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Abstract. Inthispaper we examine spatio-temporal pattern formation in reaction-diffusion
systems on the surface of the unit spherein 3D. We first generalise the usual linear stability
analysisfor atwo-chemical system to thisgeometrical context. Noting the limitations of this
approach (in terms of rigorous prediction of spatially heterogeneous steady-states) leads us
to develop, as an alternative, a novel numerical method which can be applied to systems of
any dimension with any reaction kinetics. This numerical method is based on the method of
lines with spherical harmonics and uses fast Fourier transforms to expedite the computation
of the reaction kinetics. Numerical experiments show that this method efficiently computes
the evolution of spatial patterns and yields numerical results which coincide with those
predicted by linear stability analysis when the latter is known. Using these tools, we then
investigate the role that pre-pattern (Turing) theory may play in the growth and development
of solid tumours. The theoretical steady-state distributions of two chemicals (one a growth
activating factor, the other agrowth inhibitory factor) are compared with the experimentally
and clinically observed spatial heterogeneity of cancer cellsin small, solid spherical tumours
such as multicell spheroids and carcinomas. Moreover, we suggest a number of chemicals
which are known to be produced by tumour cells (autocrine growth factors), and are also
known to interact with one another, as possible growth promoting and growth inhibiting
factors respectively. In order to connect more concretely the numerical method to this appli-
cation, we compute spatially heterogeneous patterns on the surface of a growing spherical
tumour, modelled as a moving-boundary problem. The numerical results strongly support
the theoretical expectations in this case. Finally in an appendix we give a brief analysis of
the numerical method.

1. Introduction

Since Turing's seminal paper in 1952 [74], reaction-diffusion (RD) pre-pattern
theory has been proposed as a mechanism to describe spatio-temporal pattern for-
mation in many biological systems. Specific applications of the theory (to name
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but afew) can befound in processesin devel opmental biology, population biology,
ecology and interacting chemical systems. It is not our intention here to discuss
these applications — for a comprehensive account of the theory and references to
many other applications, the interested reader is referred to the books [6], [40],
[41], [49]. However, in spite of its apparent success in explaining the appearance
of spatial heterogeneity in many biological systems, there are still some serious
drawbacks with the theory. For example, there is the so-called problem of robust-
ness — the solution patterns obtained from RD systems (with zero flux boundary
conditions) are known to be sensitive to changes in the initial conditions and the
size and shape of the domain — and in many cases there is aso the problem of
actualy identifying specific chemicals. Moreover, much of the analysis of reac-
tion-diffusion theory in the mathematical biology literature has been carried out on
simple domains in one and two-space dimensions.
The aims of this paper are asfollows:

(i) to develop an appropriate general numerical method for examining reaction-
diffusion equations on the surface of a sphere.

(if) to apply the reaction-diffusion pre-pattern theory to a suitable problem on a
spherical domain, that of an avascular solid tumour; to suggest actual chemi-
calsknown to be produced by tumours (autocrine growth factors) which could
giveriseto the pre-patterns; to compare the predicted pre-pattern results with
those computed numerically and examinetheir relevanceinthelight of clinical
and experimental observations.

(iii) to model the problem of a growing solid tumour (using a moving boundary
formulation of the problem); to analyse numerically the system of reaction-dif-
fusion equations on a growing, spherical domain; to discuss the implications
of the results in terms of the observed patterns of invasion and metastasis of
cancers.

Since much of the analysisin the current theoretical biology literature concern-
ing the application of reaction-diffusion systems (pre-pattern theory) to biological
problemsis based on linear stability theory, it does not give a rigorous mathemat-
ical prediction of the spatially heterogeneous steady-state patternsin RD systems
(cf. [49]). Moreover, by its nature, this analysis has to be developed separately
for each set of reaction kinetics. Numerical simulations on the other hand may be
applied to any kinetics. However, up until now they have mostly been applied to
RD systems on simple Euclidean domains in 1D or 2D, such as an interval or a
square, and 3D problems have been tackled only at the expense of considerable
computing power [28-32]. The nature of the application which we have in mind
here (solid tumour growth) dictates that the natural spatial domain can be taken
to be a closed 2D manifold in 3D space. Thus in this paper we develop such a
numerical method for the simplest such manifold — the surface of the unit sphere
S = {x € R®: |x] = 1}. While this choice is convenient for our method, it is
still of great relevance for applications. Our method can in principle aso be ex-
tended to more general surfaces although this would involve additional numerical
work. As we shall see, our numerical method provides a fast solver for this class
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of RD systems and presents a considerable improvement over existing technology
for such problems (cf. [43]).
The generic reaction-diffusion system which we will analyse numerically in
this paper is written:
u; = DALU+f(u) (1.2)

on the space-timedomain (x, ) € S x [0, 00), where (u1, ..., us)T = u = u(x, r)
isavector (for example, of chemical concentrations such as growth factors), D =
diag{d1, ..., d;} isadiagona matrix of positive diffusion coefficients, A, isthe
L aplace-Beltrami operator:

1 (9 (. ou 1 9%
Aju=—--131—(9N0— |+ ——= ¢,
sinég | 96 00 sing 9¢2

andf : R — R isa(nonlinear) vector-valued function representing the reaction
kinetics (cf. [49]). We assume that f is autonomous, that is,

fwx, 1) =fu, 1), &, t)eS x][0,00).

Thenumerical experimentsin thispaper arerestricted to the special two-species
case
Ur = A*M + J/f(u, U)v

vy =dAv+ygu,v), 12

withd, y given positive parametersand f, g given functions, but in fact the method
applies equally well to any number of chemica species. In general system (1.1)
arisesnaturally in studies of pre-pattern formation in biological systems. Thereitis
of interest to study the stability of spatially homogeneous steady statesof (1.1) with
respect to the diffusion represented by DA, u, and in particular to identify spatial
patterns which evolve in practice from unstable (in the Turing sense, defined in the
next section) homogeneous steady states.

Our numerical method for (1.1) consistsof aclassical method of linesapproach,
with the spatial dependence modelled using surface spherical harmonics. The re-
sulting system of ordinary differential equationsis solved by a stiff solver —inthis
case ODE15s from the MATLAB ODE Suite, which is based on numerical differ-
entiation formulaeof order 1 to 5 [62]. The exponential (in space) convergence
of spherical harmonic approximation means that we have to solve only relatively
small systems of ordinary differential equations (typically of order 100 in size)
and simulations of the special case (1.2) took times of the order of minutes on an
up-to-date platform. The method of lines, although simple and popular, can be ex-
pensive, especialy if the numerical realisation of thereaction kinetics(f in (1.1)) is
complicated. The chief novel feature hereisthe fast implementation of the kinetics
using Fast Fourier Transforms (FFT), and this is the main ingredient leading to
reasonabl e run times achieved by our code. We test our code by verifying that the
numerical resultsfor (1.2) coincide with the predictions of linear stability anaysis,
when thisis known.

Having developed a suitable efficient numerical method for (1.1), we turn our
attention to applying pre-pattern theory to the growth and development of solid
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tumours. In this case, many of the problems associated with pattern formation
in reaction-diffusion systems (for example, robustness of patterns, identification
of chemicals) are absent and the modelling is an extension of the work of [12].
Concerning the appropriateness of the application of this theory to solid tumour
growth, we note that; (i) there is a definite observed spatial heterogeneity of solid
tumoursin terms of regions of cell proliferation [5, 24, 35, 51, 61, 77]; (ii) thereis
aknown involvement of specific chemicals, or cytokines, produced by the tumour
cells themselves (autocrine growth factors) [69], which (@) have opposite effects
on cancer cellsin terms of proliferation (stimulatory or inhibitory) and (b) interact
with each other [10, 13, 17, 21, 22, 26, 36], [55]-{57], [58], [59], 64, 66, 68, 78];
(i) in the case of solid tumour growth there is an identifiable transition between
two different growth phases (the avascular growth phase and the vascular growth
phase) in which there is a clear domain (size)-dependence; (iv) in terms of scale,
the growth of the avascular nodules occurs at a scale of up to a few millimetres
in diameter, giving a scale of tenths of millimetres for the width of a “patch” of
peak concentration of chemical (cf. actual in vitro experiments of [16]); (v) there
is a certain relationship/correspondence between cellular events in developmental
processes (where there have been many previous applicationsof pre-patterntheory)
and cancer (in some sense, cancer is development which is out of contral).

