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Abstract. Theprobability distribution of the number of mutant cellsin agrowing single-cell
population is presented in explicit form. We use a discrete model for mutation and popu-
lation growth which in the limit of large cell numbers and small mutation rates reduces to
certain classica models of the Luria—Delbriick distribution. Our results hold for arbitrarily
large values of the mutation rate and for cell populations of arbitrary size. We discuss the
influence of cell death on fluctuation experiments and investigate aversion of our model that
accounts for the possibility that both daughter cells of a non-mutant cell might be mutants.
An agorithmispresented for the quick cal culation of the distribution. Then, wefocuson the
derivation of two essentially different limit laws, thefirst of which appliesif the population
size tends to infinity while the mutation rate tends to zero such that the product of mutation
rate times population size converges. The second limit law emerges after a suitable rescal-
ing of the distribution of non-mutant cells in the population and applies if the product of
mutation rate times population size tends to infinity. We discuss the distribution of mutation
events for arbitrary values of the mutation rate and cell populations of arbitrary size, and,
finally, consider limit laws for this distribution with respect to the behavior of the product
of mutation rate times population size. Thus, the present paper substantially extends results
due to Leaand Coulson (1949), Bartlett (1955), Stewart et a. (1990), and others.

1. Introduction

Since theintroduction of fluctuation analysis by Luriaand Delbriick in 1943, there
has been good reason to believe that the production of mutant varieties by a grow-
ing population of bacteriaisarandom process. Luriaand Delbriick argued that the
large fluctuations observed in successive attempts to determine the proportion of
phage-resistant bacteriain growing cultures of Escherichia coliwould not support
the hypothesis that it is the presence of the phage that induces resistance in the
cells (Luria and Delbriick 1943). To illustrate this, consider a collection of bac-
teria cultures and suppose that in some of these cultures, one or several bacteria
accidentally gain resistance to the phage at avery early stage of culture growth. As
proliferation continues, these bacteriawill eventually divide into alarge number of
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mutant clones, so that after being plated with the phage on solid medium, a sub-
stantia proportion of cultures will produce a much larger number of colonies than
would be consistent with the hypothesisthat resistant cells arose only after the bac-
teria had been exposed to the phage. Clearly, thisargument appliesto more genera
settings than the development of phage-resistance in sensitive bacteria, and the ex-
perimental approach devised by Luriaand Delbriick has been employed repeatedly
to study the emergence of mutantsin single-cell populations. With this approach,
it is presupposed that it is primarily the distribution of mutantsin a sample of cell
cultures that carries the relevant biological information and not, for instance, the
timeit takesfor mutant cellsto devel op into visible col onies. Hence, the need arises
for amodel from which this distribution can reasonably be calculated.

It would be desirableto refer to thisdistribution simply as‘the’ Luria—Delbriick
distribution. However, any attempt to make ‘the’ Luria-Delbriick distribution a
well-defined object of mathematical investigation inevitably relies on explicit as-
sumptions about the mutational process and about how cell proliferation proceeds
in the population. To convey an idea to the reader of how these assumptions look
like, we shall briefly review several existing models for the calculation of the
Luria—Delbriick distribution (an excellent account of alot of important work that
has been devoted to the study of the Luria—Delbriick distribution during the last
fifty years has recently been given by Zheng (1999)). The most general approach
so far appears to be the one by Stewart et al. (1990), who require that (i) the prob-
ability that a mutation takes place in the (small) time interval betweent and ¢ + dr
equalsthe length of theinterval, dz, times a certain function @(z) of time only (but
does not depend on how the population is composed of mutant and non-mutant
cells), and (ii), the probability! p(k; r) that a mutation occurring at time ¢ will be
represented by a (mutant) clone of size k by the time T when the cells are plated
on solid medium is a function of the parametersz, k, and T, and in particular does
not depend on what may happen at other times (this assumption will not hold if, for
instance, mutants have to compete for resources). It was demonstrated by Stewart
et al. that under these two assumptions, the probability generating function (PGF)
P (z) of the number of mutants present in the population at time 7' is given by

P(z)=e"exp (Z Akz") : *)

k=1

T 00
wherer, = [ p(k; )@ (t)dt,and A = )" Ax. Under theassumptionthat? p(k; 1) =
0 k=1

e MT =0 (1—e MT=D)k=1 () denotesthe growth rate of cells) and the mutation rate
is constant, the model of Stewart et a. model reduces to the one of Lea and Coul-
son (Lea and Coulson 1949; Stewart et al. 1990). It is especialy this latter model
that has become popular among geneticists, which ismostly dueto its comparative
simplicity and Leaand Coulson’sthorough discussion of how to employ this model

! In this section, we adhere to the notation of the respective authors.
2 Thisassumptionisjustified if cell proliferation proceedsin an asynchronous manner as
explained in Section 2.1. See al so the discussion following Equation (67) below.
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for the evaluation of experimental data. It does, however, lead to a distribution of
mutant cellswith infinite moments. Although thisis not so much a drawback from
apractical point of view, it is clear that the expected number of mutant cells (for
instance) diverges because Lea and Coulson’s model predicts too large a probabil -
ity for an arbitrary culture of bacteriato contain a very large number of mutants.
Since there are simply no bacterial populations that contain an infinite number of
mutants, it follows that the tailing of the distribution towards large numbers of
mutants, which is a vital point in Luria and Delbriick’s original argument, is not
described correctly in Lea and Coulson’s model. Notwithstanding that, Lea and
Coulson’s model has attracted considerable recent interest (Ma et a. 1992; Pakes
1993; Kemp 1994; Goldie 1995; Prodinger 1996) and justifiably has become the
most widely used model underlying the evaluation of fluctuation experiments.

Another very general model isthe one by Tan (1982). Tan derivesthefollowing
expression for the PGF ¢, (s) of the number of mutants that are present in a cell
population that is grown from an initialy very large number of cells after these
cells have gone through n successive rounds of replication (thisis the Lemmathat
appears on p. 721 of Tan (1982)):

Cn(s) = {ha ()} exp {)‘1 Zﬂi[hn—j(s) - 1]} ) **)

j=1

whereh(s) isthe PGF of the progeny size of amutant cell, and i, (s) = h(h,,—1(s)).
Furthermore, xg isthe number of mutantsinitially present in the population, w1 is
the expected number of cellsinthe progeny of anon-mutant cell, and 1.1 isameasure
for theintensity of themutational process, inthesensethat p1 = A1 My l+o(M5 b,
where p1 denotes the probability of mutation of anon-mutant cell. Mg > A1 isthe
initial size of the population. Clearly, the fact that essentially only the PGF & (s)
enters the calculation of ¢, (s) allows Equation (**) to be tailored to cover awide
variety of different scenarios. In particular, Tan can allow for both forward and
backward mutation (the latter, however, turns out to be negligible if the rate p, of
backward mutation is of the order p2 = oMy * +o0(My 1), where 12 issmall com-
pared with M), and for the death of both mutant and non-mutant cells. Moreover,
Tan aso showed how to incorporate the phenotypic delay of new mutantsinto his
model (thisis actually straightforward if one considers the fraction of ‘newborn’
mutants that manage to express the mutant phenotypein acertain timeinterval; see
Tan (1982) for details).

To get an intuitive grasp of Equation (**), consider a sufficiently large culture
of bacteriasuch that the probability that Mo non-mutant cellswill produce acertain

k, kark
number k of mutants during the first round of replication is 21210 1M° e PuaMo ~

1” le—*1141, By the time of the n round of replication, the probability distribu-
tlon of the number of cells in the progeny of these k mutant cells will have the
generating function [/, _1(s)]*. Therefore, the PGF of the number of mutant cells
in the population at the time of the n round of replication that result from the
mutation of non-mutant cells during the first round of replication will by given by
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o .k
> %[hn,l(s)]ke—*l“1 = exp{rip1[hn—1(s) — 1]}. The other factorsin Equa-
k=0

tion (**) ariseinasimilar manner 2 (for ageneralization of thismodel to multivariate
branching processes, see Tan (1989)).

Both Tan’smodel aswell asthat of Stewart et al. (1990) requirethat themutation
rate be small, i.e. that the number of mutant cellsin the population be negligiblein
comparison with the number of non-mutant cells. Thisis a somewhat unfortunate
limitation. We will follow adifferent approach here, which allowsthe mutation rate
to assume any value between (and including) 0 and 1, and which allows the number
of mutant cellsin a population to be large. The crucia point is to forget about the
conventional modelling of population growth as a continuous process over time,
and to formulate our model in the language of partial difference equations. Wethen
arrive at an explicit representation of a probability distribution which is related to
the models of Lea and Coulson (1949) and Bartlett (1955) in much the same way
asisthe binomial distribution to the Poisson distribution. This point will be made
clear in Section 5.

