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Abstract. The probability distribution of the number of mutant cells in a growing single-cell
population is presented in explicit form. We use a discrete model for mutation and popu-
lation growth which in the limit of large cell numbers and small mutation rates reduces to
certain classical models of the Luria–Delbrück distribution. Our results hold for arbitrarily
large values of the mutation rate and for cell populations of arbitrary size. We discuss the
influence of cell death on fluctuation experiments and investigate a version of our model that
accounts for the possibility that both daughter cells of a non-mutant cell might be mutants.
An algorithm is presented for the quick calculation of the distribution. Then, we focus on the
derivation of two essentially different limit laws, the first of which applies if the population
size tends to infinity while the mutation rate tends to zero such that the product of mutation
rate times population size converges. The second limit law emerges after a suitable rescal-
ing of the distribution of non-mutant cells in the population and applies if the product of
mutation rate times population size tends to infinity. We discuss the distribution of mutation
events for arbitrary values of the mutation rate and cell populations of arbitrary size, and,
finally, consider limit laws for this distribution with respect to the behavior of the product
of mutation rate times population size. Thus, the present paper substantially extends results
due to Lea and Coulson (1949), Bartlett (1955), Stewart et al. (1990), and others.

1. Introduction

Since the introduction of fluctuation analysis by Luria and Delbrück in 1943, there
has been good reason to believe that the production of mutant varieties by a grow-
ing population of bacteria is a random process. Luria and Delbrück argued that the
large fluctuations observed in successive attempts to determine the proportion of
phage-resistant bacteria in growing cultures of Escherichia coliwould not support
the hypothesis that it is the presence of the phage that induces resistance in the
cells (Luria and Delbrück 1943). To illustrate this, consider a collection of bac-
terial cultures and suppose that in some of these cultures, one or several bacteria
accidentally gain resistance to the phage at a very early stage of culture growth. As
proliferation continues, these bacteria will eventually divide into a large number of
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mutant clones, so that after being plated with the phage on solid medium, a sub-
stantial proportion of cultures will produce a much larger number of colonies than
would be consistent with the hypothesis that resistant cells arose only after the bac-
teria had been exposed to the phage. Clearly, this argument applies to more general
settings than the development of phage-resistance in sensitive bacteria, and the ex-
perimental approach devised by Luria and Delbrück has been employed repeatedly
to study the emergence of mutants in single-cell populations. With this approach,
it is presupposed that it is primarily the distribution of mutants in a sample of cell
cultures that carries the relevant biological information and not, for instance, the
time it takes for mutant cells to develop into visible colonies. Hence, the need arises
for a model from which this distribution can reasonably be calculated.

It would be desirable to refer to this distribution simply as ‘the’ Luria–Delbrück
distribution. However, any attempt to make ‘the’ Luria–Delbrück distribution a
well-defined object of mathematical investigation inevitably relies on explicit as-
sumptions about the mutational process and about how cell proliferation proceeds
in the population. To convey an idea to the reader of how these assumptions look
like, we shall briefly review several existing models for the calculation of the
Luria–Delbrück distribution (an excellent account of a lot of important work that
has been devoted to the study of the Luria–Delbrück distribution during the last
fifty years has recently been given by Zheng (1999)). The most general approach
so far appears to be the one by Stewart et al. (1990), who require that (i) the prob-
ability that a mutation takes place in the (small) time interval between t and t + dt
equals the length of the interval, dt , times a certain function �(t) of time only (but
does not depend on how the population is composed of mutant and non-mutant
cells), and (ii), the probability1 p(k; t) that a mutation occurring at time t will be
represented by a (mutant) clone of size k by the time T when the cells are plated
on solid medium is a function of the parameters t , k, and T , and in particular does
not depend on what may happen at other times (this assumption will not hold if, for
instance, mutants have to compete for resources). It was demonstrated by Stewart
et al. that under these two assumptions, the probability generating function (PGF)
P(z) of the number of mutants present in the population at time T is given by

P(z) = e−� exp

( ∞∑
k=1

λkz
k

)
, (*)

whereλk =
T∫
0
p(k; t)�(t)dt , and� =

∞∑
k=1

λk . Under the assumption that2 p(k; t) =
e−λ(T−t)(1−e−λ(T−t))k−1 (λ denotes the growth rate of cells) and the mutation rate
is constant, the model of Stewart et al. model reduces to the one of Lea and Coul-
son (Lea and Coulson 1949; Stewart et al. 1990). It is especially this latter model
that has become popular among geneticists, which is mostly due to its comparative
simplicity and Lea and Coulson’s thorough discussion of how to employ this model

1 In this section, we adhere to the notation of the respective authors.
2 This assumption is justified if cell proliferation proceeds in an asynchronous manner as

explained in Section 2.1. See also the discussion following Equation (67) below.
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for the evaluation of experimental data. It does, however, lead to a distribution of
mutant cells with infinite moments. Although this is not so much a drawback from
a practical point of view, it is clear that the expected number of mutant cells (for
instance) diverges because Lea and Coulson’s model predicts too large a probabil-
ity for an arbitrary culture of bacteria to contain a very large number of mutants.
Since there are simply no bacterial populations that contain an infinite number of
mutants, it follows that the tailing of the distribution towards large numbers of
mutants, which is a vital point in Luria and Delbrück’s original argument, is not
described correctly in Lea and Coulson’s model. Notwithstanding that, Lea and
Coulson’s model has attracted considerable recent interest (Ma et al. 1992; Pakes
1993; Kemp 1994; Goldie 1995; Prodinger 1996) and justifiably has become the
most widely used model underlying the evaluation of fluctuation experiments.

Another very general model is the one by Tan (1982). Tan derives the following
expression for the PGF ζn(s) of the number of mutants that are present in a cell
population that is grown from an initially very large number of cells after these
cells have gone through n successive rounds of replication (this is the Lemma that
appears on p. 721 of Tan (1982)):

ζn(s) = {hn(s)}x0 exp


λ1

n∑
j=1

µ
j

1[hn−j (s)− 1]


 , (**)

where h(s) is the PGF of the progeny size of a mutant cell, and hn(s) = h(hn−1(s)).
Furthermore, x0 is the number of mutants initially present in the population, µ1 is
the expected number of cells in the progeny of a non-mutant cell, andλ1 is a measure
for the intensity of the mutational process, in the sense thatp1 = λ1M

−1
0 +o(M−1

0 ),
where p1 denotes the probability of mutation of a non-mutant cell.M0 � λ1 is the
initial size of the population. Clearly, the fact that essentially only the PGF h(s)
enters the calculation of ζn(s) allows Equation (**) to be tailored to cover a wide
variety of different scenarios. In particular, Tan can allow for both forward and
backward mutation (the latter, however, turns out to be negligible if the rate p2 of
backward mutation is of the order p2 = λ2M

−1
0 +o(M−1

0 ), where λ2 is small com-
pared withM0), and for the death of both mutant and non-mutant cells. Moreover,
Tan also showed how to incorporate the phenotypic delay of new mutants into his
model (this is actually straightforward if one considers the fraction of ‘newborn’
mutants that manage to express the mutant phenotype in a certain time interval; see
Tan (1982) for details).

To get an intuitive grasp of Equation (**), consider a sufficiently large culture
of bacteria such that the probability thatM0 non-mutant cells will produce a certain

number k of mutants during the first round of replication is
pk1µ

k
1M

k
0

k! e−p1µ1M0 ∼
λk1µ

k
1

k! e−λ1µ1 . By the time of the nth round of replication, the probability distribu-
tion of the number of cells in the progeny of these k mutant cells will have the
generating function [hn−1(s)]k . Therefore, the PGF of the number of mutant cells
in the population at the time of the nth round of replication that result from the
mutation of non-mutant cells during the first round of replication will by given by



148 W.P. Angerer

∞∑
k=0

λk1µ
k
1

k! [hn−1(s)]ke−λ1µ1 = exp{λ1µ1[hn−1(s)− 1]}. The other factors in Equa-

tion (**) arise in a similar manner 3 (for a generalization of this model to multivariate
branching processes, see Tan (1989)).

Both Tan’s model as well as that of Stewart et al. (1990) require that the mutation
rate be small, i.e. that the number of mutant cells in the population be negligible in
comparison with the number of non-mutant cells. This is a somewhat unfortunate
limitation. We will follow a different approach here, which allows the mutation rate
to assume any value between (and including) 0 and 1, and which allows the number
of mutant cells in a population to be large. The crucial point is to forget about the
conventional modelling of population growth as a continuous process over time,
and to formulate our model in the language of partial difference equations. We then
arrive at an explicit representation of a probability distribution which is related to
the models of Lea and Coulson (1949) and Bartlett (1955) in much the same way
as is the binomial distribution to the Poisson distribution. This point will be made
clear in Section 5.

