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Abstract. In this paper a mathematical model is developed to describe the effect of nonuni-
form growth on the mechanical stress experienced by cells within an avascular tumour. The
constitutive law combines the stress-strain relation of linear elasticity with a growth term
that is derived by analogy with thermal expansion. To accommodate the continuous nature
of the growth process, the law relates the rate of change of the stress tensor to the rate of
change of the strain (rather than relating the stress to the strain directly). By studying three
model problems which differ in detail, certain characteristic features are identified. First,
cells near the tumour boundary, where nutrient levels and cell proliferation rates are high,
are under compression. By contrast, cells towards the centre of the tumour, where nutrient
levels are low and cell death dominant, are under tension. The implications of these results
and possible model developments are also discussed.

1. Introduction

Advances in experimental technology (e.g.gene sequencing, fluorescent staining
techniques) are enabling experimentalists to identify many physical mechanisms
whose normal function is impaired in solid tumour growth. For example, popula-
tions of tumour cells which contain mutant versions of the gene p53 can survive
under abnormally low oxygen tensions (i.e. hypoxia) [13]. Consequently the size
of the hypoxic region in a tumour containing normal and mutant p53 cell popula-
tions will be larger than that in a tumour with only normal p53. Given that hypoxic
cells progress slowly (if at all) through the cell cycle, anti-cancer therapies that tar-
get rapidly proliferating cells will be markedly less effective at reducing tumours
containing mutant p53 than those with only wild-type p53.

The above description highlights the importance of genetic mutations in solid
tumour growth. This is an area of active research in oncology. Other factors which
have long been known to influence tumour growth are the supply of vital nutrients,
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such as oxygen and glucose, and chemotherapeutic drugs [11], [17], [18], [33],
[34].

More recent experimental results indicate that mechanical effects, such as stress,
also play an important role in solid tumour growth [15]. By culturing multicellular
spheroids in gels of increasing agarose concentration, Helmlingeret al.were able
to demonstrate that increasing the stiffness of the embedding matrix (i.e. increas-
ing the agarose concentration) reduced the limiting size of the tumour spheroids.
Hence we deduce that stress fields generated in the matrix surrounding the tumour
can inhibit cell growth. Equally, stress fields may be generated by cell growth or
remodelling during cytokinesis [4]. Indeed, the main aim and novel aspect of this
paper is the development of a mathematical model that describes the way in which
nonuniform growth generate mechanical stress within a solid tumour. Such phe-
nomena have not been widely studied in the mathematical literature. Instead, the
majority of existing models have focussed either on the response of multicellular
spheroids to changes in externally-delivered nutrients and chemotherapeutic treat-
ments [1], [6], [14], [16], [20], [36] or on tumour angiogenesis [2], [5], [23], [31],
the process by which tumours acquire a blood supply from their host tissue [10],
[22], [24]. One notable exception is the paper by Chaplain and Sleeman [8] in which
elasticity theory is used to describe tumour invasion. Problems associated with con-
tinuous growth in an elastic material are circumvented by modelling the tumour’s
outer proliferating rim as an elastic membrane of fixed volume. This rim surrounds
an expanding core of necrotic, fluid-like material,i.e. tumour growth is assumed
to correspond to growth of the necrotic core rather than an increase in the number
of proliferating cells. Using linear stability analysis, they investigated the stability
of the radially symmetric equilibrium configuration to asymmetric perturbations,
arguing that invasion corresponded to growth of one or more of the perturbations.

Other models that incorporate mechanical effects include work by Drozdov and
Khanina [9] and Skalaket al.[30]. For example, in [9] a simple example is discussed
in which growth decouples from the underlying stress field and the corresponding
growth-induced stress field is derived. Please and coworkers have developed an
alternative model framework in which the tumour is treated as a multiphase medi-
um, with cell growth, proliferation and death corresponding to appropriate phase
changes between the water and cell phases [19], [26], [27].

Since the development of a mathematical model which couples together stress
and growth would be extremely complex, in this paper we follow [9] and consider
the simpler problem of growth-induced stress for which growth occurs indepen-
dently of the underlying stress. Our approach builds directly upon existing models
of solid tumour growth [1], [6], [14], [20], [36] in which cell growth and death are
determined by levels of vital nutrients and are independent of mechanical effects
such as stress. Such diffusion-limited growth models mimic the heterogeneous
growth characteristic of multicellular spheroids, with cells near the nutrient-rich
periphery proliferating rapidly whilst cells towards the centre of the tumour are
starved of nutrients and consequently proliferate less rapidly, if at all [11], [17],
[18], [33], [34].

A novel feature of the model presented in this paper concerns the development
of an appropriate constitutive law that relates the differential growth within the
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tumour to the mechanical stress experienced by the constituent cells. The constit-
utive law that we use combines the stress-strain relation of linear elasticity with a
growth term that is derived by analogy with thermal expansion. Since proliferation
and death are continuous processes, defined as rates, the constitutive law is stated
in a dynamic fashion: it relates the rate of change of the stress tensor to the rate of
change of the strain tensor, with a term present to describe the effect of the differ-
ential cell growth within the tumour. Similar laws have been proposed to describe
the swelling of soft tissue being modelled as a multiphase poroelastic material [29].

The mathematical model that we develop is studied using a combination of
numerical and asymptotic techniques for three situations of increasing complexity.
First we study growth in a semi-infinite, smooth rectangular tube. We then consider
growth in a finite, smooth rectangular tube before finally investigating growth of a
radially-symmetric spherical tumour. Whilst the results obtained for each case dif-
fer in detail, several common features emerge. First, cells near the tumour boundary,
where nutrient levels and cell proliferation rates are high, are under compression.
By contrast, cells towards the centre of the tumour, where nutrient levels are low
and cell death dominant, are under tension.

The remainder of the paper is organised as follows. In section 2 we present
our mathematical model. In section 3 we study one-dimensional growth in a semi-
infinite rectangular tube before considering growth in a finite tube in section 4.
In section 5 attention focuses on the growth of a radially-symmetric tumour. The
paper concludes in section 6 with a summary and discussion of the main results.
An appendix describing the numerical method to construct the numerical solutions
is also included.

2. The mathematical model

In this section we present a mathematical model that describes the development of
an avascular tumour whose growth is regulated by an externally-supplied nutrient
such as oxygen or glucose which diffuses freely throughout the tumour. Of partic-
ular interest is the way in which cell proliferation and cell death affect mechanical
properties of the tumour such as stress. In the model the tumour is treated as a
continuum, an approach which is valid when the tumour contains a sufficiently
large number of cells that a small control volume (i.e.a region whose spatial scale
is much less than that of the overall tumour) contains a large number of cells. Prop-
erties of the material at any point are then considered as average properties over
a local region centred at that point. In particular, the elastic stresses in the tumour
should be regarded as the average forces per unit area between adjoiningblocks
of tumour material, rather than as quantities determined by individual cell-to-cell
interactions.

