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Abstract. This paper has a dual purpose. First, we describe numerical methods for contin-
uation and bifurcation analysis of steady state solutions and periodic solutions of systems of
delay differential equations with an arbitrary number of fixed, discrete delays. Second, we
demonstrate how these methods can be used to obtain insight into complex biological regu-
latory systems in which interactions occur with time delays: for this, we consider a system of
two equations for the plasma glucose and insulin concentrations in a diabetic patient subject
to a system of external assistance. The model has two delays: the technological delay of the
external system, and the physiological delay of the patient’s liver. We compute stability of
the steady state solution as a function of two parameters, compare with analytical results and
compute several branches of periodic solutions and their stability. These numerical results
allow to infer two categories of diabetic patients for which the external system has different
efficiency.

1. Introduction

Dynamical systems with time delays have been studied for more than two centuries,
dating back to Euler, but most progress has occured in the twentieth century, with
the significant contributions of Lotka [11] and Volterra [26]. Although there is now
a substantial body of theory available, the global knowledge of delay equations has
not been widely exploited by the scientific community. This is somewhat changing,
nowadays, with a rapidly growing use of systems with delays in applied sciences,
most notably mathematical biology and engineering. The main advantage of ex-
plicitly incorporating time delays in modeling equations is to recognize the reality
of non-instantaneous interactions.
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C.P. 6128, H3C 3J7, Montréal, Québec, Canada and Centre de Recherches Mathématiques,
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It is often difficult, if not impossible, to study analytically the behaviour of
models from applied sciences; instead one has to turn to numerical calculations.
In this article, we present a combination of numerical methods based upon conti-
nuation schemes, through which we can compute and analyze fixed points, periodic
solutions and their stability for a system containing an arbitrary number of constant
delays. By doing so we can compute bifurcation diagrams to reveal the branching
behaviour of the system. Several such computational programs exist for systems of
ordinary differential equations, for example Auto97 [2], but, until recently, not for
systems of delay equations. The functionality that we present here is implemented
in the Matlab package DDE-BIFTOOL which is freely available for scientific use.
The manual [3] contains directions on how to obtain the package.

The numerical algorithms have previously been presented in [14] and [5]. Our
aim here is to present them in a coherent framework together with their application
on a real-life example taken from human physiology and medicine. This example
is drawn from modeling studies on the dynamics of a physiological system whose
aim is to regulate the glucose quantity in the human body. In this model, we are
dealing with a system with delays via which we can study the interaction between
the internal glucose-regulation system in a diabetic patient and a system of external
assistance.

The numerical analysis of this model clearly highlights the possibilities of the
numerical methods. Furthermore, we obtain some new results for a physiological
problem relating to the regulation of glucose. In Section 2 we derive the modeling
equations. In Section 3 we briefly discuss the most relevant properties of delay
equations and introduce some notation. In Section 4 we discuss numerical methods
for analyzing steady state solutions, apply them on our model and compare with an-
alytical results. In Section 5 we discuss and apply methods for computing branches
of periodic solutions and their stability. We briefly discuss medical implications of
our results in Section 6 and conclude in Section 7. The Sections on the methods for
analysis of delay equations (Sections 3, 4 and 5) can be read independently of the
Sections on physiological modeling (Sections 2 and 6).

2. Derivation of the modeling equations

The blood-glucose concentration is controlled by a regulation system which is part
of the endocrine system. This system is sometimes faulty, however, and diabetes is
one of its major dysfunctions.

Medical research offers many therapeutic treatments to try to overcome this
disease. One of the most promising recent research directions regarding certain
types of patients is to try to construct an external system for regularizing the blood-
glucose quantity, which would assist or even replace the defaulting internal system
of the patient [18,20]. External systems are simply control systems in feedback
form for the glucose quantity.

Unfortunately, designing and implementing such an external system gives rise
to many problems, both with respect to its practical construction and its actual
clinical efficiency. Most doctors believe it is only a question of technological or
bio-technological aspects [10,21], and when these are improved sufficiently, the
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system should work properly. However, we will argue that some of the encoun-
tered problems, like for example the instabilities of the glucose concentration one
can observe during the glucose clamp presented in [9], are of a completely differ-
ent nature: these problems are of dynamical nature. Indeed, each time the device
measures glycaemia and then reacts accordingly, there is a delay introduced in the
control loop [9,10,21,23]. The presence of this inherent delay perturbs the entire
system and leads to instabilities in the glucose concentration — and this can be
harmful for the patient [24].

Our model is derived from an existing model for internal glucose regulation
(cf. Sturis et al. [25]) which was originally designed to show that a pancreatic
pacemaker is not necessary to explain the existence of oscillations in the glucose
concentration observed in healthy subjects. It shows that the structure of the au-
tonomous regulatory system (feedback between glucose and insulin) is sufficient
to induce these oscillations. Here, we modify the model to study the interactions
between the internal regulation of glucose of a patient, and an external system of
insulin administration. Our version of the model consists of two compartments: the
plasmatic insulin and the plasmatic glucose. Its mathematical expression simply
represents fluid exchanges between the compartments and the external medium,{

İ = f1(G) − I
t1

Ġ = Eg + f5
(
I (t − τ2)

) − (
f2(G) + f3(G) · f4(I )

)
.

(1)

Changes from the model of [25] are a decrease in the number of physiologi-
cal compartments (one insulin compartment instead of two) and the incorporation
of a discrete time delay to account for the delayed production of glucose by the
liver stimulated by the presence of insulin. These changes do not impair the pre-
dictive power of the model, since the additional compartment used by Sturis et al.
represented, indirectly, the delayed interaction between insulin concentration and
glucose production.

In equation (1), I represents the insulin quantity (mU) and G the glucose quan-
tity (mg). The function f1(G) represents the pancreatic insulin supply and I/t1 is
the degradation rate of the insulin by the body. Eg represents the glucose quan-
tity supplied by the external medium, through injection at a constant rate (this
term corresponds to food intake). The function f5(I ) represents the production of
hepatic glucose (the liver has a non negligible reaction time (delay) τ2), whereas
f2(G) + f3(G) · f4(I ) represents the utilization of glucose by certain tissues.