For simplicity, we shall only deal with bacterial populations. However, it is
clear that our results apply whenever the assumptions (i)–(v) of Section 2.1 or
the slightly more general assumptions of Section 3 are fulfilled, and in particular
to what might be called a Luria–Delbrück theory outside the field of fluctuation
analysis, namely the mapping of certain disease-related genes through linkage dis-
equilibrium (Hästbacka et al. 1992; Lehesjoki et al. 1993; de la Chapelle 1993).
Here, the idea is as follows: When a disease-related gene is first introduced into a
(human) population, it will be in complete linkage disequilibrium with the mark-
er alleles on the same chromosome. As parents inherit the gene to their progeny,
this linkage disequilibrium will tend to dissipate because of recombinations that
occur between the gene and the surrounding markers. Now, from the point of view
of fluctuation analysis, the one gene introduced into the population together with
its haplotype of markers may be thought of as an ancestral bacterial cell, and any
recombination which occurs between a gene and a marker allele can be seen as a
mutation. Since the mutation rate for this kind of mutation clearly increases with the
distance between the gene of interest and the marker, the fraction of disease-bear-
ing chromosomes that do not anymore display the ancestral haplotype may serve
as a measure for the genetic distance between the disease gene and the marker. A
key difference, however, to a fluctuation experiment is that one uses essentially a
single observation (namely the fraction of disease-bearing chromosomes that are
derived from the ancestral chromosome and have not undergone recombination yet)
to infer on the recombination rate, which to do is at least slightly opposed to Luria
and Delbrück’s original line of argument. Still, it is even in this very simplified set-
ting that the fine-scale mapping of genes can be remarkably successful. Indeed, the
diastrophic dysplasia gene that applying Luria and Delbrück’s method of ‘likely’
averages (Luria and Delbrück 1943) had been predicted to lie within 64 kb from

3 Rather than proceeding with the analysis of (**), Tan makes use of the assumption that
M0 is very large to pass from (**) to a continuous-time model that avoids the cumbersome
calculation of the functional iterates hn(s).
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a polymorphism in the colony-stimulating-factor-1 receptor gene later was found
to lie at 70 kb proximal to this region (Hästbacka et al. 1994; Jorde 1995). How-
ever, it is clear that questions such as the reliability of linkage information from
Luria–Delbrück-like models or even for the best measure of linkage disequilibri-
um for fine-scale mapping purposes call for a more sophisticated treatment (see,
for instance, Kaplan et al. 1995; Kaplan and Weir 1995; Xiong and Guo 1997;
also Devlin and Risch (1995), and Guo (1997), which contain a very useful list of
references).

The paper is organized as follows. In Section 2, we explain the assumptions
which are basic to our model and derive the Luria–Delbrück distribution in explicit
form. Section 3 is concerned with the influence of cell death on the distribution
and an alternative model of mutation. In Section 4, we present an algorithm to
calculate efficiently the distribution. Sections 5 and 6 are devoted to the study of
limiting distributions for large populations. Section 7 introduces the distribution
of the number of mutation events. In Section 8, we shall be concerned with the
limiting distribution of mutation events.

2. The Luria–Delbrück distribution

2.1. Model assumptions and notation

We begin with specifying a number of assumptions which are sufficient to formulate
our model in its simplest form.

(i) We are concerned with bacterial populations of arbitrary size. In particular,
we do not require that the size of the population is large. We will, however,
assume that the population has been grown from a single non-mutant cell.

(ii) The number of mutant cells in a population of given size n is a non-nega-
tive, integer-valued random variable ρn, which takes on values between 0 and
n−1. Similarly, the number of non-mutant cells in this population is a random
variable ωn such that ρn + ωn = n.

(iii) Whenever a cell divides, it is replaced by two cells which are capable of
further proliferation. Mutant cells divide only into cells with mutant proper-
ties, whereas the division of a non-mutant (i.e. ‘wild-type’) cell may result in
the formation of a mutant cell as well. We will always assume that mutation
occurs only at the time of cell division.

(iv) The probability for any cell to be the next to divide is the same for all cells in the
population. To be explicit, we assume that in a population of n cells, r of which
are mutants, the probability that a mutant cell is the next to divide is r/n, the
probability that it is a non-mutant cell, is (n− r)/n. Clearly, this assumption
can only be an approximation, even if the cultures are grown under conditions
which equally support the proliferation of mutant and wild-type cells.

(v) We define the mutation rateαi as the probability that the division of a wild-
type cell in a population of i cells ends up with the formation of one mutant
and one non-mutant cell. If the mutation rate is constant, i.e. if αi = αj for
any pair of indices i, j ≥ 1, we shall simply denote it by α. The fact that we
allow the mutation rate to vary with population size should be considered as
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mainly technical. We shall only draw on it as a convenient tool to allow for the
possibility that a culture is grown from n0 > 1 cells, r0 of which are mutants.

Whenever the distribution of the number of mutants in a bacterial population is
calculated from the above assumptions, we shall refer to it as an ‘ordinary’ Luria–
Delbrück distribution.

We will now briefly introduce the most frequently used symbols. We shall
in general denote the probability that a culture of n cells contains r mutants by
pρ(n, r; ⇀

αn−1), where ⇀
αn−1 is short for (α1, α2, . . . , αn−1). Similarly, we shall de-

note the probability that this population contains kwild-type cells bypω(n, k; ⇀
αn−1).

Clearly, pρ(n, r; ⇀
αn−1) = pω(n, n − r; ⇀

αn−1). If the mutation rate is such that
αi = 0 for 1 ≤ i < n0 − r0, αi = 1 for n0 − r0 ≤ i < n0, and αi = α for
i ≥ n0, this is clearly equivalent to a population that is grown from r0 mutants
and k0 = n0 − r0 non-mutant cells which mutate with constant probability, and
we shall write pρ(n, r|n0, r0;α) and pω(n, k|n0, k0;α) instead of pρ(n, r; ⇀

αn−1)
and pω(n, k; ⇀

αn−1). If n0 = k0 = 1, we shall simply write pρ(n, r;α) and
pω(n, k;α). In the same spirit, we shall generally denote the expected value of
the number of wild-type cells in a population of size n by Eω(n; ⇀

αn−1) or, if
the mutation rate is constant and the population is grown from a single wild-type
cell, simply by Eω(n;α). We shall also use the probability generating functions

gρ(n, s;α) =
n−1∑
r=0

pρ(n, r;α)sr and gω(n, s;α) =
n∑
k=1

pω(n, k;α)sk . Clearly,

gρ(n, s;α) = sngω(n, 1/s;α). An expression like pω(1, k; ⇀
α0) also has a mean-

ing: It denotes the probability that one picks k wild-type (k = 0 or 1) cells to start
the culture. Finally, we shall denote the limit of a sequence {Xn} that exists with
probability 1 as n → ∞ by p − lim

n→∞Xn.

2.2. The Luria–Delbr̈uck distribution

Suppose that a culture of n cells contains r mutants. This can only be the case if
either the culture of n − 1 cells has already contained r mutants and the last cell
doubling that took place did not produce a new mutant, or if the culture of n − 1
cells has contained r − 1 mutants and the last cell doubling did produce a new
mutant. Now, a cell division in a culture of n− 1 cells, r of which are mutants, will
not lead to the formation of another mutant cell if one of n− 1 − r wild-type cells
divides (the probability for this event is (n − r − 1)/(n − 1)), and if its division
does not lead to the formation of a mutant cell (this probability is 1−αn−1). Hence,
with probability

(1 − αn−1)
n− r − 1

n− 1
pρ(n− 1, r; ⇀

αn−2) ,

a culture of n cells containing r mutants derives from a culture of n− 1 cells that
has already contained r mutant cells. A similar argument shows that the probability
that a culture of n cells containing r mutants derives from a culture of n− 1 cells
with r − 1 mutants is

r − 1

n− 1
pρ(n− 1, r − 1; ⇀

αn−2)+ αn−1
n− r
n− 1

pρ(n− 1, r − 1; ⇀
αn−2) ,
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so that in total, we obtain

pρ(n, r; ⇀
αn−1) = (1 − αn−1)

[
1 − r

n− 1

]
pρ(n− 1, r; ⇀

αn−2)

+
[
αn−1 + (1 − αn−1)

r − 1

n− 1

]
pρ(n− 1, r − 1; ⇀

αn−2) . (1)

It is generally more convenient to concentrate on the probability distribution
pω(n, k; ⇀

αn−1) of wild-type cells in the population. Since k := n − r , we find
from Equation (1)

pω(n, k; ⇀
αn−1) = (1 − αn−1)

k − 1

n− 1
pω(n− 1, k − 1; ⇀

αn−2)

+
[

1 − (1 − αn−1)
k

n− 1

]
pω(n− 1, k; ⇀

αn−2) . (2)

Clearly, pω(n, k; ⇀
αn−1) ≥ 0 for any n and k, and

n∑
k=1

pω(n, k; ⇀
αn−1) = 1 for all n.

It is then a straightforward calculation to verify

Theorem 2.1. The probabilitypω(n, k; ⇀
αn−1) that a bacterial culture of n cells

contains k wild-type cells is

pω(n, k; ⇀
αn−1) = 1

(n− 1)!

k∑
i=1

(−1)i−1
(
k − 1
i − 1

) n−1∏
j=1

[j − i(1 − αj )] . (3)

The probabilitypρ(n, r; ⇀
αn−1) that it contains exactly r mutants is simply given by

pρ(n, r; ⇀
αn−1) = pω(n, n− r; ⇀

αn−1).