The key physical variables involved in the model are the nutrient concentration
c(r , t), the tumour cell mass densityn(r , t), the tumour cell velocityv(r , t), the po-
sition of the tumour boundaryC(r , t) = 0, and the stress tensorσ(r , t). Equations
describing the evolution of these dependent variables are derived below, under the
simplifying assumption that the tumour comprises proliferating cells only (i.e. it
does not possess a central necrotic core).
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As stated above, we assume that the key nutrient (henceforth ‘the’ nutrient)
is supplied to the tumour from a well-stirred ambient environment and that, as it
diffuses towards the centre of the tumour, it is consumed at a rate which is propor-
tional to both the nutrient concentration and the tumour cell density. Following [1],
[14], [20] and [36], we further assume that the nutrient evolves in a quasi-steady
fashion. Combining these ideas, we deduce that the nutrient concentrationc(r , t)
satisfies the equation

0 = Dc∇2c︸ ︷︷ ︸
diffusion

− mcn/n∗︸ ︷︷ ︸
consumption

, (1)

whereDc andm/n∗ are the assumed constant diffusion coefficient and the nutrient
consumption rate.

Turning now to the tumour cell density, we assume that the factors governing
its evolution are cell proliferation, cell death (or apoptosis) [17], [18] and advec-
tion by a cell velocityv. Thus, following [36], and in contrast to [25], [28], [35],
we neglect random motility of the tumour cells. Assuming that the cell prolifera-
tion rate is proportional to both the cell density and the nutrient concentration and
that the cell death rate is proportional to the cell density alone (i.e. tumour cells
have a natural half-life), we deduce that the tumour cell densityn(r , t) satisfies the
equation

∂n

∂t
+ ∇.(vn) = (αc − k)n, (2)

whereα andk are positive constants, related to the rates of cell proliferation and
cell death. A number of assumptions are implicit in (2). Firstly we have assumed
that other building materials, especially water which in practice constitutes the bulk
of the cell mass, are freely available so that growth is controlled solely by nutrient
availability. We further assume that the growth rate depends on the current amount
of nutrient available and has no history dependence. We also assume that when a
cell dies it dissipates instantaneously, converting entirely into water which is avail-
able for the production of new cells. While this is correct to leading order, there will
be a small amount of nonutilisable debris whose large molecular size prevents it
from diffusing away. Over a long period of time the accumulation of such material
could produce a significant volume effect. For the model to be applicable at such
times this effect would need to be incorporated [36].

Now the growth and death processes combine to establish the velocityv which
describes cell movement as the tumour expands, or regresses, to accommodate the
increase, or decrease, in the number of cells present. If we assume that the tumour
cells have a constant density (i.e. the tumour mass per unit volume, rather than the
number of cells, is constant),n = n∗, say, then equations (1) and (2) reduce to give
the following scalar equations for the nutrient concentrationc(r, r) and the cell
velocityv(r, t)

0 = Dc∇2c − mc, (3)

∇.v = αc − k, (4)

and we no longer need to consider the tumour cell density explicitly.
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A common feature of the simple geometries that are studied in this paper is
one-dimensional growth. In such cases equation (4) is sufficient to determine the
one, nonzero component of the velocity vector. In more general situations, with
asymmetric growth, the continuity equation is coupled to the dynamics and con-
stitutive equations, and cannot be solved separately. As an example of this, the
tumour is modelled in [14] as a porous medium and Darcy’s law is used to relatev
to the pressure. Three additional equations are thus obtained which, together with
equation (4), are sufficient to determine the cell velocity and the pressure.

We denote the tumour boundary byC(r , t) = 0. Since this surface consists of
tumour cells it must move with the cell velocity. Hence

DC

Dt
≡ ∂C

∂t
+ (v.∇)C = 0 on C = 0 , (5)

whereD/Dt represents the material derivative.
Since we are considering the tumour to be a continuum, the forces inside it

can be represented by a stress tensor,σ. If we assume further that growth is slow,
and momentum changes are negligible, then the forces acting must be in balance
at all times. There are no body forces, apart from gravity which we assume to be
negligible, so our force balance yields

∇.σ = 0 . (6)

Finally we formulate the constitutive law which relates the strain inside the
tumour to the stress upon it. In doing this several basic assumptions are made.
Firstly we assume that the tumour responds to stress in a purely elastic and isotro-
pic fashion. Recall that we are not considering the forces between individual cells
here but the average forces between blocks of material, each of which contain large
numbers of cells. If tumours behave in the same way as other extensive biological
tissues (e.g.ordinary flesh) then this is the simplest hypothesis to explain com-
monly observed behaviour, such as the fact that biological tissue stretches a finite
amount when a force is imposed on it, but does not continue to deform indefinitely
(this would be the response of a visco-elastic material). We further assume that the
elastic response over any small time interval is proportional to the change in strain.
Thus while the response is locally linear, the overall law is nonlinear because of
convective effects and applies for large displacements. Another assumption is that
there is no preferential direction for cell growth, so that growth produces isotro-
pic strain. Finally, as stated above, we assume that the material is incompressible.
Combining the above assumptions leads to the following equation

1

2

(
∇u + ∇uT

)
︸ ︷︷ ︸

strain tensor

= 1

3
gδ︸︷︷︸

growth

+ 1

2E
(3σ − Tr(σ)δ)︸ ︷︷ ︸

stress response

, (7)

whereu is the change in strain,g the volume per unit volume produced at a given
point by growth,δ is the Kronecker-delta (δ = (δij ) whereδij = 1 if i = j and
δij = 0 if i 6= j ), Tr represents the trace of the tensor (Tr(σ ) = ∑3

i=1 σii) and
E is Young’s modulus whose value will vary for different tumours. In the absence
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of growth (g = 0), equation (7) reduces to the usual stress-strain relationship for
linearly elastic incompressible materials [21], [32]. The additional term involving
g represents the effect of growth which we assume to be isotropic (c.f. the analo-
gous equation for isotropic thermal expansion [21]). The factor 1/3 is required for
consistency with the definition ofg; taking the trace of (7) yieldsg = ∇.u which
is the correct expression for the fractional volume change.

Now equation (7) applies provided that the change ing is sufficiently small and
thatu andσ represent infinitesimal changes in a quasi-stationary medium. In our
case, however, there is continuous volume production which creates movement and,
over a period of time, finite displacement. Thus, while equation (7) may represent
the principles of the relationship, it is not in a form immediately applicable to our
problem. To obtain such a form we differentiate equation (7) with respect to time,
using a total derivative since we are considering changes within a material element
and, therefore, must follow the element. The derivative must also be objective since
it is a general principle that constitutive laws be invariant if re-formulated in an
arbitrarily rotating frame [3]. Invariance can be achieved in several ways but the
most natural here is to take a corotational or Jaumann derivative which follows
a material element with a frame that rotates with the local angular velocity. The
Jaumann derivative of the strain tensor is the rate of strain tensor (see, for example,
[3] for a proof) and the derivative of the growth termg produces therateof volume
growth per unit volume. This term can be identified with either its physical cause
(αc − k) or, more directly, from its definition, with∇.v. The two terms are equal,
of course, by equation (4). Combining these ideas we deduce that the appropriate
constitutive law to describe a linearly elastic tumour, subject to continuous volume
growth, is as follows

1

2

(
∇v + ∇vT

)
= 1

3
(∇.v)δ + 1

2E

{
D

Dt
(3σ − T r(σ)δ) + 3(ω.σ − σ.ω)

}
,

(8)
whereω is the second order vorticity tensor

ω = −1

2

(
∇v − ∇vT

)
. (9)

We remark that a similar constitutive law is presented in [29] to describe swelling
in poroelastic media.

