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Abstract. We present necessary and sufficient conditions on the stability matrix of a general
n(≥2)-dimensional reaction-diffusion system which guarantee that its uniform steady state
can undergo a Turing bifurcation. The necessary (kinetic) condition, requiring that the sys-
tem be composed of an unstable (or activator) and a stable (or inhibitor) subsystem, and the
sufficient condition of sufficiently rapid inhibitor diffusion relative to the activator subsystem
are established in three theorems which form the core of our results. Given the possibility
that the unstable (activator) subsystem involves several species (dimensions), we present
a classification of the analytically deduced Turing bifurcations into p (1 ≤ p ≤ (n − 1))
different classes. For n = 3 dimensions we illustrate numerically that two types of steady
Turing pattern arise in one spatial dimension in a generic reaction-diffusion system. The
results confirm the validity of an earlier conjecture [12] and they also characterise the class
of so-called strongly stable matrices for which only necessary conditions have been known
before [23, 24]. One of the main consequences of the present work is that biological mor-
phogens, which have so far been expected to be single chemical species [1–9], may instead
be composed of two or more interacting species forming an unstable subsystem.

1. Introduction

A large amount of research has been devoted to the study of symmetry breaking
instabilities leading to steady-state solutions in models for chemical and biological
pattern formation employing reaction-diffusion systems. One of the most inten-
sively studied of such models is that of Turing [1], which consists of a pair of
reaction-diffusion equations. In this model, instability is driven by diffusion [1–6,
9]. Some 40 years after Turing’s paper, his theories were confirmed by chemical ex-
periments [7–8], resulting in renewed experimental and theoretical interest across
many disciplines into clarifying, extending and applying this idea of pattern for-
mation. In the past decade alone, more than 250 papers were published citing the
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Turing scenario of pattern formation1. Despite this huge amount of research the
actual mechanism is still elusive and there is no clear-cut experimental evidence in
any biological system of the morphogenic substance as envisaged by Turing.

The majority of theoretical studies in reaction-diffusion theory focus on the
analysis of systems composed of only two species with kinetics chosen to interact
in the way necessary for a Turing instability, that is, one chemical (the activator)
activates the production of the other (the inhibitor) which, in turn, inhibits the pro-
duction of the activator. This can lead to a stable dynamic equilibrium in the absence
of diffusion, which can, however, be destabilised in the presence of unequal diffu-
sion. While this approach captures the essence of the Turing instability, it is often
not realistic since chemical and biochemical reactions usually involve more than
two dynamically independent species. In a recent paper [12] the authors considered
systems with three interacting species. They showed that a necessary condition for
a Turing instability to take place in these systems is that they must contain an un-
stable (or activator) subsystem, which may be composed of one or two species. For
general n-dimensional systems the full conditions for Turing instability however
remained unresolved.

Our main goal is to establish general conditions for the Turing instability in a
system of n (n ≥ 2) reacting and diffusing chemical species. Consequently, we
extend the concept of “morphogen” to mean not necessarily a single substance but
instead a network of reacting species [28] whose interaction leads locally to an in-
crease in the concentration of one (or more) of its species. This may occur through
indirect autocatalysis, end-product inhibition or a combination thereof [28]. In The-
orem 1 (Section 2) we derive the necessary and sufficient conditions on the kinetics
of an n-dimensional system under which diffusion-driven instability will arise.

There are a number of papers that are related to the theme of diffusive instability
in multi-component systems. An early paper [17] classifies completely the bifur-
cation structure from uniform steady states, but its results for the n-species case
(n ≥ 3) pertain only to weakly coupled systems, which are a particular instance of
the general case established here. More recently [18] a set of necessary conditions
is given for diffusion-driven instability in a three species system, motivated by
examples arising in ecology. Only in some restrictive cases were the authors able
to give sufficient conditions for the bifurcation. Their methods were not designed
to be generalised to higher-dimensional systems.

More closely related to our approach is [23] where necessary conditions for
the kinetics matrix to be “strongly stable” in the terminology of [24] are presented
(actually, the results of [24] are reproduced). Both of these authors did not realise
that the conditions they derived were also sufficient for this type of stability. We
establish this result in Section 2 (Theorem 2). Aided by a heuristic argument [23,
p.195] it is, however, shown how the instability arises if one of the necessary con-
ditions for strong stability is broken. As these arguments were sketched without
formal proof, we reconsider them in a more formal and complete way (Section 2,
Theorem 3). To our knowledge, this is the first time that the Turing instability prob-
lem for a general n-dimensional system has been fully characterised and resolved.

1 Data from the Web of Science database.
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In short, the practical consequence of the present work is that Turing instability in
n-species reaction networks may arise through activators, or unstable subsystems,
involving up to p = n− 1 species. The number of a priori possibilities of finding
an activator in such a reaction increases rapidly with n – an issue that is of central
importance in Kauffman’s arguments [26] regarding the spontaneous emergence
of autocatalytic sets (and life) in large reaction networks.