For simplicity, we shall only deal with bacterial populations. However, it is
clear that our results apply whenever the assumptions (i)—(v) of Section 2.1 or
the dlightly more general assumptions of Section 3 are fulfilled, and in particular
to what might be called a Luria—Delbriick theory outside the field of fluctuation
analysis, namely the mapping of certain disease-related genes through linkage dis-
equilibrium (Hastbacka et al. 1992; Lehegoki et a. 1993; de la Chapelle 1993).
Here, theideais as follows: When a disease-related geneis first introduced into a
(human) population, it will be in complete linkage disequilibrium with the mark-
er alleles on the same chromosome. As parents inherit the gene to their progeny,
this linkage disequilibrium will tend to dissipate because of recombinations that
occur between the gene and the surrounding markers. Now, from the point of view
of fluctuation analysis, the one gene introduced into the population together with
its haplotype of markers may be thought of as an ancestral bacteria cell, and any
recombination which occurs between a gene and a marker allele can be seen as a
mutation. Sincethemutation ratefor thiskind of mutation clearly increaseswith the
distance between the gene of interest and the marker, the fraction of disease-bear-
ing chromosomes that do not anymore display the ancestral haplotype may serve
as ameasure for the genetic distance between the disease gene and the marker. A
key difference, however, to a fluctuation experiment is that one uses essentialy a
single observation (namely the fraction of disease-bearing chromosomes that are
derived from the ancestral chromosome and have not undergone recombination yet)
to infer on the recombination rate, which to dois at least slightly opposed to Luria
and Delbruck’s origina line of argument. Still, itisevenin thisvery simplified set-
ting that the fine-scale mapping of genes can be remarkably successful. Indeed, the
diastrophic dysplasia gene that applying Luria and Delbriick’s method of ‘likely’
averages (Luria and Delbriick 1943) had been predicted to lie within 64 kb from

3 Rather than proceeding with the analysis of (**), Tan makes use of the assumption that
M, isvery large to pass from (**) to a continuous-time model that avoids the cumbersome
calculation of the functional iterates i,,(s).
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a polymorphism in the colony-stimulating-factor-1 receptor gene later was found
tolie at 70 kb proximal to this region (Hastbacka et al. 1994; Jorde 1995). How-
ever, it is clear that questions such as the reliability of linkage information from
Luria—Delbriick-like models or even for the best measure of linkage disequilibri-
um for fine-scale mapping purposes call for a more sophisticated treatment (see,
for instance, Kaplan et al. 1995; Kaplan and Weir 1995; Xiong and Guo 1997,
also Devlin and Risch (1995), and Guo (1997), which contain a very useful list of
references).

The paper is organized as follows. In Section 2, we explain the assumptions
which are basic to our model and derive the Luria-Delbriick distribution in explicit
form. Section 3 is concerned with the influence of cell death on the distribution
and an dternative model of mutation. In Section 4, we present an algorithm to
calculate efficiently the distribution. Sections 5 and 6 are devoted to the study of
limiting distributions for large populations. Section 7 introduces the distribution
of the number of mutation events. In Section 8, we shall be concerned with the
limiting distribution of mutation events.

2. The Luria—Delbrick distribution
2.1. Model assumptions and notation

We beginwith specifying anumber of assumptionswhich are sufficient toformulate
our model in its simplest form.

(i) We are concerned with bacterial populations of arbitrary size. In particular,
we do not require that the size of the population is large. We will, however,
assume that the population has been grown from a single non-mutant cell.

(ii) The number of mutant cells in a population of given size n is a non-nega-
tive, integer-valued random variable p,,, which takes on val ues between 0 and
n— 1. Similarly, the number of non-mutant cellsin thispopulationisarandom
variable w, such that p, + w, = n.

(iii) Whenever a cell divides, it is replaced by two cells which are capable of
further proliferation. Mutant cells divide only into cells with mutant proper-
ties, whereas the division of anon-mutant (i.e. ‘wild-type') cell may resultin
the formation of a mutant cell as well. We will always assume that mutation
occurs only at the time of cell division.

(iv) Theprobahility for any cell to bethenext todivideisthesamefor all cellsinthe
population. To beexplicit, weassumethat inapopul ation of  cells, r of which
are mutants, the probability that a mutant cell isthe next to divideisr/n, the
probability that it isanon-mutant cell, is (n — r)/n. Clearly, this assumption
can only be an approximation, even if the cultures are grown under conditions
which equally support the proliferation of mutant and wild-type cells.

(v) We define the mutation ratewx; as the probability that the division of awild-
type cell in a population of i cells ends up with the formation of one mutant
and one non-mutant cell. If the mutation rate is constant, i.e. if o; = «; for
any pair of indicesi, j > 1, we shall simply denoteit by «. The fact that we
allow the mutation rate to vary with population size should be considered as
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mainly technical. We shall only draw onit asaconvenient tool to allow for the
possibility that acultureisgrown fromng > 1 cells, rg of which are mutants.

Whenever the distribution of the number of mutants in a bacterial population is
calculated from the above assumptions, we shall refer to it asan ‘ordinary’ Luria—
Delbriick distribution.

We will now briefly introduce the most frequently used symbols. We shall
in general denote the probability that a culture of n cells contains » mutants by
po(n,r;a,—1), wherea,_1 isshort for (o1, oo, . . ., ap—1). Similarly, we shall de-
notetheprobability that thispopul ation containsk wild-typecellsby p, (n, k; @, —1).
Clearly, p,(n,r; dp_1) = po(n,n —r;a,—1). If the mutation rate is such that
o =0forl <i <ng—ro,af =1forng—rg <i < ng, and o; = « for
i > no, thisis clearly equivalent to a population that is grown from g mutants
and kg = ng — ro hon-mutant cells which mutate with constant probability, and
we shall write p, (n, r|no, ro; &) and pe,(n, k|no, ko; ) instead of p,(n, r; a,—1)
and p,(n, k;a,—1). If no = ko = 1, we shall simply write p,(n, r; «) and
Po(n, k; ). In the same spirit, we shall generally denote the expected value of
the number of wild-type cells in a population of size n by E,(n; @,_1) or, if
the mutation rate is constant and the population is grown from a single wild-type
cell, smply by E,(n; o). We shall also use the probability generating functions

n—1 n
gon,s;a) = Y po(n,r;a)s” and g,(n,s5a) = Y pun, k; a)sk. Clearly,
r=0 k=1

gp(n, s;a) = s"gy(n, 1/s; ). An expression like p,, (1, k; ap) aso has a mean-
ing: It denotes the probability that one picks k wild-type (k = 0 or 1) cellsto start
the culture. Finally, we shall denote the limit of a sequence {X,,} that exists with
probability 1asn — oo by p — nIer;o Xp.

2.2. The Luria—Delhiick distribution

Suppose that a culture of n cells contains » mutants. This can only be the case if
either the culture of n — 1 cells has already contained » mutants and the last cell
doubling that took place did not produce a new mutant, or if the cultureof n — 1
cells has contained » — 1 mutants and the last cell doubling did produce a new
mutant. Now, acell divisionin aculture of n — 1 cells,  of which are mutants, will
notlead to the formation of another mutant cell if one of n — 1 — r wild-type cells
divides (the probability for thisevent is (n — r — 1)/(n — 1)), and if its division
doesnotlead to theformation of amutant cell (thisprobability is1—«;,—1). Hence,
with probability

n—r—1

A-a,u-1) n—1

aculture of n cells containing » mutants derives from a culture of n — 1 cells that
has already contained » mutant cells. A similar argument showsthat the probability
that a culture of n cells containing » mutants derives from a culture of n — 1 cells
with r — 1 mutantsis

p,O(n - 17r;an72) )

r—1 R n—r
n_lpp(n—l,r—l; an_z)+cxn_1n_1

po(n —1r—1lia,2) ,
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s0 that in total, we obtain

N r N
Pp(l’l, rionp-1) = (1 —a,-1) |:1 - n__]_:| pp(n —1ra,_2)

r—1 -
- J pen—Lr—Lia, ) . (1)

n

+ |:an—1 + (1 —-ay-1)

It is generaly more convenient to concentrate on the probability distribution
Po(n, k; a,—1) of wild-type cells in the population. Since k := n — r, we find
from Equation (1)

_ k—1 _
Po(n, k;oy_1) = (11— an—l)mpw(n -Lk—-1 0,2

k
+ [1 —(1—-ou-1) 1] Po(m — L k;a,_2) . (2)

n—

Clearly, p,,(n, k; a,—1) > 0forany n andk,and > p,(n, k; a,—1) = 1for dl n.
k=1
It isthen a straightforward calculation to verify

Theorem 2.1. The probabilityp,, (n, k; a,—1) that a bacterial culture of n cells
contains k wild-type cells is

1 k k 1 n—1
e _ il Kk~ T I
Poln ki dn-1) = =g > (=) (l. _ 1) [-id=epl. @
i=1 j=1
The probabilityp, (n, r; @,—1) that it contains exactly r mutants is simply given by
pp(n, r;0n-1) = po(m,n —r;dp_1).