The precise form of the functions f1, . . ., f5 (taken from [25]) depends essen-
tially on experimental data:



f1(G) = 209

1+e
− G

300 V3
+6.6

, f2(G) = 72 (1 − e
− G

144 V3 ) ,

f3(G) = 0.01 G
V3

, f4(I ) = 90

1+e
−1.772×log

(
I
V1

)
+7.76

+ 4 ,

f5(I ) = 180

1+e
0.29 I
V1

−7.5
.

(2)

There are five parameters: V1 is the volume of the insulin compartment, t1 is the
degradation characteristic time for the insulin (equivalent to a half-life excretion
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period),V3 is the volume of the glucose compartment andEg and τ2 are as described
above. The reference values of the parameters are:

V1 = 3 l, t1 = 6 min, V3 = 10 l, Eg = 180 mg/min and τ2 = 50 min.

System (1) only represents the internal system of a normal person. To take
into account the external system that interacts with the internal system in case of a
diabetic patient, we need to modify the expression for the function f1 representing
the pancreatic insulin production. Diabetes implies a decrease in the internal insulin
production, hence this process is well described by the term α f1(G), where α is a
real number in [0,1]. In other words, α represents the affection degree of the patient:
the smaller α is, the more affected the patient is.

The hypoglycaemic action of the external system imitates the behaviour of the
internal system. Therefore, we will represent it by the term (1 − α) f1

(
G(t − τ1)

)
.

The parameter τ1 corresponds to the reaction time of the external system; it is
precisely the delay we have mentioned at the beginning of the section. The term
αf1(G(t)) represents the fraction α of insulin delivered by the pancreas of a normal
subject into the circulation to maintain blood sugar at its physiological level. The
term (1 −α)f1(G(t − τ)) stands for the remaining insulin, in the case of a diabetic
subject, injected by the external system in response to glycaemia measured a time
τ1 in the past: τ1 is therefore the time taken by the system to complete a single
processing cycle. This representation implies that glucose is measured (and insulin
injected) continuously by the external system: in practice, such is not generally the
case, as external systems measure glucose in a discrete, but frequent, fashion. The
continuous measurement is an idealization of this process. However, some closed-
loop control systems are now able to measure and adjust the control variables
continuously.

It may seem odd, and possibly incorrect, to use the same function f1 to represent
both the pancreatic insulin production and the exogenous insulin supply, since these
two processes are independent, the first one being a biological phenomenon and the
second one an artificial phenomenon. But this is merely a mathematical simplifica-
tion that allows to study the effect of the delay τ1 in isolation. If our goal had been
to model a realistic external system, a more appropriate model of the interaction
between external and internal systems would have been necessary, but one would
still be left with the inherent delay effect. Most external systems used today are
based on an internal algorithm that requires not only the input of the ambient gly-
caemia but the previous 5-minute trend in blood glucose levels. The algorithm uses
the history of the glucose concentration to determine whether the blood glucose
level is rising or falling, and produces a dosage of insulin that the patient should
receive [1]. Unfortunately, these approaches remain largely ineffective [9].

The final expression of our model is thus,{
İ = α · f1(G) − I

t1
+ (1 − α) · f1

(
G(t − τ1)

)
Ġ = Eg + f5

(
I (t − τ2)

) − (
f2(G) + f3(G) · f4(I )

)
.

(3)

In order to determine which parameters we shall vary to study the dynamics of
the system, we first make a distinction between two categories of parameters: we
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have the internal parametersV1, t1,V3, τ2 and α which depend on the characteristics
of each individual, and we have the external parameters τ1 and Eg which can be
modulated as the operator wishes.

Some internal parameters, i.e. V1, t1 and V3, do not vary too much from one
individual to another while α, and to a less extent, τ2 do. In as much as we are
interested in showing the effect of the reaction time of the external system, it is
important to observe the evolution of solutions as τ1 varies. It is also important to
consider the patient’s state, i.e. the changes in the value of the parameter α. Finally,
it could be interesting to study several cases for different values of Eg and τ2.

It should be emphasized that the purpose of our model is not to predict the
exact time course of glucose and insulin in diabetic patients submitted to a system
of external assistance, but rather to show that unexpected instabilities in the glucose
concentration may occur naturally due to inherent delayed interactions introduced
in the feedback loops.

3. Delay equations

In this paper we consider delay equations of the form

ẋ(t) = f (x(t), x(t − τ1), . . . , x(t − τm), η) (4)

where x(t) ∈ R
n, f : R

n×(m+1) × R
k → R

n and η ∈ R
k .

Due to the dependency on the past, a solution profile is not uniquely defined
by the value of x(t) at some fixed time t , instead one has to specify an initial
solution segment over an interval of length τ where τ = maxi=1...m{τi}. The initial
function segment belongs toC = C([−τ, 0],Rn), the infinite-dimensional function
space of continuous function segments mapping the delay interval [−τ, 0] into R

n.
Similarly, after integrating (4) over some time t , the function segment xt ∈ C, with
xt (θ) = x(t − θ), θ ∈ [−τ, 0] comprises the state of the system which uniquely
determines the rest of its future. Hence delay equations define infinite-dimensional
systems. As a consequence, a scalar autonomous delay equation, unlike a scalar
ordinary differential equation, can exhibit periodic, quasi-periodic and even chaotic
behaviour.

We call Sf (t; x0) the (nonlinear) solution operator which maps the initial
function segment x0 onto its image under integration of (4) over time t , that is
Sf (t; x0) = xt . The delay equation (4) can (somewhat abstractly) be rewritten as
defining a non-delayed flow in C, i.e.,

φ̇ = Aφ, φ ∈ D(A), (5)

whereA is the infinitesimal generator of the semigroup of solution operatorsSf (t)

of (4), defined by

(Aφ)(θ) = dφ(θ)

dθ
, −τ ≤ θ ≤ 0,

with domain

D(A) = {φ ∈ C : φ̇ ∈ C, φ̇(0) = f (φ(0), φ(−τ1), . . . , φ(−τm), η)},
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see [7,8]. As will be shown further, this form allows to extend traditional techniques
for non-delayed differential equations to (5), provided one works in a functional
analysis setting.

