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Abstract. This paper has adual purpose. First, we describe numerical methods for contin-
uation and bifurcation analysis of steady state solutions and periodic solutions of systems of
delay differential equations with an arbitrary number of fixed, discrete delays. Second, we
demonstrate how these methods can be used to obtain insight into complex biological regu-
latory systemsin which interactions occur with time delays: for this, we consider asystem of
two equations for the plasma glucose and insulin concentrations in a diabetic patient subject
to asystem of external assistance. The model has two delays: the technological delay of the
external system, and the physiological delay of the patient’s liver. We compute stability of
the steady state solution asafunction of two parameters, compare with analytical resultsand
compute several branches of periodic solutions and their stability. These numerical results
alow to infer two categories of diabetic patients for which the external system has different
efficiency.

1. Introduction

Dynamical systemswith time delays have been studied for more than two centuries,
dating back to Euler, but most progress has occured in the twentieth century, with
the significant contributions of Lotka[11] and Volterra[26]. Although thereis now
asubstantial body of theory available, the global knowledge of delay equations has
not been widely exploited by the scientific community. Thisis somewhat changing,
nowadays, with arapidly growing use of systems with delaysin applied sciences,
most notably mathematical biology and engineering. The main advantage of ex-
plicitly incorporating time delays in modeling equations isto recognize the reality
of non-instantaneous interactions.
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It is often difficult, if not impossible, to study analytically the behaviour of
models from applied sciences; instead one has to turn to numerical calculations.
In this article, we present a combination of numerical methods based upon conti-
nuation schemes, through which we can compute and analyze fixed points, periodic
solutions and their stability for asystem containing an arbitrary number of constant
delays. By doing so we can compute bifurcation diagrams to reveal the branching
behaviour of the system. Several such computational programs exist for systems of
ordinary differential equations, for example Auto97 [2], but, until recently, not for
systems of delay equations. The functionality that we present here isimplemented
in the Matlab package DDE-BIFTOOL which isfreely available for scientific use.
The manual [3] contains directions on how to obtain the package.

The numerical algorithms have previously been presented in [14] and [5]. Our
aim hereisto present them in a coherent framework together with their application
on areal-life example taken from human physiology and medicine. This example
is drawn from modeling studies on the dynamics of a physiological system whose
aim is to regulate the glucose quantity in the human body. In this model, we are
dealing with a system with delays via which we can study the interaction between
theinternal glucose-regulation system in adiabetic patient and a system of external
assistance.

The numerical analysis of this model clearly highlights the possibilities of the
numerical methods. Furthermore, we obtain some new results for a physiological
problem relating to the regulation of glucose. In Section 2 we derive the modeling
equations. In Section 3 we briefly discuss the most relevant properties of delay
equations and introduce some notation. In Section 4 we discuss numerical methods
for analyzing steady state solutions, apply them on our model and compare with an-
alytical results. In Section 5 we discuss and apply methods for computing branches
of periodic solutions and their stability. We briefly discuss medical implications of
our resultsin Section 6 and conclude in Section 7. The Sections on the methods for
analysis of delay equations (Sections 3, 4 and 5) can be read independently of the
Sections on physiological modeling (Sections 2 and 6).

2. Derivation of the modeling equations

The blood-glucose concentration is controlled by aregulation system which is part
of the endocrine system. This system is sometimes faulty, however, and diabetesis
one of its mgjor dysfunctions.

Medical research offers many therapeutic treatments to try to overcome this
disease. One of the most promising recent research directions regarding certain
types of patientsisto try to construct an external system for regularizing the blood-
glucose quantity, which would assist or even replace the defaulting internal system
of the patient [18,20]. External systems are simply control systems in feedback
form for the glucose quantity.

Unfortunately, designing and implementing such an external system givesrise
to many problems, both with respect to its practical construction and its actual
clinical efficiency. Most doctors believe it is only a question of technological or
bio-technological aspects [10,21], and when these are improved sufficiently, the
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system should work properly. However, we will argue that some of the encoun-
tered problems, like for example the instabilities of the glucose concentration one
can observe during the glucose clamp presented in [9], are of a completely differ-
ent nature: these problems are of dynamical nature. Indeed, each time the device
measures glycaemia and then reacts accordingly, thereis adelay introduced in the
control loop [9,10,21,23]. The presence of this inherent delay perturbs the entire
system and leads to instabilities in the glucose concentration — and this can be
harmful for the patient [24].

Our model is derived from an existing model for internal glucose regulation
(cf. Sturis et al. [25]) which was originally designed to show that a pancreatic
pacemaker is not necessary to explain the existence of oscillations in the glucose
concentration observed in healthy subjects. It shows that the structure of the au-
tonomous regulatory system (feedback between glucose and insulin) is sufficient
to induce these oscillations. Here, we modify the model to study the interactions
between the internal regulation of glucose of a patient, and an external system of
insulin administration. Our version of the model consists of two compartments: the
plasmatic insulin and the plasmatic glucose. Its mathematical expression simply
represents fluid exchanges between the compartments and the external medium,

{i = fG) — "
G = Eg+ f5(1(t = 1) = (f2(G) + f3(G) - fa(])) .

Changes from the model of [25] are a decrease in the number of physiologi-
cal compartments (one insulin compartment instead of two) and the incorporation
of a discrete time delay to account for the delayed production of glucose by the
liver stimulated by the presence of insulin. These changes do not impair the pre-
dictive power of the model, since the additional compartment used by Sturiset al.
represented, indirectly, the delayed interaction between insulin concentration and
glucose production.