The paper is structured as follows. In Section 2 we derive the three key theorems
mentioned above. In Section 3 we present some examples to illustrate the applica-
tions of these theorems. We show in Section 4 how one may apply these methods
to reaction-diffusion-advection systems (the differential-flow induced instability
problem). The implications of the analysis are discussed in Section 5.

2. The main results

A coupled system of n (n ≥ 1, n integer) species (concentrations of chemicals)
which interact in a nonlinear manner and diffuse may be modelled by the n equa-
tions

∂uj

∂t
= Dj
uj + fj (u), x ∈ R, t ∈ [0, T ), T > 0 (2.1)

with the initial condition

uj (x, 0) = uj0(x), j = 1 . . . n (2.2)

Here R is a subset of (−∞,∞) and u = (u1, u2, . . . , un) is the vector of concen-
trations for the interacting species at position x and time t , and fj , j = 1, . . . , n,
represent the local reaction terms. The initial concentrations are non-negative and
the problem (2.1–2) is closed by imposing appropriate boundary conditions (for
example zero-flux across the boundaries). In the following we suppose that (2.1–
2) with boundary conditions admits a solution, u = us , which is spatially and
temporally uniform.

We wish to investigate the conditions under which the system (2.1–2) under-
goes Turing instability. The solution u = us is said to be Turing unstable if it is
locally stable as a solution of the kinetic system:

∂uj

∂t
= fj (u), uj (0) = uj0 (for j = 1 . . . n with t > 0) (2.3)

but it is unstable for the full reaction-diffusion system (2.1–2) (i.e. with respect to
nonhomogeneous perturbations). Let us denote by A = (aij ), 1 ≤ i, j ≤ n, the
Jacobi matrix associated with (2.3) at u = us , i.e. aij = ∂fi

∂uj
(us), 1 ≤ i, j ≤ n.

From the first condition on us it follows that all the eigenvalues of A have negative
real parts. We now consider the Jacobi matrix associated with (2.1–2) at u = us ,
i.e. C = (cij ), 1 ≤ i, j ≤ n. We have that

cij = aij −Dik
2δi,j (2.4)
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where δi,j is the Kronecker delta symbol and k is the wavenumber characterising
the small perturbation imposed upon u = us (in the Fourier series expansion), k is
a real number. Our main concern here is to study the conditions on the diffusion
coefficients Di , 1 ≤ i ≤ n, and/or on the kinetics matrix A for which there is at
least one eigenvalue for (2.4) with positive real part. Before proceeding further we
recall the classic Turing result [1, 5]. It states that for a system composed of two
species the necessary and sufficient conditions for diffusive instability are that the
system consists of a pair of activator and inhibitor species and that the diffusion
coefficient of the inhibitor is sufficiently greater than that of the activator.

We begin our analysis by considering the case n = 1. Although this is an
extreme situation, which is more of theoretical than of practical interest, we start
with this case for the sake of completeness. We show that no Turing bifurcation is
possible in this case.

A single scalar reaction-diffusion equation takes the form:

∂u

∂t
= ∂2u

∂x2
+ f (u) (2.5)

(here u = u1 and we have scaled D, the diffusion coefficient, to 1) and let us
denote by S the set {us > 0|f (us) = 0} of all uniform stable steady states of (2.5).
Therefore for any member, us , of this set we have

Ks = f ′(us) < 0 (2.6)

Now studying the stability of the elements in the set S to non-uniform perturbations
with a typical wavenumber k we find, in the usual way, that the eigenvalues are
given by

ω = −k2 +Ks (2.7)

From (2.7) it is therefore clear that Re(ω) < 0 for all real k. Therefore no Turing
bifurcation is possible and the only interesting case remaining is when n ≥ 2.

Our next step is to give a necessary condition on the kinetics matrixA for a Tu-
ring bifurcation to be possible. This extends the result mentioned above for n = 2
and the one given in [12] for n = 3 to the general case. To this end we introduce a
couple of definitions which generalize those given in [12] to arbitrary n ≥ 2. These
definitions refer to the linear system associated with the matrix A.

Let 1 ≤ i1, i2, . . . , ip ≤ n (1 ≤ p ≤ n) be distinct indices from the set
1, 2, . . . , n. We denote byAi1i2...ip the square submatrix obtained fromA by taking
exactly the rows and the columns of indices i1, i2, . . . , ip. By 
i1i2...ip we denote
its determinant (a minor of order p for A). We call the full system associated with
A the linear system

ut = Au, u(x, 0) = u0(x). (2.8)

Any p-dimensional subsystem of (2.8) with matrix Ai1i2...ip (of order p) is called
stable if the necessary and sufficient stability conditions set by the Routh-Hur-
witz criterion [13] are fulfilled. We recall these conditions as we make reference
to them repeatedly in what follows. To this end let us denote by ωi1 , ωi2 , . . . , ωip
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the eigenvalues associated with the matrix Ai1i2...ip . We construct the symmetric
fundamental sums of these values, i.e.

ai1 = −
∑

i1≤i≤ip
ωi; ai2 =

∑
i1≤i,k≤ip

ωiωk; . . . ; aip = (−1)pωi1ωi2 . . . ωip

(2.9)
A necessary and sufficient condition for Ai1i2...ip to be a stable matrix is that

Dik =

∣∣∣∣∣∣∣∣∣∣

ai1 ai3 · · · · · · 0
1 ai2 ai4 · · · 0
0 ai1 ai3 · · · 0
...