4. Steady state analysis

A constant solution or steady state solution x(t) ≡ x∗ ∈ R
n of (4) can be found as

a solution of the nonlinear system

f (x∗, x∗, . . . , x∗, η) = 0. (6)

Although x∗ does not depend on the values of the delays, the stability of x∗ under
(4) does depend on the value of each delay. When linearizing (4) around x∗ one
obtains a linear delay differential equation, called the variational equation, of the
form

ẏ(t) = A0(x
∗, η)y(t) +

m∑
i=1

Ai(x
∗, η)y(t − τi), (7)

where, using f ≡ f (x0, x1, . . . , xm, η),

Ai(x
∗, η) = ∂f

∂xi
(x∗, x∗, . . . , x∗, η), i = 0, . . . , m.

When filling in the sample solution veλt one obtains,

{
(λI − A0(x

∗, η) + ∑m
i=1 Ai(x

∗, η)e−τiλ)v = 0,
‖v‖ = 1,

(8)

i.e. a nonlinear eigenvalue problem with characteristic matrix

�(λ) = λI − A0(x
∗, η) +

m∑
i=1

Ai(x
∗, η)e−τiλ.

Equation (8) is usually rewritten in the form of a characteristic equation

det(�(λ)) = 0. (9)

Equation (9) has an infinite number of roots λ that determine the stability of
x∗ in the usual way. That is, the steady state solution x∗ is asymptotically stable
provided all the roots of (9) have negative real parts. It is unstable if there exists
a root with positive real part. When following a branch of steady state solutions
as a function of a physical parameter η, a bifurcation occurs when an eigenvalue
crosses the imaginary axis, i.e., λ = 0 or λ = iω, ω �= 0. In the latter case, a Hopf
bifurcation occurs, at which a branch of periodic solution emanates.
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4.1. Numerical methods

As discussed above, a steady state solution x∗ is independent of the delays. Thus
its branching behaviour can be found from a corresponding system of ordinary
differential equations by putting all delays to zero and using a standard package
for bifurcation analysis of ordinary differential equations [2]. On the other hand,
stability analysis of steady state solutions is drastically different. Most existing
studies tackle this problem analytically.

In order to determine numerically and efficiently the stability of a steady state
solution, one needs a method which automatically selects and computes the right-
most (i.e. stability determining) roots of (9). Many numerical methods have been
developed to compute selected eigenvalues of large eigenvalue and generalized
eigenvalue problems, e.g. subspace iteration, Arnoldi, Jacobi-Davidson method,
rational Krylov methods, see [22]. Most of these methods compute the dominant
eigenvalues (i.e. largest in modulus), but can be combined with a suitable transfor-
mation (shift-invert, Cayley transformation) to compute the rightmost eigenvalues
[17]. However none of these methods can be applied directly to (8) because they
are based on the construction of bases of subspaces spanned by sets of eigenvectors
v. For (8) this approach is no longer applicable. Indeed, if one considers, e.g., a
scalar delay equation, then, the eigenvalue problem (8) will generally still have an
infinite number of eigenvalues λ but all (scalar) eigenvectors v can be scaled to 1
and the concept of an eigenvector loses its meaning.

Only if the problem is considered to define a flow in its proper state space one
can find a normal, albeit infinite-dimensional eigenvalue problem.

The eigenvalues of the infinitesimal generator A of the variational equation (7)
equal the solutions of the characteristic equation. During computations we need
to discretize the linear, unbounded operator A and to approximate it by a high-
dimensional matrix J ∈ R

N×N , N � 1. J is a sparse matrix whose structure and
sparseness depend on the number and the relative position of the delays.

The linear time integration operators S(t) of (7) are compact when t ≥ τ and
their eigenvalues are exponential transformations of the eigenvalues of A, i.e. they
are given by

µ = exp(λt), (10)

where λ is an eigenvalue of the characteristic equation (8) (plus possibly zero [7]).
Discretizing S(t) leads to a high-dimensional dense matrix M(t). The rightmost
eigenvalues of (8) are, through the exponential transform (10), mapped to the dom-
inant eigenvalues of S(t). Computing the dominant eigenvalues of a large matrix
usingonlymatrix-vectorproducts iscomputationallyeasier thancomputingtheright-
most eigenvalues and can be done using subspace iteration with projection, which
is a well understood and robust numerical method. The efficiency of the procedure
can be increased by using a Newton procedure on the characteristic equation as soon
as good starting values for the eigenvalues are available. The modes thus found are
then locked in subsequent subspace iterations. This approach is described in [5].

When following a branch of steady state solutions as a function of a parameter
η ∈ R, the previous algorithm can be used to monitor the stability along the branch
and detect bifurcations. When an eigenvalue crosses the imaginary axis a bifurcation
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occurs. Once detected, a bifurcation can easily be computed and followed in two-
parameter space [15,3].

4.2. Analytical methods

Although the emphasis of this paper is on numerical methods for general systems
of delay equations of the form (4), some results for system (3) can also be obtained
using analytical methods. In this section we discuss these analytical results to
compare with our numerical results. For a more general discussion of such methods,
see for example [7].

We can show that system (3) has a unique steady state x∗ = (I ∗,G∗) which is
the solution of {

f1(G
∗) − I ∗/ t1 = 0

Eg + f5(I
∗) − f2(G

∗) − f3(G
∗) · f4(I

∗) = 0 .
(11)

Note that G∗ and I ∗ are independent of τ1 and α. This property is interesting
because it significantly simplifies the derivations presented in this section, and
motivated some assumptions we introduced in the construction of the model.