Inequation (1), I represents the insulin quantity (mU) and G the glucose quan-
tity (mg). The function f1(G) represents the pancreatic insulin supply and 7 /71 is
the degradation rate of the insulin by the body. Eg represents the glucose quan-
tity supplied by the external medium, through injection at a constant rate (this
term corresponds to food intake). The function f5(7) represents the production of
hepatic glucose (the liver has a non negligible reaction time (delay) t2), whereas
f2(G) + f3(G) - fa(I) represents the utilization of glucose by certain tissues.

The precise form of the functions f1, .. ., fs (taken from [25]) depends essen-
tially on experimental data:

__G

fG) = —2— H(G)=T2(1—€e ™),

T o
G == O_ ’ I = 4’
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fo(l) = —38— .

1+e 1

There are five parameters: V1 is the volume of the insulin compartment, #; is the
degradation characteristic time for the insulin (equivalent to a half-life excretion
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period), V3 isthevolume of the glucose compartment and Eg and 1, are asdescribed
above. The reference values of the parameters are:

Vi =3I, t1 = 6min, V3 =10l, Eg = 180mg/min and 2 = 50min.

System (1) only represents the internal system of a normal person. To take
into account the external system that interacts with the internal system in case of a
diabetic patient, we need to modify the expression for the function f; representing
the pancreatic insulin production. Diabetesimpliesadecreasein theinternal insulin
production, hence this process iswell described by theterm o f1(G), wherew isa
real number in[0,1]. In other words, « representsthe aff ection degree of the patient:
the smaller « is, the more affected the patient is.

The hypoglycaemic action of the external system imitates the behaviour of the
internal system. Therefore, we will represent it by theterm (1 — &) f1(G(t — 11)).
The parameter t1 corresponds to the reaction time of the external system; it is
precisely the delay we have mentioned at the beginning of the section. The term
af1(G (1)) representsthefraction « of insulin delivered by the pancreas of anormal
subject into the circulation to maintain blood sugar at its physiologica level. The
term (1 — ) f1(G (¢t — 1)) standsfor the remaining insulin, in the case of adiabetic
subject, injected by the external system in response to glycaemia measured atime
71 in the past: 11 is therefore the time taken by the system to complete a single
processing cycle. Thisrepresentation impliesthat glucoseis measured (and insulin
injected) continuously by the external system: in practice, suchisnot generally the
case, as externa systems measure glucose in a discrete, but frequent, fashion. The
continuous measurement is an idealization of this process. However, some closed-
loop control systems are now able to measure and adjust the control variables
continuously.

It may seem odd, and possibly incorrect, to usethe samefunction 3 to represent
both the pancreatic insulin production and the exogenousinsulin supply, sincethese
two processes areindependent, thefirst one being abiological phenomenon and the
second one an artificial phenomenon. But thisis merely a mathematical simplifica-
tion that allowsto study the effect of the delay t1 inisolation. If our goal had been
to model arealistic external system, a more appropriate model of the interaction
between externa and internal systems would have been necessary, but one would
gtill be left with the inherent delay effect. Most external systems used today are
based on an internal algorithm that requires not only the input of the ambient gly-
caemiabut the previous 5-minute trend in blood glucose levels. The algorithm uses
the history of the glucose concentration to determine whether the blood glucose
level isrising or falling, and produces a dosage of insulin that the patient should
receive [1]. Unfortunately, these approaches remain largely ineffective [9].

The final expression of our model isthus,

{( =a- fiG) ~ £+ (1L-a)- fi(G(t )
G = Eg+ fs(1(t — 12)) — (f2(G) + f3(G) - fa(])) .

In order to determine which parameters we shall vary to study the dynamics of
the system, we first make a distinction between two categories of parameters: we

©)
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havetheinternal parameters V1, t1, V3, 72 and o which depend on the characteristics
of each individual, and we have the external parameters t1 and Eg which can be
modul ated as the operator wishes.

Some internal parameters, i.e. V1, 11 and V3, do not vary too much from one
individual to another while «, and to a less extent, 7> do. In as much as we are
interested in showing the effect of the reaction time of the external system, it is
important to observe the evolution of solutions as 71 varies. It is also important to
consider the patient’s state, i.e. the changesin the value of the parameter «. Finally,
it could be interesting to study several cases for different values of Eg and o.

It should be emphasized that the purpose of our model is not to predict the
exact time course of glucose and insulin in diabetic patients submitted to a system
of external assistance, but rather to show that unexpected instabilitiesin the glucose
concentration may occur naturally due to inherent delayed interactions introduced
in the feedback loops.

3. Delay equations

In this paper we consider delay equations of the form

X(t) = fx(0), x(t —11), ..., X = Tw), 1) ©)

wherex (1) € R?, f : R*>*+D « R 5 R” and 5 € RF.

Due to the dependency on the past, a solution profile is not uniquely defined
by the value of x(r) at some fixed time ¢z, instead one has to specify an initial
solution segment over an interval of length t where t = max;—1._,,{z;}. Theinitia
functionsegment belongsto C = C([—T, 0], R"), theinfinite-dimensional function
space of continuous function segments mapping the delay interval [—, O] into R”.
Similarly, after integrating (4) over sometimet, the function segment x; € C, with
x(0) = x(t — 6), 0 € [—1, 0] comprises the state of the system which uniquely
determinesthe rest of itsfuture. Hence delay equations define infinite-dimensional
systems. As a consequence, a scalar autonomous delay equation, unlike a scalar
ordinary differential equation, can exhibit periodic, quasi-periodic and even chaotic
behaviour.