...
...

...
...

0 0 0 · · · aik

∣∣∣∣∣∣∣∣∣∣
> 0, for all k = 1, . . . , p (2.10)

together with the condition that all the aik in (2.9) are positive. Note that this defini-
tion implies that all the eigenvalues of the matrix Ai1i2...ip have negative real parts.
We call Ai1i2...ip s-stable if, for any minor 
j1j2...jq of order q(1 ≤ q ≤ p), we
have

sgn(
j1j2...jq ) = (−1)q (2.11)

Therefore the whole system (2.8) associated with A is s-stable if each of its sub-
systems is stable.

With these definitions in place we now proceed to our first result:

Theorem 1. If the kinetic system (2.8) of the problem (2.1–2) is s-stable then no
Turing bifurcation is possible from the uniform steady state solution us for any
n ≥ 1.

Proof. For n = 1 the result was shown above, it is well known for n = 2 [1, 4, 24]
and was proved for n = 3 in [12, 24]. The idea for a general proof is by induction
on n. Our induction hypothesis is this: we take a system of n interacting species
such that every (n − 1) dimensional subsystem is s-stable. We want to show that
the whole system is s-stable. To this end we need to show that the matrix C defined
by (2.4) is s-stable.

First note that it is sufficient to establish this when only one of the diffusion
coefficientsDi is non-zero (we choose it to beD1, say) as the proof for the general
case follows from this (see the remarks following the proof). Therefore we need
to show that if A is s-stable then the matrix C = A − dB is s-stable too. Here
d = D1k

2 > 0 and B is the n×nmatrix with all the elements equal to zero except
in the left upper corner (element b11) which is equal to 1.

We start by computing the characteristic polynomial of the matrix C = (cij ),
1 ≤ i, j ≤ n introduced in (2.4). This can be done inductively, for any n ≥ 2, and
the result is of the form

pn(ω) = ωn + c1ω
n−1 + · · · + cn−1ω + cn (2.12)

The coefficients in (2.12) are given by:
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c1 = d −
n∑
i=1


i = d + a1 (2.13.1)

c2 = −d
n∑
i=2


i +
∑

1≤i<j≤n

ij = −d

n∑
2


i + a2 (2.13.2)

...

cn = d(−1)n−1
2...n + (−1)n
12...n (2.13.n)

Note that due to the hypothesis onA (see (2.11)), ci is positive for each i = 1, . . . , n.
Indeed, this is true for each of the terms within the definition of ci , for each i =
1, . . . , n, because


i < 0, 
ij > 0, . . . , sgn (
12...n) = (−1)n (2.14)

and d > 0. Thus we have in (2.12) a polynomial of degree n with all coefficients
real and positive. Thus we deduce that all its real roots must be negative. This does
not preclude it from having complex roots – a possibility that we now analyse in
greater detail.

Let us remark that the coefficients in (2.13) are differentiable functions of d > 0
with the property that

ci(0) = ai and ci(d) > ai (2.15)

for all i = 1, . . . , n. Also by taking the derivative (denoted by ′) of each in turn
with respect to d we have

c′1 = 1; c′2 = −
n∑
i=2


i; . . . ; c′n = (−1)n+1
23...(n−1) (2.16)

From (2.14) we see that all these derivatives are positive.
To decide whether or not the matrix C has eigenvalues with positive real parts

(and possibly complex eigenvalues) we adopt the following strategy. Consider C
as being the matrix of constant coefficients of a linear n × n system of first order
differential equations

dx

dt
= Cx, for x ∈ Rn, t > 0 and x(0) = x0 (2.17)

The sign of the real parts of the eigenvalues of C dictates the asymptotic behaviour
of the solutions. To quantify this behaviour we employ the method of steepest de-
scents. Namely we consider the equation p(ω(x)) = 0 with x taken to be complex.
The asymptotic dynamics as t → ∞ may be determined by looking at the saddle
points, i.e. those points in the complex plane where

dω

dx
= 0 (2.18)
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From the characteristic equation we find

ω′[nωn−1 + (n− 1)c1ω
n−2 + · · · + cn−1] + c′1ω

n−1 + c′2ω
n−2 + · · · + c′n = 0

(2.19)

Thus the saddle points satisfy a polynomial equation of degree (n − 1). In other
words there are exactly n − 1 complex values ωj such that ω′ = 0 ⇒ ω = ωj ,
j = 1, . . . , n − 1, namely those satisfying the (n − 1) degree polynomial with
coefficients c′j , j = 1, 2, . . . , n.

