required Fourier coe$cients for the contribution of the
velocity #uctuations are
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Combining the above yields
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and
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In contrast to the result for three-dimensional taxis in the previous
section, the expression for three-dimensional M(1) is more considerably
complex than the corresponding term for two-dimensional migration.
However, the ortho-guidance, tropo-guidance, and klino-guidance
contributions are still be identi"able as for the two-dimensional case.

For a cell with only continuous turning, these expressions reduce to
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And, for a cell with only discrete turning, Eqs. (6.24}25) reduce to
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7. Discussion

The model presented here is a generalization of previous cell migration
models by Keller and Segel (1971), Alt (1980), and Dickinson and
Tranquillo (1995). A di!usion equation is derived from a generalized
random walk model with a turning operator, ¸, that allows for both
discrete and continuous transitions in cell orientation. The model also
allows for a general dependence of cell velocity on cell orientation, cell
position, and time, which allows the model to be applied to di!erent
types of anisotropic environment such as in a gradient of a stimulus
(taxis) and in bi-directionally aligned substratum (contact guidance).
This general dependence also allows determination of the relative
contributions of the various path modi"cations, tropotaxis, orthotaxis,
orthokinesis, klinotaxis, and klinokinesis, to the overall taxis drift velo-
city. Similarly, when applied to contact guidance, the analysis predicts
previously unde"ned contributions to the preferential migration along
an axis of anisotropy, including ortho-guidance, for a dependence of cell
speed on the direction of cell polarity relative to the axis of anisotropy;
klino-guidance, for a dependence of cell turning frequency on the
direction of cell polarity; and tropo-guidance for preferential turning
toward the axis of anisotropy. Although not shown in the examples
provided, the model can also be applied in environment with multiple
stimuli, where both guidance and taxis is present. Furthermore, it
predicts of other interesting migration phenomena. For example,
a gradient in structural anisotropy is predicted to result in a drift
velocity when the cell velocity, v(H, r) or the orientation distribution,
p
s
(H; r), depend on position, r [c.f. Eqs. (2.24}5)].

In addition to the more general form of the turning operator,
a primary di!erence between the underlying random walk model used
here and the seminal model of Patlak (1953) is the assumption that the
statistics of cell velocity and cell turning depend on the instantaneous
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position of the cell, as was assumed by Alt (1980), rather than on the
position of cell before of a step, as assumed by Patlak. Because cell
locomotion depends primarily on encountered stimulus for a given cell
position and orientation, this assumption is more appropriate for
cell migration. This model can therefore be applied to any motion of
a polarized object in an anisotropic environment where translation
and turning depends on local conditions, such as that of many insects
and other organisms.

In the examples given here, speci"c forms of the turning operator,
¸, were provided which corresponded to reasonable models for taxis
and contact guidance. However, the general approach can be applied
to any cell migration model where the appropriate form of ¸ is known
to O(e). The problem has been reduced to simply "nding the coe$-
cients Mljk(0)N. For example, for chemotaxis of E. coli, the turning
frequency decreases when the cell is moving with a component of its
velocity in the gradient direction, but does not modify its turning
behavior when moving down-gradient (Berg and Brown 1972). In this
case, the turning kernel, X(H, H@) would simply have the form of
Eq. (5.6) of for 06h@(n/2, but X(H, H@)"X(0)(H, H@) for
n/26h@6n. Assuming no other contributing cell path modi"cations
(i.e., S(1)"u(1)h "a"0), the result for the x-component of drift velo-
city is then simply <(x)"1

6
eS(0)b. This example illustrates how simply

the general model can be reduced and applied to speci"c cases.
In principle, all parameters in the resulting equations for M and
< can be derived from an underlying mechanistic model of a single cell
that can predict cell turning, cell speed and associated #uctuations as
functions of the cell orientation, as has been developed previously for
chemotaxis or haptotaxis (Tranquillo and Lau!enburger 1987; Dickin-
son and Tranquillo 1993a). This analysis therefore provides a frame-
work to predict and interpret observed &&macroscopic'' cell migration
behavior (i.e., cell transport and cell movement statistics) by contact
guidance or taxis in terms of the molecular and physical properties of
a single moving cell.
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