We call & ¢(t; xo) the (nonlinear) solution operator which maps the initial
function segment xp onto its image under integration of (4) over time ¢, that is
& 1 (t; x0) = x;. The delay equation (4) can (somewhat abstractly) be rewritten as
defining anon-delayed flow in C, i.e.,

b= AP, ¢ € D(A), (5)

where.«Z istheinfinitesimal generator of the semigroup of solution operators % ¢ (¢)
of (4), defined by
d¢(0)

(A P)(0) = 90 ° <6 <0,

with domain

D(A)={peC:¢eC,d0) = f(pO),d(—11),...,0(=Tm), N},
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see[7,8]. Aswill be shown further, thisform allowsto extend traditional techniques
for non-delayed differential equations to (5), provided one works in a functional
analysis setting.

4. Steady state analysis

A constant solution or steady state solution x () = x* € R” of (4) can befound as
asolution of the nonlinear system

fox* x* .., x*,n =0. (6)

Although x* does not depend on the values of the delays, the stability of x* under
(4) does depend on the value of each delay. When linearizing (4) around x* one
obtains alinear delay differential equation, called the variational equation, of the
form

J(6) = Aox*, my() + Y Ai(x*, my(t — 1), ™
i=1
where, using f = f(x% x1, ... x", n),
d
Ai(x*,n) = —f.(x*,x*, x5 ), i=0,...,m.
ox!

When filling in the sample solution ve* one obtains,

(A — Ag(x*,m) + 211 A (x*, e~ iy = 0, ®
vl = 1,

i.e. anonlinear eigenvalue problem with characteristic matrix

m

A =11 — Ao(x™, ) + ) Ai(x*, e ™,
i=1

Equation (8) isusually rewritten in the form of a characteristic equation
det(A (1)) = 0. 9

Equation (9) has an infinite number of roots A that determine the stability of
x* in the usual way. That is, the steady state solution x* is asymptotically stable
provided all the roots of (9) have negative real parts. It is unstable if there exists
a root with positive real part. When following a branch of steady state solutions
as afunction of a physical parameter n, a bifurcation occurs when an eigenvalue
crosses theimaginary axis, i.e., A = 0or A = iw, w # 0. In the latter case, a Hopf
bifurcation occurs, at which a branch of periodic solution emanates.
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4.1. Numerical methods

As discussed above, a steady state solution x* is independent of the delays. Thus
its branching behaviour can be found from a corresponding system of ordinary
differential equations by putting all delays to zero and using a standard package
for bifurcation analysis of ordinary differential equations [2]. On the other hand,
stability analysis of steady state solutions is drastically different. Most existing
studies tackle this problem analytically.

In order to determine numerically and efficiently the stability of a steady state
solution, one needs a method which automatically selects and computes the right-
most (i.e. stability determining) roots of (9). Many numerical methods have been
developed to compute selected eigenvalues of large eigenvalue and generalized
eigenvalue problems, e.g. subspace iteration, Arnoldi, Jacobi-Davidson method,
rational Krylov methods, see [22]. Most of these methods compute the dominant
eigenvalues (i.e. largest in modulus), but can be combined with a suitable transfor-
mation (shift-invert, Cayley transformation) to compute the rightmost eigenvalues
[17]. However none of these methods can be applied directly to (8) because they
are based on the construction of bases of subspaces spanned by sets of eigenvectors
v. For (8) this approach is no longer applicable. Indeed, if one considers, e.g., a
scalar delay equation, then, the eigenvalue problem (8) will generally still have an
infinite number of eigenvalues A but all (scalar) eigenvectors v can be scaled to 1
and the concept of an eigenvector loses its meaning.

Only if the problem is considered to define a flow in its proper state space one
can find anormal, albeit infinite-dimensional eigenvalue problem.

The eigenvalues of the infinitesimal generator .7 of the variational equation (7)
equal the solutions of the characteristic equation. During computations we need
to discretize the linear, unbounded operator .o/ and to approximate it by a high-
dimensional matrix J € RV*N N > 1. J isasparse matrix whose structure and
sparseness depend on the number and the relative position of the delays.

The linear time integration operators ¥ (¢) of (7) are compact when ¢t > t and
their eigenvalues are exponential transformations of the eigenvalues of .7, i.e. they
are given by

W = exp(at), (10)

where A isan eigenvalue of the characteristic equation (8) (plus possibly zero [7]).
Discretizing % (¢) leads to a high-dimensional dense matrix M (¢). The rightmost
eigenvalues of (8) are, through the exponential transform (10), mapped to the dom-
inant eigenvalues of % (t). Computing the dominant eigenvalues of alarge matrix
usingonly matrix-vector productsiscomputationally easi er than computing theright-
most eigenvalues and can be done using subspace iteration with projection, which
isawell understood and robust numerical method. The efficiency of the procedure
can beincreased by using aNewton procedure on the characteristic equation as soon
as good starting values for the eigenvalues are available. The modes thus found are
then locked in subsequent subspace iterations. This approach isdescribedin [5].
When following a branch of steady state solutions as afunction of a parameter
n € R, the previous algorithm can be used to monitor the stability along the branch
and detect bifurcations. When an eigenval ue crossestheimaginary axisabifurcation
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occurs. Once detected, a bifurcation can easily be computed and followed in two-
parameter space [15, 3].

4.2. Analytical methods

Although the emphasis of this paper is on humerical methods for general systems
of delay equations of the form (4), some resultsfor system (3) can also be obtained
using analytical methods. In this section we discuss these analytical results to
comparewith our numerical results. For amoregeneral discussion of such methods,
see for example [7].

We can show that system (3) has a unique steady state x* = (I'*, G*) whichis
the solution of

{ fUGH) ~I"/11=0 1)
Eg + fs(I*) — f2(G*) — f3(G™) - fa(I*) =0.