Finaly, in order to model the problem of a growing tumour more realistically,
we apply the theory in a novel manner to a problem on a growing domain, using
amoving-boundary formulation of the problem. The growing tumour is modelled
as a sphere of radius R(r), where R’(¢) denotes the rate of growth of the tumour,
assumed to be spherically symmetric (cf. [7,8,11] and referencestherein). The pre-
dictions of alinear stability analysisin this case indicate that as the tumour grows
and the domain becomes larger, higher order modes should become excited. This
in turn should lead to different spatial patterns appearing at different times. Nu-
merical simulations carried out on the time-dependent domain S(¢), the surface of
the sphere of radius R(¢), confirm this analysis, with different, higher order modes
being excited astime increases and the domain becomes|arger. This producesa se-
riesof “dynamic” pre-patterns of chemical concentrationswhich may, inturn, help
to explaintheclinically observed variationin cellular heterogeneity from cancer to
cancer and individual to individual.

The layout of the paper is therefore as follows. In Section 2 we give a brief
description of the linear stability analysis as applied to Turing-type reaction-diffu-
sion systems. In Section 3 we present our (approximate) numerical scheme for the
system (1.1) and our strategy for computing the reaction kinetics. In Section 4 we
test the numerical scheme on a particular reaction-diffusion system with specific
kinetics (Schnakenberg kinetics) and we show that the numerical results coincide
with the theoretical predictions in this case. In Section 5, we describe the novel
application of equations (1.2) to the modelling of asolid spherical tumour (of fixed
size) just before invasion of its surrounding tissue occurs. We then apply the theory
and the numerical method to the case of a growing domain and simulate the actual
growth of asolid spherical tumour. Concluding remarks are made in the discussion
section and finally in an appendix we present abrief error analysisfor our numerical
method.
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2. Linearised stability theory

Thereaction kinetics governing ageneral reaction-diffusion system may either bea
pure or cross activator-inhibitor mechanism [18,48]. The distinction between these
two types of kineticsliesin whether the self-activating chemical (cf. [78]) either ac-
tivates (pure) or inhibits (cross) the second species. Thereisexperimental evidence
which suggests both mechanisms may be applicable in the case of growth factors
secreted by tumour cells (cf. [10,17,64], [22,50,57,68]). For illustrative purposes
only, here we assume that the kinetics are a cross activator-inhibitor mechanism,
and we denote the concentration of the two chemical species by u and v.
For (1.2) ingeneral, ahomogeneous steady stateisdefinedtobeapair (1o, vo) €
R2 such that
f (uo, vo) = g(uo, vo) = 0. (2.1

Inlinear stability analysis, (1.2) is said to exhibit “diffusion driven instability”
if (1o, vo) is alinearly stable solution of (1.2) when diffusion is neglected, but
unstable otherwise. The ranges of values of the parameters y and d for which such
aphenomenon can arise (the so called “ Turing space”) can befound in [49, p 387].
In the particular case under consideration in this paper, due to the spherical geom-
etry, the eigenfunctions of the diffusion operator A, can be chosen as the spherical
harmonics:

Y (x) = ¢ Py (cosO) expime), (0, ¢) € [0, 7] x [0, 27], 22)
n=01L12...,|m| <n, '

where X = o(0,¢) = (sinfcos¢, sindsing, cosd) € S, P are the Asso-
ciated Legendre functions and ¢} is chosen to be the normalising factor: ¢! =

(2041 (n—mD! |4 ;
'}1—” CEETINR It iswell known that

ALY = —k%y", (2.3)

where k2 = n(n + 1). These properties of A, can be combined with the general
stability theory in [49, §14.3] where, in particular, it is shown that diffusion-driven
instability can occur in (1.2), provided the values of the partial derivativesof f and
g evaluated at (uo, vo) satisfy the inequalities

fu+gv<0» |A|>01
dfu+g >0, (dfu+ gv)?—4d|A| > 0,

Ju fo
8u 8v

arange of values of d for which instability may occur and the unstable modes are
the spherical harmonics (2.2) with |m| < n, provided n liesin the range

YL(fur for 8ur 80od) < k2 =n(n+1) < yM(fur for 8u» G- d) (2.5)

where

(2.4

with A denoting the Jacobian matrix, thatis A = [ ] Theseinequalitiesgive

— [dfu + gv] — {ldfu + gv]2 - 4d|A|}1/2

L )
2d

(2.6)
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and

du v du v2_4dA 12
[f+g]+{[f26-:g] A" 27

So, if there exists at |east one n satisfying (2.5), then thereisapossibility that a
trajectory starting from arandom perturbation of (g, vo) will evolveinto aspatially
heterogeneous pattern generated by the spherical harmonics Y, , [m| < n.

The above arguments are the main source of many results concerning spatial
pattern formation over recent years, see, for example, [12], [49]. For the purpose
of testing this theory it is useful to note that we can isolate a specific mode for
“excitation” by choosing the parameters y and d so that the width of the interval
[yL,yM] issufficiently narrow so that (2.5) is satisfied for a unique n. Then the
corresponding spherical harmonics are isolated unstable modes. We shall return to
thisin &4.

Following [12] we can apply thistheory to case of the interaction of two chem-
icals on the surface of a solid spherical tumour. As stated previously, we assume
that the reaction kinetics are of across activator-inhibitor mechanism, that isto say,
regions of high concentration of the activator (or growth promoting factor, GPF)
correspond to regions of low concentration of the inhibitor (or growth inhibitory
factor, GIF) and vice versa[18]. Under the assumption that the growth factors are
produced only by the live cells at the surface of the tumour, then the problem is
essentially a 2-dimensional one on the spherical surface. The eigenfunctions are
simply the surface harmonics Y, and the wavenumbers in this case are given by
k? = n(n + 1). lllustrations of the application of this linear stability analysis are
givenin[12].

Although this theory is not rigorous, it is widely known to produce results
which are consistent with applications ([12, 48, 49]). Its main disadvantage is that
it dependson analytictechniquesand thusisrestricted to reasonably simpledomains
and tractable kinetics. Numerical simulations, on the other hand, are much more
generally applicable and so we now introduce our numerical method for simulating
(1.2).

M =

3. The spectral method of lines

We shall describe our numerical method in the context of the general evolution sys-
tem (1.1). For integer N > 1, we let xn denote the space of spherical harmonics
of degree <N defined on the unit sphere S. An orthonormal basisfor yy is

(:0<iml<n, n=0..N-1), (3

and so dimyy = NZ2. (Here orthonormality is with respect to the usual L» inner
product on S, that is, (v, w) = [ vw and [|v]lL, = (v, v)V/2)

The solution u of (1.1) isavector valued functionu : S x [0, co) — RS. Let
L, denote the space of square integrable functionson S, and let (L2)* and (xn)*
denotethes—fold Cartesian productsof L, and x . Toapproximate (1.1) in (xn)*,
introduce the inner product on (L2)*:
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V) =Y (i, vp). (32
i=1

Fori =1,...,s let g denotetheith standard basis vector in RS. Then the set
{(vJ'ee, i=1,...,s, Im|<n, n=0,...,N =1},

isanorthonormal basisfor (). Asisusual inthemethod of lineswe approximate
u(x, ) in (1.1) by

N-1

unx, 0 =Yy > UrnY ), (33)

n=0 |m|<n
where U : [0, co) — R*. Equivalently,

s N-1

UG = Y (UMY (e (34)

i=1 n=0 |m|<n

A standard method for determining the unknown time-dependent coefficients
U (t) € R isto apply the Galerkin methodn spaceto (1.1), that is, to require that

((Un)r, V) = (DAUN, V) + (F(un), V) (3.5

foralvy € (xn)*. Anequivalent statement isto require that (3.5) holdsfor all vy
of theformvy = Y"e;, j=1,...,s; |m|<n; n=0,...,N—1, which,
using (2.3), is equivalent to the s N2—dimensional nonlinear system of odes:

(UZ’); = —djn(n+1) (U?)j + (f,-(uN), Y;,")
j=1....s ml <, i=0...,N—1 (3.6)

In the method of lines approach, (3.6) is solved using a (stiff) ode solver to return
the solution to appropriate tolerance. Thisisastandard method and will work well
provided we have an efficient method for computing the quantities

(fj(un), Y (37

appearing on the right hand side of (3.6).

Since uy isgiven by (3.4) and sincethe Y, are orthonormal, (3.7) istrivial to
compute if f isan affine map on R*. In the nonlinear case which we are interested
in here, this computation is no longer trivial. In the special case when f;(u) isa
low order polynomial in u, there are reasonable ways of computing (3.7) analyti-
cally using spherical harmonic expansions of products of spherical harmonics (for
example, using “Wigner symbols’ as discussed in [19]). Although higher order
polynomials can in principle be handled by iterating this approach, in practice this
leads to ever more complex analytic formulae and does not generalise to the case
when f is non-polynomial.
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Instead we propose a more general method by computing (3.7) using a suitable
quadraturerule. Theresulting method isthen fully discrete and can be applied with-
out increased complexity to any nonlinear map f. Moreover, aswe shall seein the
Appendix, under reasonabl e assumptionsthe resulting fully discrete method hasthe
sameexponential convergencerateas N — oo, ascan be proved for thetrue Galer-
kin scheme (3.5) for linear model problems, and so thereisno a priori disadvantage
in the replacement of (3.7) by a suitably accurate quadrature expansion.