One easily obtains the following corollary to Theorem 2.1:

Corollary 2.2. For constantx, the probabilityp,,(n, k; ) that a culture of size n
contains exactly k wild-type cells if it has been grown from a single wild-type cell

is
k
LN i (=1} [(il-a)-1
Alternatively, the probability’,, (n, k; ) that it contains at most k wild-type cells
is given by

k .
Potnia) = 3 (K) (1407 ©)
i=1

As dready mentioned in Section 2.1, the fact that we allow the mutation
rate to be variable alows us to derive immediately the probability distribution
Po(n, k|no, ko; o) of the number of wild-type cellsin apopulation whichis grown
from ng cells, ko of which are wild-types that mutate with constant probability. In
fact, the distribution of wild-typesin such a population evolvesin the same manner
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as if the culture were grown from a single wild-type cell with the mutation prob-
ability set equal to zero for the first ko — 1 cell divisions, then switched to 1 for
another ng — ko cell divisions, and finally adjusted to its constant value «; = « for
n > ng. Then Theorem 2.1 immediately yields the following

Corollary 2.3. For constanty, the probabilityp,, (n, k|ng, ko; «) that a culture of

size n contains exactly k wild-type cells if it has been grown from a culturg sf 1
cells withkg wild-type cells is

k
— no)l(no — 1! 4
Do, kino, ko; @) = (n —no)l(no ) Z(_l)n*nOJFkO*l
i=ko

(n — Dl (kg — 1)!

y (l.c—.l)! (i(l—a)—n()) ©)
(k — )i — ko)! n—ng

Equation (6), however, is of limited use in practice; the main reason isthat in gen-
erd it is difficult to determine the population size with an accuracy of order ng.
Moreover, the number of wild-type cellsin the inoculum cannot reasonably be ad-
justed unless the pre-culture is grown under conditions which guarantee that only
wild-type cells proliferate or mutant cells are sorted out, in which case kg = ng.
In any other case, np > 1 implies that the random sampling of mutants from a
large pre-culture into the inoculum must be taken into account. Equation (6) does
not serve this purpose. We will employ (6) only to discuss the relation between our
model and the ones formulated by Lea and Coulson (1949) and Bartlett (1955) in
Section 5.

Thefollowing resultisinterestinginitsownright. Itismost conveniently proved
by insertion into Equation (1):

Corollary 2.4. For « = 1/2, the probability that a culture of size n contains r
mutants if it is grown from a single wild-type cells is

n+r—1> 1

pp(n,r;1/2) = < , ontr—1 ()

To conclude this section, we will calculate the moments of the probability distribu-
tionin Theorem 2.1. For any integer z > 1, we define the factorial moments of the
distribution of the number of wild-type cellsin a population of size n asfollows:

EL(n;@n-1) =) k(k+ 1) (k42— 1)py(n, ks @p1) . ®
k=1

Note that this definition is non-standard in comparison with the usua one,
which involves a descending factorial. It is also easy to check that if we define
Eg(n; a,-1) = 1, we obtain for the generating function =, (n, s; a,—1) of the
factorial moments E? (n; a,—1),

o -~
_ Eg(n; an—1) 1
Eo(n, —s;@,-1) = ) =T (=5)" = g, (n — an_1> C)
= zZ! 1+

where g, (n, s; a,—1) iSthe generating function of the probability distribution (3).
We have
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Theorem 2.6.
n—1 .
1 — .
EX(n; 1) = 2! 1_[ M ) (10)
. J
j=1

Proof. From Equation (2), it follows immediately that
(n — DE(n; an-1)

=(n—1DY kk+1 - (k+z—Dpon ki, 1)
k=1

=(—D) kk+1D-(k+z—Dpo(n— 1Lk @, 2)
k=1

(A=) ) Kk+D - (k+2=Dpon — 1,k @u2)
k=1

+A—ap1) Y (k—Dk--(k+z—Dpo(n — 1 k-1 a, 2)

k=1
=[n—-1+z(1—0a,-1)] Ej)(n -La,2),
and Theorem 2.6 is confirmed by induction. |

With reference to elementary properties of the gamma function (see, for
instance, L ebedev 1972), one immediately obtains the following important

Corollary 2.7. For constanty,

E (o) = I'z+1) TI'(n+z(1-w))
O T Izl —a) + 1) I'(n)

I'z+1) 2(1-a) zl—a)—1 _2
=—— " ptFo1 1-— P
rcA—a)+D) " +z(1-0a) » +0(@n™)
(11)
Note that in particular, from Corollary 2.7,
1«
E,(n;a) = EX(n;a) ~ —— 12
a)(naa) a)(naa) F(Z—o{) ’ ( )

sothat for« > 0, E,,(n; a)/n — 0 asn tendsto infinity.

3. Two extensions of the model

The assumptions which underlie the derivation of Equation (1) are somewhat sim-
plifying. One might, for instance, wish to consider the possibility of back mutation,
or the possihility that it might take more than one step of mutation for the mutant
phenotype to become manifest. Although it is easy to introduce the appropriate
corrections into Equation (1), the entrance of additional terms into this equation
complicates the computation of an explicit solution. We will treat here two exten-
sions of our model where such a solution can be found.
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3.1. Cell death

The role of cell death in fluctuation analysis has not been discussed extensively
so far (see, however, Tan 1982; also Kimmel and Axelrod 1994). The reason for
thisis probably that a fluctuation experiment requires that cells be able to grow on
solid medium. Cellsthat are genotypically mutants but fail to grow onthe selection
medium remain invisible during the experiment. Thus, one might dispense with the
problem of cell death simply by redefining the mutation rate as the probability that
the division of a non-mutant cell results in the formation of a cell whose progeny
is ableto survive until the culture is plated on solid selection medium and to form
coloniesthere. We will, however, adhere to our less restrictive concept of mutation
rate introduced in Section 2.1 as far as possible.

We keep only the assumptions (i) and (ii) of Section 2.1. Furthermore, we make
the following assumptions:

(i) The population is composed of colony-forming cells (CFCs) and dead cells.
A colony-forming cell isamutant or non-mutant cell that is capable of further
proliferation such that there is always at least one CFC in its progeny. The
number of CFCsin apopulation of n cellsisarandom variable ¢, which may
take on any integer value between 1 and .

(ii) Whenever a cell divides, it is replaced by two cells at least one of whiclis
capable of further proliferation. A mutant cell may divide into two mutants,
or into one mutant and one dead daughter cell. A wild-type cell may divide
into two wild-type cells, or into one wild-type and one mutant daughter cell,
or into one wild-type and one dead daughter cell, but not into one mutant and
one dead daughter cell. We will assume that whether a cell is mutant or dead
can be decided immediately after the division of its mother cell.

(ii1) Wewill assumethat if apopulation containsn. CFCs, r of which are mutants,
the probability that a mutant cell is the next to divideisr/n., and similarly
for the non-mutant fraction of CFCs. This is reasonable because from the
point of view of fluctuation analysis, a cell is ascribed a ‘mutant’ or ‘non-
mutant’ phenotype according to its capacities to develop into a colony under
certain selective circumstances. Therefore, if any bacterial culture produces
mutant colonies after being plated on solid medium, these colonies must have
originated from colony-forming cells.

(iv) We define the mutation ratew; as the probability that the division of awild-
type cell in a population which containg CFCsresults in the formation of
one mutant and one non-mutant daughter cell. Similarly, we introduce the
probability §; that the division of any cell in a population which contains i
CFCs ends up with the formation of one dead and one colony-forming cell.
For simplicity, we shall assume that §; is not too large, such that ﬁ—a <1
Notethat the actual value of §; must be the same for both mutant and non-mu-
tant cells, since otherwise the growth conditionswould preferentially support
the proliferation of one or the other cell type, which contradicts assumption
(iii) above.