Note that G* and I* are independent of 71 and «. This property is interesting
because it significantly simplifies the derivations presented in this section, and
motivated some assumptions we introduced in the construction of the model.

Linearization of (3) around x* yields the variational equations (7) where

y®) = (i), g®)
~1/n CHOY o]
G - [ G~ G - fa1) ]
aset o = | 0O OO L ad e = | L6 0]

using n = (V1,11 V3, 72, Eg, @, 71) € R7 and f/ for the derivative of f;, i =
1,...,5
The characteristic equation, given by equation (9), can now be written as

Ao(x*, 1) = [

AMrar+btc-ertD L. et Lo g2 =0, (12)
where

a=1/t+ f5(G*) + f5G*) - fall*),

b =1/t (f3(G*) + f5G*) - fall*) +a - F(G) - f5(G*) - f1I*)
c=—(1—0a) f{(G" [,

d=@1-a) f1(G")- fs(G*) f1I%) |

e=—a- f1(G") L")

Because f1, .. ., f4 aremonotonically increasing functionsand f5 ismonotonically
decreasing, it is easy to check that all these parameters are positive.

Thefixed point (G*, I*) losesstahility asthereal part of asolution A of equation
(12) becomes positive. Hence the boundary of the stability zones (where A = iw,
€ R) isdetermined by

—0? +aiw+b+e- e

A
—d—c.eon =e (13)

where w > 0 (the case “w < 0" corresponds to the complex conjugate).
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The geometry of stability changes thus involves the intersection of two curves.
Oneistheunit circle

—ioT
e 1

that is covered repeatedly as wt1 increases from zero to infinity. The other curveis
theratio curve (asN. MacDonald callsit in [16]),

dw? — bd — ce — (de + c(b — ®?)) - COSwT2 + acw SINWT2
2 + d? 4 2¢d coswo
i —adw + (de — c(b — w?)) - SNwT2 — acw COSWT?
2 4+ d? + 2cd coswto

)

that is covered only once as w runsfrom zero to infinity. Thislast curve starts at the
real point —(b + ¢)/(c + d) for w = 0, and tends to infinity asw — +o0, making
a spira around the point — (b + ¢)/(c + d). Of course, the spiral’s form changes
depending on the parameter values and, the number of intersection points with the
unit circle may vary consequently.

Let uswritetheratio curve as a complex-valued function R, (w, o) of w and «.
Solutions of equation (13) satisfy

Ro(w,a) Re(w, ) = 1. (14

For eachar, 0 < o < 1, we consider, whenever they exist, solutionsw;, j € N, to
the last equation (14) which are real and positive. With this notation, equation (14)
becomes
Re Rc(a)j, a)| = COS(a)jrl,j) (15)
Im|Re(wj,a)| = —Sin(a)j‘L’j_’j) .

Now, for every w;, let rf i denote the solution of system (15) such that

0<1t); <2n/w;. Fordl kinN, tf; = ), + 2kn/w; is adso a solution of
system (15). Hence, for each couple (rfj, a), k =0,1,2,... thereis a pair of
conjugate complex eigenvalues A = *iw; that are solutions of equation (9).

The set of poi nts(rf’ ) for all j describes several curvesin parameter space

— depicted in Figure 1. Denote these curves by +*. When the pair of parameters
(11, @) crossesacurve C*, thesign of thereal part of an eigenval ue changessign and
there can be a change of stability of the stationary state. The sign of the quantities

EICEe)) o a(meran])
dy, = S and d, = e
1 o
(1, 0)e+k (t1,0)€+k

(16)

indicates the direction of change of thereal part of the eigenvalue on theimaginary
axis. If & 5 Oordf 3 0, aHopf bifurcation occursat n € %*, provided that either
(i) al other eigenvalues of system (7) have nonzero real parts [19], or (ii) a non-
resonance condition holds for the different pairs of purely imaginary eigenvalues.
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Fig. 1. Stability diagrams: Hopf curves and regions of loca stability of the steady state
solution. Left: Stability diagram for “ healthy people’ (1) intheplane (Eg, t2). Right: Curves
of Hopf points of system (3) in the (z1, @)-planefor Eg = 180 and 7, = 50.

4.3. Results

Using the analytical methods of Section 4.2, we determined the curves ¢* shown
in Figure 1. Shadowed zonesindicate stable stationary solutions. Asindicated by a
crossin Figure 1-A, we have chosen Eg = 180 and t» = 50 to generate Figure 1-
B. We can seein Figure 1-A that for these values of the parameters the stationary
solution of system (1) is unstable. Thus, the stationary solution of system (3) is
unstable for « = 1 or 11 = 0 (systems (1) and (3) are then equivalent), and (by
continuity) for the neighbouring points in the (z1, a)-plane, see Figure 1-B. The
two parts of the dashed curve %° in Figure 1-B consist of points of type (r{J o)
the solid curves similar to the dashed ones but shifted to the right consist of points
of type (z1 ;, @), k > 1(i.e 6%, 42, ...).

Numerical bifurcation analysis commonly proceeds in a step-by-step fashion.
Starting from asteady state solution for some given fixed parameter values, abranch
of steady state solutionsiscomputed asafunction of asingle parameter. Computing
and monitoring the stability along the branch alows to detect bifurcations which
in turn can be followed in a two-parameter space. Similarly, when following a
(e.g. Hopf) bifurcation branch, higher-order singularity bifurcation points (such as
double Hopf points) can be detected. If the latter correspond to intersections of
different bifurcation branches, branch switching allowsto compute the intersecting
branch.