In the remainder of this paper we only consider situations for whichω = 0.
Note that we have assumed that Young’s modulus,E, is a constant. In physical
terms, this implies that a change in stress always produces the same proportionate
change in strain, regardless of the degree of strain. This is probably a reasonable
approximation for small and even medium deformations of the tumour, but is likely
to be less reliable for large deformations. Nor does it contain any consideration
of the way in which growth and death processes (which are internal, microscop-
ic processes on the scale that we are viewing the problem) may affect the elastic
response.

To summarise, our model comprises equations (3)–(6), (8), (9). These define
the evolution ofc, v, C andσ. In practice, boundary and initial conditions must
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be imposed to close the model. Since in the following sections of the paper the
model equations are solved for three different situations which warrant different
boundary and initial conditions, their prescription will be considered for each case
in turn. In the first case, tumour growth is assumed to take place within a semi-
infinite rectangular tube so that growth is one-dimensional, occurring parallel to the
axis of the tube. This situation is only realised when there is no cell death within
the tumour and is, therefore, not physically realistic. However, the simple solution
structure provides valuable insight into the way in which stress is produced by cell
growth. In the second case the rectangular geometry and one-dimensional growth
are maintained but we assume that the tumour occupies a finite section of the tube.
This enables us to re-introduce cell death and to study its effect within a simple
geometric configuration. Finally, we consider the more realistic case of a spherical
tumour growing with radial symmetry.

Before studying the different situations described above, it is convenient to re-
cast our mathematical model in dimensionless form, and thereby to identify the key
dimensionless parameter groupings. This is achieved by rescaling distance with the
nutrient diffusion length scaleL = √

Dc/m, time with the tumour doubling time
T = 1/αC0, and the nutrient concentration with its externally-supplied valueC0
(which is assumed fixed). Denoting dimensionless quantities by tildes, we write

r̃ = r/L, t̃ = t/T , c̃ = c/C0, ṽ = vT/L,

σ̃ = σ/E, ω̃ = ωT .

Under this transformation the model equations become (dropping the tildes for
clarity)

0 = ∇2c − c , (10)

∇.v = c − ε, (11)

∂C

∂t
+ (v.∇)C = 0 on C = 0 , (12)

∇.σ = 0, (13)

1

2

(
∇v + ∇vT

)
= 1

3
(∇.v)δ+ 1

2

{
D

Dt
(3σ − T r(σ)δ) + 3(ω.σ − σ.ω)

}
, (14)

where

ω = −1

2

(
∇v − ∇vT

)
(15)

andε satisfies

ε = T k = k

αC0
.

We remark that if the initial tumour size is prescribed then this gives rise to a sec-
ond dimensionless parameter. For example, if in dimensional variablesr = a0 at
t = 0 is prescribed then in dimensionless variablesr̃ = ã0 = a0

√
Dc/m. In the

remainder of this paper we focus on the nondimensional equations (10)–(15).
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3. 1-D tumour growth in a smooth, semi-infinite rectangular tube

In this section the model equations are formulated in terms of Cartesian coordinates
(x, y, z), with x directed along the length of the tube, in the direction of growth.
Writing C(r, t) = x − a(t) so thatx = a(t) denotes the position of the tumour
surface at timet , and the tumour occupies the regionx < a(t). We assume that
a(0) = 0 and that the tumour is initially in a state of zero stress. For the model to
have meaning we fixε = 0 in equation (11). Otherwise, if cells were dying at a
finite rate, however small, the infinite amount of material present would cause the
tumour to collapse at infinite speed.

For the assumed geometry equation (10) takes the form

∂2c

∂x2
= c. (16)

We solve equation (16) subject to the boundary conditions

c(a(t), t) = 1 and
∂c

∂x
→ 0 as x → −∞,

the latter condition ensuring that the solutions are bounded. In this way we find

c(x, t) = ex−a(t). (17)

With ε = 0 equation (11) reduces to

∂v

∂x
= c. (18)

Again, to ensure bounded solutions, we solve equation (18) subject to the condition

v(x, t) → 0 as x → −∞,

and deduce that
v(x, t) = ex−a. (19)

Using equation (12) we note that on the tumour surface

da

dt
= v(a(t), t) = 1, with a(0) = 0. (20)

Thus
a = t, (21)

that is, the tumour grows linearly with time.
Exploiting the geometry of the problem, we assume that the off-diagonal ele-

ments of the stress tensor,σxy , σyz andσzx , are all zero. Denoting byσx , σy and
σz the diagonal elements, the component of (12) in thex-direction leads to the
equation

∂σx

∂x
= 0. (22)
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Assuming that there is no normal stress at the tumour boundary and scaling pres-
sure so that the pressure outside the tumour is zero, we integrate (22) subject to the
boundary conditionσx = 0 atx = a(t) in which case

σx = 0 ∀ x, t. (23)

Resolution of (12) in they- andz-directions leads to ordinary differential equa-
tions forσy andσz which are similar in form to (22) and can be integrated to show
the more limited results

σy = σy(x, z; t) and σz = σz(x, y; t). (24)

Finally we turn to the constitutive law, equation (14). When expressed in Car-
tesian coordinates this takes the form

1

3

∂v

∂x


2 0 0

0 −1 0
0 0 −1


 = 1

2

(
∂

∂t
+ v

∂

∂x

) 
−σy − σz 0 0

0 2σy − σz 0
0 0 2σz − σy


 . (25)

Thus only three non-trivial equations arise, of which only two are linearly inde-
pendent since the trace of the system necessarily reduces to zero. The linearly
independent equations may be combined to yield more convenient forms. For ex-
ample, subtraction of thezz- from theyy-equation leads to(

∂

∂t
+ v

∂

∂x

)
(σy − σz) = 0. (26)

Imposing the boundary conditions thatσy andσz both approach zero asx → −∞
and recalling thatσy = σz = 0 at t = 0, we deduce that, sincev ≥ 0, σy = σz

throughout the tumour. Combining this result with (24) it follows that bothσy and
σz depend onx andt only. We introduceσ(x, t) (no subscript) to denote this joint
function, so that

σy ≡ σz ≡ σ(x, t). (27)

Substituting (27) into any of equations (25) leads to the following expression forσ(
∂

∂t
+ v

∂

∂x

)
σ = −2

3

∂v

∂x
. (28)

Sincev is already known, equation (31) may be solved, subject to the initial con-
dition thatσ = 0 att = 0, giving

σ(x, t) = −2

3
[x + ln(1 + e−x − e−t )]. (29)

We now discuss the significance of our results. From (17) we see that the nu-
trient is effectively confined to a layer of length scale 1/m near the surface of the
tumour. Consequently, growth is concentrated near the tumour surface. Since new
cells are unable to move backwards down the tube, this creates a monotonically in-
creasing velocity profile near the surface. The total growth over the tumour surface
is the same at all times, so the surface itself advances with a constant velocityV .
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Fig. 1. Here we show how the transverse component of the stress tensor evolves within a
tumour which is growing in a smooth, semi-infinite rectangular tube. Also depicted is the
transverse stress profile that corresponds to the steady state tumour and to which the dynamic
profiles evolve. Initially the tumour is stress-free. However, since the tube boundary pre-
vents lateral motion of the cells, proliferation near the tumour surface generates compressive
lateral stresses there. In the absence of cell death, stresses away from the tumour surface
remain fixed at the values they had when the surface passed through those points. We plot
σy = σz = σ(x, t) at timest = 0, 0.5, 1.0, 1.5, 2.0. Key: analytical results for growing
tumour (solid line); analytical results for steady state tumour (dotted line). Parameter value:
ε = 0.