We denote the probability that a culture of n cells containsn, CFCs and » mutants
by pe.p(n, ne, r; Snc 1,0y, 1), Wherea, 1 isasaboveand Snc isof courseshort
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for (81, 82, ..., 8n.—1). Since only colony-forming cells divide, it is clear from a
brief inspection of Equation (1) that we must have

pc,p(n’ Ne, 15 (Snc—l» &n(.—l)
ne—r—1

_ n—1Ln.—1,r;8, _2 dn_
ne —1 Pc,p( c ne—2>%n, 2)

=1- n.—1— 8nc—1)

ne —r = N
+anc_1nc—_lpc,p(n —Lne =17 =1 8y,-2,Gn.—2)

c

-1 = _
+(1- 5nc—1) lpc p(” Ln.—1r—-1 (Sl’lc—Za anC—Z)
+8ncpc,p(n - 1» Ne, 13 ‘Snc—l, &nc—l) . (13)

Because of assumption (iii), we might try to express the probability
De.o(n, rone; 5,1( 1, 0y,—1) as the product of the probability p.(n, n¢; 8,,.—1) that
it contains n. colony-forming cells times the probability that there are » mutants
among these cells. The problem is whether this latter probability can be taken to
be p,(nc, r; an,—1) (the answer is no), since, by assumption (ii) of this section,
the possibility to undergo mutation increases the chances for a non-mutant cell to
survive. In other words, cells that are still alive are more likely to have mutated.
This point is clarified by the following

Theorem 3.1. Let p.(n, n; S,,(,_l) denote the probability that a culture of n cells
containsn,. colony-forming cells, and leg,(n, r; 4,,—1) be an ordinary Luria—
Delbriick distribution with

4 _( « o2 o, —1
R T Iy . R S

Then the probabilityp. ,(n, nc, r; S,,C_l, a,,—1) that a culture of size n contains
exactlyn, colony-forming cells and r mutants among them is given by

pc,p(n: Ne, 15 3nc—lv an(—l) = pc(n, n¢; gn(—l)pp(nc, r; Z‘nc—l) . (14)

Proof. If weset p.(1, 1, 30) = p,(1,0; Zlo) =land p.(1, n.; 30) =po(1,r; Zlo)
= Ootherwise, thetheoremiscorrectforn = 1andany valueof n. andr. Therefore,
it only remains to prove that the product p.(n, n.; Snc_l)pp(nc, r; ch_l) fulfils
the recursion relation (13), i.e., to check that

Pe(n, ne; 8u—1) pp (e, 15 Ano—1)
-1

=Q1—-ay, 16y 1)————
( Un—1—0n, 1) ne —1

pen —Lne — 18,2 pp(ne — 1,73 An,—2)

+anc_1 pc<n Lne — L 8p-2)ppne — 1,1 — 1; Ay, —2)

ne

-1 R -
+(1- (Snc 1) 1Pc(” Ln. -1 5nc—2)p,o(”c -1r-1 AnC—Z)

ne

+8nfpc(” -1 nc; nc—l)pp(nc, r; Z‘nf—l) . (15)
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But this is a@most obvious, since the probability p.(n, n.; Sm—l) that a bacterial
population containsn, CFCsregardlessof the number of mutantsit containsclearly
satisfies
pe(n, ng; gnffl)
:(1_571(—1)]70(” —1n.—1 3n5—2)+8n,3pc(n -1 ng Sn(;—l) , (16)

because of the very definition of §;. Then, because of Equation (1), the first three
terms on the right-hand side of Equation (15) can be collected to give (1 — §,.-1)
pen —1,ne — 1, 8,.2)pp(ne, r; An.—1), and wefinally obtain

pe(n, ne; gm-—l)pp(nc‘a r; Z]nc—l) = [(1 - 8nc—1)pc(n -1ln.—1 Sn(.—Z)
+0p, pe(n — 1, ne; Snc—l)]pp(nr:a r; Z‘nf—l) ,
which obviously completes the proof of the theorem. ]

Notethat in practicethereisnoneedto calculatethedistribution p. (n, n.; S,,C_l),
since both the total number of cells as well as the number of CFCs in a bacterial
population are experimentally accessible quantities. In fact, Theorem 3.1 tells us
that, conditional on thefact that abacterial culture of given sizen containsn. CFCs
(which can be decided in the experiment), the probability that it contains exactly r
mutantsis Simply p, (n¢, r; An.—1).

3.2. An alternative model of mutation

In the present section, we shall be interested in what happens if the mutation of a
wild-type cell may also result in the production of two mutant daughter cells. We
keep the assumptions of Section 2.1, with the exception of (v), which we replace
by the following:

(i) We denote by «* the probability that the division of a wild-type cell in a
population of arbitrary size ends up with the formation of one mutant and one
non-mutant cell. Similarly, we denote by «*® the probability that awild-type
cell divides into two mutant daughter cells. We will assume that both «® and
«**® are constant during the whole period of population growth, and that both
a® and «*® are not too large. Specifically, we assumethat «® + 20*® < 1 (the
reason for this somewhat strange condition will become clear later).

Sincewearedealing with adifferent model of mutation here, weintroduce some
new notation. We now denote the probability that a culture of n cells containsr mu-
tants by o, (n, r; o®, ®*), that it contains k wild-type cells, by o,,(n, k; o®, ®*).
Itisclear that

op(n, rya®, a®) = (l—a'—a")n_ 1 op(n—1,r;a% a*)
r_l L] L]
+ _1Up(n—l,r—1;oc,ot )
—l—a'Z:;ap(n—l,r—l;a',a")

Wi —r+1
=

1 op(n—1,r—2;a%a) . @an
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We are looking for a solution of equation (17) in terms of known quantities. It is
provided by
Theorem 3.2. Define

o
=1_9¢ " (18)
Furthermore, letp,(n, r; @) denote an ‘ordinary’ Luria—Delbiick distribution
such that the quantitie, (n, r; @) fulfil the recursion relatior(1) with @ in the
role of a, but

O:=a®+22%, 6:

146 1+6
and p,(1, r; @) = 0 otherwise. In other words, suppose that a population of bac-
teria has been grown from a single cell that is wild-type with probabﬁég and

mutant with probabilityl_(i—e, and let the mutation rate in the population be equal
to . Then

op(n.ria® a®®) = (1+6)"" ZO (’r’ - f ) (—=6) " pp(n,i: @) . (20)
Sketch of proof Thefact that o, (1, 0; «®, «*®) = land o, (1, r; ®, «**) = O for
any other r is straightforward. Next, one uses Equation (1) to express each single
Pp(n,i; ©) intermsof p,(n —1,i; ©) and p,(n — 1,i — 1; ©), and thus checks
that the sum on theright-hand side of Equation (20) doesfulfil therecursionrelation
(7). Since any two quantities that fulfil the same partia difference equation and
coincide on a sufficiently large set of initial data are identical, this will complete
the proof of Theorem 3.2. The details of the calculation, however, are somewhat
messy, and not particularly interesting in themselves. Thereader isinvited to obtain
them from the author. ]

Corollary 3.3. The probability distributions,, (1, k; a®, «**) of the number of
wild-type cells in a population of size n has the generating function

- 6 1
kz:(:)ﬁw(n, k;a®, a®®)sh = 1x0 + H—egw(n, s—60(1-5)0) , (21)
where
n
go(n,s; Q) = Z Po(n, k; @)sk . (22
k=1

is the generating function of the probability distribution (4), wihn therole ofa.