Using the numerical techniques describedin Section 4.1 we computed theright-
most roots of the characteristic equation of the unique steady state solution of (3)
along some sample one-parameter sections. In Figure 2 we show the redl parts of
theserootsfor « fixed at 0.7 and 71 € [0, 300]. Figure 3 depicts the imaginary part
of the rightmost root shown in Figure 2. Figures4 and 5 show the samefor 71 = 65



Numerical bifurcation analysis of delay differential equations 371

x10°

AN 1 1 —
0 50 100 150 200 250 300

Fig. 2. Thereal parts of the rightmost roots of the characteristic equation of (3) along the
constant solution branch (I*, G*) for « = 0.7 and varying ; € [0, 300]. All calculated
roots consist of complex pairs, Hopf bifurcations are indicated witha‘o’.

and o € [0, 1]. By following the Hopf bifurcations thus found Figure 2 is easily
reproduced numerically.

5. Periodic solutions

A periodic solution z(7) with period T > 0 of (4) satisfiesz(r + T) = z(¢), for al
t. Thelinearization of (4) around z(¢) isalinear, time-dependent delay differential
equation, called the variational equation of the periodic solution,

m

3(6) = Aot. my(®) + Y _ Ai(t. )yt — 7). (17)
i=1

wherethe A; (7, n) are defined as (using again f = f(x°,...,x™, n))

a
Ai(t,n) = a—j;.(z(t), z(t —11),...,2(t —Tw),m), i =0,...,m.

The monodromy operator % (1o, T') of the periodic solution is the operator which
integrates an initial perturbation at time 7o under the variational equation (17) over
an interval of length T. Its (infinite number of) eigenvalues are called the Flo-
quet multipliers and determine the stability of the periodic solution. Because (4)
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Fig. 3. Theimaginary part of the rightmost root of the characteristic equation of (3) along
the solution branch (I*, G*) for « = 0.7 and varying 7; € [0, 300]. The positions of the
Hopf bifurcations are indicated witha‘o’.

is autonomous there is always a ‘trivia’ Floquet multiplier equal to one which
corresponds to a phase-shift along the periodic solution. The periodic solution is
stableif al other Floquet multipliers have modulus smaller than one. It is unstable
if there exists a Floquet multiplier with modulus greater than one.

When following a branch of periodic solutions as function of a parameter, a
bifurcation occurs when a Floquet multiplier crosses through the unit circlein the
complex plane. Generically, this is a period doubling bifurcation when a multi-
plier crosses through —1, a torus bifurcation when a pair of complex multipliers
cross through the unit circle and afold or turning point when a multiplier crosses
through 1.

5.1. Numerical methods

The periodic solutions reported in this paper are computed with a shooting based
method, which we briefly explain below. A collocation based method to compute
periodic solutions of delay differential equationsis explained in [4].

A periodic solution, uniquely determined by an initial function segment zg €
C([—r, 0], R™") and the period T > 0, can be found as the solution of a nonlinear
operator equation,

(18)

r(z0, T) =S ¢(T;20) —20=0,
5(z0, T) =0,
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Fig. 4. Thereal parts of the rightmost roots of the characteristic equation of (3) along the
constant solution branch (7*, G*) for t; = 65 and varying « € [0, 1]. All calculated roots
consist of complex pairs, Hopf hifurcations are indicated witha‘o’.

where ¥ ¢ (T, zp) is the nonlinear time integration operator of the original equa-
tion (4) which integrates the initial condition zo over an interval of length 7 and
s(zo, T) = 0 is asuitable phase condition needed to remove the translational in-
variancy.

Equation (18) can be solved iteratively using a Newton iteration,

[ao]=-[']
® | =~
@, T®) AT ’

R GO S I KON O}

320 aT

05 ds (19)

b
G, 1®)

o5
IN]
o
=
~

|:85Pf(T;zo) _J E’Yf(T:zo):|

The Fréchet derivative of & ¢, , isthe solution operator of the variational

equation (17) around the current approximation z* (r).

We can discretize operator equation (19) by representing the function segment
zo by itsvalue on a discrete set of L mesh points. Let ¢ € RN, N = n x L, bethe
discrete representation of the function segment zg. The operator %TOZO) can be

approximated by an N x N-matrix M (T) with

0.7 ¢ (T';z0)
920

0S¢ (T Interpolate(¢))
d¢

M(T) = Discretize( Interpolate(«)).
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Fig. 5. Theimaginary part of the rightmost root of the characteristic equation of (3) along
the constant solution branch (7*, G*) for t; = 65 and varying « € [0, 1]. The positions of
the Hopf bifurcations are indicated witha‘o'.

Thus, after discretization, (19) is approximated by a high-dimensional system
(involving a non-sparse matrix) of the form

] P e e
=— , (20
[ CT d (%), T &) AT(k) S (IO EO))

When the Newton iteration has converged, M (T) is an approximation of the mon-
odromy operator and we call it the monodromy matrix. Its eigenval ues approximate
the Floguet multipliers. As aconsequence M (T') has an eigenvalue which approx-
imates the trivial Floquet multiplier at 1. Its distanceto 1 is, during computations,
afirst check of the accuracy achieved.