Since growth is taking place in a frictionless tube, it can be accommodated with-
out forces parallel to the tube length, and so stress components such asσx and
τyx are zero. However, the growth is isotropic and the tumour material attempts to
expand in directions perpendicular to the tube, as well as along it. The tube bound-
ary prevents lateral motion, and so the growth generates lateral stress components,
σy = σz = σ(x, t) instead.

From the above description of the mechanism that generates the transverse
stress components one would expect the long term growth pattern to exhibit the
following features: (i) stresses near the surface grow linearly with time; and, (ii)
the stresses in new cells not near the tumour surface are frozen at the value of the
stresses in the surface that prevailed when the surface passed through that point.
Since the surface moves with constant speed, this implies that the stress should
increase linearly with distance away fromx = 0. In Fig.1 we confirm these ideas
by using equation (29) to plot the profiles ofσ within the expanding tumour at
different times. The time range in Fig.1 is relatively short (t ∼ O(1)); the growth
layer is O(1)in the figure and the new growth has only progressed a distance of



Growth-induced stress in avascular tumours 483

2 dimensionless units down the tube. Nevertheless the approach to a steady state
profile that is linear for largex can clearly be seen in the figure. The steady state
profile can be determined by lettingt → ∞ in equation (29) when one obtains

σ ' −2

3
[x + ln(1 + e−x)], (30)

and this is the dotted curve in Fig.1. It has the expected behaviour of satisfying

σ → 0 asx → −∞ and σ ' −2

3
x for 1 � x < a. (31)

Alternatively, if we change to a moving frame of coordinates by settingx = t + s,
so thats = 0 denotes the surface and the tumour occupies the regions < 0, then
the asymptotic form for (29) ast → ∞ is given by

σ ' −2

3
t + s. (32)

Equation (32) clearly shows that the stress grows linearly with time at the surface.
Note that this component is negative which corresponds to the force being com-
pressive. This is what we would expect intuitively; since lateral expansion is not
permitted, the continuous lateral growth of the tumour is balanced by a transverse
‘pressure’.

4. 1-D tumour growth in a bounded rectangular tube

The problem treated in this section differs from the previous problem in two re-
spects, one minor and one major. The minor change is that the tumour is now finite
in extent. We assume that initially it occupies the region 0< x < a0, and that
x = 0 is a rigid impermeable boundary so that expansion is only possible in the
positivex-direction. The major difference is that we now reintroduce cell death
into our model since, with only a finite amount of material present, this produces
no logical inconsistencies. Thus in equation (11) we takeε > 0.

By following a similar approach to that employed in section 3, it is possible to
derive analytical expressions for the nutrient concentration, the cell velocity and
the tumour growth rate. The boundary and initial conditions that we impose are
the same as those used in section 3, the only difference being that those boundary
conditions that were imposed atx = −∞ in section 3 are now imposed atx = 0.
Summarising these results, we have

c(x, t) = coshx

cosha
, (33)

v(x, t) =
(

sinhx

cosha
− εx

)
(34)

and
da

dt
= v(a, t) = tanha − εa. (35)
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Equation (35) has no convenient closed form integral. The force balance and con-
stitutive law lead to results that are similar to those stated in section 3, the principal
ones being that

σx = 0 and σy = σz = σ(x, t) . (36)

The partial differential equation governingσ is similar to equation (28). After
substitution for∂v/∂x, the equation forσ takes the form

Dσ

Dt
=

(
∂

∂t
+ v

∂

∂x

)
σ = −2

3

(
coshx

cosha
− ε

)
. (37)

We now interpret our results and compare them with the results for the infinite
tube. First note that the solution is trivial ifε > 1. Since death everywhere exceeds
growth and the tumour shrinks to nonexistence. This behaviour can be seen clearly
in (35) where the right hand side is always negative ifε > 1: asa → 0 equation
(35) has the approximate solutiona ' Ae−(ε−1)t , whereA is a constant.

Henceforth we shall consider onlyε < 1. It is easy to verify that in this case the
solution of (35) always approaches a positive constant valuea∗ ast → ∞, where
a∗ is the positive root of the equation

tanh(a∗)
a∗ = ε . (38)

This occurs irrespective of whethera is initially above or belowa∗ [6], [7], [12],
[20]. Thus, unlike the previous case, the tumour does not grow indefinitely but
eventually equilibrates at a finite size where the overall growth and death processes
are in balance.

While an equilibrium is always reached, we can distinguish two physically dis-
tinct forms that the equilibrium can take. The first distinguished form occurs when
ε is close to unity and equation (38) has the approximate solutiona∗ = √

3(1 − ε).
Now, as can be seen from (33),L = √

Dc/m is the dimensional length scale over
which the nutrient is able to diffuse into the tumour from the free surface. In this
case the tumour is small in comparison to the diffusive length scale and this allows
us to approximate (33) toc = 1. Hence, the nutrient concentration is approximately
uniform, and death and growth processes are in approximate balance locally at ev-
ery point within the tumour. This may be contrasted with the solution whereε � 1
which corresponds to a death rate far below the maximum possible growth rate. In
this case (38) has the approximate solutiona∗ = 1/ε, and so the tumour is large
when measured on the diffusive length scale. This allows us to approximate (33)
asc = ex−a , showing that the nutrient concentration is only significant in a region
of physical lengthL near the tumour surface. The overall balance between life and
death is achieved by having a large growth rate in a thin region near the tumour
surface, and a low death rate throughout the tumour [7].

Henceforth we assume for three reasons that 0< ε � 1. First the solution has
a more resolved structure when 0< ε � 1, and discussion is often simplified by
the ability to physically distinguish separate growth and decay regions. Secondly,
whenε = O(1), the description can still be applied, but to a joint growth/decay
region. Finally, it seems unlikely that the value ofε would fall within such a highly
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specific range (for the spherical case, numerical simulations indicate that the two-
region structure is observable for 1/ε > 3), and so we expectε � 1 to be the case
that occurs most commonly.