Our quadrature scheme for (3.7) is based on the following standard rule:

M M2

2
/w ~ 2D wpl (@O, b)), (38)
S qg=1p=1
where M > 2isan eveninteger, w,, andcosf,, p=1,..., M /2 arethe Gauss-

Legendre weights and nodeson [—1, 1] and ¢, = 2gn/M, ¢ =1,...,M.The
rule (3.8) requires M?/2 evaluations of ¥ and is exact when v is a polynomial of
degree M — 2 on S (see, for example, [65, p. 41]). Using (3.8), we define adiscrete
inner product
on M M/2
w0y = =2 DD wpn (@ Op, )V O, $9)) (39)
qg=1p=1
which is well-defined for continuous «, v. From this we build the corresponding
discrete version of (3.2):

u, vy = Z(ui, VM, (3.10)

i=1
which leads to the discrete Galerkin method for (1.1):
((un)r, V) = (DAuy, vy) + (F(UN), VNI (311)

and yields (instead of (3.6)), the fully discrete s N2—dimensional nonlinear system
of odes:

(u;?)j = —djii(ii + 1) (u;?)j + (i, v
j=1...,s, Iml<n, n=0,...,N—-1 (3.12)
We shall see in the Appendix that M should grow modestly with N in order to
preserve the accuracy of the method (3.11). In particular if f isapolynomia (asis
the case in our applicationsin 884,5), then M = O(N) will suffice. The efficient
solution of (3.11) using a suitable stiff ODE solver (in our experiments the MAT-
LAB ODE15s) then requires the fast computation at each time t of the discrete
inner products
i oy M M2 _
(fiwn.vn) =2 203wy (0 O 8). DY €. ). (319
q=1p=
for each 72, m and j, under the assumption that the coefficients (U)"); in (3.4) are
given. This requires essentially three steps.
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e Step 1.Evauation of the right-hand side of (3.4) a x = o (6,, ¢4) for each
p=1...,M/2,q=1,..., M, henceobtaining uy (o (6, ¢g), t).

o Step 2Evauation of f;(uy(c(6p,¢4),1)) foreachj =1,...,s, p=1,...,
M/j2, g=1,..., M.

e Step 3Computation of (3.13) for each 72, m and ;.

To examine the complexity of this computation as N increases, let us assume (as
mentioned above) that M = O(N) and s isfixed. Sincef isagiven function in-
dependent of N and M, each evaluation of f costs O(1) operations and Step 2
costs O(M?) = O(N?) operations. Direct implementation of each of Steps 1 and
3 costs O(N*) operations but fortunately this can be reduced by exploiting the
structure of these sums. Considering Step 1 first, the simplest reduction is obtained
by combining (2.2) and (3.3) to obtain

N-1

Un (0 @p. ¢g). 1) =D 1 D Ut cpt PI"(cos,) explimey) -

n=0 | |m|<n

Theinner sumscan becomputed simultaneously forg € {1,..., N}in O(N log N)
operations using FFT. There are N terms in the outer sum and the result must be
computed for each p, resulting in O(N3log N) operations. Using an analogous
decomposition of (3.13), the sum over ¢ can be handled similarly so that the total
complexity of Step 3 can also bereducedto O (N3log N). Thisisthe method used
in the present work and it returns quite reasonable computation times, as we shall
see. Since approximation with spherical harmonics is exponentially convergent,
we shall seethat values of N considerably less than about 20 are often sufficient to
obtain the required spatial accuracy. We note however the very interesting recent
Ph.D. thesis[42] which obtainsamethod for Steps 1 and 3 which areasymptotically
faster than O(N3) and can even achieve O(N2log? N). However this method is
faster than the simple FFT method discussed above only for considerably higher
values of N than those used and required in our numerical method. So we do not
employ these more sophisticated techniques here.

4. Numerical experiments on the Schnakenberg system

In this section, we demonstrate the effectiveness of our numerical scheme in the
particular case of the Schnakenberg systemon S x [0, co):

uy = Au~+yfu,v) = A*u—l—y(a—u+u2v), 4.0

vy =dAyv+ ygu, v) =dA*v+y(b—u2v), 4.2
wherea, b, d, y areadl positive parameters. For al d, y > 0 the positive spatialy
homogeneous steady state (19, vo) is given by:

b
uoX) =ugp=a+>=b, UO(X)ZU():m, XeSs. (43)

At the steady state (1o, vg), we then have
fu=G-a)/(b+a), fi=@@+b?=-g, gu=-2b/(a+b). (44
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Applying the linearised stability theory outlined in 82 to this case shows that, if
b > a, then there exist wavenumbers k2 = n(n + 1) such that the corresponding
spherical harmonics Y, |m| < n are unstable modes of (4.1)-(4.2) (linearised
about (4.3)), provided

yL <k <yM, (4.5)
where
_[db—a) = (@+b)°] —{[db—a) — (a + b)3]2 — 4d(a + b)}1/?
2d(a + b) ’
(4.6)
and
o — [db—a)— (a+ b3 +{[db—a)— (a+ 1))3]2 — 4d(a + b)Hy1/?

2d(a+b)
(4.7)
In this section we validate our numerical method by showing that it is consistent
with the linearised stability theory for (4.1)-(4.2).

In order to focus our numerical experiments we first note that in the linearised
theory, we can select a specific unstable wavenumber k2 to “excite” by choosing
y so that the width of theinterval [y L, y M] in (4.5) is centred on k2 and narrow
enough to contain only that wavenumber. Then we may expect that the eventual
inhomogeneous steady state will berichinthemodesY,” , |m| < n for that partic-
ular value of n. More precisely, it is shown in [49, p. 384] that for fixed a, b with
b > a, thereisacritical value of d, namely

N (fugv — 2fvgu) + \/(fugv - 2fvgu)2 - fuzgf
= 12 ,
with £, g., fy and g, given by (4.4), for which unstable modes are possibleif and

only if d > d.. Moreover when d > d. and d is sufficiently close to d., then by
setting

d, (4.9)

o 2dk? 2d k>

S defut g deb—a)/(b+a)—(a+b)?]
for any chosen k2, we can ensure that (4.5) contains the single wavenumber k2.
Thisgivesaconvenient class of problemswhich can be used to compare numerical

simulations with the results predicted by linearised stability theory. In al of our
numerical experiments we set

Y =7 (4.9)

a=02, ad b=1,

which, from (4.3), yieldsvalues of ug = 1.2 and vo = 0.69. We note that the above
choice of values for the parameters a and b is (in the absence of any experimental
data) arbitrary. However, these values then enable us to calcul ate the critical value
of d, which from (4.8) yields d. = 17.0056. Choosing d just greater than d. and
an appropriate value of y from (4.9) then provides us with a set of parameter val-
ues which can be expected to ensure the existence of unstable modes and hence
spatially heterogeneous steady states.
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We approximate the solution (u, v)” of (4.1)<(4.2) using the method of lines
outlined in §3. With aslight abuse of the notation in §3, we express the numerical
solution as

N-1 n N-1 n
uN (G0 =Y Y UTOYI0, o)=Y Y VIEOYX).
n=0 m=—n n=0 m=—n
(4.10)
For conveniencewe shall order thebasisof xy asY$, ¥, 2, ¥9, vi, ..., vy 2,

YJC’jll. The coefficients of these functions in (4.10) are vectors with N2 compo-

nents which we write as U(r), V(t) € RV 2, with the corresponding ordering, that
is, U(r) = (U1(r), U2(2), ....., Uyn2(t)) where U1 (1) isthe coefficient of Y(S’ and so
on. We use this notation in some of the figures bel ow.

In the following four experiments, unless specified, wetook N = 8, so that the
system of ODEs (corresponding to (3.12)) has dimension 2N2 = 128. In this case
we set rol = 10~4, where rol is the applied tolerance for the ODE solver used to
integrate (3.6). Thisis one of afamily of parameter choices which we shall refer
to later in (4.12). Because the Schnakenberg kinetics are polynomials of degree
<3in (u,v), we chose M = 4N in the quadrature rule (3.8). In the Appendix
this choice is shown to be sufficent for superalgebraic convergence of the method.
When integrating the ODE system arising from the method of lines, we define a
steady state to have been reached at time ¢ if, for each j, the absolute value of
the difference between successive values of U; (1) @t =ty — t islessthan 108
for r = 0,0.2,0.4.,0.6,0.8, with an identical check on V;(z). We checked this
criterion at time intervals of length 10 and stopped when it was satisfied.