Solving (20) leads to an expensive method for computing periodic solutions.
Not only is M (T)* ahigh-dimensional dense matrix whose factorization is costly,
it is also expensive to construct. Indeed M (T)® is not known explicitly, instead it
is defined as the discretization of alinear operator. Hence each of its columns can
befound by calculating its action on aunit vector. The construction of M (T)® thus
requires N time integrations of the variational equation (17), which is expensive
for large N [6].
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5.1.1. Newton-Picard method

In [14] and the earlier references[13,12] the Newton-Picard scheme isintroduced
to reducethe high cost of constructing M (7)) by exploitingits spectral properties.
Let u; denote the i-th largest eigenvalue of M(T)% and let p be the number of
eigenvalues greater than athreshold p < 1,i.e,,

lal = 2l = .o > |upl > p > [ppsal = ... = [N]-

M (T)® isthe discretization of acompact operator (when 7 > t) whose eigenval-
ues have zero astheir only cluster point. Hence, we expect few large eigenvalues.
This justifies the assumption that p <« N. We will see in Section 5.2 that thisis
observed in practice. Infact, one could argue that when this assumptionisviolated,
the discretisation is too coarse for accurate bifurcation analysis.

Let the columns of V,, € RN*” form an orthonormal basis for the eigen-
space of M (T)® corresponding to the eigenvalues 1, . . ., - Let the columns of
V, € RV*(N=p) form an orthonormal basis for the orthogonal complement of this
space. We now project system (20) and the unknown A¢ onto these two subspaces.
Using the orthogonal projectors V, V[ and V,V,[, A¢ can be decomposed as
Ap =V, (V] Ap) + V, (V] A¢) and the projected system is

VqT(M(T) -NV, VqTM(T)V,, vng V] A vr
VIMT)V, VIMT)-DV, Vig || VIAg | =—|VIr| (21
cTVq cTVp d AT

where, for notationa convenience, we dropped the superscript which denotes the
Newton-step

Because V,, isabasis for an invariant subspace of M(T') and V, is orthogonal
to V, wehave V. M(T)V,, = 0. Because at the periodic solution g correspondsto
the eigenvector of the trivial Floquet multiplier, g converges to the space spanned
by v, and we set Vng = 0. System (21) is now partially decoupled, i.e., we can
first solvethelarge, (N — p) x (N — p)-system

V (M(T)— DVy(V]A¢) ==V r, (22)

and, then, using its solution, solve the small p x p-system

|:VPT(M(T) - NV, VpTg] [ng] __ [var] 3 |:VPTM(T)Vq:| VT Ap

v, d AT s v, ="

(23)
Because of the construction of V,, and V,, the spectral radius of the matrix of
VqTM(T)Vq satisfieScr(VqTM(T)Vq) = |upy1l < p < 1. Hence (22) can be
solved iteratively with aPicarditeration. To avoid the construction of thelarge basis
V, € RW=P)*(N=p) thisjteration can be performed in the original N-dimensional
space which resultsin,

Al =0, Aplt = oM(T)QAPl + 0r, i =0,... v -1, (24)
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where a projection with 9 = V, V] = I — V, V] is performed using only the
small basis V,,; and where

Al ~ Q9.

Using this solution of (22), thesmall p x p-system (23) can be solved for (VPT A,
AT) with adirect method like Gauss elimination with partial pivoting. The correc-
tion A¢ isnow found by combining the result of the Picard iteration (24) and the
solution of the reduced Newton equation (23),

Ap ~ AT+ v, (V] g,

hence the name Newton-Picard method.

5.1.2. Convergence and computational costs

In[12] itisshown that the convergence of the Newton-Picard iteration isdominated
by the Picard iteration, which has asymptatic linear convergence with convergence
factor

[p+1l < p < 1.

Thetotal cost for computing a periodic solution is determined by the total number
of iterations and the work in each iteration step.

Each Newton-Picard iteration consists of three parts: computation of the in-
variant basis V,, of M(T), the Picard iteration (24), and the construction of the
reduced Newton equation (23). The dominant cost, in each part, is the time inte-
grationsrequired (either as matrix-vector productswith M (T') or viaintegration of
the original equations).

Computing the dominant invariant subspace of M (T) can be done iteratively
using subspace iteration with projection as discussed in Section 4.1. Each step
of subspace iteration requires p, matrix-vector products with M (T') (where p, is
dlightly larger than p, e.g. p. = p +4). Except for thefirst iteration, we can usethe
subspace cal culated in the previous iteration as a starting value and n;, the number
of subspace iterations required in each step, commonly equals 1 or 2.

The Picard iteration (24) requires the calculation of the residual and v —1
matrix-vector products with M (T'). Constructing system (23) further requires one
matrix-vector product with M (T) for the right hand side. The factor M (T)V,, can
be recovered from the last subspace iteration.

Summing up, we conclude that the dominant cost of each iteration equalsn x
pe + v + 1timeintegrations. Note that this number does not depend on the number
of discretisation points N =n x L.

5.1.3. Continuation and bifurcation analysis

When following abranch of periodic solutions as function of a physical parameter
n € R, the shooting method can be used as a corrector in a predictor-corrector
continuation algorithm. Starting values ¢© and 7@ are then predicted from the
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previously computed branch points. Continuation can be started from aHopf point
or a stable periodic solution found using simulation.

The subspaceiteration inside the Newton-Picard method yields approximations
for both abasis of the dominant invariant subspace of M (T') and the corresponding
eigenvalues. Whentheiterati on has converged these ei genval ues areapproximations
of the dominant Floquet multipliers (i.e. the Floquet multipliers larger in modulus
thanthethreshold p < 1). Thusthecomputation of therel evant stability information
is a natural by-product of the method and bifurcations of the computed solution
can easily be detected.

When the threshold p is fixed, one has to allow the size p of the basis V), to
change. Indeed, new modes can come up during continuation and old modes can go
away. Thisisoneof thereasonsto use p, — p extravectorsinthe subspaceiteration.
If the eigenvalues corresponding to these extra modes have modulus greater than
p, the subspace size p isincreased. Likewise, when the eigenval ues corresponding
to modesin V,, have modulus smaller than p, the subspace size p is decreased.