Linearization of (3) around x∗ yields the variational equations (7) where

y(t) = (
i(t), g(t)

)
,

A0(x
∗, η) =

[ −1/t1 α · f ′
1(G

∗)
−f3(G

∗) · f ′
4(I

∗) −f ′
2(G

∗) − f ′
3(G

∗) · f4(I
∗)

]
,

A1(x
∗, η) =

[
0 (1 − α) · f ′

1(G
∗)

0 0

]
and A2(x

∗, η) =
[

0 0
f ′

5(I
∗) 0

]
,

using η = (V1, t1, V3, τ2, Eg, α, τ1) ∈ R
7 and f ′

i for the derivative of fi , i =
1, . . . , 5.

The characteristic equation, given by equation (9), can now be written as

λ2 + aλ + b + c · e−λ(τ1+τ2) + d · e−λτ1 + e · e−λτ2 = 0 , (12)

where


a = 1/t1 + f ′
2(G

∗) + f ′
3(G

∗) · f4(I
∗) ,

b = 1/t1 · (f ′
2(G

∗) + f ′
3(G

∗) · f4(I
∗)) + α · f ′

1(G
∗) · f3(G

∗) · f ′
4(I

∗) ,
c = −(1 − α) · f ′

1(G
∗) · f ′

5(I
∗) ,

d = (1 − α) · f ′
1(G

∗) · f3(G
∗) · f ′

4(I
∗) ,

e = −α · f ′
1(G

∗) · f ′
5(I

∗) .

Because f1, . . ., f4 are monotonically increasing functions and f5 is monotonically
decreasing, it is easy to check that all these parameters are positive.

The fixed point (G∗, I ∗) loses stability as the real part of a solution λ of equation
(12) becomes positive. Hence the boundary of the stability zones (where λ = iω,
ω ∈ R) is determined by

−ω2 + aiω + b + e · e−iωτ2

−d − c · e−iωτ2
= e−iωτ1 (13)

where ω ≥ 0 (the case “ω ≤ 0" corresponds to the complex conjugate).
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The geometry of stability changes thus involves the intersection of two curves.
One is the unit circle

e−iωτ1

that is covered repeatedly as ωτ1 increases from zero to infinity. The other curve is
the ratio curve (as N. MacDonald calls it in [16]),

dω2 − bd − ce − (de + c(b − ω2)) · cosωτ2 + acω sinωτ2

c2 + d2 + 2cd cosωτ2

+ i
−adω + (de − c(b − ω2)) · sinωτ2 − acω cosωτ2

c2 + d2 + 2cd cosωτ2
,

that is covered only once as ω runs from zero to infinity. This last curve starts at the
real point −(b + e)/(c + d) for ω = 0, and tends to infinity as ω → +∞, making
a spiral around the point −(b + e)/(c + d). Of course, the spiral’s form changes
depending on the parameter values and, the number of intersection points with the
unit circle may vary consequently.

Let us write the ratio curve as a complex-valued function Rc(ω, α) of ω and α.
Solutions of equation (13) satisfy

Rc(ω, α)Rc(ω, α) = 1 . (14)

For each α, 0 ≤ α ≤ 1, we consider, whenever they exist, solutions ωj , j ∈ N, to
the last equation (14) which are real and positive. With this notation, equation (14)
becomes {

Re
[
Rc(ωj , α)

] = cos(ωj τ1,j )

Im
[
Rc(ωj , α)

] = − sin(ωj τ1,j ) .
(15)

Now, for every ωj , let τ 0
1,j denote the solution of system (15) such that

0 ≤ τ 0
1,j ≤ 2π/ωj . For all k in N, τ k1,j = τ 0

1,j + 2kπ/ωj is also a solution of

system (15). Hence, for each couple (τ k1,j , α), k = 0, 1, 2, . . . there is a pair of
conjugate complex eigenvalues λ = ±iωj that are solutions of equation (9).

The set of points (τ k1,j , α), for all j describes several curves in parameter space

– depicted in Figure 1. Denote these curves by +k . When the pair of parameters
(τ1, α) crosses a curveCk , the sign of the real part of an eigenvalue changes sign and
there can be a change of stability of the stationary state. The sign of the quantities

dkτ1
=

∂
(
Re

[
λ(η)

])
∂τ1

∣∣∣∣∣∣
(τ1,α)∈+k

and dkα =
∂
(
Re

[
λ(η)

])
∂α

∣∣∣∣∣∣
(τ1,α)∈+k

(16)

indicates the direction of change of the real part of the eigenvalue on the imaginary
axis. If dkτ1

�= 0 or dkα �= 0, a Hopf bifurcation occurs at η ∈ Ck , provided that either
(i) all other eigenvalues of system (7) have nonzero real parts [19], or (ii) a non-
resonance condition holds for the different pairs of purely imaginary eigenvalues.
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Fig. 1. Stability diagrams: Hopf curves and regions of local stability of the steady state
solution. Left: Stability diagram for “healthy people” (1) in the plane (Eg, τ2). Right: Curves
of Hopf points of system (3) in the (τ1, α)-plane for Eg = 180 and τ2 = 50.

4.3. Results

Using the analytical methods of Section 4.2, we determined the curves Ck shown
in Figure 1. Shadowed zones indicate stable stationary solutions. As indicated by a
cross in Figure 1-A, we have chosen Eg = 180 and τ2 = 50 to generate Figure 1-
B. We can see in Figure 1-A that for these values of the parameters the stationary
solution of system (1) is unstable. Thus, the stationary solution of system (3) is
unstable for α = 1 or τ1 = 0 (systems (1) and (3) are then equivalent), and (by
continuity) for the neighbouring points in the (τ1, α)-plane, see Figure 1-B. The
two parts of the dashed curve C0 in Figure 1-B consist of points of type (τ 0

1,j , α);
the solid curves similar to the dashed ones but shifted to the right consist of points
of type (τ k1,j , α), k ≥ 1 (i.e. C1, C2, . . .).

Numerical bifurcation analysis commonly proceeds in a step-by-step fashion.
Starting from a steady state solution for some given fixed parameter values, a branch
of steady state solutions is computed as a function of a single parameter. Computing
and monitoring the stability along the branch allows to detect bifurcations which
in turn can be followed in a two-parameter space. Similarly, when following a
(e.g. Hopf) bifurcation branch, higher-order singularity bifurcation points (such as
double Hopf points) can be detected. If the latter correspond to intersections of
different bifurcation branches, branch switching allows to compute the intersecting
branch.