In Experiments 1-4 below, the initial conditions which we took consisted of
small random perturbations of the order of 104 of the homogeneous steady state
(uo, vo) = (1.2, 0.69), that is

un(x,0) = uo+ Y0 g Son__, UMY (x),
(4.11)

vy (X, 0) = vo+ Y0 5 Some, V()Y (X),

where |[U™(0)| < 10~%and |V/"*(0)| < 10~4fordln =0,..., N —1and |m| < n.
A typica set of the 64 coefficients (U1(0), U2(0), ..., Usa(0)) used as an initial
perturbation is shown in Figure 4.1.

Note that throughout the paper we choose the perturbation coefficients U, (0),

V" (0) to bereal and to satisfy the symmetry relationsU* = U, " and V)" = V,; ™
forall 1 < |m| < n. Thisensuresthat the initial conditions u y (X, 0) and vy (X, 0)
are real-valued functions. The imaginary parts of uy (X, t) and vy (X, t) in (4.10)
then remain negligible (of the order of 10~9%) throughout the integration of the ODE
system arising from the method of lines (3.6) applied to (4.1), (4.2).

Experiment 1. In the first experiment we studied excitation of the modes of
degree n = 2 (wavenumber k2 = 6), comprising span{Yy" . |m| < 2}. First we
setd = 15 < d,. and chose y = y, asin (4.9) with k2 = 6. For several different
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Fig. 4.1. Figure showing the values of the components U;(0), j = 1, ..., 64 used in the
initial conditions as a small random perturbation of .

sets of small randomly perturbed initial conditions, the numerical method obtained
(ug, vo) astheresultant steady state, thus demonstrating its stability in this case, as
predicted by the linear stability analysis.

Next wesetd = 18 > d, and y = y., again with k2 = 6. In this case then
k% = 6 is the only wavenumber satisfying (4.5) and so we expect the resulting
steady state to be rich in the corresponding modes of degree 2. With the ordering
described above, the components of u y and vy in the direction of these modes are
Uj(), V;(t) for j =5,6,7,8,9. Aninteresting question was whether the excite-
ment was only around these indices as a steady state evolves. In fact, our numerical
experiments show this exactly to be the case. Figure 4.2 shows the plots of the
precise components which are excited at various times during the numerical simu-
lation. Aswe see from the results of Figure 4.2, no substantial excitement happens
until about time ¢+ = 15, but begins to occur in the components j = 5,6, 7, 8,9
and becomes more substantial at about # = 20. (Note that the homogeneous steady
stateitself is composed completely of the constant mode j = 0.) These remain the
dominant modes of excitement until an inhomogeneous steady state is reached, at
about r = 50.

Plots of the corresponding spatially heterogeneous steady states ug(x, 50) and
vg(X, 50) are given in Figure 4.3. These plots show the predicted heterogeneous
concentration distributions of each chemical u and v on the surface of the sphere
obtained from the excited modes of Figure 4.2. Note that regions of high u values
correspond to regions of low v values and vice versa.

To demonstrate that the features of ug(x, 50) and vg(x, 50) are not artifacts
of our numerical method we first added a small random perturbation to ug(x, 50)
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Fig. 4.2.Experiment 1Results from anumerical experiment attempting specific excitation
of the n = 2 modes corresponding to the functions Y;". The graphs show the values of the
coefficients U, (¢), plotted against j, j = 1,..., 64 for each spherical harmonic at times
t = 15, 20, 30 and 50 (reading consecutively from top left to bottom right). The ordering of
the components U;(¢) and their associated spherical harmonic Y, is as per section 4. The
figure shows excitation of the components Us(?), . . ., Uy(t) corresponding to the spherical
harmonics Y3' as predicted by the linear stability analysis.

and vg(x, 50) and then restarted the ODE solver. The result was that we recovered
(us(X, 50), vg(x, 50)) back again asthe steady state, demonstrating its stability.

To check the accuracy of our results, we repeated the experiment with the
parameters chosen as

N=4K, M=4N, tol=102%K, k=234 (4.12)
where tol is the applied tolerance of the ODE solver for (3.6). The initial con-
dition was chosen to be the same random perturbation (4.11) in each case. Let

usx = uqg (X, t) denote the corresponding method of lines solutions. Choosing
u1e asthe “exact” solution and then computing the approximate errors:

ex(t) = lluak (-, 1) —u1s(-, llL, , K =23, (4.13)

we obtain the results:
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Real part of u x,50), Isolated Mode n=2 Real part of v, (x 50), Isolated Mode n=2

Fig. 4.3.Experiment 1Fina steady state distributions of the chemical concentration pro-
filesug(., 50) and vg(., 50) over the surface of the sphere (mode n = 2 excitation).

Table 1. Errors obtained from the accuracy test for Experiment 1, calculated from (4.13).

t e (1) es(?)

10 1.75e-03 6.06e-04
20 7.95e-02 1.52e-02
30 2.05e-02 6.23e-03
40 6.85e-03 6.79e-04
50 6.85e-03 6.79e-04

Theresultsin Table 1 suggest that thecase K = 2 (leadingto N = 8) whichis
used to produce Figures 4.2, 4.3 isaccurate to about 2 decimal placesand certainly
accurate enough to guarantee the validity of these figures.

Experiment 2. Here we studied excitation of the modes of degree n = 4, com-
prising the 9 dimensional space span{Y," : |m| < 4}, and corresponding to the
wavenumber k2 = 20. As before we chose d = 18 > d. and y = y, given by
(4.9) with k2 = 20. Then k2 = 20 is the only wavenumber satisfying the inequal-
ity (4.5). Here we expected the dominant deviation from the homogeneous steady
state to occur in the components U (), V;(¢) for j = 17,18, ..., 24, 25. Thiswas
essentially the case, with the steady state solution (reached at time ¢ = 20, with
initial excitement occuring at timer = 5) being composed mainly of contributions
from each of the modes Y;', |m| < 4. The actua steady state pre-patterns of
the concentrations of the two chemicals ug(x, 20), vg(X, 20) on the surface of the
sphere are depicted in Figure 4.4. ]

Experiment 3. Here we proceed analogously to the previous two experiments,
but this time we study excitation of modes of degree 6, namely Y!*, |m| < 6.
Because in this case we expect that employing N = 8 in the method of lines may
not be sufficient for spatial accuracy, weemploy N = 12 (corresponding to the case
K = 3in (4.12)). We present only the plots of the resulting steady state chemical
concentration profiles of u12, v12 on the surface of the sphere (Figure 4.5). As a
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Real part of u (x.20), Isolated Mode n=4 Real part of v, (x.20), Isolated Mode n=4

Fig. 4.4.Experiment 2Final steady state distributions of the chemical concentration profiles
ug(., 20) and vg(., 20) over the surface of the sphere (mode n = 4 excitation).

check on accuracy we repeated the experiment with N = 16 and found graphically
identical results (Figure 4.6).

Experiment 4. Finally we present numerical simulations for the Schnakenberg
system where the linear stability analysis predicts no particular dominant mode
and so the expected heterogeneous steady state pattern should have no particular
symmetry. For this purpose, we chose d = 25 and y = 100. Figure 4.7 shows
the particular modes excited at various times during the numerical simulation. In
this case, the steady state is reached at time r = 40 and, as we see in Figure 4.7,
excitement beginsasearly astimer = 3 and no particular mode dominatesthrough-
out. The computed steady states u12(X, 40), v12(X, 40) have contributions from all
modes in the numerical model. We checked the accuracy of our results asin Ex-
periment 1. Figure 4.8 shows the plots of the concentrations of the steady state
distributions of u12, v12 on the surface of the sphere. Although once again a spa-
tially heterogeneous steady state has been reached (with regions of high and low
concentrations of each chemical), no particular mode dominates, and the resulting
pattern contains no obvious symmetry.

The above results of our numerical experiments confirm the predictions of the
linear stability analysisand verify the accuracy and stability of the numerical meth-
od. In the next section we apply our method to an actual biological problem — that
of modelling solid tumour growth — and explore the possible role that pre-pattern
theory may play in this process.

5. The rble of pre-pattern theory in tumour growth and invasion
5.1. Application to a spherical tumour

In vivo cancer growth, and as a particular example in this paper, solid tumour
growth (for example, acarcinoma, or cancer of theepithelial tissue) isacomplicated



402 M.A.J. Chaplain et al.
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Fig. 4.5. Experiment 3 (with N=12)Final steady state distributions of the chemical con-
centration profiles u»(., 20) and v12(., 20) over the surface of the sphere (mode n = 6
excitation).