One easily obtains the following corollary to Theorem 2.1:

Corollary 2.2. For constantα, the probabilitypω(n, k;α) that a culture of size n
contains exactly k wild-type cells if it has been grown from a single wild-type cell
is

pω(n, k;α) =
k∑
i=1

(−1)n−i
(
k − 1
i − 1

)(
i(1 − α)− 1
n− 1

)
. (4)

Alternatively, the probabilityPω(n, k;α) that it contains at most k wild-type cells
is given by

Pω(n, k;α) =
k∑
i=1

(−1)n−i
(
k

i

)(
i(1 − α)− 1
n− 1

)
. (5)

As already mentioned in Section 2.1, the fact that we allow the mutation
rate to be variable allows us to derive immediately the probability distribution
pω(n, k|n0, k0;α) of the number of wild-type cells in a population which is grown
from n0 cells, k0 of which are wild-types that mutate with constant probability. In
fact, the distribution of wild-types in such a population evolves in the same manner
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as if the culture were grown from a single wild-type cell with the mutation prob-
ability set equal to zero for the first k0 − 1 cell divisions, then switched to 1 for
another n0 − k0 cell divisions, and finally adjusted to its constant value αi = α for
n ≥ n0. Then Theorem 2.1 immediately yields the following

Corollary 2.3. For constantα, the probabilitypω(n, k|n0, k0;α) that a culture of
size n contains exactly k wild-type cells if it has been grown from a culture ofn0 > 1
cells withk0 wild-type cells is

pω(n, k|n0, k0;α) = (n− n0)!(n0 − 1)!

(n− 1)!(k0 − 1)!

k∑
i=k0

(−1)n−n0+k0−i

× (k − 1)!

(k − i)!(i − k0)!

(
i(1 − α)− n0
n− n0

)
. (6)

Equation (6), however, is of limited use in practice; the main reason is that in gen-
eral it is difficult to determine the population size with an accuracy of order n0.
Moreover, the number of wild-type cells in the inoculum cannot reasonably be ad-
justed unless the pre-culture is grown under conditions which guarantee that only
wild-type cells proliferate or mutant cells are sorted out, in which case k0 = n0.
In any other case, n0 � 1 implies that the random sampling of mutants from a
large pre-culture into the inoculum must be taken into account. Equation (6) does
not serve this purpose. We will employ (6) only to discuss the relation between our
model and the ones formulated by Lea and Coulson (1949) and Bartlett (1955) in
Section 5.

The following result is interesting in its own right. It is most conveniently proved
by insertion into Equation (1):

Corollary 2.4. For α = 1/2, the probability that a culture of size n contains r
mutants if it is grown from a single wild-type cells is

pρ(n, r; 1/2) =
(
n+ r − 1

r

)
1

2n+r−1
. (7)

To conclude this section, we will calculate the moments of the probability distribu-
tion in Theorem 2.1. For any integer z ≥ 1, we define the factorial moments of the
distribution of the number of wild-type cells in a population of size n as follows:

Ezω(n; ⇀
αn−1) =

n∑
k=1

k(k + 1) · · · (k + z− 1)pω(n, k; ⇀
αn−1) . (8)

Note that this definition is non-standard in comparison with the usual one,
which involves a descending factorial. It is also easy to check that if we define
E0
ω(n; ⇀

αn−1) = 1, we obtain for the generating function �ω(n, s; ⇀
αn−1) of the

factorial moments Ezω(n; ⇀
αn−1),

�ω(n,−s; ⇀
αn−1) =

∞∑
z=0

Ezω(n; ⇀
αn−1)

z!
(−s)z = gω

(
n,

1

1 + s ;
⇀
αn−1

)
, (9)

where gω(n, s; ⇀
αn−1) is the generating function of the probability distribution (3).

We have
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Theorem 2.6.

Ezω(n; ⇀
αn−1) = z!

n−1∏
j=1

j + z(1 − αj )
j

. (10)

Proof. From Equation (2), it follows immediately that

(n− 1)Ezω(n; ⇀
αn−1)

= (n− 1)
n∑
k=1

k(k + 1) · · · (k + z− 1)pω(n, k; ⇀
αn−1)

= (n− 1)
n∑
k=1

k(k + 1) · · · (k + z− 1)pω(n− 1, k; ⇀
αn−2)

−(1 − αn−1)

n∑
k=1

k2(k + 1) · · · (k + z− 1)pω(n− 1, k; ⇀
αn−2)

+(1 − αn−1)

n∑
k=1

(k − 1)k · · · (k + z− 1)pω(n− 1, k − 1; ⇀
αn−2)

= [n− 1 + z(1 − αn−1)]E
z
ω(n− 1; ⇀

αn−2) ,

and Theorem 2.6 is confirmed by induction. ��
With reference to elementary properties of the gamma function (see, for

instance, Lebedev 1972), one immediately obtains the following important

Corollary 2.7. For constantα,

Ezω(n;α) = �(z+ 1)

�(z(1 − α)+ 1)

�(n+ z(1 − α))
�(n)

= �(z+ 1)

�(z(1 − α)+1)
nz(1−α)

[
1+z(1 − α)z(1 − α)− 1

2n
+O(n−2)

]
.

(11)

Note that in particular, from Corollary 2.7,

Eω(n;α) := E1
ω(n;α) ∼ n1−α

�(2 − α) , (12)

so that for α > 0, Eω(n;α)/n → 0 as n tends to infinity.

3. Two extensions of the model

The assumptions which underlie the derivation of Equation (1) are somewhat sim-
plifying. One might, for instance, wish to consider the possibility of back mutation,
or the possibility that it might take more than one step of mutation for the mutant
phenotype to become manifest. Although it is easy to introduce the appropriate
corrections into Equation (1), the entrance of additional terms into this equation
complicates the computation of an explicit solution. We will treat here two exten-
sions of our model where such a solution can be found.
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3.1. Cell death

The rôle of cell death in fluctuation analysis has not been discussed extensively
so far (see, however, Tan 1982; also Kimmel and Axelrod 1994). The reason for
this is probably that a fluctuation experiment requires that cells be able to grow on
solid medium. Cells that are genotypically mutants but fail to grow on the selection
medium remain invisible during the experiment. Thus, one might dispense with the
problem of cell death simply by redefining the mutation rate as the probability that
the division of a non-mutant cell results in the formation of a cell whose progeny
is able to survive until the culture is plated on solid selection medium and to form
colonies there. We will, however, adhere to our less restrictive concept of mutation
rate introduced in Section 2.1 as far as possible.

We keep only the assumptions (i) and (ii) of Section 2.1. Furthermore, we make
the following assumptions:

(i) The population is composed of colony-forming cells (CFCs) and dead cells.
A colony-forming cell is a mutant or non-mutant cell that is capable of further
proliferation such that there is always at least one CFC in its progeny. The
number of CFCs in a population of n cells is a random variable cn which may
take on any integer value between 1 and n.

(ii) Whenever a cell divides, it is replaced by two cells at least one of whichis
capable of further proliferation. A mutant cell may divide into two mutants,
or into one mutant and one dead daughter cell. A wild-type cell may divide
into two wild-type cells, or into one wild-type and one mutant daughter cell,
or into one wild-type and one dead daughter cell, but not into one mutant and
one dead daughter cell. We will assume that whether a cell is mutant or dead
can be decided immediately after the division of its mother cell.

(iii) We will assume that if a population contains nc CFCs, r of which are mutants,
the probability that a mutant cell is the next to divide is r/nc, and similarly
for the non-mutant fraction of CFCs. This is reasonable because from the
point of view of fluctuation analysis, a cell is ascribed a ‘mutant’ or ‘non-
mutant’ phenotype according to its capacities to develop into a colony under
certain selective circumstances. Therefore, if any bacterial culture produces
mutant colonies after being plated on solid medium, these colonies must have
originated from colony-forming cells.

(iv) We define the mutation rateαi as the probability that the division of a wild-
type cell in a population which containsi CFCsresults in the formation of
one mutant and one non-mutant daughter cell. Similarly, we introduce the
probability δi that the division of any cell in a population which contains i
CFCs ends up with the formation of one dead and one colony-forming cell.
For simplicity, we shall assume that δi is not too large, such that αi

1−δi ≤ 1.
Note that the actual value of δi must be the same for both mutant and non-mu-
tant cells, since otherwise the growth conditions would preferentially support
the proliferation of one or the other cell type, which contradicts assumption
(iii) above.