Using the numerical techniques described in Section 4.1 we computed the right-
most roots of the characteristic equation of the unique steady state solution of (3)
along some sample one-parameter sections. In Figure 2 we show the real parts of
these roots for α fixed at 0.7 and τ1 ∈ [0, 300]. Figure 3 depicts the imaginary part
of the rightmost root shown in Figure 2. Figures 4 and 5 show the same for τ1 = 65
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Fig. 2. The real parts of the rightmost roots of the characteristic equation of (3) along the
constant solution branch (I ∗,G∗) for α = 0.7 and varying τ1 ∈ [0, 300]. All calculated
roots consist of complex pairs, Hopf bifurcations are indicated with a ‘o’.

and α ∈ [0, 1]. By following the Hopf bifurcations thus found Figure 2 is easily
reproduced numerically.

5. Periodic solutions

A periodic solution z(t) with period T > 0 of (4) satisfies z(t + T ) = z(t), for all
t . The linearization of (4) around z(t) is a linear, time-dependent delay differential
equation, called the variational equation of the periodic solution,

ẏ(t) = A0(t, η)y(t) +
m∑
i=1

Ai(t, η)y(t − τi), (17)

where the Ai(t, η) are defined as (using again f ≡ f (x0, . . . , xm, η))

Ai(t, η) = ∂f

∂xi
(z(t), z(t − τ1), . . . , z(t − τm), η), i = 0, . . . , m.

The monodromy operator S(t0, T ) of the periodic solution is the operator which
integrates an initial perturbation at time t0 under the variational equation (17) over
an interval of length T . Its (infinite number of) eigenvalues are called the Flo-
quet multipliers and determine the stability of the periodic solution. Because (4)
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Fig. 3. The imaginary part of the rightmost root of the characteristic equation of (3) along
the solution branch (I ∗,G∗) for α = 0.7 and varying τ1 ∈ [0, 300]. The positions of the
Hopf bifurcations are indicated with a ‘o’.

is autonomous there is always a ‘trivial’ Floquet multiplier equal to one which
corresponds to a phase-shift along the periodic solution. The periodic solution is
stable if all other Floquet multipliers have modulus smaller than one. It is unstable
if there exists a Floquet multiplier with modulus greater than one.

When following a branch of periodic solutions as function of a parameter, a
bifurcation occurs when a Floquet multiplier crosses through the unit circle in the
complex plane. Generically, this is a period doubling bifurcation when a multi-
plier crosses through −1, a torus bifurcation when a pair of complex multipliers
cross through the unit circle and a fold or turning point when a multiplier crosses
through 1.

5.1. Numerical methods

The periodic solutions reported in this paper are computed with a shooting based
method, which we briefly explain below. A collocation based method to compute
periodic solutions of delay differential equations is explained in [4].

A periodic solution, uniquely determined by an initial function segment z0 ∈
C([−τ, 0],Rn) and the period T > 0, can be found as the solution of a nonlinear
operator equation, {

r(z0, T ) := Sf (T ; z0) − z0 = 0,
s(z0, T ) = 0,

(18)
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Fig. 4. The real parts of the rightmost roots of the characteristic equation of (3) along the
constant solution branch (I ∗,G∗) for τ1 = 65 and varying α ∈ [0, 1]. All calculated roots
consist of complex pairs, Hopf bifurcations are indicated with a ‘o’.

where Sf (T , z0) is the nonlinear time integration operator of the original equa-
tion (4) which integrates the initial condition z0 over an interval of length T and
s(z0, T ) = 0 is a suitable phase condition needed to remove the translational in-
variancy.

Equation (18) can be solved iteratively using a Newton iteration,[
∂Sf (T ;z0)

∂z0
− I

∂Sf (T ;z0)

∂T
∂s
∂z0

∂s
∂T

]∣∣∣∣∣
(z

(k)
0 ,T (k))

[
�z

(k)
0

�T (k)

]
= −

[
r

s

]∣∣∣∣
(z

(k)
0 ,T (k))

, (19)

z
(k+1)
0 = z

(k)
0 + �z

(k)
0 , T (k+1) = T (k) + �T (k).

The Fréchet derivative of Sf ,
∂Sf (T ;z0)

∂z0
, is the solution operator of the variational

equation (17) around the current approximation z(k)(t).
We can discretize operator equation (19) by representing the function segment

z0 by its value on a discrete set of L mesh points. Let φ ∈ R
N , N = n×L, be the

discrete representation of the function segment z0. The operator
∂Sf (T ;z0)

∂z0
can be

approximated by an N × N -matrix M(T ) with

M(T ) = Discretize

(
∂Sf (T ; Interpolate(φ))

∂φ
Interpolate(·)

)
.
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Fig. 5. The imaginary part of the rightmost root of the characteristic equation of (3) along
the constant solution branch (I ∗,G∗) for τ1 = 65 and varying α ∈ [0, 1]. The positions of
the Hopf bifurcations are indicated with a ‘o’.

Thus, after discretization, (19) is approximated by a high-dimensional system
(involving a non-sparse matrix) of the form[

M(T )−I g

cT d

]∣∣∣∣
(φ(k),T (k))

[
�φ(k)

�T (k)

]
= −

[
r

s

]∣∣∣∣
(φ(k),T (k))

, (20)

When the Newton iteration has converged, M(T ) is an approximation of the mon-
odromy operator and we call it the monodromy matrix. Its eigenvalues approximate
the Floquet multipliers. As a consequence M(T ) has an eigenvalue which approx-
imates the trivial Floquet multiplier at 1. Its distance to 1 is, during computations,
a first check of the accuracy achieved.