Real part of u, (x,20), Isolated Mode n=6, N =16 Real part of v, (x.20), Isolated Mode n=6, N =16

Fig. 4.6. Experiment 3 (with N=16)Final steady state distributions of the chemical con-
centration profiles us(., 20) and vie(., 20) over the surface of the sphere (moden = 6
excitation). Figures 4.5 and 4.6 demonstrate the convergence of the numerical scheme.

phenomenoninvolving many inter-related nonlinear processesand, assuch, presents
themathematical modeller with acorrespondingly complex set of problemsto solve.
Even deciding which simplifying assumptions to make is a non-trivial task. It is
now thought that all cancers begin with the (genetic) mutation of asingle cell into
a“transformed cell”. Subsequent mutations lead to the so-called transformed cells
escaping thebody’snormal growth control mechanisms. If thetransformed cellscan
overcome any immune system attack then a small mass of proliferating cells may
be formed — a nascent solid tumour. Solid tumours are known to progress through
two distinct phases of growth —the avascular phase and the vascular phase. During
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Fig. 4.7.Experiment 4Results from a numerical experiment attempting no specific excita-
tion of any particular mode. The graphs show the values of the coefficients U;(¢), plotted
against j, j =1,..., 144 for each spherical harmonic at timest = 3, 15, 25 and 40 (read-
ing consecutively from top left to bottom right). The ordering of the components U; (¢) and
their associated spherical harmonic Y, is as per section 4. The figure shows excitation of a
range of components with no particular mode dominating as predicted by the linear stability
analysis.

the former growth phase the tumour remainsin a diffusion-limited, dormant state
(cf. multicell spheroids, carcinoma in situ) while during the latter growth phase,
invasion and metastasis may take place.

The initial avascular growth phase can be studied in the laboratory by cultur-
ing cancer cellsin the form of three-dimensional multicell spheroidg[46, 67] and
references therein). It is well known that these spheroids, whether grown from
established tumour cell lines or actual in vivo tumour specimens, possess growth
kinetics which are very similar to in vivo tumours. Typically, these avascular nod-
ulesmay grow to afew millimetresin diameter depending on the cell typesand the
culture conditions used, although carcinomain vivomay reach dormancy at asmall-
er size of between 250-500um [46, 67]. Cells towards the centre of the spheroid,
being deprived of vital nutrients, die and give rise to a necrotic core. Proliferating
cells can be found in the outer three to five cell layers, that is, essentially on the
surface of the tumout.ying between these two regionsisalayer of quiescent cells,
a proportion of which can be recruited into the outer layer of proliferating cells.
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Fig. 4.8.Experiment 4Final steady state distributions of the chemical concentration profiles

05
u1>(., 40) and v1,(., 40) over the surface of the sphere, in the situation where no single mode
isexcited.

Much experimental datahasbeen gathered on theinternal architecture of spheroids,
and studies regarding the distribution of vital nutrients (for example, oxygen) and
metabolites within the spheroids have been carried out [24, 77].

The transition from the dormant avascular state to the vascular state, wherein
the tumour possesses the ability to invade surrounding tissue and metastasise to
distant parts of the body, depends upon its ability to induce new blood vesselsfrom
the surrounding tissue to sprout towards and then gradually penetrate the tumour,
thus providing it with an adequate blood supply and micro-circulation and permit-
ting vascular growth to take place. It is during this stage of growth that theinsidious
process of invasion takes place. Once vascularized, the tumours grow rapidly as
exophytic masses. In certain types of cancer, for example, carcinomas arising with-
in an organ, this process typically consists of columns of cells projecting from the
central mass of cells and extending into the surrounding tissue area and the local
spread of these carcinomas often assume an irregular jagged shape. We also note
however, that not al tumours require vascularization to occur prior toinvasion—in
some tumours some amount of invasion is accomplished through the secretion of
enzymes which degrade the local tissue (see[3] and references therein); in others,
vascularization and invasion proceed simulatneously. By the time a tumour has
grown to a size whereby it can be detected by clinical means, there is a strong
likelihood that it has already reached the vascular growth phase.

Prior to successful completion of angiogenesis, the avascular tumour, although
dormant (or quasi-dormant) with regard to its growth, is still very much in a
“dynamic state of equilibrium”, with cell birth and proliferation in balance with
cell loss and death. Many previous mathematical models (for example, [7, 8, 11]
and referencestherein) have modelled this avascular phase of growth by aspherical
mass of tumour cellswhose radially symmetric growth isgoverned by (i) the distri-
bution of avital nutrient such as oxygen and (ii) the distribution of ageneric growth
inhibitory factor, the existence and properties of chemicals which inhibit mitosis
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being very well documented, for example, [34]. The growth inhibitory factor and
nutrient distributions competeto control the tumour cell proliferation and therefore
ultimately the size of the tumour.

However it is also known that tumour cells themselves secrete growth-promot-
ing factors [53]. Reference [12] studied the evolution of the concentrations of both
growth-inhibiting and growth-promoting factors governed by a system of reaction-
diffusion equations on the surface and interior of a sphere. The predicted spatially
heterogeneous steady-states of these two chemicals were shown to correspond to
observed regions of cellular heterogeneity in actual solid tumours. The results pre-
sented in [12] were purely theoretical and depended entirely upon alinear stability
analysis. In this section we once again consider the réle that pre-pattern theory may
play in the growth and invasion of tumours, but, in this case, we will extend and
substantiate the work in [12]. In formulating our model we take into account the
following observations:

e Experimental results have demonstrated that tumour cells secrete both growth-
inhibiting and growth-activating chemicals in an autocrine manner [53] and that
the balance and interaction between these factors play an important role in the
development and progression of tumours[21, 45, 53, 54, 58].

Growth inhibitors:

o Transforming growthfactor betas(TGF-gs) constituteafamily of local mediators
that regulate the proliferation and functions of many cell types. Indeed TGF-8s
have an identified effect of specifically suppressing tumour cell proliferation in
many types of cancers[1, 36, 44, 55, 79], including carcinomas.

e TGF-Bsaso are known to induce apoptosis (cell death) in carcinoma cells[79]
and can stimulate the synthesis of the extracellular matrix and equally important-
ly the tumour stroma. They have therefore been implicated in controlling cancer
invasion [2, 75].

Growth promoters:

e Thereis also much evidence to demonstrate that many types of tumour cells
(including carcinoma cells) also secrete a variety of growth-promoting fac-
tors. For example, epiderma growth factor (EGF) and transforming growth
factor-a (TGF-«) [80]; basic fibroblast growth factor (bFGF) [70]; platelet-
derived growth factor (PDGF) [76]; insulin-like growth factor (IGF) [15] [54]
[73]; interleukin-1a (IL-1) [81] [33] and granulocyte colony-stimulating fac-
tor (G-CSF) [45].

Interestingly, and indeed perhaps somewhat paradoxically [38], tumour-necrosis-
factor-a (TNF-«) has been identified as both a growth promoter (increasing the
proliferation of tumour cells) [13, 64, 78] and also as a growth inhibitor (inhibit-
ing cell proliferation) [52], [63]. The precise function of this cytokine appears to
depend on the cell type it acts on and its concentration level.

e Not only can we identify specific growth inhibitors and activators (as opposed
to generic chemicals), but there is direct experimental evidence that in tumour
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cell lines these chemicalsinteract and modulate the effect of each other [10, 17,
22, 26, 39, 50, 57, 64, 68].

In additionto the above experimental observations, it isalsowell known that the
timescale of a growing tumour (even a fast-growing, aggressive, invasive tumour)
is very much slower than the diffusion timescale of chemicals. This fact has been
exploited in amost al of the previous mathematical models for avascular tumour
growth (cf. [7, 8, 11] and references therein). Any chemical which is produced by
the tumour cells will therefore diffuse and reach a steady-state distribution within
itsdomain on amuch faster timescal e than the growing tumour itself. We therefore
consider the possibility of the development of a genuine heterogeneous chemical
pre-pattern on the surface of a solid tumour which takes place prior to successful
angiogenesis. This chemical pre-pattern predisposes cellsin certain regions on the
surface of thetumour (that is, in regionswhere the concentration of the growth-pro-
moting factor ishigh) to invasion and subsequently facilitates the vascular, invasive
growth. Suchcellular heterogeneity intumoursiswell documented[5, 35,51, 61].We
al so make the foll owing reasonable mathematical assumptionsfor the model:

o We assume that the tumour is perfectly spherical in shape and that it has grown
in aradialy symmetric manner.

o Weassumethat the tumour hasreached its diffusion-limited avascular maximum
size and consists of alarge internal necrotic core surrounded by athin layer of
proliferating cells at the surface. The thin layer of live cells essentially defines
the surface of the solid tumour.

o We assume that the production of the growth promoting and growth inhibitory
factors is restricted to the thin layer of live, proliferating cells at the tumour
surface.

Some of the assumptions of the model may be relaxed without affecting the
main results of the model. For example, (i) the growth factors may be considered
to be produced and/or distributed throughout the interior of the tumour. Thiswould
correspond, for example, to the case of a spheroid which had not quite reached
its state of dormancy or an in vivo carcinoma of around 250-500 wm in diameter,
where the cellsin the interior of the tumour were still viable and proliferating; (ii)
the tumour may be non-spherical in shape. Both of these situations would require
more general 3D domains to be studied numerically and this would require modi-
fying and extending the numerical scheme of Section 3. However, the theoretical
analysis of [12] on fully 3D spherical domains indicates that the final distribution
of chemicals at the surface of a sphere would be similar to those results obtained
in the previous section.