We denote the probability that a culture of n cells contains nc CFCs and r mutants
bypc,ρ(n, nc, r; ⇀

δnc−1,
⇀
αnc−1), where ⇀

αnc−1 is as above and
⇀

δnc−1 is of course short
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for (δ1, δ2, . . . , δnc−1). Since only colony-forming cells divide, it is clear from a
brief inspection of Equation (1) that we must have

pc,ρ(n, nc, r; ⇀

δnc−1,
⇀
αnc−1)

= (1 − αnc−1 − δnc−1)
nc − r − 1

nc − 1
pc,ρ(n− 1, nc − 1, r; ⇀

δnc−2,
⇀
αnc−2)

+αnc−1
nc − r
nc − 1

pc,ρ(n− 1, nc − 1, r − 1; ⇀

δnc−2,
⇀
αnc−2)

+(1 − δnc−1)
r − 1

nc − 1
pc,ρ(n− 1, nc − 1, r − 1; ⇀

δnc−2,
⇀
αnc−2)

+δncpc,ρ(n− 1, nc, r; ⇀

δnc−1,
⇀
αnc−1) . (13)

Because of assumption (iii), we might try to express the probability
pc,ρ(n, r, nc;

⇀

δnc−1, ⇀
αnc−1) as the product of the probability pc(n, nc; ⇀

δnc−1) that
it contains nc colony-forming cells times the probability that there are r mutants
among these cells. The problem is whether this latter probability can be taken to
be pρ(nc, r; ⇀

αnc−1) (the answer is no), since, by assumption (ii) of this section,
the possibility to undergo mutation increases the chances for a non-mutant cell to
survive. In other words, cells that are still alive are more likely to have mutated.
This point is clarified by the following

Theorem 3.1. Letpc(n, nc; ⇀

δnc−1) denote the probability that a culture of n cells
containsnc colony-forming cells, and letpρ(n, r; ⇀

�nc−1) be an ordinary Luria–
Delbrück distribution with

⇀

�nc−1 :=
(

α1

1 − δ1
,
α2

1 − δ2
, . . . ,

αnc−1

1 − δnc−1

)
.

Then the probabilitypc,ρ(n, nc, r; ⇀

δnc−1,
⇀
αnc−1) that a culture of size n contains

exactlync colony-forming cells and r mutants among them is given by

pc,ρ(n, nc, r; ⇀

δnc−1,
⇀
αnc−1) = pc(n, nc; ⇀

δnc−1)pρ(nc, r; ⇀

�nc−1) . (14)

Proof. If we set pc(1, 1; ⇀

δ0) = pρ(1, 0; ⇀

�0) = 1 and pc(1, nc; ⇀

δ0) = pρ(1, r; ⇀

�0)

= 0 otherwise, the theorem is correct forn = 1 and any value ofnc and r . Therefore,
it only remains to prove that the product pc(n, nc; ⇀

δnc−1)pρ(nc, r; ⇀

�nc−1) fulfils
the recursion relation (13), i.e., to check that

pc(n, nc; ⇀

δnc−1)pρ(nc, r; ⇀

�nc−1)

=(1 − αnc−1−δnc−1)
nc − r − 1

nc − 1
pc(n− 1, nc − 1; ⇀

δnc−2)pρ(nc − 1, r; ⇀

�nc−2)

+αnc−1
nc − r
nc − 1

pc(n− 1, nc − 1; ⇀

δnc−2)pρ(nc − 1, r − 1; ⇀

�nc−2)

+(1 − δnc−1)
r − 1

nc − 1
pc(n− 1, nc − 1; ⇀

δnc−2)pρ(nc − 1, r − 1; ⇀

�nc−2)

+δncpc(n− 1, nc; ⇀

δnc−1)pρ(nc, r; ⇀

�nc−1) . (15)
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But this is almost obvious, since the probability pc(n, nc; ⇀

δnc−1) that a bacterial
population contains nc CFCs regardless of the number of mutants it contains clearly
satisfies

pc(n, nc; ⇀

δnc−1)

=(1−δnc−1)pc(n− 1, nc − 1; ⇀

δnc−2)+δncpc(n− 1, nc; ⇀

δnc−1) , (16)

because of the very definition of δi . Then, because of Equation (1), the first three
terms on the right-hand side of Equation (15) can be collected to give (1 − δnc−1)

pc(n− 1, nc − 1; ⇀

δnc−2)pρ(nc, r; ⇀

�nc−1), and we finally obtain

pc(n, nc; ⇀

δnc−1)pρ(nc, r; ⇀

�nc−1) = [(1 − δnc−1)pc(n− 1, nc − 1; ⇀

δnc−2)

+δncpc(n− 1, nc; ⇀

δnc−1)]pρ(nc, r; ⇀

�nc−1) ,

which obviously completes the proof of the theorem. ��
Note that in practice there is no need to calculate the distributionpc(n, nc; ⇀

δnc−1),
since both the total number of cells as well as the number of CFCs in a bacterial
population are experimentally accessible quantities. In fact, Theorem 3.1 tells us
that, conditional on the fact that a bacterial culture of given size n contains nc CFCs
(which can be decided in the experiment), the probability that it contains exactly r
mutants is simply pρ(nc, r; ⇀

�nc−1).

3.2. An alternative model of mutation

In the present section, we shall be interested in what happens if the mutation of a
wild-type cell may also result in the production of two mutant daughter cells. We
keep the assumptions of Section 2.1, with the exception of (v), which we replace
by the following:

(i) We denote by α• the probability that the division of a wild-type cell in a
population of arbitrary size ends up with the formation of one mutant and one
non-mutant cell. Similarly, we denote by α•• the probability that a wild-type
cell divides into two mutant daughter cells. We will assume that both α• and
α•• are constant during the whole period of population growth, and that both
α• and α•• are not too large. Specifically, we assume that α• + 2α•• < 1 (the
reason for this somewhat strange condition will become clear later).

Since we are dealing with a different model of mutation here, we introduce some
new notation. We now denote the probability that a culture of n cells contains r mu-
tants by σρ(n, r;α•, α••), that it contains k wild-type cells, by σω(n, k;α•, α••).
It is clear that

σρ(n, r;α•, α••) = (1 − α• − α••)
n− r − 1

n− 1
σρ(n− 1, r;α•, α••)

+ r − 1

n− 1
σρ(n− 1, r − 1;α•, α••)

+α• n− r
n− 1

σρ(n− 1, r − 1;α•, α••)

+α•• n− r + 1

n− 1
σρ(n− 1, r − 2;α•, α••) . (17)



An explicit representation of the Luria–Delbrück distribution 157

We are looking for a solution of equation (17) in terms of known quantities. It is
provided by

Theorem 3.2. Define

� := α• + 2α••, θ := α••

1 − �
. (18)

Furthermore, letp̂ρ(n, r; �) denote an ‘ordinary’ Luria–Delbr̈uck distribution
such that the quantitieŝpρ(n, r; �) fulfil the recursion relation(1) with � in the
role ofα, but

p̂ρ(1, 0; �) = 1

1 + θ , p̂ρ(1, 1; �) = θ

1 + θ , (19)

andp̂ρ(1, r; �) = 0 otherwise. In other words, suppose that a population of bac-
teria has been grown from a single cell that is wild-type with probability1

1+θ and

mutant with probability θ
1+θ , and let the mutation rate in the population be equal

to �. Then

σρ(n, r;α•, α••) = (1 + θ)n−r
r∑
i=0

(
n− i
r − i

)
(−θ)r−i p̂ρ(n, i; �) . (20)

Sketch of proof .The fact that σρ(1, 0;α•, α••) = 1 and σρ(1, r;α•, α••) = 0 for
any other r is straightforward. Next, one uses Equation (1) to express each single
p̂ρ(n, i; �) in terms of p̂ρ(n− 1, i; �) and p̂ρ(n− 1, i − 1; �), and thus checks
that the sum on the right-hand side of Equation (20) does fulfil the recursion relation
(17). Since any two quantities that fulfil the same partial difference equation and
coincide on a sufficiently large set of initial data are identical, this will complete
the proof of Theorem 3.2. The details of the calculation, however, are somewhat
messy, and not particularly interesting in themselves. The reader is invited to obtain
them from the author. ��
Corollary 3.3. The probability distributionσω(n, k;α•, α••) of the number of
wild-type cells in a population of size n has the generating function

n∑
k=0

σω(n, k;α•, α••)sk = θ

1 + θ + 1

1 + θ gω(n, s − θ(1 − s); �) , (21)

where

gω(n, s; �) :=
n∑
k=1

pω(n, k; �)sk . (22)

is the generating function of the probability distribution (4), with� in therôle ofα.

Proof . Because of Theorem 3.2 and a straightforward application of the binomial
theorem, we have

n∑
k=0

σω(n, k;α•, α••)sk =
n∑
i=0

p̂ω(n, n− i; �)
n−i∑
k=0

(
n− i
k

)
(−θ)n−k−i (1 + θ)ksk

= ĝω(n, s − θ(1 − s); �) ,
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where we have denoted by ĝω(n, s; �) the generating function of the probability
distribution p̂ω(n, k; �). Because of the definition of the quantities p̂ω(n, k; �),
this generating function is equal to gω(n, s; �)with probability 1/(1+θ) (cf. Equa-
tion (19)), whereas with probability θ/(1+ θ), it is equal to 1. Since ĝω(n, s; �) =
E(E(sωn |ω1)) by the very definition of a generating function, this already com-
pletes the proof of Corollary 3.3. ��

4. A note on computation

In many applications of fluctuation analysis, the cell numbers involved may build
up to ∼106 − 108. It is then clear that for the calculation of the distribution neither
Equation (1) nor Theorem 2.1 will be suitable. To efficiently calculate the distribu-
tion in such a case, it is natural to try and develop an algorithm similar to the one
described by Ma et al. (1992) (also Sarkar et al. 1992). This is possible if the wild-
type cells mutate with constant probability. The procedure is as follows. Consider
the generating function

γk(x;α) :=
∞∑
n=k

pω(n, k;α)xn−1 , (23)

where the summation could begin with any n ≤ k, since we expect that pω(n, k;α)
is zero for any n < k. Then, because of Corollary 2.2 and a routine application of
the binomial theorem, (23) yields