Solving (20) leads to an expensive method for computing periodic solutions.
Not only is M(T )(k) a high-dimensional dense matrix whose factorization is costly,
it is also expensive to construct. Indeed M(T )(k) is not known explicitly, instead it
is defined as the discretization of a linear operator. Hence each of its columns can
be found by calculating its action on a unit vector. The construction ofM(T )(k) thus
requires N time integrations of the variational equation (17), which is expensive
for large N [6].
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5.1.1. Newton-Picard method

In [14] and the earlier references [13,12] the Newton-Picard scheme is introduced
to reduce the high cost of constructingM(T )(k) by exploiting its spectral properties.
Let µi denote the i-th largest eigenvalue of M(T )(k) and let p be the number of
eigenvalues greater than a threshold ρ < 1, i.e.,

|µ1| ≥ |µ2| ≥ . . . ≥ |µp| > ρ > |µp+1| ≥ . . . ≥ |µN |.
M(T )(k) is the discretization of a compact operator (when T ≥ τ ) whose eigenval-
ues have zero as their only cluster point. Hence, we expect few large eigenvalues.
This justifies the assumption that p � N . We will see in Section 5.2 that this is
observed in practice. In fact, one could argue that when this assumption is violated,
the discretisation is too coarse for accurate bifurcation analysis.

Let the columns of Vp ∈ R
N×p form an orthonormal basis for the eigen-

space of M(T )(k) corresponding to the eigenvalues µ1, . . ., µp. Let the columns of
Vq ∈ R

N×(N−p) form an orthonormal basis for the orthogonal complement of this
space. We now project system (20) and the unknown �φ onto these two subspaces.
Using the orthogonal projectors VpV

T
p and VqV

T
q , �φ can be decomposed as

�φ = Vq(V
T
q �φ) + Vp(V

T
p �φ) and the projected system is



V T
q (M(T ) − I )Vq V T

q M(T )Vp V T
q g

V T
p M(T )Vq V T

p (M(T ) − I )Vp V T
p g

cT Vq cT Vp d






V T
q �φ

V T
p �φ

�T


 = −



V T
q r

V T
p r

s


 (21)

where, for notational convenience, we dropped the superscript which denotes the
Newton-step

Because Vp is a basis for an invariant subspace of M(T ) and Vq is orthogonal
to Vp we have V T

q M(T )Vp = 0. Because at the periodic solution g corresponds to
the eigenvector of the trivial Floquet multiplier, g converges to the space spanned
by Vp and we set V T

q g = 0. System (21) is now partially decoupled, i.e., we can
first solve the large, (N − p) × (N − p)-system

V T
q (M(T ) − I )Vq(V

T
q �φ) = −V T

q r, (22)

and, then, using its solution, solve the small p × p-system[
V T
p (M(T ) − I )Vp V T

p g

cT Vp d

] [
V T
p �φ

�T

]
= −

[
V T
p r

s

]
−

[
V T
p M(T )Vq

cT Vq

]
V T
q �φ.

(23)
Because of the construction of Vp and Vq , the spectral radius of the matrix of
V T
q M(T )Vq satisfies σ(V T

q M(T )Vq) = |µp+1| < ρ < 1. Hence (22) can be
solved iteratively with a Picard iteration. To avoid the construction of the large basis
Vq ∈ R

(N−p)×(N−p) this iteration can be performed in the original N -dimensional
space which results in,

�φ[0]
q = 0, �φ[i+1]

q = QM(T )Q�φ[i]
q + Qr, i = 0, . . . , ν − 1, (24)
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where a projection with Q = VqV
T
q = I − VpV

T
p is performed using only the

small basis Vp; and where

�φ[ν]
q ≈ Q�φ.

Using this solution of (22), the small p×p-system (23) can be solved for (V T
p �φ,

�T ) with a direct method like Gauss elimination with partial pivoting. The correc-
tion �φ is now found by combining the result of the Picard iteration (24) and the
solution of the reduced Newton equation (23),

�φ ≈ �φ[ν]
q + Vp (V

T
p φ),

hence the name Newton-Picard method.

5.1.2. Convergence and computational costs

In [12] it is shown that the convergence of the Newton-Picard iteration is dominated
by the Picard iteration, which has asymptotic linear convergence with convergence
factor

|µp+1| < ρ < 1.

The total cost for computing a periodic solution is determined by the total number
of iterations and the work in each iteration step.

Each Newton-Picard iteration consists of three parts: computation of the in-
variant basis Vp of M(T ), the Picard iteration (24), and the construction of the
reduced Newton equation (23). The dominant cost, in each part, is the time inte-
grations required (either as matrix-vector products with M(T ) or via integration of
the original equations).

Computing the dominant invariant subspace of M(T ) can be done iteratively
using subspace iteration with projection as discussed in Section 4.1. Each step
of subspace iteration requires pe matrix-vector products with M(T ) (where pe is
slightly larger than p, e.g. pe = p+4). Except for the first iteration, we can use the
subspace calculated in the previous iteration as a starting value and ns , the number
of subspace iterations required in each step, commonly equals 1 or 2.

The Picard iteration (24) requires the calculation of the residual and ν − 1
matrix-vector products with M(T ). Constructing system (23) further requires one
matrix-vector product with M(T ) for the right hand side. The factor M(T )Vp can
be recovered from the last subspace iteration.

Summing up, we conclude that the dominant cost of each iteration equals ns ×
pe + ν+ 1 time integrations. Note that this number does not depend on the number
of discretisation points N = n × L.

5.1.3. Continuation and bifurcation analysis

When following a branch of periodic solutions as function of a physical parameter
η ∈ R, the shooting method can be used as a corrector in a predictor-corrector
continuation algorithm. Starting values φ(0) and T (0) are then predicted from the
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previously computed branch points. Continuation can be started from a Hopf point
or a stable periodic solution found using simulation.

The subspace iteration inside the Newton-Picard method yields approximations
for both a basis of the dominant invariant subspace of M(T ) and the corresponding
eigenvalues. When the iteration has converged these eigenvalues are approximations
of the dominant Floquet multipliers (i.e. the Floquet multipliers larger in modulus
than the thresholdρ < 1). Thus the computation of the relevant stability information
is a natural by-product of the method and bifurcations of the computed solution
can easily be detected.