We now further note from (2.13, 2.16) that the equation

c′1ω
n−1 + c′2ω

n−2 + · · · + c′n = 0 (2.20)

corresponds exactly to a relation of the form (2.12) i.e. it represents the character-
istic polynomial of the system with n− 1 species which is the subsystem ofAwith
matrix A2...n. Consequently it follows from the induction hypothesis that

Reωj < 0 (2.21)

for all j = 1, . . . , n−1. We therefore deduce that the function Reω(d) is maximal
for ω = ωj and therefore, for all d > 0 we have

Reω ≤ Reωj < 0 (2.22)

where ω = ω(d) is any solution of (2.12). This ends the proof by induction.

Remark 1. The general case where all diffusion coefficients are non-zero may be
readily obtained by applying inductively the above proof to each coefficient in turn.
Indeed this can be achieved by realizing that once A is s-stable then the matrix C
is s-stable too. This may be generalised by considering each entry from the main
diagonal iteratively.

Remark 2. The following observation for the case n = 2 gives more insight into
the relations between the spectrum of the matrices C and A.

For d > 0 we have C(d) = A − dB; let σ1(C) be the eigenvalue of C with
maximal real part. Similarly let σ1(A) be the eigenvalue of A with maximum real
part. Several situations can arise.

If both A and C have complex eigenvalues then it is clear that

2 Re(σ1(A)) = −a1 = 
1 +
2 ≥ 
1 +
2 − d = 2 Re(σ1(C))

If A has real eigenvalues and C complex eigenvalues then

2σ1(A) ≥ −a1 ≥ −c1 = 2 Re(σ1(C))

However, in general it is not true that Re(σ1(C)) ≤ Re(σ1(A)) for all d > 0. In-

deed if bothA andC have real eigenvalues then 2σ1(A) = −a1 +
√
a2

1 − 4
12 and

2σ1(C) = −c1 +
√
c2

1 − 4(
12 − d
2). We have that c1 > a1 and a simple calcu-
lation shows that σ1(A)−σ1(C) depends on the sign of the product e = a12a21 (the



500 R.A. Satnoianu et al.

sign of the elements on the cross diagonal). Namely σ1(A)−σ1(C) > 0 ⇔ e > 0.
This can be interpreted in a sense by saying that in the conditions of Theorem 1
the conclusion is “maximal”. By this we mean that although the spectrum of C is
a perturbation of that of A their sets can, in general, have disjoint parts.

Remark 3. In [24, Theorem 1, page 255] it is shown that ifA is such that the matrix
C in (2.4) has its entire spectrum in the left-hand plane for all values of Di ≥ 0 (a
property called strong stability) thenA is s-stable according to our definition. Thus
our result in Theorem 1 and the result in [24] are complementary. Combining these
two, the following result (characterisation of the strong stability) can be stated:

Theorem 2. A is strongly stable if and only if A is s-stable.

We now consider the coefficient cn in (2.13.n) in greater detail. We take C as
defined in (2.4) (i.e. all the diffusion coefficients are non-zero). Our aim is to show
that the condition from Theorem 1 is optimal in the sense that if A is not s-stable
then we can tune the diffusion coefficients so that the uniform steady state solution,
us , undergoes a Turing bifurcation for the full problem (2.1–2).

Theorem 3. If the kinetic system (2.8) of the problem (2.1–2) contains an unstable
subsystem in the above sense, then Turing bifurcation is possible from the uniform
steady state solution us .

Proof. Direct calculation shows (as in (2.12–13)) that

cn = k2nD1D2 . . . Dn − k2n−2
∑

{i1,...,ip}=
{1,...,n}−{i}


iDi1Di2 . . . Dip +

+ k2n−4
∑

{i1,...,ip}=
{1,...,n}−{i,j}

i<j


ijDi1 . . . Dip − · · · + (−1)n
12...n (2.23)

From the hypothesis we deduce that there are distinct indices 1 ≤ i1, i2, . . . , ip ≤ n

(1 ≤ p ≤ n) taken from the set 1, 2, . . . , n such that the corresponding subsystem
is unstable. We also note that p < n because the kinetics matrix A is stable by
hypothesis. We show that in this case we can choose the diffusion coefficients in
such a way that the matrixC in (2.4) has a zero eigenvalue. Obviously this happens
if cn becomes zero for suitably chosen diffusion coefficients Di , i = 1, . . . , n. To
this end we choose a positive, small number ε and let

Di1 = Di2 = · · · = Dip = ε (2.24)