γk(x;α) =
∞∑
n=1

(−1)n−1
k∑
i=1

(−1)i−1
(
k − 1
i − 1

)(
i(1 − α)− 1
n− 1

)
xn−1

=
k∑
i=1

(−1)i−1
(
k − 1
i − 1

) ∞∑
n=1

(
i(1 − α)− 1
n− 1

)
(−x)n−1

= (1 − x)−α[1 − (1 − x)(1−α)]k−1 , (24)

so that after integrating and multiplying by k

(1−α)k−1 x
−k , we obtain

k

(1 − α)k−1

∞∑
n=k

1

n
pω(n, k;α)xn−k =

(
1 − (1 − x)1−α

(1 − α)x
)k

=
( ∞∑
i=0

�(α + i)
�(α)�(i + 2)

xi

)k
. (25)

The problem of calculating the distribution thus reduces to determining the coeffi-

cients in the power series expansion of
(

1−(1−x)1−α
(1−α)x

)k
; but this is immediate from

a well-known theorem about power series raised to powers (e.g. Gradshteyn and
Ryzhik 1980). In our instance, it reads

k

(1 − α)k−1

1

n
pω(n, k;α)
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= 1

n− k
n−k∑
i=1

�(α + i)
�(α)�(i + 2)

(ik − n+ k + i) k

(1 − α)k−1

1

n− i pω(n− i, k;α) ,

so that finally, we obtain

pρ(n, r;α) = n

r

r∑
i=1

�(α + i)
�(α)�(i + 2)

(n+ 1)i − r(i + 1)

n− i pρ(n−i, r−i;α) . (26)

with pρ(n− r, 0;α) = (1 − α)n−r−1.
For the sake of completeness, and because the result will be needed below, we

will also treat the more general case when the inoculum used to seed the experi-
ment contains mutants and wild-type cells. To this end, we compute the (n0 − 1)th

derivative of the corresponding generating function,

γk,n0,k0(x;α) :=
∞∑

n=n0+k−k0

pω(n, k|n0, k0;α)xn−1 . (27)

Here, the summation could of course begin with any n ≤ n0+k−k0. Then, because
of Equation (6),

γ
(n0−1)
k,n0,k0

(x;α)

= (n0 − 1)!

(k0 − 1)!

k∑
i=k0

(−1)k0−i (k − 1)!

(k − i)!(i − k0)!

∞∑
n=n0

(
i(1 − α)− n0
n− n0

)
(−x)n−n0

= (n0 − 1)!

(k0 − 1)!

k∑
i=k0

(−1)k0−i (k − 1)!

(k − i)!(i − k0)!
(1 − x)i(1−α)−n0

= (n0 − 1)!

(
k − 1
k0 − 1

)
(1 − x)k0−n0−αk0 [1 − (1 − x)(1−α)]k−k0 , (28)

which in comparison with (24) is less useful.

5. The limiting distribution (first case)

The purpose of this section is to derive a limit law for the Luria–Delbrück distri-
bution that applies when the population size is large and the mutation rate is small,
and thereby to establish a connection between our model and the ones of Lea and
Coulson (1949) and Bartlett (1955). We express this connection as the following

Theorem 5.1. Consider a bacterial culture ofn0 cells that containsr0 mutants,
and denote bypρ(n, r|n0, r0;α) the probability that this culture will contain r mu-
tants when it has grown to a size of n cells (Corollary 2.2). Furthermore, suppose
that ν := lim

n→∞
n0
n

exists and thatr0 remains finite asn → ∞. Then, for any

nonnegativeϕ < ∞, lim
n→∞pρ

(
n, r|n0, r0; ϕn

)
exists and is in fact the probabili-

ty distribution of a nonnegative, integer-valued random variable with generating
function
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∞∑
r=r0

lim
n→∞pρ

(
n, r|n0, r0; ϕ

n

)
sr =

(
νs

1 − (1 − ν)s
)r0

(1−s+νs)ϕ(1−s)/s . (29)

Proof . We will employ the functions γk,n0,k0(x;α) (27) from Section 4, or rather
their (n0 − 1)th derivative. Thus,

xn0−kγ (n0−1)
k,n0,k0

(
x; ϕ
k

)
=

∞∑
n=k+n0−k0

(n− 1)!

(n− n0)!
pω

(
n, k|n0, k0; ϕ

k

)
xn−k

=
∞∑
r=r0

(k + r − 1)!

(k + r − n0)!
pρ

(
k + r, r|n0, r0; ϕ

k

)
xr ,

so that, by Equation (28), and if we simply write n instead of k,

(k0 − 1)!

(n0 − 1)!

(n− k0)!

(n− 1)!

∞∑
r=r0

(n+ r − 1)!

(n+ r − n0)!
pρ

(
n+ r, r|n0, r0; ϕ

n

)
xr

= xn0−k0(1 − x)k0−n0−ϕk0/n

[
1 − (1 − x)1−ϕ/n

x

]n−k0

. (30)

Furthermore,

lim
n→∞

[
1 − (1 − x)1−ϕ/n

x

]n−k0

= (1 − x)ϕ(1−ν)(1−x)/x ,

according to the conditions of the theorem, and

lim
n→∞

(k0 − 1)!

(n0 − 1)!

(n− k0)!

(n− 1)!

(n+ r − 1)!

(n+ r − n0)!
= ν−r0(1 − ν)−r+r0 ,

if we recall that n0 − k0 = r0. Therefore, we obtain

∞∑
r=r0

lim
n→∞pρ

(
n+ r, r|n0, r0; ϕ

n

)
ν−r0(1 − ν)−r+r0xr

= xr0(1 − x)−r0−ϕν(1 − x)ϕ(1−ν)(1−x)/x , (31)

at least for x < 1, which, as an identity between power series, proves that lim
n→∞pρ

(n+ r, r|n0, r0; ϕn ) exists. Since the convergence of pρ(n+ r, r|n0, r0; ϕn ) clearly
entails that of pρ(n, r|n0, r0; ϕn ), we may substitute one for the other in Equation
(31). It is then easy to check that a change of variables x =: (1 − ν)s transforms
the resulting equation into (29), thereby completing the proof of Theorem 5.1. ��

The expression (1−s+νs)ϕ(1−s)/s that appears on the right-hand side of Equa-
tion (29) has often been referred to as Bartlett’s generating function (or, for ν = 0,
as Lea and Coulson’s generating function). Zheng (1999) calls it the exact PGF for
the Lea-Coulson formulation of the Luria–Delbrück model. In view of the fact that
there exists another model of Bartlett’s to study growth-and-mutation processes in
bacterial populations (see Discussion), this is probably advisable. A very readable
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account of the fortunes of the generating function (1 − s + νs)ϕ(1−s)/s during the
1950s can be found in Zheng (1999).

As far as the alternative model of mutation introduced in Section 3.2 is con-
cerned, we have the following

Theorem 5.2. Letψρ(n, s;α•, α••) denote the probability generating function of
the distribution(20). Then, for any two nonnegative numbersϕ, φ < ∞,

lim
n→∞ψρ

(
n, s; ϕ

n
,
φ

n

)
= eφ(1−s)(1 − s)(ϕ+2φ)(1−s)/s = eφ(1−s)gLC(s) , (32)

wheregLC(s) denotes Lea and Coulson’s (1949) generating function.

Proof. Because of Corollary 3.3, we have

ψρ(n, s;α•, α••) = sn
1

1 + θ gω
(
n,

1 + θ(1 − s)
s

; �

)
+ sn θ

1 + θ

= (1 + θ − θs)n
1 + θ

n−1∑
r=0

(
s

1 + θ(1 − s)
)r
pρ(n, r; �)+sn θ

1+θ ,

(33)

where � and θ are as specified by Equation (18). With θ = α••/(1−α• −2α••) =
φ/(n− ϕ − 2φ), it is clear that the first factor in (33) tends to eφ(1−s) as n → ∞,
whereas the last term simply disappears. If now we fix for the moment an arbitrary
(small) value for θ , it follows from Theorem 5.1 that

lim
n→∞

n−1∑
r=0

(
s

1 + θ(1 − s)
)r
pρ

(
n, r; ϕ + 2φ

n

)

=
(
(1 + θ)(1 − s)

1 + θ − θs
)(ϕ+2φ)(1+θ)(1−s)/s

,

since we have derived the probability distribution (20) under the assumption that
n0 = 1, which implies that ν = n0/n → 0 as n → ∞. If now we let θ =
φ/(n− ϕ − 2φ) → 0 as well, we obtain the desired result. ��

6. The limiting distribution (second case)

The crucial point about the derivation of Theorem 5.1 is that the product αn of
mutation rate and population size converges as the population size tends to infinity.
In general, however, one would expect that the number of mutations which occur
in a bacterial population as it grows to infinite size also increases without bound,
unless the mutation rate is zero for most of the time. If we exclude the possibility
of backward mutation, the number of mutants in a bacterial population is at least as
large as the number of times that non-mutant cells have mutated in this population,
and one may ask, say, for the probability that the ratio of the number of mutants to
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the total size of the population exceeds 1/2. The division by the number of all cells
in a population may obviously be too crude a normalization to yield interesting
results, and we will therefore investigate the probability that the number of mutant
cells (or, which is basically the same thing, the number of non-mutant cells) devi-
ates significantly from its expected value. We keep all the assumptions of Section
2.1, but assume the mutation rate as constant.