Turning to the components of the stress tensor, we note that the rectilinear ge-
ometry still permits a solution with zero axial stress (σx = 0) and compressive
lateral stress. Before determining the lateral stress, we interpret equation (37). The
left hand side of (37) defines the rate of change ofσ within any material element
as it is followed in time, and the right hand side is its magnitude. To simplify the
discussion, let us suppose thata(t) = a0 = a∗, i.e. the tumour starts from its
equilibrium size. Then we can neglect the transient period required to attain the
equilibrium size. In addition, the rate of change ofσ only depends on the position of
the material element within the tumour, and not on time directly. Referring to (37),
we see that the rate of change of stress is O(1) and negative (compressive) for cells
near the surfacex = a∗, but is positive (tensile) and relatively small, O(ε) = O(k)

away from the surface.
To determine the stress at the point(x, t) we focus attention on the path that the

material particle has taken to reach that point at that time,i.e.we need the particle
history. This is found by integrating equation (34) which is now more conveniently
expressed in the form

v = Dx

Dt
= V

(
sinhx

cosha∗ − εx

)
. (39)

Sincea = a∗, we consider only stress changes that occur in the steady state growth
phase of the tumour; the stress that develops during the transient stage, as it reaches
its equilibrium size, is not discussed. We are interested in understanding how the
stress develops for large times. Two arguments lead to useful results. The first is
based on a qualitative description of the system and provides insight into how and
where the stress is generated. The second method is a technical calculation which
leads to a more accurate estimate of the stress.

Recall thatε � 1 and, hence, from (38), thata∗ ∼ 1/ε. Thus the velocity pro-
file has a boundary layer structure. It is zero atx = 0 and decreases approximately
linearly with x, approaching the (asymptotic) value of−1 near the surface where
x ∼ 1/ε. Then, in a region of scalex = O(1) it increases sharply, achieving zero
at the surface.

Consider now a material particle that is in the tumour at a suitably large time.
Since the velocity is everywhere and at all times negative, the particle must have
travelled backwards from the direction of the surface to reach its current position.
Further, its speed within the tumour bulk, and within most of the extent of the
surface boundary layer, is O(1). Thus the substantial part of the distance from the
surface would have been crossed in a time of O(a∗). If, however,t � a∗, then at
t = 0 the particle must have been in very close proximity to the surface. At the
surface the velocity field approaches zero and the time for the particle to escape can
be indefinitely large, depending on the exact degree of initial proximity. Therefore
a particle that is in the interior at large times will have spent most of its existence
at the surfacex = a∗, and have moved into the interior in its relatively recent past.
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In this case (37) suppliesDσ/Dt ∼ −2v/3 so that

σ ∼ −2

3
t . (40)

Since the particle spends most of its time at the surface, the positive growth rate
there is dominant and the negative growth rate in the interior plays a secondary
role.

With this understanding, we now use (37) to derive a more accurate estimate of
σ . Lets = (a∗−x) represent the distance from the tumour surface. Sincea∗ ∼ 1/ε,
we deduce from (39) that

Ds

Dt
∼ (1 − εs − e−s) . (41)

Let x = (1 − ν)a∗ or, equivalently,s ∼ ν/ε denote a typical point in the interior
of the tumour (soν ∈ (0, 1)). Then a cell which is ats ∼ ν/ε at timet was initially
at positions0 where

t ∼
∫ ν/ε

s0

ds

1 − εs − e−s
(+ exponential error) (42)

=
∫ ν/ε

s0

ds

1 − εs
+

∫ ν/ε

s0

e−sds

(1 − εs)(1 − εs − e−s)

∼
∫ ν/ε

s0

ds

1 − εs
+

∫ ∞

s0

e−sds

(1 − εs)(1 − εs − e−s)
(+ exponential error)

∼ 1

ε
ln

(
1 − εs0

1 − ν

)
− ln(1 − e−s0) + O(ε) . (43)

In the limit of ε → 0, a balance of terms is only possible ifs0 → 0, as expected
from the physical discussion earlier. This allows us to simplify further and deduce
that

ln(1 − e−s0) ∼ 1

ε
ln

(
1

1 − ν

)
− t . (44)

We now determine how the stress changes as the characteristic path connecting
(s0, 0) to (ν/ε, t) is traversed. Integrating (28), and expressing the result in terms
of s, we obtain

σ(ν/ε, t) = −2

3

[
ln v

](ν/ε,t)

(s0,0)

.

The right-hand side of this expression is evaluated by using (41) to determine the
velocity, and (44) to expresss0 in terms oft . In the limit of s0 → ∞, we re-express
σ in terms ofx to deduce that

σ(x, t) ∼ 2

3
ln

(
1 − e−s0

1 − ν

)
∼ −2

3

[
t −

(
1

ε
− 1

)
ln

(
a∗

x

)]
. (45)

Not only is this result consistent with equation (40) but it also predicts the principal
spatial distribution of the stress.
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The above expressions apply only for material that has been convected from the
tumour surface to the interior. The deepest penetration is achieved by cells which
began at the interior edge of the surface boundary layer, and for which (39) takes
the asymptotic form

Dxp

Dt
∼ −εxp, xp(0) ∼ a∗ ,

wherexp(t) is the position reached by this particular material. This has the solution

xp(t) = a∗e−εt .

Since this is the maximum penetration depth, it follows that all of the above as-
ymptotic expressions, and in particular (45), only apply forxp(t) < x < a∗. For
material that was not generated at the surface and which currently occupies the com-
plementary region 0≤ x < xp(t), the asymptotic form of (37) is much simpler,
namely

Dσ

Dt
∼ 2

3
ε ,

showing that in this region

σ(t) ∼ 2

3
εt .

Physically this is easy to understand. The natural effect of cell death in the interior
is to make the tumour material shrink, and so draw away from the boundary walls.
However, such transverse movement is not permitted. Instead a transverse tensile
force (positiveσ ) is generated that prevents such shrinkage.

The asymptotic curves are plotted in Fig.2 forε = 0.1 at various times. The
change from compressive stress at the free boundary to tensile stress in the far
interior is clearly discernible.

Finally, we remark that ifε > 1, so that the tumour shrinks indefinitely, then
Dσ/Dt > 0. This means that the ever-decreasing amount of tumour remaining at
any time experiences increasing stress. Of course, in this case the continuum model
eventually fails.

5. Growth of a radially-symmetric tumour

In this section we consider the more realistic, three dimensional case of the growth
of a radially symmetric spherical tumour. Although growth is no longer confined
to one direction there are analogies between this case and that of growth in a finite
rectangular tube. Indeed, the method of solution parallels that adopted in section 4.