Let q = n − p and denote by j1, j2, . . . , jq the remaining indices from the set
1, 2, . . . , n. From (2.23) we can see that if all but one of the diffusion coefficients
(Dj1 say) are equal to ε then we have

cn = (−1)n−1
JDj1 + (−1)n
12...n +O(ε), (2.25)
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where J = {1, 2, . . . , n}\{j1}. Note that we can always assume that 
J is non-
zero. Otherwise, we would have that all the minors of order n− 1 are zero and this
would imply that the kinetics matrix is singular. This contradicts the hypothesis
that the matrix A has eigenvalues with only negative real parts. Then it is clear
that, independent of the sign of 
J , we can always find a critical value δc(ε) (>0)
such that choosing Dj1 sufficiently close to δc(ε) will make cn take both negative
and positive values depending on whether Dj1 is less than, or equal to δc(ε), or
greater than δc(ε). Thus cn is zero exactly whenDj1 = δc(ε) and therefore C has a
zero eigenvalue. Furthermore the argument shows that at δc(ε) there is a pitchfork
bifurcation (with a zero eigenvalue) which corresponds to a Turing bifurcation for
the full system, and the theorem is proved.

Remark 4. Othmer [23] hinted that a result similar to Theorem 3 can be established
to show the existence of time-periodic patterns in a reaction-diffusion system with
n > 2 equations in view of the necessary and sufficient conditions for a s-stable
matrix given by Theorem 2. However, this issue is not explored here.

Remark 5. We have obtained a necessary (Theorem 1) and a sufficient condition
(Theorem 3) for a steady Turing bifurcation to occur in a general n-dimensional
reaction-diffusion system. Suppose that all the eigenvalues of the kinetics matrix
A have negative real parts. The following nomenclature serves to distinguish the
different possible cases.

Definition. We define as a Turing bifurcation of the first type (I ) the case where

i = aii > 0 for some i, 1 ≤ i ≤ n.

We define as a Turing bifurcation of the second type (II ) the case where there
are 1 ≤ i, j ≤ n such that 
ij < 0 and the bifurcation is not of first type.

In general, we inductively introduce the definition of a Turing bifurcation of
type p (<n) as being that bifurcation associated with a kinetics matrix for which
there are indices 1 ≤ i1, i2, . . . , ip < n such that sgn(
i1i2...ip ) = (−1)p+1, and
as not being associated with a Turing bifurcation of any previous type.

In other words, the dimension of the unstable subsystem determines the type of
the general Turing bifurcation. Note that for n = 2 the only Turing bifurcation that
is possible is of the first type; it is usually simply referred to as a Turing bifurcation.

3. Examples and illustrations

We now consider some examples which illustrate the applications of the above
theory.

3.1. Example 1

This illustration shows how one can achieve, for any given dimension p, p even
integer, a Turing bifurcation of order p. It is an adaptation of an example from
Meinhardt [27, p. 36] who proposed a system that achieves instability by the
inhibition of an inhibitor. Consider the following reaction-diffusion system with
Michaelis-Menten type kinetics:
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∂a1

∂t
= 1

a2
p

− a1,
∂a2

∂t
= a3

a1
− a2, . . . ,

∂ap

∂t
= ap+1

ap−1
− ap (A)

∂ap+1

∂t
= a1 − ap+1 +Dp+1

∂2ap+1

∂x2
(B)

where we have p + 1 reacting components with p ≥ 2 (our previous results
show that for generalised Turing instability any such example should have at least
three interacting species). Here Dp+1 > 0 is the constant diffusion coefficient
of the (p + 1) reacting species ai(x, t). This system has a uniform steady state
a1 = a2 = · · · = ap = ap+1 = 1. Suppose now that p is even and the initial
conditions are small perturbations close to this steady state. From the equations
(A) we see that any small local increase in the concentration of a1 will lead to a
decrease in the concentration of a2 which in turn will increase a3, and so on cul-
minating with an decrease in ap which (from the first equation in (A)) will further
increase a1 again. Thus the subsystem (a1, a2, . . . , ap) plays effectively the role
of an activator. If, for example, p = 2, we have that 
12 = −1 which, according
to Theorem 1, shows that the kinetics matrix associated with the system (A)–(B)
is not s-stable and therefore we have a Turing bifurcation of type II. Clearly the
above example can be adapted to any higher, integer dimension and accordingly,
similar higher Turing order instabilities can be easily obtained.

3.2. Example 2

Turing’s original model [1] considered a coupled system of two species with linear
reaction kinetics. This leads to physically unrealistic unbounded growth. However,
this can be overcome by taking into account that at the heart of every competition
patterning process is the subtle interplay between the initial, exponential linear
growth that is subsequently balanced by the nonlinear saturation to finite amplitude
through reaction and diffusion [1–4]. It naturally follows that the simplest system
to illustrate the results of Section 2 is a linear one but with some kind of control of
the synthesis rate of each species. As our results in Section 2 are general, i.e. they
are valid for every n-dimensional reaction-diffusion system, we can use a similar
idea here. This leads us to consider a system of three species in which we impose
piecewise linear kinetics.