Consider the sequence {Wn} of random variables

Wn := ωn(α)

Eω(n;α) , (34)

where Eω(n;α) is the expected value of the number of wild-type cells in a popu-
lation of size n (Equations (11) and (12)). Then we shall prove

Theorem 6.1. Let 0 < α < 1. As n→ ∞, the sequence{Wn} converges with
probability 1. Furthermore, the probabilityPW(x;α) thatW := p − lim

n→∞Wn
assumes a value not exceeding x is given by

PW(x;α) =
∞∑
i=1

(−1)i−1 sin(πi(1 − α))
π

�(i(1 − α))
i!

(
x

�(2 − α)
)i

, (35)

for x > 0, andPW(x;α) = 0 otherwise.

Proof. We first observe that a culture of size n− 1 that contains k wild-type cells
will on average contain

(1 − α) k

n− 1
(k + 1)+ α k

n− 1
k + n− k − 1

n− 1
k = n− α

n− 1
k

wild-type cells when it has reached size n. Therefore we have for the expectation
ofWn conditional onWn−1,

E(Wn|Wn−1) = n− α
n− 1

k

Eω(n;α) = k

Eω(n− 1;α) = Wn−1 . (36)

This proves that the sequence {Wn} of random variables (34) is a martingale. Fur-
thermore, E(Wn) = 1 and Wn > 0 for all finite n, so that W := p − lim

n→∞Wn
exists because of Doob’s theorem.

Since convergence in probability implies convergence in distribution, the cal-
culation of the distribution function PW(x;α) is now standard. We fix a value for
x > 0 and then pick an integer kn := kn(x) such that kn < xEω(n;α) ≤ kn + 1.
Then, because of Corollary 2.2,

PW(x;α)
= lim
n→∞Pω(n, kn;α)

= lim
n→∞

kn∑
i=1

(−1)n−i
[Eω(n;α)]i

i!
xi[1−O(Eω(n;α)−1)]

(
i(1 − α)− 1
n− 1

)
,
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where O( ) is Landau’s order symbol. The proof of Theorem 6.1 is now complet-
ed by noting that, because of the asymptotic expression for the gamma function
already quoted in Corollary 2.7,

lim
n→∞(−1)n−1[Eω(n;α)]i

(
i(1 − α)− 1
n− 1

)

=
(

�(n+ 1 − α)
�(2 − α)�(n)

)i �(n− i(1 − α))
�(n)�(1 − i(1 − α))

= 1

�(1 − i(1 − α))
1

[�(2 − α)]i

= sin(πi(1 − α))
π

�(i(1 − α))
[�(2 − α)]i ,

and that (as is easy to check) the series in Equation (35) has infinite radius of con-
vergence. The fact that PW(x;α) = 0 for x ≤ 0 is obvious. ��

Theorem 6.1 tells us that the probability that a very large culture of bacteria
contains a number of mutants larger than n − xEω(n;α) can be sufficiently well
approximated byPW(x;α). Thus, we find that for any η, 0 ≤ η < 1, the probability
that a large culture of (say) n bacteria contains more than ηn mutant cells is given

by PW
(
(1−η)n
Eω(n;α) ;α

)
. This tends to unity as n increases.

For completeness, we quote an interesting corollary to Theorem 6.1.

Corollary 6.2. For α = 1/2, the probability densitypW(x;α) of W = p −
lim
n→∞Wn is

pW(x; 1/2) = 2

π
e−

x2
π , (37)

if x > 0, whilepW(x; 1/2) = 0 otherwise.

We now return to a discussion of the probability distribution (20) which emerg-
es in the context of the alternative model of mutation introduced in Section 3.2.
Here, we consider a sequence {Ωn} of random variables

Ωn := 1

1 + θ
ωn

Eω(n; �)
. (38)

Then we have

Theorem 6.3. Let 0 < � < 1. The sequenceΩn converges in distribution, and
the limiting distribution function is

PΩ(x; �, θ) = θ

1 + θ + 1

1 + θ PW(x; �) , (39)

wherePW(x; �) is the distribution function (35) with� in the rôle ofα.
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Proof. We will make use of the theory of Laplace-Stieltjes (LS) transforms. By
definition, the LS-transform λWn(y;α) of the distribution function of the random
variableWn (34) is the expected value of e−yWn , i.e.

λWn(y;α) =
n∑
k=1

e−ky/Eω(n;α)pω(n, k;α) = gω(n, e
−y/Eω(n;α);α) . (40)

We denote the LS-transform of the probability distribution PW(x;α) (Theorem
6.1) by λW(y;α) (this function may easily be given in explicit form, but we do not
need it at this point; see, however, Equation (65) below). Finally, the LS-transform
λΩn(y; �, θ) of the distribution function of the random variables (38) is

λΩn(y; �, θ) = θ

1 + θ + 1

1 + θ gω(n, (1 + θ)e−y/(1+θ)Eω(n;�) − θ; �) , (41)

because of Corollary 3.3. Our aim is to prove that

lim
n→∞ λΩn(y; �, θ) = θ

1 + θ + 1

1 + θ λW (y; �) (42)

uniformly in y on any interval [0, z), z < ∞. Since, for any such y,

0 ≤ e−ky/Eω(n;�) − [(1 + θ)e−y/(1+θ)Eω(n;�) − θ ]k

≤ k[e−y/Eω(n;�) − (1 + θ)e−y/(1+θ)Eω(n;�) + θ ]

≤ 1

2

θ

1 + θ
ky2

[Eω(n; �)]2
, (43)

it follows immediately from (41) and (43) that

0 ≤ λWn(y; �)− (1 + θ)λΩn(y; �, θ)+ θ ≤ θ

1 + θ
1

Eω(n; �)

z2

2
,

which implies Equation (42) as well as Theorem 6.3. ��

7. The distribution of mutation events

For the purpose of this and the next section, we will again make use of the assump-
tions listed in Section 2.1, with the exception that we will assume the mutation rate
is constant throughout. Furthermore, we adopt the following convention:

(i) Whenever a wild-type cell divides into one mutant and one non-mutant cell,
we call it a mutation event. The number of mutation events that have occurred
in a population of given size n is a non-negative, integer-valued random vari-
able, which we denote by µn.

Practically speaking, the distribution of mutation events should be of greater
importance than the distribution of mutants, since the number of mutations that
have occurred in a population (which might be in practice a population of tumor
cells) is a more accurate measure of its mutability than the number of mutants it
contains. Because of the fact that the mutant cells themselves multiply, it might



An explicit representation of the Luria–Delbrück distribution 165

seem that the distribution of mutation events is easier to access than the distribution
of mutant cells. However, even if we know that a population contains r mutant
cells (which is significantly more information than to know that it contains n mu-
tant and non-mutant cells), these r cells may still be the result of any number of
mutation events from 1 to r . Furthermore, the probability that a mutation occurs in
a population of given size does not only depend on the number of mutations that
have already occurred, but also on whenthey did. For example, if the first mutation
already occurs at the time of division of the first cell in the population, there will
be only ∼n/2 cells available for mutation later on. Therefore, the precise form of
the distribution of mutation events for arbitrary values of α should be of significant
interest also from the theoretical point of view.

If we denote by pρ,µ(n, r,m;α) the probability that a population of size n in
whichmmutation events have occurred contains exactly r mutants, we immediately
find from Equation (1)

pρ,µ(n, r,m;α) = (1 − α)
[

1 − r

n− 1

]
pρ,µ(n− 1, r,m;α)

+ r − 1

n− 1
pρ,µ(n− 1, r − 1,m;α)

+α n− r
n− 1

pρ,µ(n− 1, r − 1,m− 1;α) . (44)

The probability pµ(n,m;α) that m mutation events have occurred in a culture of
size n which contains an arbitrary number of mutants would then be given by

pµ(n,m;α) =
n−1∑
r=0

pρ,µ(n, r,m;α) . (45)

Unfortunately, the recursion relation (44) is much less amenable for an explicit so-
lution than the corresponding recursion (1). However, with some effort it is possible
to prove the following

Theorem 7.1. Let the distribution of the number of wild-type cells be given as in
Theorem 2.1, and denote bygω(n, s;α) its generating function for arbitrary but
fixed population size (22). Furthermore, let

gµ(n, s;α) =
n−1∑
m=0

pµ(n,m;α)sm (46)

denote the probability generating function of the distribution of the number of mu-
tation events, wherepµ(n,m;α) is the probability that exactly m mutations have
occurred in a population of n cells. Then

gµ(n, s;α) = 1 − αs
1 − α gω

(
n,

1 − α
1 − αs ;αs

)
. (47)
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Sketch of proof . The idea of proof is to introduce first a new notation for the
probability that no mutation occurs, say 1 − α =: β, and to realize that the prob-
ability pµ(n,m;α) must in some way be proportional to αm times some possibly
complicated polynomial in β. On the other hand, we have

pρ(n, r;α) =
n−1∑
m=0

pρ,µ(n, r,m;α) . (48)

Hence, one will try to find a suitable expansion of the probabilities pρ(n, r;α) into
powers of α and β and then collect terms of the same order in α. Specifically, one
introduces auxiliary variables

pρ,µ(n, r,m;α) =: αmβn−r−1 (n− r − 1)!