Proof. Because of Theorem 3.2 and a straightforward application of the binomial
theorem, we have

n n n—i .
Y 0w kot a®)sk =Y pu(nn—i:60)) <” A ! ) (—0)" (14 )k s*
k=0 i=0 k=0

=8u(n,s —0(1—15);0) ,
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where we have denoted by g, (n, s; @) the generating function of the probability
distribution p,,(n, k; ®). Because of the definition of the quantities p,,(n, k; ©),
thisgenerating functionisequal to g, (1, s; @) with probability 1/(1+6) (cf. Equa-
tion (19)), whereas with probability 6 /(14 0), itisequal to 1. Since g, (n, s; @) =
E(E(s“|w1)) by the very definition of a generating function, this already com-
pletes the proof of Corollary 3.3. ]

4. A note on computation

In many applications of fluctuation analysis, the cell numbers involved may build
up to ~106 — 108. It isthen clear that for the calculation of the distribution neither
Equation (1) nor Theorem 2.1 will be suitable. To efficiently calculate the distribu-
tion in such acasg, it is natural to try and develop an agorithm similar to the one
described by Maet al. (1992) (also Sarkar et al. 1992). Thisispossibleif the wild-
type cells mutate with constant probability. The procedure is as follows. Consider
the generating function

o0
Y @) 1= poln, ks e)x" "t (23)
n=k

where the summation could beginwithany n < k, sincewe expect that p,, (n, k; o)
iszero for any n < k. Then, because of Corollary 2.2 and a routine application of
the binomia theorem, (23) yields

00 k .
y(rio) = Y (-1 Y~y (’l‘ - i) (‘“;f‘)l‘ 1) N

n=1 i=1

k 00
_ ni—1 k= il—a)—=1Y\, -1
—;( 1 <i_1)§< o )(x)
=1-x0)""1-1-x)d@pt (24)

so that after integrating and multiplying by (l_(i‘ﬁx‘k , We obtain

k ® 1 S R A
Toap T 2 Polm ks -(“aza )

=k
o . k
— (et ) e
= I'()I'(i +2)
The problem of calculating the distribution thus reduces to determining the coeffi-

. . . . (1l \k L .
cientsin the power series expansion of (1((11_—;‘)))6) ; but thisisimmediate from

a well-known theorem about power series raised to powers (e.g. Gradshteyn and
Ryzhik 1980). In our instance, it reads

k 1
A—w)f1in Po(n, k; a)
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1 i Pt o ik L ik
k& T+ T a g g e e
so that finally, we obtain
pp(n,r,Ol) nZ (a+l) (n+ )l r(l+ ) p(n_l r— (26)

< ()T +2) n—i

with p,(n —r,0; ) = (1 — o)1,

For the sake of completeness, and because the result will be needed below, we
will aso treat the more genera case when the inoculum used to seed the experi-
ment contains mutants and wild-type cells. To this end, we compute the (ng — 1)1
derivative of the corresponding generating function,

o0

Vinoko(t; @) i= Y pu(n, klno, ko; e)x" " . 27)
n=no+k—ko

Here, the summation could of coursebeginwithany n < ng+k —kg. Then, because
of Equation (6),

Ve o (x; @)
LoD e k=D S i—a) —no e
~ (ko D! ._Z(_l) 0 (k—i)!(i—ko)!n;O( n —no )(_x) O
ko—i (k — 1)| _ \id-a)—n
1)l Z( D T gk ’
(”lO _ 1) < ko 1 ) (1 )kO*HO*Dtko[l _ (1 _ x)(lfot)]kfko , (28)

which in comparison with (24) is less useful.

5. The limiting distribution (first case)

The purpose of this section is to derive alimit law for the Luria—Delbriick distri-
bution that applies when the population size islarge and the mutation rateis small,
and thereby to establish a connection between our model and the ones of Leaand
Coulson (1949) and Bartlett (1955). We express this connection as the following

Theorem 5.1. Consider a bacterial culture ofg cells that containgg mutants,

and denote by, (n, r|ng, ro; ) the probability that this culture will contain r mu-
tants when it has grown to a size of n cells (Corollary 2.2). Furthermore, suppose
thatv = nILrgo ';1—0 exists and thatg remains finite as: — oo. Then, for any

nonnegativey < oo, lim p,, (n, rlno, ro; £) exists and is in fact the probabili-
n—>oo

ty distribution of a nonnegative, integer-valued random variable with generating
function



160 W.P. Angerer

o0 ro

H . f ro__ Vs _ o(1-s5)/s
rzr Aim P (””'”0’ ro; n)s = (1—(1—v)s> (=s-+vs) - (29
=ro

Proof. We will employ the functions yx. 4.k, (x; ) (27) from Section 4, or rather
their (np — 1) derivative. Thus,

o
—k,,(0-D) (. P\ _ (- D! A
x"o Yk n0.ko (X, ;) = Z mpw (n, klng, ko; ;) x"
n=k+no—ko
o0
(k+r—1! ( )
= . 0 k ) ) ;_> r 5
r:Zr()(k+r_no)!pp +r,r|ng, ro . x

so that, by Equation (28), and if we simply write n instead of k,

(ko= D! (n —ko)! ¢~ (2 47 — D! A
(no—21! (n —1)! Z (”+r—no)!pp (n+r,r|n0, ro; ;)x

r=rg

(30)

1— n—ko
— x”°7k°(1 _ _x)kO*nO*QOko/n |:1 — (1 —X) ‘/’/Vl:| '

X
Furthermore,
1- n—ko
lim M =(1- x)(p(l—v)(l—x)/x
n—»00 X >
according to the conditions of the theorem, and

ko= D!'(n—ko)! (a+r-1t
M o= Dl =D oy =gt T

if werecdl that ng — kg = ro. Therefore, we obtain

o
Z lim p, (n + r, r|no, ro; f) v — v) oy !
n—o00 n

r=ro

= x"0(L— x)"0T¥V (1 — x)w(l—V)(l—X)/x , (31)

at least for x < 1, which, as an identity between power series, provesthat lim p,
n—oo

(n + r, r|no, ro; £) exists. Since the convergence of p, (n + r, rino, ro; £) clearly
entails that of p,(n, rino, ro; %), we may substitute one for the other in Equation
(31). It isthen easy to check that a change of variables x =: (1 — v)s transforms
the resulting equation into (29), thereby completing the proof of Theorem5.1. O

Theexpression (1— s+ vs)?1=%)/5 that appears on the right-hand side of Equa-
tion (29) has often been referred to as Bartlett’s generating function (or, for v = 0,
as Leaand Coulson’s generating function). Zheng (1999) callsit the exact PGF for
the Lea-Coulson formulation of the Luria—Delbriick model. In view of the fact that
there exists another model of Bartlett’s to study growth-and-mutation processesin
bacterial populations (see Discussion), thisis probably advisable. A very readable
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account of the fortunes of the generating function (1 — s + vs)?=%/¢ during the
1950s can be found in Zheng (1999).

As far as the aternative model of mutation introduced in Section 3.2 is con-
cerned, we have the following

Theorem 5.2. Lety,(n, s; «®, «**) denote the probability generating function of
the distribution(20). Then, for any two nonnegative numbersp < oo,

lim 4, (n 5 %’ %) = P — ) WHIAIE = 090, 0(s5) , (32)

n—oQ
whereg; ¢ (s) denotes Lea and Coulson’s (1949) generating function.

Proof. Because of Corollary 3.3, we have

° (Y 1 l+9(1—s) 9
Yp(n,s; o, )=s"1+9gw (n,f;@>+s"—l+9
-1
(146 —0s)" § s r 0
= 9 7@ I’l_ )
1+6 ; 1100 _y) PP O 1
(33)

where @ and 6 are as specified by Equation (18). With6 = «**/(1—a® —2a*®) =
¢/(n — ¢ — 2¢), itisclear that the first factor in (33) tendsto €?1=%) asn — oo,
whereasthe last term simply disappears. If now wefix for the moment an arbitrary
(small) value for 9, it follows from Theorem 5.1 that

n—1 r
. s p+29
n'LToZ<1+9(1—s)) pp("’r’ n )

r=0

’

(1+9)(1—S) (p+2¢)(1+0)(1-s)/s
:< 146 —06s )

since we have derived the probability distribution (20) under the assumption that
no = 1, which implies that v = ng/n — 0asn — oo. If now we let 6 =
¢/(n — @ — 2¢) — 0aswell, we obtain the desired result. O

6. The limiting distribution (second case)

The crucial point about the derivation of Theorem 5.1 is that the product an of
mutation rate and popul ation size converges as the popul ation size tends to infinity.
In general, however, one would expect that the number of mutations which occur
in a bacterial population as it grows to infinite size also increases without bound,
unless the mutation rate is zero for most of the time. If we exclude the possibility
of backward mutation, the number of mutantsin abacterial populationisat least as
large as the number of times that non-mutant cells have mutated in this popul ation,
and one may ask, say, for the probability that the ratio of the number of mutantsto
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the total size of the population exceeds 1/2. The division by the number of al cells
in a population may obviously be too crude a normalization to yield interesting
results, and we will therefore investigate the probability that the number of mutant
cells (or, which is basically the same thing, the number of non-mutant cells) devi-
ates significantly from its expected value. We keep all the assumptions of Section
2.1, but assume the mutation rate as constant.