In spherical polar coordinates and assuming spherical symmetry, we integrate
equations (10) and (11) subject to the boundary conditions

v = 0 andc is finite atr = 0, and c = 1 onr = a ,

to obtain

c(r, t) = a sinhr

r sinha
, (46)
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Fig. 2. Here we illustrate the asymptotic estimate of the transverse component of the stress
tensor within a tumour which is in a smooth, finite rectangular tube and which began at its
equilibrium sizea0 = a∗ ∼ 1/ε. As in Fig. 1, cells near the tumour boundary are subject
to a compressive stress (σ < 0) whose magnitude increases linearly with time. Howev-
er cells near the tumour centre, where cell death dominates proliferation, are subject to a
transverse tensile force (σ > 0) which also increases linearly in time. We plotσ at times
t = 0, 4, 8, . . . , 20. Parameter values:ε = 0.1, a∗ ∼ 1/ε = 10.

and

v(r, t) = a

r2 sinha
(r coshr − sinhr) − εr

3
. (47)

Evaluating the velocity on the tumour boundary enables us to determine the rate of
growth of the tumour radiusa

da

dt
= v(a, t) = cotha − 1

a
− εa

3
. (48)

Expressed in spherical polar coordinates the force balance equation (13) becomes

∇.σ =




∂σr

∂r
+ 1

r
(2σr − σθ − σφ)

1

r

∂σθ

∂θ
+ cotθ

r
(σθ − σφ)

1

sinθ

∂σφ

∂φ




= 0 . (49)
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In (49) we have exploited the spherical symmetry by setting the off-axis elements
of the stress tensor to zero. Applying this assumption to equation (14) we deduce
further that


∂v

∂r
0

0 v/r 0

0 0
∂v

∂r


 = 1

3r2

∂

∂r
(r2v)


 1 0 0

0 1 0
0 0 1




+1

2

(
∂

∂t
+ v

∂

∂r

) 
2σr − σθ − σφ 0 0

0 2σθ − σr − σφ 0
0 0 2σφ − σr − σθ


 (50)

As in section 4, the components of equation (50) contain only two independent
pieces of information, and the equations must be suitably combined before they
can applied. One useful equation is obtained by subtracting theθθ - from theφφ-
equation, and can be written

(
∂

∂t
+ v

∂

∂r

)
(σθ − σφ) = 0.

Integrating this equation subject to an initial condition of zero stress (no boundary
condition is needed), we deduce thatσθ = σφ . Using this result we obtain a second
linearly independent equation from (50) in the form

(
∂

∂t
+ v

∂

∂r

)
β = 2

3
r

∂

∂r

(v

r

)
, (51)

where

β = σr − σθ . (52)

With σθ = σφ , equations (49) supply the additional constraints thatσθ = σφ is
a function ofr andt only, and also the equation

∂σr

∂r
+ 2β

r
= 0 . (53)

Thus the natural method of solution is first to solve (51) forβ, then to solve (53)
for σr , and finally to use (52) to determineσθ .

We construct model solutions in two different ways. Firstly we develop an as-
ymptotic solution that predicts the stress for large times for tumours that are initially
stress free and at their equilibrium size. In section 5.2 numerical results obtained
for the full model are presented (details of the numerical method are presented in
the appendix). These allow us to investigate the effect that tumour growth has on
the evolving components of the stress tensor.
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5.1. Asymptotic analysis

The asymptotic analysis is similar to that presented in section 4. We assume that
the tumour is at its equilibrium size so thatda/dt ≡ 0 anda = a∗ where, from
(48),

0 = cotha∗ − 1

a∗ − εa∗

3
.

By noting that (48) has the asymptotic solutiona∗ = 3/ε − 1 + O(ε) we can
express equation (47) in the form:

v = −Ds

Dt
=

(
e−s − ε

3
(a∗ − s)

)
+ O(ε) , (54)

wheres = a∗ − r denotes the distance from the tumour boundary. In (54) we have
retained terms ofO(ε) which persist over the full range ofs, i.e.0 < s < 3/ε. and
neglected terms which have exponential multipliers, and are negligible away from
the regions = O(1). Thus, when we integrate (54), the result has anO(ε) error
estimate.

Equation (54) is now used to find the starting locations = s0 of a material
particle which at timet has locationr = a∗(1− ν). We do this by integrating (54)
along the characteristic path connecting(s, t) = (s0, 0) and(s, t) = (νa∗, t), and
deduce that

t ∼
∫ νa∗

s0

ds

ε(a∗ − s)/3 − e−s

= 3

ε

∫ νa∗

s0

ds

a∗ − s
+ 3

ε

∫ νa∗

s0

e−sds

(a∗ − s)(ε(a∗ − s)/3 − e−s)

∼ 3

ε
ln

(
a∗ − s0

a∗ − ν∗a

)
−

∫ ∞

s0

e−sds

1 − e−s

∼ 3

ε
ln

1

1 − ν
− ln(1 − e−s0) + O(ε) , (55)

where the last result has been simplified by the fact thats0 = O(e−1/ε) to be
significant in the overall equation.

The stress differenceβ is determined by integrating (51), along the same char-
acteristic curve:

β = 2

3

[
ln

(v

r

)](νa∗,t)

(s0,0)
,

where the integration limits are quoted for(s, t). We may use (54) to provide a
suitable expression forv. Then, after substitution of the limits, and recalling that
s0 = O(e−1/ε), we find that

β(r, t) ∼ −2

3
ln(1 − e−s0) ∼ 2

3

[
t + 3

ε
ln(1 − ν)

]

∼ 2

3

[
t − 3

ε
ln

(
a∗

r

)]
, (56)
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wheres0 has been eliminated using (55), and the final result has been rewritten
in terms ofr. Substituting forβ in equation (53) and integrating with respect tor

leads to the following expression forσr ,

σr(r, t) ∼ 2

3

[
2t ln

(
a∗

r

)
− 3

ε
ln2

(
a∗

r

)]
. (57)

Finally, combining (56) and (57) with equation (52) leads to the following expres-
sion forσθ (= σφ)

σθ ∼ 2

3

{
t

[
2 ln

(
a∗

r

)
− 1

]
+ 3

ε
ln

(
a∗

r

) [
1 − ln

(
a∗

r

)]}
. (58)

The above expressions are valid for cells that originated in the surface layer and
moved into the tumour interior. The deepest penetration is achieved by cells that
started at the inner edge of the layer for which equation (47) takes the asymptotic
form

drp

dt
∼ −ε

3
rp, rp(0) ∼ a∗ ⇒ rp = a∗e−εt/3 ,

whererp is the position reached by this particular material. The asymptotic solu-
tions are applicable whenrp(t) < r < a∗, and are least accurate forr close torp(t)

(since then the corresponding values ofs0 are not small, contrary to the assumption
in the derivation). Outside this region, the stresses take constant values such that
the overall stress curve is continuous.

These results are illustrated in Figs. 3–5 where they are also compared with
the numerical results. Their physical interpretation is as follows. The tumour un-
dergoes strong growth in all directions within the surface layer. The growth in the
transverse direction (tangential to the surface) has no way of accommodating this
expansion by movement, and so the growth causes an increase in the stress. This
increase is compressive (σθ < 0), and grows linearly with time. Growth in the
radial direction can be compensated by movement, however, so the radial stress
remains close to zero (exactly zero on the surface itself). The death of cells within
the tumour slowly draws material away from the surface layer in such a way that
the stressdifferenceis carried with the material (since, in the interior,v ∼ −ε/3,
and so the right hand side of (51) reduces to zero). Once it leaves the boundary
layer, the value ofβ = σr − σθ remains the same thereafter. While cell death in
principle relieves the stresses, it also causes material to collapse inward in a manner
which exactly compensates for, and maintains, the stress difference. Over time, this
process creates a natural stress distribution since material drawn in at later times is
in a more highly stressed state than material that entered earlier. The development
of β is illustrated in Fig. 3.