(n− 1)!
qρ,µ(n, r,m) , (49)

and then proves that

qρ,µ(n, r,m) =
m∑
j=0

Dj,r,m

(
n+ j − 1
r + j

)
, (50)

where the coefficients Dj,r,m are defined recursively such that

Dj,r+1,m = rDj,r,m − (r + j)Dj,r,m−1 + (r + j)Dj−1,r,m−1 (51)

and certain boundary conditions are met (e.g., Dj,r,m = 0 for r < m). In a similar
fashion, one proves that

pρ(n, r;α) = βn−r−1 (n− r − 1)!

(n− 1)!

r∑
j=0

Cj,r;α
(
n+ j − 1
r + j

)
, (52)

where

Cj,r;α =
r∑

m=j
αmDj,r,m . (53)

Together with Equations (22) and (46), this leads to Theorem 7.1. The actual cal-
culations, though elementary, seem to be more difficult to be followed than to be
done by oneself. The reader is therefore encouraged to do so, or to obtain details
of the proof from the author. ��

8. The limiting distribution of mutation events

This final section is devoted to the derivation of limit laws for the distribution of
the number of mutation events similar to those expressed by Theorems 5.1 and 6.1.
If, as in Section 5, the mutation rate is small and the cell number is large such that
the product αn converges as n tends to infinity, the calculations are rather simple.
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Theorem 8.1. Letpµ(n,m, α) denote the probability distribution of the number of
mutation events in a population of size n, and letgµ(n, s;α) denote its generating
function as specified by Theorem 7.1, Equation (47). Then, for any nonnegative
numberϕ < ∞, both lim

n→∞pµ
(
n,m; ϕ

n

)
and lim

n→∞ gµ
(
n, s; ϕ

n

)
exist, and

lim
n→∞ gµ

(
n, s; ϕ

n

)
= eϕ(s−1) . (54)

Proof . For the proof, we fix a value for s between zero and one, and rewrite Equa-
tion (47) as

gµ

(
n, s; ϕ

n

)
=
n−1∑
r=0

(
1 − ϕ/n
1 − ϕs/n

)n−r−1

pρ

(
n, r; ϕ

n
s
)
.

Since 1−ϕ/n
1−ϕs/n ≤ 1, it follows at once that

gµ

(
n, s; ϕ

n

)
≥
(

1 − ϕ/n
1 − ϕs/n

)n−1

. (55)

On the other hand, Theorem 5.1 implies that the family of probability distributions
pρ
(
n, r; ϕ

n
s
)

is tight, which in our instance means that for any positive number ε

there exists an index rε such that
rε∑
r=0
pρ
(
n, r; ϕ

n
s
)
> 1 − ε for all n. Thus

gµ

(
n, s; ϕ

n

)
≤
(

1 − ϕ/n
1 − ϕs/n

)n−rε−1 rε∑
r=0

(
1 − ϕ/n
1 − ϕs/n

)rε−r
pρ

(
n, r; ϕ

n
s
)

+ ε

≤
(

1 − ϕ/n
1 − ϕs/n

)n−rε−1

+ ε , (56)

which together with Equation (55) already implies Theorem 8.1, since ε is arbitrary,
and rε is finite.

If, on the other hand, αn → ∞ as n → ∞, we consider a sequence {Mn} of
random variables

Mn := 1 − α
α

µn

Eω(n;α) . (57)

The proof of the following theorem owes much to the advice of Anthony Pakes,
whose idea it was to bound the difference (63) of LS-transforms by means of
moment-generating functions.

Theorem 8.2. Let0 < α < 1. The sequenceMn converges in distribution, and the
limiting distribution function is

PM(x;α) = PW(x;α) , (58)

with PW(x;α) as given by Theorem 6.1.
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Proof . Because of Theorem 7.1, Equation (47), the LS-transform λMn(y;α) of the
distribution function of the random variablesMn is

λMn(y;α) = 1 − αe−y(1−α)/αEω(n;α)

1 − α
×gω

(
n,

1 − α
1 − αe−y(1−α)/αEω(n;α) ;αe−y(1−α)/αEω(n;α)

)
. (59)

The first factor on the right-hand side of Equation (59) tends to unity as n → ∞.
We may therefore concentrate on the term which involves the generating function.
Write, for simplicity,

ζn := αe−y(1−α)/αEω(n;α) . (60)

Then we shall prove that

lim
n→∞ gω

(
n,

1 − α
1 − αe−y(1−α)/αEω(n;α) ; ζn

)
= lim
n→∞ gω(n, e

−y/Eω(n;α); ζn) = λW(y;α) . (61)

As compared with the proof of Theorem 6.3, the argument requires a little more
care, since we only know that lim

n→∞ gω(n, e
−y/Eω(n;α);α) exists and is equal to

λW(y;α), but not whether the same is true for lim
n→∞ gω(n, e

−y/Eω(n;α); ζn). To

prove that this is indeed the case, consider the sequence {Zn} of random variables

Zn := ωn(ζn)

Eω(n;α) . (62)

Now, because 1−α
1−αe−(1−α)y/α >

1
1+y > e−y for any y > 0, it is straightforward to

derive the inequalities

0 ≤ 1 − α
1 − αe−y(1−α)/αEω(n;α) − e−y/Eω(n;α) <

1

2α(1 − α)
y2

[Eω(n;α)]2
,

and(
1 − α

1 − αe−y(1−α)/αEω(n;α)

)k
− e−yk/Eω(n;α)

≤ k
(

1 − α
1 − αe−y(1−α)/αEω(n;α)

)k−1 ( 1 − α
1 − αe−y(1−α)/αEω(n;α) − e−y/Eω(n;α)

)
.

It follows that∣∣∣∣gω
(
n,

1 − α
1 − αe−y(1−α)/αEω(n;α) ; ζn

)
− gω(n, e−y/Eω(n;α); ζn)

∣∣∣∣
≤ Eω(n; ζn)

[Eω(n;α)]2

y2

2α(1 − α) ,
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which together with Corollary 2.7 implies that the random variables Zn and Mn
have the same limiting distribution. It remains to show that Zn is distributed like
Wn in the limit n → ∞. To prove this, write y = Eω(n;α) log(1 + η/Eω(n;α))
(log denotes natural logarithm) and then check that, because of Equation (9) and
Corollary 2.7,

|λZn(y; ζn)− λWn(y;α)| =
∣∣∣∣∣∣

∞∑
z=0

Ezω(n; ζn)
[Eω(n;α)]z

(−η)z
z!

−
∞∑
z=0

Ezω(n;α)
[Eω(n;α)]z

(−η)z
z!

∣∣∣∣∣∣
<

∞∑
z=0

Cn,z
Ezω(n;α)

[Eω(n;α)]z
(ηnα−ζn)z

z!
, (63)

where

Cn,z = zη
α log n

Eω(n;α) + z2η
α2

nEω(n;α) +O(n−2) . (64)

If we ignore for the moment the coefficients Cn,z in (63), it follows from Cor-

ollary 2.7 that the remaining series
∞∑
z=0

Ezω(n;α)[
Eω(n;α)

]z ηzz! still has an infinite radius of

convergence. Therefore, the right-hand side of (63) tends to zero essentially like
log n/Eω(n;α). This concludes the proof of Theorem 8.2. ��

Incidentally, we may employ (63) to calculate finally the LS-transform of the
random variable W . It is sufficient to set λZn(y; ζn) = 0 and to forget about the
absolute value in (63). Invoking Corollary 2.7 once more, we obtain

λW(y;α) =
∞∑
z=0

[�(2 − α)]z
�(z(1 − α)+ 1)

(−y)z , (65)

provided that α < 1, since it is only then that η as defined by y = Eω(n;α)
log(1 + η/Eω(n;α)) tends to y as n tends to infinity. For α = 1, we have in fact
λW(y; 1) = 1

1+η = e−y , as expected.