Consider the sequence {W,,} of random variables

wy (o)

Ey,(n; a) ' (39

where E,,(n; ) is the expected value of the number of wild-type cellsin a popu-
lation of size n (Equations (11) and (12)). Then we shall prove

Theorem 6.1. Let0 < o < 1. As n— oo, the sequencéW,} converges with
probability 1. Furthermore, the probabilityy (x; «) that W := p — lim W,

n—o0

assumes a value not exceeding X is given by

Py (x;a) =

1SN0 (L — @) Fi(1—a)) x i
;( b B i (r(z — oz)) - 3
for x > 0, and Py (x; @) = 0 otherwise.

Proof. Wefirst observe that a culture of sizen — 1 that contains k& wild-type cells
will on average contain
n—k—-1 n-—uoa

k k=
1 + n—1 n—1

1-a k+1+a k k
n

n—1

wild-type cells when it has reached size n. Therefore we have for the expectation
of W, conditional on W,,_1,

n—ao k k
E(Wn|Wn—l) =

n—1E,(n;a) E,(n—1a) ! (36)

This proves that the sequence {W, } of random variables (34) isamartingale. Fur-
thermore, E(W,,) = 1and W,, > O for dl finiten, sothat W .= p — nll)n;O W,
exists because of Doob'’s theorem.

Since convergence in probability implies convergence in distribution, the cal-
culation of the distribution function Py (x; «) is now standard. We fix avalue for
x > 0and then pick an integer k,, := k,(x) suchthat k, < xE,(n; a) < k, + 1.
Then, because of Corollary 2.2,

Py (x; )
= lim P,(n, k,; )
n—oo

ki RSRNT .
n'l[go Z(—l)"_i —[Ew(’;l’ )l X' [1— O (Ey(n; a) )] (l(ln_f)l_ 1) ,
i=1 ’
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where O() is Landau’s order symbol. The proof of Theorem 6.1 is now complet-
ed by noting that, because of the asymptotic expression for the gamma function
already quoted in Corollary 2.7,
. n— i il—a)—-1
1im (~1)" [ Eq(n: ) ( e )
rn+1-a)\ TI'(n—il-a)
(r(z — ot)F(n)) I'mI1l—i(l-—a))
_ 1 1
CTd-il-) [IF2-a)
_sin(mi(1— o) IF'i(1— )
- U [r2-uw) ’

and that (asis easy to check) the series in Equation (35) has infinite radius of con-
vergence. Thefact that Py (x; o) = 0for x < Oisobvious. O

Theorem 6.1 tells us that the probability that a very large culture of bacteria
contains a number of mutants larger than n — x E ,(n; ) can be sufficiently well
approximated by Py (x; ). Thus, wefind that for any n,0 < n < 1, theprobability
that alarge culture of (say) n bacteria contains more than nn mutant cellsis given

by Pw (&aﬂs) ; a). Thistends to unity asn increases.

For compl eteness, we quote an interesting corollary to Theorem 6.1.

Corollary 6.2. For « = 1/2, the probability densitypw (x; ) of W = p —
lim W, is
n—o0

2

2 _x
pw(x;1/2) = ;6_7 ) (37
if x > 0, while py (x; 1/2) = 0 otherwise.
We now return to a discussion of the probability distribution (20) which emerg-

es in the context of the alternative model of mutation introduced in Section 3.2.
Here, we consider a sequence {£2,,} of random variables

1 Wy

=136 Em 0 (38)

n

Then we have

Theorem 6.3. Let0 < @ < 1. The sequencg,, converges in distribution, and
the limiting distribution function is

% 1
PQ(X;@,Q)ZH—G‘FH_QPW(X;@) s (39)

where Py (x; @) is the distribution function (35) witl® in the wle of .
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Proof. We will make use of the theory of Laplace-Stidltjes (LS) transforms. By
definition, the LS-transform Ay, (y; «) of the distribution function of the random
variable W, (34) isthe expected value of eYWn, i.e.

n
hy (i @) = 3 e E) b ks ) = g, (n, € E ) (40)
k=1

We denote the LS-transform of the probability distribution Py (x; @) (Theorem
6.1) by Aw (y; ) (thisfunction may easily be given in explicit form, but we do not
need it at this point; see, however, Equation (65) below). Finally, the L S-transform
Ag, (y; O, 0) of the distribution function of the random variables (38) is

0 1 .
he, (1 0,0) = T—— + T gu(n. (L+ 0)e Y/ WHOEEO) _g. @), (41)
because of Corollary 3.3. Our aim isto prove that
. 0 1
n'l)rgo)x.(z,,()ﬂ 0,0) = 1+0 + ].—i—_QAW(y; 0) (42)

uniformly in y on any interval [0, z), z < oco. Since, for any such'y,
0< e ky/Ew(n;0) _ [(1+ g)e*y/(l+9)Em(n;@) _ g]k
< K[/ Eom:0) _ (1 1 g)e¥/+OEa:0) | g]
1 0 ky?

= 214 0B O (43)
it followsimmediately from (41) and (43) that
0< i, (55 0) — (L4+ 0o, i 0.0) 40 LT
" § 1+6 E,(n; O
which implies Equation (42) aswell as Theorem 6.3. |

7. The distribution of mutation events

For the purpose of this and the next section, we will again make use of the assump-
tionslisted in Section 2.1, with the exception that we will assume the mutation rate
is constant throughout. Furthermore, we adopt the following convention:

(i) Whenever awild-type cell divides into one mutant and one non-mutant cell,
wecal it amutation eventThe number of mutation events that have occurred
in apopulation of given sizen isanon-negative, integer-valued random vari-
able, which we denote by w,,.

Practically speaking, the distribution of mutation events should be of greater
importance than the distribution of mutants, since the number of mutations that
have occurred in a population (which might be in practice a population of tumor
cells) is a more accurate measure of its mutability than the number of mutants it
contains. Because of the fact that the mutant cells themselves multiply, it might
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seem that the distribution of mutation eventsis easier to accessthan the distribution
of mutant cells. However, even if we know that a population contains » mutant
cells (which is significantly more information than to know that it contains n mu-
tant and non-mutant cells), these r cells may still be the result of any number of
mutation events from 1 to r. Furthermore, the probability that amutation occursin
a population of given size does not only depend on the number of mutations that
have aready occurred, but aso on whenthey did. For example, if the first mutation
already occurs at the time of division of the first cell in the population, there will
be only ~n/2 cells available for mutation later on. Therefore, the precise form of
the distribution of mutation eventsfor arbitrary values of « should be of significant
interest also from the theoretical point of view.

If we denote by p,, . (n, r, m; ) the probability that a population of sizen in
which m mutation events have occurred containsexactly r mutants, weimmediately
find from Equation (1)

,
Popn,rym;a) =(1—a) [1— —] Poum—1,r,m;a)

n—1
r—1
+—n_1pp,u(n—1,r—l,m;a)
n—r
+a _1pp,ﬂ(n—l,r—l,m—1;a) . (44

The probability p,(n, m; «) that m mutation events have occurred in a culture of
size n which contains an arbitrary number of mutants would then be given by

n—1

pu(n,m;a) :pr,u(n,r,m;a) . (45)
r=0

Unfortunately, the recursion relation (44) is much less amenable for an explicit so-
[ution than the corresponding recursion (1). However, with someeffort itispossible
to prove the following

Theorem 7.1. Let the distribution of the number of wild-type cells be given as in
Theorem 2.1, and denote lgy (n, s; «) its generating function for arbitrary but
fixed population size (22). Furthermore, let

n—1
gun,s;@) =Y pu(n,m; a)s™ (46)

m=0

denote the probability generating function of the distribution of the number of mu-
tation events, wherp, (n, m; ) is the probability that exactly m mutations have
occurred in a population of n cells. Then

1—oas l-«
gu(n,s10) = ——8o <n 1_0”;aS> - (47)
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Sketch of proof. The idea of proof is to introduce first a new notation for the
probability that no mutation occurs, say 1 — o =: §, and to realize that the prob-
ability p, (n, m; o) must in some way be proportional to o™ times some possibly
complicated polynomia in 8. On the other hand, we have

n—1
Po(n,ri@) =Y ppuln,rym;a) . (48)

m=0

Hence, onewill try to find a suitable expansion of the probabilities p, (n, r; «) into
powers of & and 8 and then collect terms of the same order in «. Specifically, one
introduces auxiliary variables

-1
m n—r—l%qmu("’r’ m) , (49)