Let u(x, t), v(x, t) and w(x, t) satisfy the reaction-diffusion system:

∂u

∂t
= d1

∂2u

∂x2
+ b11u+ b12v + b13w + q1 − s1u (3.1)

∂v

∂t
= d2

∂2v

∂x2
+ b21u+ b22v + b23w + q2 − s2v (3.2)

∂w

∂t
= d3

∂2w

∂x2
+ b31u+ b32v + b33w + q3 − s3w (3.3)
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where 0 < x < l for some fixed l. The boundary conditions are taken as being zero
flux:

∂u

∂x

∣∣∣∣
x=0

= ∂u

∂x

∣∣∣∣
x=l

= 0 (3.4)

with analogous relations for the v and w species. The initial conditions are taken
as in (2.2) in the form of some small perturbations from the uniform solution S:

u(x, 0) = us + u0(x), |u0(x)| � |us | (3.5)

with similar relations for the remaining species. Here d1, d2, d3 > 0 are the dif-
fusion coefficients and s1, s2, s3 > 0 are the decay rates of the species. Although
for each j = 1, 2, 3, the quantities bjj − sj can generally be of either sign, we
have deliberately considered the above form of equations to account explicitly for
the linear growth. To control the growth on the synthesis rate of each species we
impose:

0 ≤ b11u+ b12v + b13w ≤ ul (3.6)

where ul is a fixed positive number, with analogous expressions for the other two
species. Thus, this model may be thought of as an extension to three species of
the two species model proposed recently by Kondo and Asai [14] to account for
pigmentation patterning in certain fish species. It may also be considered as a sim-
plified version of any generic nonlinear dynamical interaction for systems such as
the Gierer-Meinhardt, Gray-Scott or Thomas systems [4, 16, 27].

It is an immediate consequence of relations (3.6), via applying a comparison
principle for scalar equations for each equation in turn, that system (3.1–6) has
global existence and uniqueness properties of the solutions (for all finite positive
times). Thus we can consider the solutions to this system and we now present the
results of numerical simulations for this model. In all that follows we chose a com-
putational domain of length l = 40 (by usingm = 4000 spatial grid points 0.01 unit
lengths apart). The system is solved with an implicit finite-difference method using
the Crank-Nicolson algorithm [19]. The patterning process is greatly influenced by
choices of the bounds ul , vl ,wl and the length of the computational domain. This is
however of little concern here, as we are mainly interested in the qualitative behav-
iour arising generically from such a system. Indeed it is not possible to completely
map out the whole parameter domain in view of the 22 parameters involved. How-
ever, we performed simulations for a large set of parameter values. Here we review
only some generic cases, which illustrate the results of the theorems presented in
Section 2.

We first explored the possibilities for Turing structures of the first type (I ).
Three different cases were considered, corresponding to the different phase rela-
tionships in the spatial oscillations between the stable and unstable subsystems.
These are presented in Figures 1 and 2. In Figure 1.1 we show the three profiles
of the solutions at time t = 2189. It is apparent from this plot that the amplitude
of oscillation of the “unstable” species (u) is much higher than the other two. This
is a feature characteristic in all the numerical solutions we explored (see also Fig-
ure 2.1 and Figure 2.2) and it is as one would expect intuitively. Figure 1.2 presents
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Fig. 1.1. Concentration profiles for the three species taken at t = 2189 when a steady
structure (type (I) Turing pattern) is fully established in the domain for problem (3.1–5). The
three species oscillate “in phase”. Parameter values are: d1 = 0.005, d2 = 0.1, d3 = 0.1,
b11 = 0.08, b12 = −0.08, b13 = −0.01, b21 = 0.1, b22 = 0.0, b23 = 0.0, b31 = 0.1,
b32 = 0.0, b33 = 0.01, q1 = 0.05, q2 = −0.15, q3 = −0.25, s1 = 0.03, s2 =
0.06, s3 = 0.02, ul = 0.5, vl = 0.5, wl = 0.5.

a space-time plot of the u-component of the solution. It displays the dynamical pro-
cess of evolution from the initial perturbation of the steady state up to the formation
of the spatially-periodic stationary patterns. In this case all components oscillate
“in phase”.

Standard analysis (see, for example, [4]) shows that for the case of a two-com-
ponent reaction-diffusion system in 1-D, near a primary Turing bifurcation point,
the spatial profiles of the components are either exactly in phase or exactly out of
phase. For (3.1–6) there are essentially two cases to consider depending on whether
one or both of the remaining species oscillate in opposite phase. Two illustrations
of these situations a re shown in Figures 2.1 and 2.2. A general feature of all “out
of phase” cases was that the parameter domain in which they occur is considerably
smaller than the corresponding domain for the “in phase” oscillations. In practice
this means that such structures are less likely to occur. Note also the u, v patterns
formed in Figure 2.1 and the high amplitude of the u-oscillations in Figure 2.2.
Figure 2.3 gives a surface plot of the concentration u, which shows the spatio-tem-
poral evolution from the initial conditions to a steady structure for parameter values
similar to those in Figures 1.1.