When the threshold ρ is fixed, one has to allow the size p of the basis Vp to
change. Indeed, new modes can come up during continuation and old modes can go
away. This is one of the reasons to usepe−p extra vectors in the subspace iteration.
If the eigenvalues corresponding to these extra modes have modulus greater than
ρ, the subspace size p is increased. Likewise, when the eigenvalues corresponding
to modes in Vp have modulus smaller than ρ, the subspace size p is decreased.

5.2. Results

Branches of periodic solutions can be computed as a function of different parameters
starting from the Hopf bifurcation points computed in Section 4.3. This allows to
investigate the direction of the bifurcating branches and to monitor their stability.
As branches can turn or one can start from different Hopf points, it is possible to
find stable coexisting solutions which might be missed using only simulation of the
given equations. By comparing consecutive parameter sections one can investigate
how the qualitative behaviour changes in a two-parameter space. We now show
some typical results obtained with the method described above.

Figure 6 shows the amplitude of G(t) along several branches of periodic so-
lutions starting from and connecting Hopf points previously found. Note that for
α = 1, the external system and thus also the dependency on τ1 disappear from
system (3). Hence, at α = 1 there is a constant solution branch as a function of τ1
whose solutions all equal the periodic solution of a healthy patient. The branch of
solutions atα = 0.95 has a qualitatively similar behaviour. More drastic differences
occur for smaller values of α (notice the different scales).

The stability along a computed branch is deduced from a computation of the
dominant Floquet multipliers as depicted in Figure 7. In between the two torus
bifurcations shown in Figure 6 (bottom) is a tiny parameter region where we did
not find any stable steady state or periodic solutions. As shown in Figure 8 this
region grows as α decreases.

The isolated branch of periodic solutions shown in Figure 8 was found using
continuation in α as shown in Figure 9. This branch has four unstable modes when
it emanates from a Hopf bifurcation for large α. As α decreases a complex pair of
Floquet multipliers enters the unit circle at a torus bifurcation. Then a real Floquet
multiplier enters the unit circle at a turning point, a scenario which is repeated at
a second turning point. After the second turning point the branch is stable. The
intersections visible in Figure 9 are a consequence of the projection on the (α, T )-
plane; in the infinite-dimensional state space this branch does not self-intersect.
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Fig. 6. The amplitude of G(t) (the maximal minus the minimal value of G(t), 0 ≤ t ≤ T )
for several branches of periodic solutions along the one-parameter sections α = 0.95 (top),
α = 0.75 (middle) and α = 0.5 (bottom) for varying τ1 ∈ [0, 220]. Stable parts are indicated
with solid lines, unstable parts with dashed lines. Several Hopf bifurcations (◦) and two torus
bifurcations (∗) are visible.

Fig. 7. The modulus of the dominant Floquet multipliers (real (− −) or complex pairs (−−))
along the branch of periodic solutions shown in Figure 6 (bottom, left) for α = 0.5.

Figure 10 shows a phase space projection on (G(t), I (t)) of two coexisting
stable periodic solutions for α = 0.42 and τ1 = 280.

Some information about the computational cost and the achieved accuracy are
gathered in Table 1, for five consecutive continuation points along a branch. Note



Numerical bifurcation analysis of delay differential equations 379

Fig. 8. Coexisting branches of periodic solutions. The minimal value of I (t), 0 ≤ t ≤ T
along branches of stable (−−) respectively unstable (− −) periodic solutions for α = 0.42.
Two turning points, five torus bifurcations (*) and one Hopf bifurcation (o) are visible.

Table 1. For the first 5 computed points of a branch of periodic solutions discretized using
N = 200 discretisation points: number of Newton-Picard iterations, number of subspace
iterations, basis size p, initial and final error and total number of time integrations needed.

Point number 1 2 3 4 5

Newton-Picard iterations 5 4 4 4 4
Subspace iterations 14 6 7 6 6
Basis size p 10 10 10 10 10
Initial error ‖Sf (T

(0), φ(0)) − φ(0)‖/‖φ(0)‖ 1e-3 4e-4 3e-5 6e-5 1e-4
Final error ‖Sf (T

∗, φ∗) − φ∗‖/‖φ∗‖ 5e-16 5e-16 3e-16 3e-16 6e-16
Time integrations 125 85 95 85 85

that for the first point a larger number of subspace iterations is required because no
initial approximation for the basis Vp is available. During these first iterations the
subspace grows automatically until the final basis size is 10. For the other points,
the algorithm exploits the available data from the previously computed solution.

In our tests we used L = 50 respectively L = 100 grid points to represent the
delay segment. The first one was found sufficient to reproduce the dynamics, the
second to obtain accurate positions of bifurcation points. A fine grid was needed
because in this application the delay is large compared to the natural time scale of
the system. The cost of the our shooting method, expressed as total number of time
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Fig. 9. The period along a branch of stable (−−) respectively unstable (− −) periodic solu-
tions for τ1 ≈ 283.3. The branch starts in a Hopf bifurcation (o) at α ≈ 0.46, undergoes a
torus bifurcation (*) at α ≈ 0.40 and two turning points (α ≈ 0.10, α ≈ 0.42).

Table 2. Cost of full Newton iterations: number of delay equations n, number of grid points
L, size of N , size of the monodromy matrix M(T ), number of time integrations required for
one full Newton iteration (nIVP(1 FNI)) and for two full Newton iterations (nIVP(2 FNI)).

n L N M(T ) nIVP(1 FNI) nIVP(2 FNI)

2 50 100 100 × 100 200 300
2 100 200 200 × 200 400 800

integrations, is independent of the number of grid points L used. Table 2 gives the
expected costs of a full Newton iteration scheme. Comparing Tables 1 and 2 we can
conclude that the Newton-Picard approach considerably reduces the computational
costs, even for reasonable values of L and n.

6. Physiological and medical implications

We now interpret the results of our analysis of model (3) to study the efficiency of
external systems for glycaemia regulation. We show how, by using the numerical
results presented so far, interesting medical consequences can be derived. In par-
ticular, we show that the external system is unable to restore normal glycaemia. We
also show how our numerical results can help design a therapeutic intervention.