Pop(n,rym;a) =t a

and then proves that

m
+j-1
Gou(n.rom) = Djym <" iy ) : (50)
j=0

where the coefficients D ,. ,, are defined recursively such that
Dj,r+1,m = rDj,r,m - (}’ + j)Dj,r,m—l + (I" + j)Dj—l,r,m—l (51)

and certain boundary conditions are met (e.9., Dj,,» = 0forr < m). Inasimilar
fashion, one proves that

Co) — n—r—1(n —r — D! - n+j—-1
pp(l’l,r, Ol)—,B W;Cj,r;a< r+] ) ) (52)
j=

where

,
Cj,r;oz = Z O/nDj,r,m . (53)
m=j

Together with Equations (22) and (46), this leads to Theorem 7.1. The actual cal-
culations, though elementary, seem to be more difficult to be followed than to be
done by oneself. The reader is therefore encouraged to do so, or to obtain details
of the proof from the author. |

8. The limiting distribution of mutation events

This final section is devoted to the derivation of limit laws for the distribution of
the number of mutation events similar to those expressed by Theorems5.1 and 6.1.
If, asin Section 5, the mutation rate is small and the cell number is large such that
the product an converges asn tends to infinity, the calculations are rather simple.
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Theorem 8.1. Letp,, (n, m, ) denote the probability distribution of the number of
mutation events in a population of size n, andgletr, s; «) denote its generating
function as specified by Theorem 7.1, Equation (47). Then, for any nonnegative
numbergp < oo, both lim p, (n,m; £) and lim g, (n,s; £) exist, and

n— o0 n—o0

Nim g (nosi £) = er00 (54)

Proof . For the proof, wefix avaluefor s between zero and one, and rewrite Equa-
tion (47) as

-1 e
O =

r=0

Since 11_%/” < 1, it follows at once that

/n
oy (Lop/m T &5
gu(ms,;)_(l—gos/n) . (55)

On the other hand, Theorem 5.1 implies that the family of probability distributions
pp (n.r; £s) istight, which in our instance means that for any positive number &

Fe
there exists an index r, suchthat 3" p, (n,r; £s) > 1 — ¢ foral n. Thus
r=0

¢ 1—g/n\"" P& (1—g/n \*" ¢
8n <n,S; ;) = (—1_¢s/n) ;(—1—@9/}1) Ppo (n,r; ZS)-{-E

1—(p/n n—rg—1
=(=2n) e %0

which together with Equation (55) already impliesTheorem 8.1, since¢ isarbitrary,
and r, isfinite.
If, on the other hand, an — oo asn — oo, we consider a sequence {M,,} of

random variables

1-—
M, = 1Y

a E,(ma) (57)

The proof of the following theorem owes much to the advice of Anthony Pakes,
whose idea it was to bound the difference (63) of LS-transforms by means of
moment-generating functions.

Theorem 8.2. Let0 < « < 1. The sequencd¥,, converges in distribution, and the
limiting distribution function is

Py (x; ) = Py (x; ) (58)

with Py (x; @) as given by Theorem 6.1.
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Proof . Because of Theorem 7.1, Equation (47), the LS-transform A, (y; o) of the
distribution function of the random variables M,, is

1— aefy(lfoz)/aEw(n;a)
l-«

Am, (V) =

11—« .
X8w | 1, 1— qgeyA—a)/aE,(ma)’

ae—y(l—a)/aEw(n:a)) . (59)

The first factor on the right-hand side of Equation (59) tends to unity asn — oo.
We may therefore concentrate on the term which involves the generating function.
Write, for simplicity,

On = ae—y(l—a)/aEm(n;a) ) (60)

Then we shall prove that

i l-« ]
o 80 \ M T e @ a) B ey 1

= lim g,(n, e/ Een®: )y — 3w (yia) . (61)
n—oo

As compared with the proof of Theorem 6.3, the argument requires a little more
care, since we only know that lim g, (n, €Y/« o) exists and is equal to
n—oo

Aw (y; @), but not whether the same is true for lim g, (n, e /Eo(:®): ¢y To
n—>oo
prove that thisisindeed the case, consider the sequence {Z,,} of random variables

wp(&n)

Ly = ————— .
" Ey(n; a)

(62)

1—

Now, because m > ﬁ > e Y forany y > 0, it is straightforward to

derive the inequalities

2
0< l1-«a _ e_Y/Ew(nla) < 1 M

T 1— e Yd-a)/eEs(me) 201 — @) [En(n; a)]?

and

1-a ¢ — efyk/E(u(";a)
1 — geyd-a)/aE,(n;e)

k—1
<k 1-a l-a _ g V/Eo(ma)
- 1— geyd-a)/aE,(n;a) 1 — gey(1—a)/aE,mn;a)

It follows that

1-« _y .
b <n7 1-— ae_y(l—oz)/ozEw(n;oz); §n> — 8w(n, € )/Ew(n,ot); gn)‘

< E,(n; ¢y) y2
T [Eo(n;)]?20(l—a) °
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which together with Corollary 2.7 implies that the random variables Z,, and M,
have the same limiting distribution. It remains to show that Z,, is distributed like
W, inthelimit n — oo. To prove this, write y = E, (n; o) log(1 + n/E,(n; o))
(log denotes natural logarithm) and then check that, because of Equation (9) and
Corollary 2.7,

e¢]

. _ . _ - Eczo(n» &) (—n)* _ Eg)(n;a) (_n)z
i) = Gl = 120 [Ep(n; )]z z! zgo [Eo(n; )2 2!
G Ei(n; ) (qn® n)z
- Z;)C”’Z[Ew(n; ) ’ (63)
where
2
Crc = a0 o 4 22 +0m™?) . (64)

T B, THES @)
If we ignore for the moment the coefficients C, ; in (63), it follows from Cor-
ES ()

-2 till has an infinite radius of

o
ollary 2.7 that the remaining series )
20 [Eoma

convergence. Therefore, the right-hand side of (63) tends to zero essentially like
log n/E,(n; o). This concludes the proof of Theorem 8.2. O

Incidentally, we may employ (63) to calculate finally the L S-transform of the
random variable W. It is sufficient to set 1z, (y; ¢,) = 0 and to forget about the
absolute value in (63). Invoking Corollary 2.7 once more, we obtain

e re-wF
)»W(y,a)—zgom( »o, (65)

provided that « < 1, since it is only then that n as defined by y = E,(n; @)
log(1 + n/E,(n; o)) tendsto y asn tends to infinity. For « = 1, we have in fact
hw(y; 1) = g7 = e, asexpected.

9. Discussion

This paper provides an explicit representation of a Luria—Delbriick distribution
that has remained unnoticed for about fifty years. However, the investigation
of the model formulated here is not only justified because it allows for such
a representation, but also because of its practical and theoretical implications.
These concern in particular the derivation of the limit laws (35), (39), and (58).
As far as the practical side of the problem is concerned, the evaluation of a
fluctuation experiment is a subject well worth of study on its own. It is, however,
not necessarily connected with the problem of calculating the Luria—Delbriick
distribution. Still, this investigation does contribute to that issue. Theorem 3.1,
for instance, tells us that in general one need not worry about cell death during
the evaluation of a fluctuation experiment. At first, one may proceed as if the
cultureswere composed of colony forming cellsonly. The differenceisjust that the
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mutation rate measured in such an experiment will be larger by afactor 1/(1 — §)
in comparison with the true mutation rate «. Now, either the probability that any
cell divides into a colony-forming and a dead cell is small, in which case the
influence of cell death can be ignored, or it is not, in which case this probability
can readily be determined (at least aslong asit is constant). In fact, it is clear that
for large populations, the number n. of CFCs in the population will be very close
to its expected value (1 — §)n. As mentioned in Section 3.1, both the total number
of cells in a population as well as the number of CFCs it contains are readily
accessible quantities. The easiest way to determine them is to take aliquots of the
culture to be counted under the microscope (possibly after suitable dilution) or to
be plated on solid medium. In either case, the results coincide with the true value
of n (n.) only up to an accuracy of at most \/n (/n.). If, therefore, one wishes
to get an idea about the magnitude of §, it is necessary that the experiment be
conducted such that n — n, = 8n > /n + /n¢, 1.e. § > 2,/n/n, which poses
no problem if § is really so large that cell death must be taken into account.