We next studied the formation of Turing patterns of the second type (II ). A
typical situation is displayed in Figures 3.1 and 3.2. Here the three concentrations
oscillate in phase. Note that although they all have amplitudes of similar magnitude,
the pair of “unstable” components has somewhat higher amplitude of oscillation
than the remaining inhibitor species. The v-species has the highest amplitude since
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Fig. 1.2. Grey scale contour space-time plot of the u solution in Figure 1.1 showing the evo-
lution from some small initial perturbation to a steady type (I) Turing structure for problem
(3.1–5). Parameter values are the same as in Figure 1.1.

it has the smallest diffusion coefficient. In Figure 3.2 we show a contour plot of the
u-species for the same parameter values as in Figure 3.1. As was the case for Turing
structures of the first kind, there is also the possibility of out of phase solutions of
the second kind, but this situation is not presented here.

We conclude by emphasising our finding that the high amplitude of the activa-
tor species (i.e. those composing the unstable subsystem) oscillations appears to be
generic for all type p (here p = I, II) Turing patterns. In general, there are parameter
domains where type I and type II Turing structures overlap and where hysteresis is
expected to occur.

4. Extensions of the main result

Although the analysis in Section 2 was carried out for a reaction-diffusion system,
it can provide insight to more general systems. In this regard it is instructive to
give an application of Theorem 1 in connection to the differential-flow instability
property of a system (DIFI [10, 11, 30]). Specifically let us consider a general
n-dimensional reaction-diffusion-convection system with the corresponding kinet-
ics matrix being s-stable. We show here that if the system is unstable to differen-
tial-flow then the instability must be of convective type. In other words the system
is stable in the fixed frame of reference but there is a moving frame in which any
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Fig. 2.1. Concentration profiles for the three species taken at t = 2436 when a steady struc-
ture (type (I) Turing pattern) has been well established in the domain for problem (3.1–5).
For better graphical display the plot here shows v − 4.75. The v species oscillates “out of
phase” from u and w. Parameter values are similar to those for Figure 1.1.

Fig. 2.2. Co ncentration profiles for the three species taken at t = 4667 for problem (3.1–5)
when a steady structure (type (I) Turing pattern) has been well established in the domain.
The values of the u species are scaled down by a factor of 10 for better graphical display.
The v and w species oscillate “out of phase” to u. Parameter values are similar to those for
Figure 1.1.
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Fig. 2.3. Grey scale surface plot of the spatio-temporal evolution of the u concentration.
The plot shows the dynamical evolution from some small initial perturbation from the steady
state up to a steady (periodic) type (I) Turing pattern. Parameter values are similar to those
for Figure 1.1.

Fig. 3.1. Concentration profiles for the three species taken at t = 20434 for problem (3.1–5)
when a steady structure (type (II) Turing pattern) has been well established in the domain.
The three species oscillate “in phase”. Parameter values: d1 = 0.007, d2 = 0.001, d3 = 0.2,
b11 = 0.01, b12 = 0.02, b13 = −0.01, b21 = 0.1, b22 = 0.0, b23 = 0.0, b31 = 0.1,
b32 = 0.0, b33 = 0.01, q1 = 0.05, q2 = −0.15, q3 = −0.15, s1 = 0.03, s2 =
0.06, s3 = 0.025, ul = 0.2, vl = 0.5, wl = 0.2.
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Fig. 3.2. Grey scale contour plot of the u solution in Figure 3.1. showing the evolution from
some small initial perturbation to a steady type (II) Turing structure. Parameter values are
the same as in Figure 3.1.

localised perturbation grows as it is convected out of the physical domain. This was
proved for a particular case of the Gray-Scott kinetics model with two components
in [19].

To see this let us take A as above (representing the linearisation of the kinetics
matrix around a spatially uniform steady-state). It is clearly sufficient to establish
the result when only one of the species is flowing and the others are all immobilised
(following an argument similar to the one used in proof of Theorem 1 and Remark 1
and see also [12]). Suppose then that the first species flows at a constant rate φ > 0
and diffuses as well. Without restriction we can scale its diffusion coefficient to 1.
Now we shall show that the system is stable to small, spatially localised perturba-
tions in any given stationary frame of reference. Let α = k2 + ik φ and consider the
matrix of the resulting linearised system which we denote by D(k, φ). The proof
proceeds by induction, as in Theorem 1 above, and because the verification step is
clear we shall only give the general induction step here. From a simple calculation
we obtain the characteristic polynomial:

qn(ω) = ωn + d1ω
n−1 + · · · + dn−1ω + dn (4.1)

where

d1 = α −
n∑
i=1


i = α + a1 (4.1.1)
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d2 = −α
n∑
i=2


i +
∑

1≤i<j≤n

ij = −α

n∑
2


i + a2 (4.1.2)