Typically, external regulation systems have a total reaction time τ1 between 10
and 40 minutes. To evaluate the efficiency of these systems, we look at the stable
solution of system (3) when 10 ≤ τ1 ≤ 40 and 0 ≤ α ≤ 1, and compare it with
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Fig. 10. Coexisting stable periodic solutions for α = 0.42 and τ1 = 280.

the stable solutions of system (3) corresponding to a healthy subject (i.e. when
τ1 = 0 or α = 1). We then examine whether the difference in those profiles can
be harmful to the patient, as chronic, abnormal glycaemia often leads to secondary
complications of diabetes.

We thus compare the period and profile of the corresponding periodic solutions,
along with their stability properties, as measured by the Floquet multipliers. In Fig-
ure 6, when τ1 has a value between 10 and 40 minutes, we note that the amplitude
of G(t) (as well as the amplitude of I (t) in Figure 11 (top)) of the corresponding
periodic solution are greater than those of the reference solution (τ1 = 0). This
means that we can find, in the blood and during one cycle, a higher glucose con-
centration and, at the same time, a higher insulin concentration than in a healthy
subject. Also, it can be seen in Figure 11 (bottom) that the period of the periodic
solution increases noticeably when τ1 increases. With these conditions, the external
glycaemia regulation is obviously not so efficient, since the normal profile and that
of diabetic may differ by as much as 20% with respect to periodicity and by more
than 100% with respect to amplitude. Moreover, these differences in concentra-
tion increase markedly when α takes smaller values (i.e. when considering a more
affected patient).

There is nevertheless something worth observing. If we let T0 be the period
of the periodic solution when τ1 = 0, then, when system (3) is evaluated on the
periodic solution we have G(t + kT0) = G(t), for all k ∈ Z. Thus, in particular,
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Fig. 11. The period T and the amplitude of I (t) (the maximal minus the minimal value of
I (t), 0 ≤ t ≤ T ) along a branch of periodic solution for α = 0.5 and varying τ1 ∈ [0, 220].

G(t − T0) = G(t) and f1(G(t)) = f1(G(t − τ1)) for τ1 = T0. This means that
the periodic solution for τ1 = 0 has exactly the same profile as the one for τ1 = T0
(as can be seen in Figure 6 for different values of α). Hence we can increase τ1
artificially up to T0 ≈ 127.85 min in order to achieve a “healthy” solution by
means of the external system. But, although the profile is the same, the stability
may be different because, when the system is perturbed from the periodic solution,
f1(G(t)) no longer equals f1(G(t − τ1)). So, our observation remains true only
as long as the periodic solution for τ1 = T0 has the same stability as the reference
solution.

What can our numerical results tell us about the stability of the periodic solution
at τ1 = T0 when α varies? Figure 12 shows the modulus of the dominant Floquet
multipliers over the branch of periodic solutions with τ1 = T0 ≈ 127.85. As
described above, all these solutions are identical to the periodic solution at τ1 = 0
which is the solution corresponding to a healthy subject. The stability however is
lost through a torus bifurcation at α ≈ 0.475. (Compare with Figure 8, where,
at α = 0.42 < 0.475 and τ1 ≈ 127.85, there is no stable periodic solution.) The
model thus indicates that there are at least two types of patients. Those for which the
external system cannot bring the glycaemia to normal values (corresponding to α

less than 0.475): for these patients, the reaction time τ1 renders the external system
inefficient. For the other category of patients (for which α is greater than 0.475),
the external system can be made to bring, after proper tuning of τ1, the glycaemia
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Fig. 12. The modulus of the dominant Floquet multipliers (real (− −) or complex pairs
(−−)) over a branch of periodic solutions for τ1 = T0 ≈ 127.85.

in a normal range. This dichotomy between two types of patients predicted by the
model is reminiscent of the difference made in the medical literature between type
I and type II diabetes.

The validity of the preceding remark (on choosing τ1 equal to T0) is further
limited by our modeling hypotheses. First of all, we have to be able to model the
external system with the term (1 −α)f1(G(t − τ1)); this means we must be able to
construct f1 and to measure α. Then, the term which represents food intake (i.e.Eg)
should not depend on time, otherwise the system would become non-autonomous.
Still, we believe the insight gained is an interesting starting point which might, e.g.,
be complemented by a sensivity analysis to the assumptions made.

7. Conclusion

In this paper, we have described a number of numerical methods for the continuation
and bifurcation analysis of steady state solutions and periodic solutions of systems
of delay differential equations with an arbitrary number of fixed, discrete delays.

These algorithms have been used to analyze a mathematical model for the
evolution of the blood-glucose and insulin concentration in a diabetic patient subject
to a system of external assistance. This model consists of a set of two differential
equations with two delays. We analyzed the local stability of its unique steady
state solution and compared our numerical results with analytical ones. Whenever
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the steady state solution undergoes a Hopf bifurcation, an emanating branch of
periodic solutions exists. We computed several branches of both stable and unstable
periodic solutions and monitored their stability as determined by the dominant
Floquet multipliers. We showed the occurrence of a number of bifurcations and
illustrate the cost-effectiveness of our approach. The numerical analysis of the
model allows us to infer the existence of two categories of patients. Those for
which the external system is globally inefficient, and those, less severely affected,
for which the external system need to be fine-tuned to restore normal levels of
glycaemia.

Although our analysis should be complemented with an investigation of the
sensitivity to the assumptions made, the results clearly give insight into the dynam-
ical behaviour of the modeling equations. We believe a combination of analytical
and numerical methods can be very useful to investigate and direct the modeling
and control of physiological problems.
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d’insulinothérapie. Journ. Ann. Diabét. Hotel, pp 111–122 (1992)

25. Sturis, J., Polonsky, K.S., Mosekilde, E., Van Cauter, E.: Computer model for mech-
anisms underlying ultradian oscillations of insulin and glucose. Am. J. Physiol., 260,
E801–E809 (1991)

26. Volterra, V.: Variazioni et fluttuazioni del numero d’individui in specie animali con-
viventi, R. Comitato Talassografico Memoria, 131, 1–142 (1927) (Translation appears
in Scudo and Ziegler, 1978)