5.2. Results

Branchesof periodic sol utions can be computed asafunction of different parameters
starting from the Hopf bifurcation points computed in Section 4.3. This allowsto
investigate the direction of the bifurcating branches and to monitor their stability.
As branches can turn or one can start from different Hopf points, it is possible to
find stabl e coexisting sol utions which might be missed using only simulation of the
given equations. By comparing consecutive parameter sections one can investigate
how the qualitative behaviour changes in a two-parameter space. We now show
some typical results obtained with the method described above.

Figure 6 shows the amplitude of G(¢) along several branches of periodic so-
[utions starting from and connecting Hopf points previously found. Note that for
o = 1, the external system and thus also the dependency on t; disappear from
system (3). Hence, at « = 1 thereis a constant solution branch as afunction of 1
whose solutions all equal the periodic solution of a healthy patient. The branch of
solutionsat o = 0.95 hasaqualitatively similar behaviour. Moredrastic differences
occur for smaller values of « (notice the different scales).

The stability along a computed branch is deduced from a computation of the
dominant Floquet multipliers as depicted in Figure 7. In between the two torus
bifurcations shown in Figure 6 (bottom) is a tiny parameter region where we did
not find any stable steady state or periodic solutions. As shown in Figure 8 this
region grows as o decreases.

The isolated branch of periodic solutions shown in Figure 8 was found using
continuation in « as shown in Figure 9. This branch has four unstable modes when
it emanates from a Hopf bifurcation for large «. As o decreases a complex pair of
Floguet multipliers enters the unit circle at atorus bifurcation. Then area Flogquet
multiplier enters the unit circle at aturning point, a scenario which is repeated at
a second turning point. After the second turning point the branch is stable. The
intersections visible in Figure 9 are a consequence of the projection on the («, T)-
plane; in the infinite-dimensional state space this branch does not self-intersect.
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Fig. 6. The amplitude of G(¢) (the maximal minus the minimal valueof G(¢),0 <t < T)
for several branches of periodic solutions along the one-parameter sections o = 0.95 (top),
a = 0.75(middle) and « = 0.5 (bottom) for varying 7; € [0, 220]. Stable partsareindicated
with solid lines, unstable partswith dashed lines. Several Hopf bifurcations (o) and two torus
bifurcations (x) are visible.
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Fig. 7. Themodulus of the dominant Floquet multipliers(real (— —) or complex pairs(—))
aong the branch of periodic solutions shown in Figure 6 (bottom, left) for « = 0.5.

Figure 10 shows a phase space projection on (G(t), I(¢)) of two coexisting
stable periodic solutions for « = 0.42 and t1 = 280.

Some information about the computational cost and the achieved accuracy are
gathered in Table 1, for five consecutive continuation points along a branch. Note
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Fig. 8. Coexisting branches of periodic solutions. The minimal valueof 1(#),0 <t < T
aong branches of stable (—) respectively unstable (— —) periodic solutions for « = 0.42.
Two turning points, five torus bifurcations (*) and one Hopf bifurcation (o) are visible.

Table 1. For thefirst 5 computed points of a branch of periodic solutions discretized using
N = 200 discretisation points: number of Newton-Picard iterations, number of subspace
iterations, basis size p, initial and final error and total number of time integrations needed.

Point number 1 2 3 4 5
Newton-Picard iterations 5 4 4 4 4
Subspace iterations 14 6 7 6 6
Basissize p 10 10 10 10 10
Initia error || (T@, @) — @ |I/1¢©@| 13 4e4 3e5 6e5 1led
Fina error || (T, ¢*) — ¢*1I/llo*|l 5e¢-16 5e-16 3e1l6 3el6 6e16
Timeintegrations 125 85 95 85 85

that for thefirst point alarger number of subspaceiterationsis required because no
initial approximation for the basis V), is available. During these first iterations the
subspace grows automatically until the final basis size is 10. For the other points,
the algorithm exploits the available data from the previously computed solution.
In our tests we used L = 50 respectively L = 100 grid points to represent the
delay segment. The first one was found sufficient to reproduce the dynamics, the
second to obtain accurate positions of bifurcation points. A fine grid was needed
because in this application the delay is large compared to the natural time scale of
the system. The cost of the our shooting method, expressed astotal number of time
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Fig. 9. The period along a branch of stable (—) respectively unstable (— —) periodic solu-
tions for 7, ~ 283.3. The branch starts in a Hopf bifurcation (0) at « ~ 0.46, undergoes a
torus bifurcation (*) at &« ~ 0.40 and two turning points (« ~ 0.10, @ ~ 0.42).

Table2. Cost of full Newton iterations: number of delay equations», number of grid points
L, sizeof N, size of the monodromy matrix M (T'), number of timeintegrations required for
one full Newton iteration (;vp(1 FNI)) and for two full Newton iterations (n;vp(2 FNI)).

n L N M(T) n|\/p(1 FNl) n|\/p(2 FNl)
2 50 100 100 x 100 200 300
2 100 200 200 x 200 400 800

integrations, isindependent of the number of grid points L used. Table 2 givesthe
expected costs of afull Newton iteration scheme. Comparing Tables 1 and 2 we can
conclude that the Newton-Picard approach considerably reduces the computational
costs, even for reasonable values of L and n.