While β remains the same for any piece of material, the stresses themselves
do not. As indicated by (53), to draw an annular ring of material inward when
the stress difference is positive requires a net tensile force in the radial direction.
This is most easily appreciated for the ring of material moving in from the surface
layer. This is under transverse compression with no radial stress. Clearly a tensile
force (an increase inσr ) is required to draw this inward: the natural effect of such
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Fig. 3. Here we show how the stress differenceβ = σr − σθ evolves within an equilibrium
size spherical tumour with radial symmetry. Cell death draws cells away from its surface in
such a way that once it leaves the proliferating rim a cell’s value ofβ remains fixed there-
after. Good agreement between the asymptotic solutions and the numerically constructed
solutions is observed. We plotβ at timest = 0, 6, 12, 18, 24. Key: numerical results (solid
line); asymptotic profiles (dotted line). Parameter values:ε = 0.1, a0 = a∗ ∼ 28.

a change would be to compress the material further. This argument is true forall
material rings that have been brought in from the surface, and so there is a net
cumulative effect on the radial stress. It thus increases (becomes tensile) as one
moves away from the surface towards the tumour centre. This process continues
until one reaches the tumour core,i.e.cells that were initially present in the tumour
and not generated at the surface. This material will have retained its initial value
of β = 0. The radial stressσr thus ceases to change in this region (see (53)), and
adopts a uniform, positive value. Notice that althoughσr is spatially uniform in the
core, its value increases with time. Physically, a low ‘pressure’ is required in the
core to draw pre-stressed material inward from the surface. Technically the value
of σr equals the integral of 2β/r over the whole exterior region and the values ofβ

in the region exterior to the core are increasing. This increase occurs in two ways:β

is increasing linearly with time at the surface, and the extent of the exterior region
is itself growing with time as the core shrinks. At early times the combination of
these two effects causes the rate of increase ofσr to be positive also. This early
acceleration of growth can be seen in Fig. 4, although at large times the core shrinks
and the effect becomes less marked.

Finally, sinceσr is positive in the core, and the stress difference there is identi-
cally zero,it follows that the transverse stressσθ is also positive everywhere in the



Growth-induced stress in avascular tumours 493

Fig. 4. Here we show howσr(r, t) develops within an equilibrium size spherical tumour
with radial symmetry. A tensile stress (σr > 0) which increases over time develops as cells
are drawn towards the centre of the tumour. We plotσr at timest = 0, 6, 12, 18, 24. Key
and parameter values: as per Fig. 3.

core region. Thus, although the transverse stress is initially compressive near the
surface, it must eventually become tensile as it approaches the centre. This can be
seen in Fig. 5.

If we compare the stress development for the spherical tumour with that for
the finite rectangular tube we see that the difference in geometry causes significant
differences. Whilst in both cases the stresses are generated by strong growth at the
surface they are modified in different ways as material is drawn into the interior
by the slow death rate. For the rectangular tube, motion normal to the free surface,
i.e.parallel to the tube, is achievable with no axial stress component. For the sphere
the corresponding flow is radial, and the convergence of this flow requires a pos-
itive stress gradient (so the radial stress reduces and becomes tensile towards the
sphere centre). For the rectangular tube, shrinkage in the transverse direction cannot
be accommodated by any lateral motion. Instead, there has to be a stress change
which must be positive (σ goes from being a negative compression near the sur-
face to a positive tension in the interior). This also contrasts with the sphere where
the movement of a ring of material towards the centre does help compensate for
‘lateral’, i.e.azimuthal, shrinkage. However, the compensation is only exactly bal-
anced for unstressed material. For the pre-stressed material generated at the sur-
face there is a net change in the azimuthal stress. In fact the stressdifference,
β = σr − σθ , remains the same as material is convected towardsthe centre, so
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Fig. 5. Here we show howσθ (r, t) develops within an equilibrium size spherical tumour
with radial symmetry. The profiles are qualitatively similar to those presented in Fig. 2. We
plot σθ at timest = 0, 6, 12, 18, 24. Key and parameter values: as per Fig. 3.

the fact that the radial stress is increasing means that the azimuthal stress must
increase also.

5.2. Numerical results

The asymptotic results described above apply to steady state situation where the
tumour is initially stress free, and at its equilibrium sizea = a∗. To investigate
more general situations we obtain solutions by numerical means. The numerical
procedure has four distinct stages. Firstly a simple numerical integration is per-
formed on (48) to determinea at the next time stage. Witha known, (47) is used
to calculatev everywhere within the tumour. Secondly an extension of the Lax-
Wendroff integration scheme is used to solve the hyperbolic equation (51) forβ.
The extension is needed to account for the fact that the integration domain is time
dependent (further details are included in the appendix). Thirdly (53) is used to
determineσr via a simple numerical integration, and finallyσθ follows from (52)
by subtraction.

As a first application of the computer program we verified the asymptotic for-
mulae derived earlier by plotting them on the same graphs as the asymptotic results.
The numerical results are the solid curves in Figs. 3–5, and the asymptotic results
are the dotted curves. The estimated error in the asymptotic formulae is O(ε); the
value ofε is 0.1 for these curves, and it can be seen that the asymptotic predictions
fall within 10% of the numerical calculations.
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Fig. 6. Here we show howβ = σr −σθ , σr andσθ evolve within a radially-symmetric spher-
ical tumour which is growing. As in Figs. 3–5, a compressive azimuthal stress develops near
the surface of the tumour whereas cell death near the centre leads to increases in bothσr and
σθ over time. Since the proportion of cells initially present in the tumour decreases more
rapidly for the growing tumour depicted here than for the equilibrium tumour of Figs. 3–5,
the plateau region whereσr andσθ attain constant values decreases more rapidly than in
Figs. 3–5. We plotβ, σr andσθ at timest = 0, 10, 20, . . . , 80 for a tumour of initial size
about a third of its equilibrium size. Parameter values:a0 = 10, ε = 0.1.

Numerical results for a growing tumour are illustrated in Fig. 6. As before we
fix ε = 0.1 and assume that the tumour is initially stress free, with sizea = 10.
Plots ofβ, σr andσθ at equal time increments are presented in Fig. 6 and over this
period the tumour effectively reaches its equilibrium size ofa∗ ∼ 28.96.

The features described in section 5.1 for the equilibrium size tumour can be
seen here also, namely that compressive azimuthal stress is generated principally at
the surface, the radial/azimuthal stress difference is convected unchanged into the
interior, and cell death creates an increase in both the radial and azimuthal stress as
this convection proceeds. The major difference between this case and the equilib-
rium case is in the relative extent of material originally present in the tumour,i.e.
material not produced by surface growth. This material is easily identified as the
region in whichβ remains equal to zero. For the equilibrium tumour, this material
occupies most of the tumour initially. As this material dies, new material is drawn in
to replace it, but to replace such a large amount of material takes time. By contrast,
in the time dependent case, the initial material occupies a much smaller fraction
of the eventual tumour volume. New, stressed, material is actually created ‘inside’
the tumour as the growing-surface traverses locations that eventually become in-
terior points. Consequently, the visual impact of the region of original material is
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diminished in the time dependent case, although the physical mechanism driving
the stress changes is the same.