As far as the aternative model of mutation introduced in Section 3.2 is con-
cerned, we first note that under the assumptions of that section, the probability that
the population eventually is composed of mutant cells only (which isto say that the
population of non-mutant cells becomes extinct) is the same as would be expected
for aclassical Galton-Watson process. Infact, it iseasy to seethat under the assump-
tionsof Sections 3.2, the PGF f (s) of the number of non-mutant cellsin the progeny
of anon-mutant cell is £ (s) = a*® +a®s + (1 — a® — a**)s2. Itiswell known that
for any Galton-Watson process, the probability ¢ that apopulation which originates
with a single individual finally becomes extinct is the smallest (nonnegative) root
of the equation s = f(s). In our case, thisimpliesqg = 1_0‘["—_0( = ﬁ—e which
is exactly the value predicted by Theorem 6.3. Now, unless the average number of
mutant cells per culture in a fluctuation experiment is sufficiently small (such that
Theorem 6.3 does not apply), and if none of the N populations in the experiment
is composed of mutant cells only (by Theorem 6.3, the probability for thisevent is
approximately (1+6)~"), onewill most likely obtain an ordinary L uria-Delbriick
distribution as the outcome of the experiment. Indeed, Theorem 6.3 tellsusthat the
probability that alarge culture of bacteria contains fewer than a certain number of
wild-type cells, conditional on the fact that it does contain any wild-typecellsat all,
isjust given by Py (x; ®) (one would therefore be tempted to call the parameter
O = a® 4 20*° the ‘effective’ mutation rate).

On the other hand, if the experiment is conducted such that there are only few
mutant cells per culture on the average, and if one accepts the fact that under the
assumption that wild-type cellsdo occasionally produce two mutants upon division
the relevant distribution of mutant cells is given by Theorem 5.2, the picture is a
different one. Indeed, if we set ¢ = 0 in Equation (32) (such that wild-type cells
produce mutants only by dividing into two mutant cells), we obtain
lim v, (n 5; 0, %) = 179 (1 — 5)2A=9)/s

n—o0

=exp<—¢+2¢_2;i(is+l)> , (66)
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whence it follows that the probability that the culture does not contain any mutant
cells is e?, the probability that it contains one mutant cell is zero, the proba-

bility that it contains two resp. three mutant cells is e—‘l’% resp. e“f’%, and for

four resp. five mutant cells, the respective probabilities are e=¢ (1% + %) and

e ? (1% + %) Thus, for ¢ > 6/5, the distribution ‘zigzags' at least for numbers

of mutant cells < 5, and since the distribution is continuous with respect to ¢ and
¢, thisbehavior persists at least for values of ¢ in some neighborhood of zero. This
is of course areasonable thing to expect (because of the possibility that wild-types
divide into two mutant cells, even numbers of mutant cells should be more abun-
dant), and as a similar calculation shows, it israther different from the behavior of
the distribution (32) for ¢ = 0. However, it is aready for ¢ = 3/2 (and with the
additional assumption that ¢ = 0) that the probability that the population contains
a number of mutants >5 is close to 1/2, and we do not know how pronouncedly
the distribution ‘zigzags' for these numbers of mutant cells. Furthermore, we may
expect that ingeneral ¢ > ¢, suchthat for ¢ > 6/5, the average number of mutants
per culture becomes large again. Thus, Theorem 6.3 applies, which predicts that
mutant cells should be distributed according to an ordinary Luria—Delbriick distri-
bution (if we ignore the fact that some cultures might not contain any non-mutant
cells at all), regardless of the possibility that non-mutant cells might occasionally
produce two mutant daughter cells.

Although the assumptions we have imposed on our model may be quite far
from being the most general, the picture in this comparatively simple setting ap-
pearsrather complete. Still, one may object tothe model of proliferation underlying
the derivation of Equation (1), because cells need to pass through the cell cycle be-
fore dividing anew and will not proliferate upon accidentally (say, with probability
r/n) being ‘invited’ to do so. However, the influence of a certain growth model on
the distribution of mutant cells does not seem that decisive. Work by Boe €t al.
(1994) and Tolker-Nielsen and Boe (1994) hints at the possibility that the Haldane
distribution (see Sarkar (1991) for the resurrection of the Haldane distribution)
might not be substantially different from the one derived from Lea and Coulson’'s
model (1949). Numerical experiments on their own recent model by Lin et al.
(1996), which is based on the assumption of cell proliferation proceeding in acom-
pletely synchronized manner, have shown that the mutation rate can be rederived
from these experiments by applying their own method or the median method of
Lea and Coulson (1949) with results differing by at most 30% (although this may
seem large, recall that in practice the error in the determination of mutation rates
isgenerally of nearly the same order as the mutation rate itself).

It will be interesting to learn whether thisis a consequence of the limit lawsin
Sections6.and 8. Indeed, therati o of thenumber of mutant (or wild-type) cellstotheir
expected value should be much lessresponsive to the peculiarities of the mutational
process and the underlying model of cell proliferation than the number of mutant
cellsitself. In fact, we have an example: Theorem 8.2 can be viewed as an instance
wherearather peculiar growthmodel (namely theincreaseinthenumber of mutation
eventsin a population) yields exactly the limit law (35). Let us see how this might
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come about. Intuitively, one may suspect that the division by a E,(n; ) might
be a reasonable way to normalize the number of mutation events, and a rather
straightforward calculation confirms intuition inasmuch as the expected number
E,, (n; o) of mutation eventsthat have occurred in apopulation of sizen turnsout to
beequal to 1% [E,,(n; ) — 1]. Thus, Theorem 8.2 literally claimsthat the ratio of
the number of mutation eventsto their expected value converges to the probability
distribution (35). Incidentally, thisal soaccountsfor theappearanceof thefactor 1 — «
inthe definition of the random variables (57). The reason why thisfactor appears at
all isthat itisnot afraction« of non-mutant cell sthat should have produced mutants,
but afraction « of divisions of non-mutant cells. Since any division of anon-mutant
cell intoonemutant and onenon-mutant cell doesnot alter the number of non-mutant
cellsinthepopulation, theexpected number of wild-typecellstendsto underestimate
the expected number of divisions of wild-type cells just by the factor 1 — «.

A detailed account of the relation between our model and previous work is
beyond the scope of this contribution. However, it would be unduly incomplete if
credit were not given to aresult of Bartlett’'s (1955) already alluded toin Section 5.
To seewhat it is about, consider first the generating function in two variables

oo n—1
G,t,s;a) = Z pr(n, r; oc)t"_lsr .
n=1r=0
Then, because of Equation (24),
o0 o0
Go(t,s;0) =Y Y pyln,n—k;e)(ts)" s
k=1n=k
o
=(L—1)"* Y [1—- Q- 1s) IOt
k=1

s
T 15— 1—s)(1—1ts)* (67)

Consider now asinglebacterium at times = 0, and supposethat the probability that
this bacterium or any (mutant or non-mutant) cell inits progeny will divide within
the short time interval dt is Adt (this is obviously the continuous-time analogue
of the growth model formulated as assumption (iv) in Section 2.1). It is then not
too hard to see that the probability that the solitary bacterium will have produced
aprogeny of sizen by thetimer isgivenby e (1 — e *)"~1 (eg. Stewart et al.
1990). Therefore, the probability that this bacterium will have produced r mutant
cells by the time ¢ is given by the probability that it has produced a progeny of
any size times the probability that this progeny contains r mutants, i.e. it is the
coefficient of s” in the generating function

oo n—1

Z Z eMA—e) " p,n,r;a)s”

n=1r=0
— At —A .
=e"Gy,(1—e",s;a)
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SE_M

S l-s+seM —(L—s)(1—sFser)e ©8)
Apart from obviousdifferencesin notation, thisisexactly the expression derived by
Bartlett (1955) (his Equation (12), op. cit., p. 116). It appears strange that this
contribution of Bartletts to the theory of bacterial growth and mutation could have
been missed even though his book on stochastic processes has been quoted time
and again (noteworthy exceptions are Kemp (1994) and, of course, Zheng (1999)).
One reason for this may be that, as pointed out by Zheng (1999), the issue of
finding an efficient algorithm for the calculation of the probability distribution in
(68) is still ‘clamoring for solution’. Thus, even if researchers were aware of the
generating function (68), they may not havefound it useful. Another reason could be
an argument of Bartlett’s, which, although not erroneous, isat least misleading asit
stands. Bartlett arguesthat the generating function for the probability distribution of
the number of mutants in a culture grown from a very large initial number ng of
bacteriaought to bethengh power of thegenerating function (68), and then setsout to
prove that for large ng and small «, this expression reduces to Lea and Coulson’s
generating function (Bartlett 1955). Thisargumentiscertainly correct, butit appears
to have distracted the attention of researchersfrom the more exact expression (68).
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