9. Discussion

This paper provides an explicit representation of a Luria–Delbrück distribution
that has remained unnoticed for about fifty years. However, the investigation
of the model formulated here is not only justified because it allows for such
a representation, but also because of its practical and theoretical implications.
These concern in particular the derivation of the limit laws (35), (39), and (58).
As far as the practical side of the problem is concerned, the evaluation of a
fluctuation experiment is a subject well worth of study on its own. It is, however,
not necessarily connected with the problem of calculating the Luria–Delbrück
distribution. Still, this investigation does contribute to that issue. Theorem 3.1,
for instance, tells us that in general one need not worry about cell death during
the evaluation of a fluctuation experiment. At first, one may proceed as if the
cultures were composed of colony forming cells only. The difference is just that the
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mutation rate measured in such an experiment will be larger by a factor 1/(1 − δ)
in comparison with the true mutation rate α. Now, either the probability that any
cell divides into a colony-forming and a dead cell is small, in which case the
influence of cell death can be ignored, or it is not, in which case this probability
can readily be determined (at least as long as it is constant). In fact, it is clear that
for large populations, the number nc of CFCs in the population will be very close
to its expected value (1 − δ)n. As mentioned in Section 3.1, both the total number
of cells in a population as well as the number of CFCs it contains are readily
accessible quantities. The easiest way to determine them is to take aliquots of the
culture to be counted under the microscope (possibly after suitable dilution) or to
be plated on solid medium. In either case, the results coincide with the true value
of n (nc) only up to an accuracy of at most

√
n (

√
nc). If, therefore, one wishes

to get an idea about the magnitude of δ, it is necessary that the experiment be
conducted such that n− nc ∼= δn � √

n+ √
nc, i.e. δ � 2

√
n/n, which poses

no problem if δ is really so large that cell death must be taken into account.
As far as the alternative model of mutation introduced in Section 3.2 is con-

cerned, we first note that under the assumptions of that section, the probability that
the population eventually is composed of mutant cells only(which is to say that the
population of non-mutant cells becomes extinct) is the same as would be expected
for a classical Galton-Watson process. In fact, it is easy to see that under the assump-
tions of Sections 3.2, the PGF f (s) of the number of non-mutant cells in the progeny
of a non-mutant cell is f (s) = α•• +α•s+ (1 −α• −α••)s2. It is well known that
for any Galton-Watson process, the probability q that a population which originates
with a single individual finally becomes extinct is the smallest (nonnegative) root
of the equation s = f (s). In our case, this implies q = α••

1−α•−α•• = θ
1+θ , which

is exactly the value predicted by Theorem 6.3. Now, unless the average number of
mutant cells per culture in a fluctuation experiment is sufficiently small (such that
Theorem 6.3 does not apply), and if none of the N populations in the experiment
is composed of mutant cells only (by Theorem 6.3, the probability for this event is
approximately (1+θ)−N), one will most likely obtain an ordinary Luria–Delbrück
distribution as the outcome of the experiment. Indeed, Theorem 6.3 tells us that the
probability that a large culture of bacteria contains fewer than a certain number of
wild-type cells, conditional on the fact that it does contain any wild-type cells at all,
is just given by PW(x; �) (one would therefore be tempted to call the parameter
� = α• + 2α•• the ‘effective’ mutation rate).

On the other hand, if the experiment is conducted such that there are only few
mutant cells per culture on the average, and if one accepts the fact that under the
assumption that wild-type cells dooccasionally produce two mutants upon division
the relevant distribution of mutant cells is given by Theorem 5.2, the picture is a
different one. Indeed, if we set ϕ = 0 in Equation (32) (such that wild-type cells
produce mutants only by dividing into two mutant cells), we obtain

lim
n→∞ψρ

(
n, s; 0,

φ

n

)
= eφ(1−s)(1 − s)2φ(1−s)/s

= exp

(
−φ + 2φ

∞∑
i=2

si

i(i + 1)

)
, (66)
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whence it follows that the probability that the culture does not contain any mutant
cells is e−φ , the probability that it contains one mutant cell is zero, the proba-
bility that it contains two resp. three mutant cells is e−φ φ

3 resp. e−φ φ
6 , and for

four resp. five mutant cells, the respective probabilities are e−φ
(
φ
10 + φ2

18

)
and

e−φ
(
φ
15 + φ2

18

)
. Thus, for φ > 6/5, the distribution ‘zigzags’ at least for numbers

of mutant cells ≤ 5, and since the distribution is continuous with respect to ϕ and
φ, this behavior persists at least for values of ϕ in some neighborhood of zero. This
is of course a reasonable thing to expect (because of the possibility that wild-types
divide into two mutant cells, even numbers of mutant cells should be more abun-
dant), and as a similar calculation shows, it is rather different from the behavior of
the distribution (32) for φ = 0. However, it is already for φ = 3/2 (and with the
additional assumption that ϕ = 0) that the probability that the population contains
a number of mutants >5 is close to 1/2, and we do not know how pronouncedly
the distribution ‘zigzags’ for these numbers of mutant cells. Furthermore, we may
expect that in general ϕ � φ, such that for φ > 6/5, the average number of mutants
per culture becomes large again. Thus, Theorem 6.3 applies, which predicts that
mutant cells should be distributed according to an ordinary Luria–Delbrück distri-
bution (if we ignore the fact that some cultures might not contain any non-mutant
cells at all), regardless of the possibility that non-mutant cells might occasionally
produce two mutant daughter cells.

Although the assumptions we have imposed on our model may be quite far
from being the most general, the picture in this comparatively simple setting ap-
pears rather complete. Still, one may object to the model of proliferation underlying
the derivation of Equation (1), because cells need to pass through the cell cycle be-
fore dividing anew and will not proliferate upon accidentally (say, with probability
r/n) being ‘invited’ to do so. However, the influence of a certain growth model on
the distribution of mutant cells does not seem that decisive. Work by Boe et al.
(1994) and Tolker-Nielsen and Boe (1994) hints at the possibility that the Haldane
distribution (see Sarkar (1991) for the resurrection of the Haldane distribution)
might not be substantially different from the one derived from Lea and Coulson’s
model (1949). Numerical experiments on their own recent model by Lin et al.
(1996), which is based on the assumption of cell proliferation proceeding in a com-
pletely synchronized manner, have shown that the mutation rate can be rederived
from these experiments by applying their own method or the median method of
Lea and Coulson (1949) with results differing by at most 30% (although this may
seem large, recall that in practice the error in the determination of mutation rates
is generally of nearly the same order as the mutation rate itself).

It will be interesting to learn whether this is a consequence of the limit laws in
Sections 6 and 8. Indeed, the ratio of the number of mutant (or wild-type) cells to their
expected value should be much less responsive to the peculiarities of the mutational
process and the underlying model of cell proliferation than the number of mutant
cells itself. In fact, we have an example: Theorem 8.2 can be viewed as an instance
where a rather peculiar growth model (namely the increase in the number of mutation
events in a population) yields exactly the limit law (35). Let us see how this might
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come about. Intuitively, one may suspect that the division by αEω(n;α) might
be a reasonable way to normalize the number of mutation events, and a rather
straightforward calculation confirms intuition inasmuch as the expected number
Eµ(n;α) of mutation events that have occurred in a population of size n turns out to
be equal to α

1−α [Eω(n;α)− 1]. Thus, Theorem 8.2 literally claims that the ratio of
the number of mutation events to their expected value converges to the probability
distribution(35).Incidentally, thisalsoaccountsfortheappearanceofthefactor1 − α
in the definition of the random variables (57). The reason why this factor appears at
all is that it is not a fractionα of non-mutant cells that should have produced mutants,
but a fraction α of divisions of non-mutant cells. Since any division of a non-mutant
cell into one mutant and one non-mutant cell does not alter the number of non-mutant
cells in the population, the expected number of wild-type cells tends to underestimate
the expected number of divisions of wild-type cells just by the factor 1 − α.

A detailed account of the relation between our model and previous work is
beyond the scope of this contribution. However, it would be unduly incomplete if
credit were not given to a result of Bartlett’s (1955) already alluded to in Section 5.
To see what it is about, consider first the generating function in two variables

Gρ(t, s;α) :=
∞∑
n=1

n−1∑
r=0

pρ(n, r;α)tn−1sr .

Then, because of Equation (24),

Gρ(t, s;α) =
∞∑
k=1

∞∑
n=k

pρ(n, n− k;α)(ts)n−1s1−k

= (1 − ts)−α
∞∑
k=1

[1 − (1 − ts)(1−α)]k−1s1−k

= s

1 − ts − (1 − s)(1 − ts)α . (67)

Consider now a single bacterium at time t = 0, and suppose that the probability that
this bacterium or any (mutant or non-mutant) cell in its progeny will divide within
the short time interval dt is λdt (this is obviously the continuous-time analogue
of the growth model formulated as assumption (iv) in Section 2.1). It is then not
too hard to see that the probability that the solitary bacterium will have produced
a progeny of size n by the time t is given by e−λt (1 − e−λt )n−1 (e.g. Stewart et al.
1990). Therefore, the probability that this bacterium will have produced r mutant
cells by the time t is given by the probability that it has produced a progeny of
any size times the probability that this progeny contains r mutants, i.e. it is the
coefficient of sr in the generating function

∞∑
n=1

n−1∑
r=0

e−λt (1 − e−λt )n−1pρ(n, r;α)sr

= e−λtGρ(1 − e−λt , s;α)
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= se−λt

1 − s + se−λt − (1 − s)(1 − s + se−λt )α
. (68)

Apart from obvious differences in notation, this is exactly the expression derived by
Bartlett (1955) (his Equation (12), op. cit., p. 116). It appears strange that this
contribution of Bartletts to the theory of bacterial growth and mutation could have
been missed even though his book on stochastic processes has been quoted time
and again (noteworthy exceptions are Kemp (1994) and, of course, Zheng (1999)).
One reason for this may be that, as pointed out by Zheng (1999), the issue of
finding an efficient algorithm for the calculation of the probability distribution in
(68) is still ‘clamoring for solution’. Thus, even if researchers were aware of the
generating function (68), they may not have found it useful. Another reason could be
an argument of Bartlett’s, which, although not erroneous, is at least misleading as it
stands. Bartlett argues that the generating function for the probability distribution of
the number of mutants in a culture grown from a very large initial number n0 of
bacteria ought to be thenth

0 power of the generating function (68), and then sets out to
prove that for large n0 and small α, this expression reduces to Lea and Coulson’s
generating function (Bartlett 1955). This argument is certainly correct, but it appears
to have distracted the attention of researchers from the more exact expression (68).
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