The mathematical model we therefore propose consists of a system of reac-
tion-diffusion equations on the surface of a sphere (that is, the tumour surface),
modelling the interaction of the growth-promoting and growth-inhibiting chemi-
cals which are produced by the tumour cells. We denote the concentration of the
growth-promoting factor by u (for example, EGF or IGF) and the growth-inhibit-
ing factor by v (for example, TGF-8). Although evidence exists for the interaction
between the growth inhibiting factors and the growth promoting factors identified
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previously, in the absence of any detailed information regarding the specific kinetic
interactions, the system we consider is given by:

ur = Aju+yfu,v),
vy =dAv+ yg(u,v), 5.1

where, as before, A, isthe Laplace-Beltrami operator, d, y are positive constants
and the functions f (u, v), g(u, v) model the interactions between the two chemi-
cals.

Using the numerical scheme developed in Section 3, and with an appropriate
choice of functions f, g, we can solve such asystem on the surface of asphere. As
we have aready seen, given aset of parameter values which satisfy the conditions
for Turing-instability, we can obtain spatially heterogeneous steady-state distribu-
tions of the two chemicals on the surface of the tumour, thereby extending the
results of [12]. We now discuss the relevance of aspatially heterogeneous chemical
pre-pattern to the experimentally observed cellular heterogeneity in carcinomaand
multicell spheroids, and also to the invasion characteristics of carcinoma.

Itisawell-known feature of solid tumours such as carcinomas that they invade
the surrounding local tissue with columns of cells projecting outward from the cen-
tral mass. We suggest that while a solid tumour is in its avascular, dormant state,
a steady-state chemical pre-pattern, such as was illustrated in the figures in Sec-
tion 4, is set up. As has already been noted, thisis feasible given the differencein
timescal es between the tumour growth rate and the diffusion rate of the chemicals
([11, 12]). Once angiogenesis takes place and the tumour becomes vascularized,
tumour cells which are located on the surface in regions of high concentrations of
the growth promoting factor will be stimulated into proliferating faster and begin
to invade the local tissue through increased migration. A chemical pre-pattern of
this typeis aso consistent with the observation that tumours can directly manipu-
late their local environment by secretion of the growth factors. Thus this chemical
pre-pattern will not only predispose the tumour cells to higher proliferation and
increased mobility but will also directly affect the local surrounding tissue aswell,
thus facilitating invasion of the tissue by the cells [2, 36].

Under the assumption that the rate of cell out-growth is proportional to the
concentration of growth promoting chemical we can simulate the early invasion
of a carcinoma. In Figure 5.1 we illustrate the possible columnar out-growths of
invading cancer cellsfrom regions of the tumour surface (that is, exophytic growth)
where there is a high concentration of growth promoting factor. We have assumed
that cells on the surface of the tumour which arelocated in regions of high concen-
tration of growth-activating chemical will have aproliferative advantage over cells
in regions of high growth-inhibiting chemical. This figure is obtained by plotting
in 3D the values of the function

N-1
(1+ €Y > UMYy (x)) X
n=1 |m|<n

as x ranges over S, wheree = 0.5 and U, (co) are the components (112(x, 40))
of the heterogeneous steady state computed in Experiment 4 of 84 (seefigure 4.8).
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Fig. 5.1.Possible columnar outgrowths of invading cancer cells from the underlying chem-
ical pre-pattern observed in figure 4.8 under the assumption that cells in aregion of high
concentration of the growth-promoting factor have a proliferative advantage.

Itis clear from this figure that columns of invading cancer cells are projecting out
from the central mass, asisclinically observed in carcinomas.

In the next section we further develop and extend the above model by con-
sidering a growing tumour, and posing the reaction-diffusion system on a time-
dependent, growing domain.

5.2. Application to a growing spherical tumour

Theresults of the previous section were obtained by considering the reaction-diffu-
sion system on adomain of fixed size, that is, the surface of the unit sphereThefact
that atumour grows on amuch slower timescal e than the diffusion of the chemicals
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enabled a genuine chemical pre-pattern to form. The model, as described, isthere-
fore most applicable when applied to a solid tumour which has already reached its
diffusion-limited avascular size. However, in the case of smaller tumours which
are still growing, growth promoting and growth inhibiting chemicals will still be
produced by the tumour cells. These chemicals will reach a steady-state distribu-
tion (on afaster timescale than the tumour growth rate) and a pre-pattern will be
formed. If the tumour is not at the stage of its growth where invasion of the tissue
occurs, then it will continue to grow, the chemicalswill form anew pre-pattern (on
afaster timescale) and so on. Thus a more appropriate and realistic way to model
the distribution of the chemicals on the surface of a growing tumour would be to
consider the reaction-diffusion system on a growing, time-dependent domain and
thisiswhat we carry out in this section.

In this case we can therefore define the surface of the tumour as a moving-
boundary with radius R(¢), where the evolution of R(¢) defines the growth of the
tumour. Thefunction R(¢) will obey some ordinary differential equation governing
the growth of the tumour (for example, the Gompertz growth law or the logistic
growth law) but we are not concerned with the precise functional form here, only
that R(¢) issome monotonically increasing function. We note that thisis consistent
with many previous models of avascular tumour growth (see [9] for areview). We
also note that although there has been some work carried out on reaction-diffusion
systems on time-dependent domains, none of these has been posed formally as
a moving-boundary problem, focussing instead on uniform growth of the entire
domain [4, 14, 37, 6Q].

We therefore now consider the application of the results of Sections 4 and 5.1
to the case of the growing domain described above. The reaction-diffusion system
is therefore considered on the domain S(¢), the surface of the sphere of radius
R(1), that is, S(t) = {x € R3: |x| = R(r)}. Since, in spherical polar coordinates,
(r, 0, ¢), the Laplacian takes the form

A= 92 +28 + 1A
T2 ror 27"

the diffusion operator on the surface of the sphere S(z) is simply ﬁA*. The
reaction-diffusion system on S(¢) isthen

WU+ y(a —u+ uv), (5.2

U =

YN
[R(t)]2
——Av+y (b —u?v), (5.3

" [R(t)]z
which isto be solved for functions u, v of 8, ¢ and ¢ (cf. the formulation of [14]).
Equivalently we can consider the system (5.2), (5.3) to be solved on S x [0, 00),
where S isthe original fixed unit sphere.

It is possible to prescribe in detail the specific growth law of an avascular
tumour and then couple the ODE modelling thisto (5.2), (5.3). However, since we
are interested only in qualitative results in this paper, it is sufficient to consider
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monotonically increasing functions of time for R(z), and here we restrict to the
case

R(t) =1+ at, a > 0,

representing linear growth. The parameter « may be thought of as anominal mea-
sure of the rate of growth, R’(¢), with large values of « indicating fast growth
and small values of « indicating slow growth. Other forms of growth may also be
considered but we consider only linear growth here.

We solved (5.2) and (5.3) using our numerical scheme in the case of linear
growth, with R(t) = 1+ 0.1r (the value of « = 0.1 being chosen arbitrari-
ly; other values of « give similar results, with the patterns appearing more slow-
ly/quickly as « is smaller/larger). The parameter values used in the simulations
werea = 0.2,b = 1,y = 5,d = 100, chosen thus to guarantee instability. Intu-
itively one would expect that as the tumour grows and R increases monotonically
with ¢, different modes will become excited. Thisisfurther substantiated when one
carries out alinear stability analysis on (5.2), (5.3), the results of which show that
the effect of the growing domain R(z) is essentialy to modify (4.5) to give

R%(t) yL(a,b,d) < k* < R%(t) yM(a, b, d) . (5.4)

Thus as the domain grows, the interval of instability changes and consequently the
range of wavenumbers which can become excited changes with time. Indeed from
(5.4) it is expected that, for amonotonically increasing function R(¢), the interval
of instability [R?(t)y L, R?(r)y M]isshifted “totheright” on the k2-axis and that
higher order modes become unstable as¢ increases. One would therefore expect to
observe a“dynamic” spatially heterogeneous pattern which evolves with time and
is dominated by ever higher order modes as ¢ increases.

Figure 5.2 shows the results of numerical simulations illustrating the specific
modes which become excited with increasing time. In thisfigure, using the same
notation asin Section 4, weplot U (¢) against j for specific thusindicating which
particular modes have been excited (the resultsfor V; (¢) are the same). Aswe can
seeat anearly timer = 9, essentially modesin therange 0 < j < 20 are excited.
However the dominant excited mode numbers change astimeevolvesandat r = 15
higher order modesupto j = 45 are becoming excited. Inthelast plotin thefigure,
at atime of + = 21, the amplitude of the lower modesis decreasing, thereisaclear
excitation of several modesin therange 70 < j < 80 and indications that modes
around j = 110 are becoming excited. Essentialy then, as ¢ increases, ever high-
er order modes are excited (as predicted above from (5.4) ) indicating a dynamic
pattern (slowly) evolving in time. The actual spatio-temporal distributions of the
two chemicals on the surface of the tumour corresponding to the above figures
are given in Figure 5.3. Clearly one can see that the spatia patterns generated are
heterogeneous and change with time.