6. Physiological and medical implications

We now interpret the results of our analysis of model (3) to study the efficiency of
external systems for glycaemia regulation. We show how, by using the numerical
results presented so far, interesting medical consequences can be derived. In par-
ticular, we show that the external system isunableto restore normal glycaemia. We
also show how our numerical results can help design a therapeutic intervention.
Typically, externa regulation systems have atotal reaction time t1 between 10
and 40 minutes. To eva uate the efficiency of these systems, we look at the stable
solution of system (3) when 10 < 711 < 40and 0 < o < 1, and compare it with
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Fig. 10. Coexisting stable periodic solutions for @ = 0.42 and t; = 280.

the stable solutions of system (3) corresponding to a healthy subject (i.e. when
1 = 0 or « = 1). We then examine whether the difference in those profiles can
be harmful to the patient, as chronic, abnormal glycaemia often leadsto secondary
complications of diabetes.

Wethus compare the period and profile of the corresponding periodic solutions,
along with their stability properties, as measured by the Floquet multipliers. In Fig-
ure 6, when t1 has avalue between 10 and 40 minutes, we note that the amplitude
of G(t) (aswell asthe amplitude of 7 (¢) in Figure 11 (top)) of the corresponding
periodic solution are greater than those of the reference solution (r1 = 0). This
means that we can find, in the blood and during one cycle, a higher glucose con-
centration and, at the same time, a higher insulin concentration than in a healthy
subject. Also, it can be seen in Figure 11 (bottom) that the period of the periodic
solution increases noticeably when 71 increases. With these conditions, the external
glycaemiaregulation is obviously not so efficient, since the normal profile and that
of diabetic may differ by as much as 20% with respect to periodicity and by more
than 100% with respect to amplitude. Moreover, these differences in concentra-
tion increase markedly when « takes smaller values (i.e. when considering a more
affected patient).

There is nevertheless something worth observing. If we let Ty be the period
of the periodic solution when 71 = 0, then, when system (3) is evaluated on the
periodic solution we have G(t 4+ kTo) = G(t), for al k € Z. Thus, in particular,
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Fig. 11. The period T and the amplitude of I (z) (the maximal minus the minimal value of
I1(t),0 <t < T)aongabranch of periodic solution for « = 0.5 and varying 7; € [0, 220].

Gt —Ty) = G@) and f1(G(t)) = f1(G(t — 1)) for 11 = Tp. This means that
the periodic solution for t1 = 0 has exactly the same profile asthe onefor 11 = Tp
(as can be seen in Figure 6 for different values of «). Hence we can increase 11
artificially up to Tp ~ 127.85 min in order to achieve a “healthy” solution by
means of the external system. But, although the profile is the same, the stability
may be different because, when the system is perturbed from the periodic solution,
f1(G (1)) no longer equals f1(G(t — 11)). SO, our observation remains true only
aslong as the periodic solution for 71 = Ty has the same stability as the reference
solution.

What can our numerical resultstell usabout the stability of the periodic solution
at 71 = Tp when « varies? Figure 12 shows the modulus of the dominant Flogquet
multipliers over the branch of periodic solutions with 11 = Tp ~ 127.85. As
described above, al these solutions are identical to the periodic solutionat 1 = 0
which is the solution corresponding to a healthy subject. The stability however is
lost through a torus bifurcation at « ~ 0.475. (Compare with Figure 8, where,
a o =042 < 0.475 and 1 & 127.85, there is no stable periodic solution.) The
model thusindicatesthat thereare at |east two types of patients. Thosefor which the
external system cannot bring the glycaemiato normal values (corresponding to o
lessthan 0.475): for these patients, the reaction time 71 rendersthe external system
inefficient. For the other category of patients (for which « is greater than 0.475),
the external system can be made to bring, after proper tuning of 1, the glycaemia
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Fig. 12. The modulus of the dominant Floquet multipliers (real (— —) or complex pairs
(—)) over abranch of periodic solutionsfor t; = T ~ 127.85.

inanormal range. This dichotomy between two types of patients predicted by the
model isreminiscent of the difference made in the medical literature between type
| and type Il diabetes.

The validity of the preceding remark (on choosing t1 equal to Tp) is further
limited by our modeling hypotheses. First of al, we have to be able to model the
externa system withtheterm (1 — ) f1(G (¢ — 11)); thismeanswe must be able to
construct f1 and to measure«. Then, theterm which representsfood intake (i.e. Eg)
should not depend on time, otherwise the system would become non-autonomous.
Still, we believe theinsight gained is aninteresting starting point which might, e.g.,
be complemented by a sensivity analysis to the assumptions made.

7. Conclusion

Inthis paper, we have described anumber of numerical methodsfor the continuation
and bifurcation analysis of steady state solutions and periodic solutions of systems
of delay differential equations with an arbitrary number of fixed, discrete delays.
These agorithms have been used to analyze a mathematical model for the
evolution of the blood-glucose and i nsulin concentration in adiabetic patient subject
to a system of external assistance. This model consists of a set of two differential
equations with two delays. We analyzed the local stability of its unique steady
state solution and compared our numerical results with analytical ones. Whenever
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the steady state solution undergoes a Hopf bifurcation, an emanating branch of
periodic solutionsexists. We computed several branches of both stableand unstable
periodic solutions and monitored their stability as determined by the dominant
Floguet multipliers. We showed the occurrence of a number of bifurcations and
illustrate the cost-effectiveness of our approach. The numerical analysis of the
model alows us to infer the existence of two categories of patients. Those for
which the external system is globally inefficient, and those, less severely affected,
for which the externa system need to be fine-tuned to restore normal levels of
glycaemia.

Although our analysis should be complemented with an investigation of the
sensitivity to the assumptions made, the results clearly giveinsight into the dynam-
ical behaviour of the modeling equations. We believe a combination of analytical
and numerical methods can be very useful to investigate and direct the modeling
and control of physiological problems.
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