...

dn = α(−1)n−1
2...n + (−1)n
12...n (4.1.n)

These coefficients are obtained in a similar manner to the coefficients of pn in
(2.13). Now we apply again the method of steepest descents to determine the
behaviour of the linear solutions (as t →∝). By computing the saddle points of
(4.1) we arrive at the relation(

zn−1 −
(
n−1∑
i=1


i

)
zn−2 + · · · +
12...n−1

)
(2k + iφ) = 0 (4.2)

where the eigenvalues at the saddle points are denoted by z. Now if the first factor is
zero then clearly we have Re(z) < 0 because these eigenvalues are associated with
the kinetics matrix which is s-stable. If the second factor is zero then the saddle is
located at

ks = − i

2
φ (4.3)

By putting this value of k back into (4.1) we arrive at a polynomial equation in z of

degree n exactly as (2.12–2.13) but with D being replaced by φ2

4 > 0. It follows
from Theorem 1 that all the roots of this polynomial equation have negative real
part. This establishes that our reaction-diffusion-convection system is absolutely
stable and the result is proved.

From this proof it appears that the result may not hold in general if the stability
matrix of the kinetics system is not s-stable. Indeed in [25] it is established (again
for the example of the Gray-Scott kinetics) that the instability may be absolute for
specific values of the kinetics which render the kinetics matrix non s-stable (for
example in the Hopf oscillatory domain).

5. Conclusions

We have reconsidered Turing’s theory of pattern formation [1] with the aim of
extending it to the interaction of more than two species. We have established neces-
sary and sufficient conditions (in terms of the kinetics matrix and the diffusion rates
of the interacting species) which guarantee the occurrence of a Turing bifurcation
from a spatially uniform steady state in a system of n reaction-diffusion equations.
Our results show that the dimension p of the unstable subset may be in the range
1 ≤ p ≤ (n − 1). This implies that there are a priori (n − 1)! distinct ways,
depending on the reaction mechanism, in which an unstable or autocatalytic subset
may arise. Each member of this hierarchy of (n − 1)! steady Turing bifurcations
has further subclasses defined by the phase-relationships of the species.



510 R.A. Satnoianu et al.

We showed how the above results may be applied by considering a number of
pattern generating mechanisms, ranging from the “inhibitor-of-an-inhibitor” pat-
terning scheme proposed by Meinhardt [27], to a generalisation of a model recently
proposed for pigmentation patterns on certain fish species [14, 15], to an extension
of the recently investigated differential-flow-induced instability and flow distrib-
uted oscillations which have been applied to chemical systems and may also have
important application in biological patterning mechanisms that involve clocks, such
as somitogenesis [29].

We have shown that Turing instability in n-species reaction networks may arise
through activators, or unstable subsystems, involving up to p = n−1 species. The
number of a priori possibilities of finding an activator in such a reaction increases
rapidly with n – an issue that is of central importance in Kauffman’s arguments
[26].

We believe that the work presented in this paper is another step towards un-
derstanding pattern formation in systems of reaction-diffusion equations involving
more than two species. Given that most realistic chemical and biochemical reac-
tions do involve more than two species, such an analysis is crucial if one is going
to verify models by comparing model predictions to experimental data. One of
the conclusions of the above work is that the patterning morphogen envisioned by
Turing may, in effect, be a system of chemicals interacting in a specific way.

It is known [18] that time-varying spatio-temporal structures may arise in reac-
tion-diffusion systems with more than two interacting species. A condition for this
type of structure is presented in [18] for a general three-species system. It remains
a task for future research to generalise this formally to the general n-dimension-
al case, probably involving ideas similar to those employed here. Another open
question arising from this work is its impact on patterns in two and three spatial
dimensions, e.g. the issues of coexistence/competition of patterns belonging to dif-
ferent types, of morphological differences and of dividing spots [20] and lamellar
structures [21].

Finally we mention the analogous problem of a reaction-convection-(diffusion)
system for which these results do not hold in the same way. In [12] it has been shown
that, at least for n = 3, the differential-flow-induced instability (DIFI) can arise in a
generic system even in the absence of an unstable subsystem (activator). Although
this result was established only for n = 3 dimensions we believe that it is more
general (i.e. valid for any n ≥ 3). One reason for this difference might be in the
different character of the two instabilities (i.e. Turing and DIFI) the former being
always of absolute type whereas the latter can be either of absolute or of convec-
tive type. In this respect we have given already an application showing that for the
s-stable kinetics the ensuing flow-driven instability must be convective. However,
the general problem is under consideration at the present time. Nevertheless, it is
simple to show that for the case n = 2 we do require the presence of an activator
species in the system in order for DIFI to take place [30].
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