Theresults of these numerical simulationsgiveapredictiveinsight into the* dy-
namic activity” which occurs during the growth of solid tumours and are
consistent with the experimentally and clinically observed proliferative hetero-
geneity of cancer cellsin solid tumours[5,24,35,51,61].
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Fig. 5.2.Results of anumerical simulation in the growing tumour case. The graphs show the
values of the coefficients U, (), plotted against j, j = 1, ..., 144 for each spherical har-
monic at timess = 9, 15 and 21. The ordering of the components U; (¢) and their associated
spherical harmonic Y is as per section 4. The results show that as time increases and the
tumour grows higher order modes are predominantly excited.

In the computation of the growing tumour, particular care is needed to ensure
that the numerical results are accurate enough to be meaningful. Since the solution
isdynamically accummulating higher mode components astimeincreases, we may
expect that numerical experimentswith fixed N will becomeless and less accurate
with increasing time. In order to check the accuracy of our numerical simulations
we computed the solutionsusing parametersgiven by (4.12) above. Withthischoice
of parameters, we may expect exponential convergenceof uak (X, t) tou(x, t) (over
finite time intervals) as K increases. The computed approximate errors defined in
(4.13) for the growing tumour are as follows:

Table 2. Errors obtained from the accuracy test for the growing tumour calculations, calcu-
lated from (4.13).

t ex(t) es(?)
9 2.38e-02 6.87e-04
15 8.36e-02 5.14e-03

21 3.77e-01 3.85e-02
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Fig. 5.3.Plots of the concentration profiles of the growth activating chemical, u, over the
surface of the sphere at timest = 9, 15 and 21 in the situation of a growing tumour. As
timeincreases higher order modes are excited and thisis reflected in the changing chemical
concentration profiles on the surface of the tumour.

Theseresultsclearly show the decreased accuracy which may be expected when
wekeep N and rol fixed and let ¢ increase. They also show the increased accuracy
attained by increasing K in (4.12). In particular they demonstrate that the growing
tumour calculationsin Figures 5.2 and 5.3 (whichuse K = 3, leadingto N = 12)
should be accurate to about 2 decimal placesuptotimer = 21. In order to maintain
thislevel of accuracy at later times, higher values of K and N must be used which,
of course, leads to an increase in computational time.
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6. Discussion and conclusions

In this paper we have studied systems of reaction-diffusion equations on the sur-
face of a sphere and have developed an appropriate numerical method for solv-
ing these systems. We have applied the pre-pattern theory (Turing-type models) of
reaction-diffusion systemsto anovel biological (pathological) problem —that of the
growth of solid tumours, for example, carcinomas—and, moreover, have suggested
anumber of specific chemicals which may be involved in this process. Finally, we
have studied the system of reaction-diffusion equations on agrowing domain using
amoving-boundary formulation. This formulation models the dynamic process of
tumour growth more redlistically.

The numerical method which was devel oped hereisbased on the spectral meth-
od of lines with the addition of the novel feature of afast and efficient implemen-
tation of the reaction kinetics using Fast Fourier Transforms. This was shown to
reduce the number of operations involved in the numerical calculations of the
kineticsfrom O(N%) to O (N3log N) operations. From the numerical experiments
performed, the method appeared robust and gave very reasonabl e run-times. When
tested against the predictions of a linear stability analysis, the numerical results
agreed well with the predicted spatially heterogeneous steady states. We note that
in principlethe method may be extended to other non-Euclidean domains(for exam-
ple, more general manifolds and non-spherical surfaces), permitting more accurate
modelling of (in our application) solid tumour growth.

We have also shown in this paper that the spatially heterogeneous chemical
pre-patterns which arise on the surface of a sphere may be an important process
occurring in solid tumour growth and may help to explain certain clinically and
experimentally observed phenomenain carcinomaand multicell spheroids, that is,
the heterogeneous distributions of proliferating cells in carcinoma and multicell
spheroids and the characteristic invasive patterns of these cancers. Of course there
are many other factors and processes which are involved in tumour growth, for
example, the distribution of nutrient supply to the cancer cells. These are also very
important and we certainly do not claim that the results of the model provide acom-
plete answer to the problem of cancer growth and invasion but rather may be an
important part of the complex overall mechanisms governing solid tumour growth
(cf. [53, 54, 58, 69]).

Tothisend, we notethat there are several features of solid tumour growth which
suggest that a reaction-diffusion mechanism may be operating. First of all, there
are actually present in this system identifiable chemicals which both promote and
inhibit the growth of tumour cells. We have identified anumber of chemicalsknown
to be produced by tumour cells (that is, the autocrine production of growth factors)
which have growth promoting and growth inhibitory effectson cell proliferation. In
addition to the opposite effects on cell proliferation (promotion and inhibition), we
have also shown that there is experimental evidence that certain of these chemicals
interact with each other. Next, thetime scale for the growth of asolid tumour isvery
slow in comparison to the time needed for a diffusing substance to reach steady
state concentration and hence there is the opportunity for a genuine pre-pattern to
form. There also appears to be anatural critical domain size in this system, that is,
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the size of carcinoma in its diffusion-limited, avascular state. Whilst in this state,
no invasion of the surrounding tissue can take place but, once vascularized, rapid
exophytic growth (that is, growth from the surface does occur. Finally, we note
that many of the standard problems inherent in Turing models regarding robust-
ness, that is, the same pattern must be repeated faithfully time and time again with
the requirement that only a small number of patterns are selected in a robust and
controlled manner, are not present in the case of solid tumour growth. The observed
“invasion patterns’ of in vivocarcinomasvary greatly fromindividual toindividual.
Itiswell known that cellular heterogeneity is not only observed within an individ-
ua tumour/multicell spheroid but varies from tumour to tumour. The results of
figures 4.7, 4.8, 5.2, 5.3 are particul arly appropriatein this respect. In these figures
arange of modes was excited resulting in a highly heterogeneous (and, in the case
of figures 5.2, 5.3, dynamic) distribution of chemical concentrations on the surface
of the tumour.

The novel application of our system of reaction-diffusion equations to a grow-
ing, spherical domain has enabled usto model morerealistically an actual growing
solid tumour and we believe that the results of the numerical simulations of Sec-
tion 5.2 are highly consistent with in vitro experimentally observed proliferative
heterogeneity of cancer cellsin solid tumours at al stages of their development [5,
24, 35, 51, 61]. We also believe that the results of the numerical simulations are
consistent with actual invivo clinical observations. Although we have been unable
to find data such as the rea-time growth profile of an actua in vivo tumour, it is
clear from the plethora of illustrations in pathology text books, for example [25,
47], that many solid tumours grow from an initially solid central mass of tumour
cells into an amorphous invading mass with many columns of cells projecting out
from the surface (cf. Figure 5.1). It is not unreasonable to suggest therefore that
the early and intermediate shapes and forms of these invading cancers are similar
to those predicted by our model.

Finally, the results of the model suggest that some degree of control or reg-
ulation of cancer invasion may be possible through manipulation of the levels of
growth factors as has aready been suggested experimentally by [2, 36, 66], that
is, it may be possible to intervene with the growth factor kineticsin such away as
to ensure that, even if one cannot halt the growth of a cancer, one may be able to
prevent the highly heterogeneous distributions of proliferating cellsfrom occurring
[20, 21, 45, 59, 71]. Given that a solid tumour can be detected at an early enough
stage in its development (for example, the avascular stage), this fact alone may
prevent the irregular spread of columns of cancer cellsinto the surrounding tissue
and may reduce the likelihood of the secondary spread of the disease.
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Appendix: Simplified error analysis

In this appendix we give abrief error analysis for the numerical method (3.11) for
(1.2). For ease of exposition we consider only the scalar case:

uy = DAu + f(u), (A.D

tobesolved for u : § x [0, 00) — R, with D > 0and f : R — R given, subject
to
u(x,0) =up(x), xe8. (A.2)

However all the results given here can be extended in an obvious way to the case
of asystem (s > 1in(1.1)).

Although there is a large literature on spectral methods for parabolic equa-
tions on Euclidean domains (for example, [72]), these do not apply directly to the
equations on the unit sphere S of interest here and the purpose of this appendix is
to explore this non-standard case. We shall assume here that (A.1) has a smooth
solution u validfor ¢ € [0, T'], with somefinite T and we shall obtain estimatesfor
the accuracy of our numerical method on [0, T]. Using different arguments (such
asin[27]) it should & so be possible to obtain results on the long time behaviour of
our scheme.

Before we can describe the numerical analysis of (A.1), we first need to recall
some elementary facts about spherical harmonic approximation on S. An excellent
reference for the results discussed hereis[23].

Spherical harmonics: elementary properties

Let Lo denote the space of square-integrable complex-valued functionson S. This
is aHilbert space with inner product and norm:

(v, w>=/vw, vllz, = (v, v)Y2.
S

The spherical harmonics Y , |m| < n ,n € N defined in 82 are a complete
orthonormal sequencein Lo, that is, for each v € Lo,

(0.¢]
v=>_ Y oryy. where ) = (. Y)). (A3)

n=0|m|<n

Thus, equivalent definitions of the inner product and norm on L, are:

o0 00 1/2
ww)y=Y_ Y opar, vl = {Z > |ﬁ;"|2} : (A.4)

n=0|m|<n n=0|m|<n

Forr € R, r > 0, the Sobolev space H” on S can be defined as the space of al
functionsv € L, such that

e 9]

DY 4127 < o0, (A.5)

n=0|m|<n
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with 97 asin (A.3). Again H" isaHilbert space with inner product

e¢]

W, wygr =Y Y (n+1/27 8 ay (A.6)

n=0|m|<n

and norm ||v| gr = (v, v)}{,z . Since, by (2.3), we have (—A, + 1/4)Y) = (n +
1/2)2Y,§”, it followsthat (—A, + 1/4) is awell-defined positive definite bounded
operator on H2 and an alternative formulafor the normon H is:

e = 1(=As + /40 L, . (A7)

With xn asdefined in 83, the orthogonal projection 2 : Lo — xu isdefined
by the truncated Fourier series:

N-1
Pyv=y > o

n=0 |m|<n

The fundamental properties of 2 are easy to describe using Fourier series argu-
ments: If v € H", thenfor 0 < s < r, we have the approximation property

1) 12 1\
lo—Zyvllgs =Y. Y (n+1/2%5))? S(ﬁ) lollzr. (A8)

n=N |m|<n
Also, for any vy € xy, we can write
N-1
w=Y Yy,
n=0 |m|<n
witha?" = (vy, ¥') and so, for 0 < s < r, we have the inverse estimate

N-1
lonllar =Y > m+1/2%1a0? < (N +1/2 " llowllas. (A9

n=0 |m|<n

Thewell-known addition theorem for (complex) spherical harmonicsyieldsthe
identity:

2n 41

S rooR = ”4+ . foralxes, n=0.
T

|m|<n

Then, if v € H*¢, € > 0, we can apply the Cauchy-Schwarz inequality to the
left-hand equation in (A.3) to obtain a Sobolev embeddingsult

1/2
o
eI < 4D+ 17272 N Y0Pt (vl gase < Cellvllgase,

n=0 Im|<n

(A.10)
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where C, denotesaconstant independent of v. Combining thiswith (A.9) it follows
that for vy € xn, there exists a constant C.. such that
lowlloo < CIN**llonll, , N =0. (A.11)

Aswell as these properties of spherical harmonics, we shall also need the fol-
lowing rudimentary vector calculusonthemanifold S. Introducethe usual spherical
polar coordinates: x = (sinf cos¢, sind sing, cos®)’, (0, ¢) € [0, 7] x[0, 2]
and the spherical gradient (see [23, page 13])

av

V,0(x) = & 1 ov P
v = _— —,
¥ L Sno By 259

PN

where & = (—sing, cos¢, 0)7, & = (cosé cos¢, cost sing, —sind)”. For
these we have Green’s first identity(see [23, page 16]):

—/(A*v)w = / Viu.Vow = (A, Viaw), (A.12)
s s

whichisvalid for al v € H? and w € H. With these preliminaries we can now
analyse the method introduced in §3 for the model equation (A.1).

Spectral method for (A.1)

Returning to (A.1) (which we assume to have a smooth solution «), multiplying by
atest function v, integrating over S and using (A.12), we seethat u = u(x, t) isa
solution of the weak formulation:

(s, v) = —D(Vau, Viv) + (f),v), foradlve HY, >0, (A.13)

subject to initial condition (A.2). Our numerical method (in analogy with (3.11))
for (A.13) istoseek uy = upn (X, 1) withupy (-, 1) € xn foral r > 0, such that

(wn)r, vn) = =D(Viuy, Vioy) + (f(un), vn)y ., foralvy e xn, t >0,
(A.14)

subject to
un(X,0) = up(x), xe8S. (A.15)

Here (-, -) i is the discrete inner product as defined in (3.9). For convenience we
assume herethat ug € xn sothat writing (A.15) makes sense. Thisisthecasein all
our numerical experiments in this paper. The extension to arbitrary smooth initial
datais straightforward [72]. Then, by writing

N-1

un OG0 =Y Y @n @Y, (A.16)

n=0 |m|<n

(A.14) can be reduced to anonlinear system of ODEsfor the coefficients (it v (1))
If we assume that f is Lipschitz in a neighbourhood of the range of « then this
system has a unique solution for large enough N (see, for example, [72]).
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Fortheanalysisof (A.14), (A.15)itisuseful tointroducethefunctionii y (-, 7) :=
Pylu, 1)}, fort > 0. Using (A.12) it iseasy to provethat for al ¢, iy (¢) isalso
the “elliptic projection”:

(V*IZN, Viun) = (Viu, Vivy) , for al UN € XN- (Al?)

Setting py = u — iy, we then have, on recalling (A.8) and noticing that (iiy ), =
PN,

1\’ 1\’
||PN||L2§(N) l[uell &7 s ||(PN)1||L2§<N) etz |l prr - (A.18)

(Note that the norm on S of afunction of (x, r) € S x [0, co) isafunction of ¢.)

The convergence of the solution uy of (A.14), (A.15) will depend on an
appropriate choice of the integer M in the discrete inner product (-, -)y appearing
in (A.14). For the purposes of this simplified error analysis we shall consider only
the case when M can be chosen so that

(fon), wn) = (f(on), wy)y  foral vy, wy € xn. (A.19)

Forexampleif f ispolynomial of degree p,then f (vy)wy hasdegree(p+1)(N —1)
and (since (3.8) hasdegree of precision M — 2) thechoice M > 2+ (p+1)(N — 1)
will ensurethat (A.19) holds.

Theorem A.1 Suppose thay is Lipschitz in a neighbourhood of the rangeuwof
and suppose tha¥ is chosen so that (A.19) holds. Then foe [0, T], we have
the superalgebraic error estimate for the method (A.14) applied to (A.13):

1\ (7
lu(, 1) —unC.Dll, =C (ﬁ) /0 {luC, Ollar + llu: - D llar}dr,

for any r > 0 where C isaconstant which may dependon 7 and r.

Proof.We begin by writingu — uy = py + 6n, Wherey = iiy — uy. Then we
have, for dl vy € xn,

((ON)1, vN) + D(ViOn, Viun) = ((Un)r, vv) + D(Vyiin, Vivy)
—((un)i, vN) — D(Vauy, Viuw).
Using (A.14), (A.17) and then (A.13) we havefor all vy € x,
(0N, vN) +D(VibOn, Vivn) = ((Un)s, vv) + D (Viiiy, Vivy) — (f(un), vn) m

= ((An)r, vN) +D(Viu, Vivn) — (f (un), vn)m
= (f@),vn) — (f(un), vN)m — ((oN)1, UN).

Hence with vy = 6y and using D > 0, we have

1ld
EE”QN”%Z = 1(f @), On) = (f n), On)ml + [ (on)e L, 110N Nl Lo

<I(f@) — fun), 0N+ 1(fun), On) — (f(un), On) ml
+lon)ellL ION L, - (A.20)
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Now the argumentsin [72] show that thereis no loss of generality in assuming that
uy liesin the neighbourhood of « in which f is Lipschitz continuous. Using this
assumption (with Lipschitz constant y) on the first term on the right-hand side of
(A.20) and the assumption that M is consistent with f in the second yields

1d 1\
EEIIGNII%2 < {V”M —unllL, +Cr (ﬁ) lunllz, + ”(pN)t”Lz} 1ON L,
(A.21)

Hence, for some constant C,

d 1\
EHON”LZ <C {|I9N||L2 + <ﬁ) llull, + llonllL, + ||(:0N)t||L2} . (A2

Then, sincefy (x, 0) = 0, the proof is completed by combining Gronwall’s lemma
with the estimates (A.18). |

Remark. It is clear from the above proof that the requirement (A.19) can be
weakened by requiring instead that the inequality

l r
[(f(vn), wy) — (f(on), wy)m| =C <N> luvllizolwnllz, (A.23)

holds for all vy and wy € xn, with vy in a neighbourhood of u. When f is
sufficiently smooth (but not necessarily polynomial) it is still possible to derive
formulae for M which ensure that (A.23) holds.
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