6. Conclusions

In this paper we have developed a mathematical model of avascular tumour growth.
It describes the effect of differential growth on the mechanical stress experienced
by the constituent cells. As such, the model represents a first attempt to describe the
way in which cell proliferation, growth and death interact with mechanical prop-
erties of the tumour such as its stress and strain. Since cell proliferation and death
are continuous processes that are usually defined as rates, the constitutive law that
we used to describe the tumour relates the rate of change of the stress tensor to
the rate of change of the strain tensor, with an additional term included to describe
the manner in which changes in the changes in the cell number (the net result of
proliferation, growth and death) affect the stress rate. The mathematical model that
we developed was applied to three different one-dimensional geometries: growth
in a smooth, semi-infinite rectangular tube, growth in a smooth, finite rectangular
tube, and growth of a radially-symmetric tumour. The numerical and analytical
results used to study the model revealed several common features. First, cells near
the tumour boundary, where nutrient levels and cell proliferation rates are high,
are under compression. By contrast, cells towards the centre of the tumour, where
nutrient levels are low and cell death dominant, are under tension.

One of the main weaknesses of the model is its failure to predict the existence
of a steady state profile for the stress tensor. By following [19], [26] and [27] and
modelling the tumour as a multiphase medium, which contains extracellular water,
live tumour cells and dead tumour cells, it may be possible to resolve this issue.
In particular, in regions of the tumour where the number of live cells is low the
compensatory increase in the number of dead cells and extracellular water should
prevent the stress tensor increasing indefinitely over time. In addition, we will con-
tinue to model the tumour cells as a deformable elastic continuum. Experimental
results which support this description were obtained by Helmlingeret al. [15]:
they observed that the constituent cells of tumour spheroids became more densely
packed as the concentration of the agarose gel in which they were growing in-
creased,i.e. the cells are deformable. By introducing separate variables to describe
dead cells and extracellular water it should be possible to predict the initiation and
development of the necrotic core which is commonly observed in well-developed
avascular tumours and multicellular spheroids.

Other features which should be addressed in future models include distinguish-
ing between cell growth and cell division: intuitively we anticipate that, unlike cell
growth or expansion, cell division will cause a relaxation in the local stress field
and that this difference should be incorporated into the constitutive law. Moreover
by including proliferation terms which depend upon the stress tensor we aim to
investigate the effect of stress-dependent growth.

Helmlingeret al.’s experimental results [15], which were described above, high-
light the role of interactions between the tumour cells and the media into which
they are invading. By extending the modelling framework presented in this paper
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to include the surrounding tissue matrix or gel it will be possible to compare the
ability of different tissues, with different constitutive laws, to offer resistance to
the invading tumour cells. Such analysis may provide a link between the degree of
aggression of invasiveness of tumours and that of their host tissue.

As stated above, our mathematical model is a first attempt to describe the way in
which mechanical effects interact with growth processes in deformable biological
tissues such as tumours. (Other applications included bone, tendons and ligaments.)
There are many ways in which the model could be improved and rendered more
physically realistic. For example, in its present form, the impact of mechanical
interactions with the external environment are neglected.

Appendix

The Lax-Wendroff method is a second order accurate finite difference scheme for
hyperbolic differential equations which, as in our situation, do not develop discon-
tinuities. For the standard scheme with a fixed grid, an expression for the depen-
dent variableβ at an advanced time level(j + 1), wherej is a counter such that
tj = jδt , is developed in three steps:- (i) a second order Taylor series expansion
for β is made about the time levelj + 1, (ii) the partial differential equation (51) is
used to eliminate terms involving time derivatives ofβ, and (iii) finite difference
approximations are applied to the spatial derivatives. In our case the spatial domain
(i.e. the tumour) evolves over time. To accommodate this, we represent the solution
at any time level by its values at a fixednumberof points where the points are
evenly distributedover the tumour domain. Consequently the grid consists ofmov-
ing points, a fact which must be accounted for when developing the Lax-Wendroff
integration scheme.

Let i be a spatial counter such thatri,j = iδrj , 0 ≤ i ≤ imax, whereδrj is a
function of tj such thatimaxδrj = a(tj ). Let ui,j = v(a, tj )i/imax be the speed of
theith grid point at timetj . Then

βi,j+1 = β (r + U, t + δt)

∼ β(r, t) + ∂β

∂r
U + ∂β

∂t
δt

+1

2

∂2β

∂r2
U2 + ∂2β

∂r∂t
Uδt + 1

2

∂2β

∂t2
δt2 , (59)

where

U(t) =
∫ t+δt

t

u(τ )dτ ,

r denotesri,j , u denotesui,j , andt denotestj , the subscripts having been omitted
to assist legibility. The time integral in (59) is expanded in powers ofδt , and the
equation (51) is used to eliminate all time derivatives ofβ. After approximating the
remaining spatial derivatives as finite differences, we obtain the iteration formula
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βi,j+1 = βi,j

[
1 − 1

2

(
δt

δr

)2

(u2 − 2uv + v2)

]
i,j

+ (βi+1,j − βi−1,j )

[
(u − v) + δt

2δr

(
v
∂v

∂r
− 2u

∂v

∂r
+ ∂u

∂t
− ∂v

∂t

)]
i,j

δt

2δr

+ (βi+1,j + βi−1,j )
(
u2 − 2uv + v2

)
i,j

(
δt

2δr

)2

+ δt γi,j + δt2

2

(
∂γ

∂t
+ ∂γ

∂r
(2u − v)

)
i,j

, (60)

whereγ = (2r/3)∂(v/r)/∂r, the right hand side of (51), andu denotes the value of
ui,j as above. Notice that no boundary conditions are needed since both boundaries
r = 0 andr = a(t) are characteristics of the system.

References

1. Adam, J.A.: A mathematical model of tumour growth. II Effects of geometry and spatial
uniformity on stability. Math. Biosci.86, 183–211 (1987)

2. Anderson, A.R.A., Chaplain, M.A.J.: Continuous and discrete mathematical models of
tumour-induced angiogenesis. Bull. Math. Biol.60, 857–899 (1998)

3. Bird, R.B. Armstrong, R.C., Hassager, O.: Dynamics of polymeric liquids, Chapter 7,
John Wiley & Sons, 1977

4. Burton, K., Taylor, D.L.: Traction forces of cytokinesis measured in optically modified
elastic substrata. Nature,385, 450–454

5. Byrne, H.M., Chaplain, M.A.J.: Mathematical models for tumour angiogenesis: Numer-
ical simulations and nonlinear wave solutions. Bull. Math. Biol.57, 461–486 (1995)

6. Byrne, H.M., Chaplain, M.A.J.: Modelling the role of cell-cell adhesion in the growth
and development of carcinomas. Math. Comput. Modell.24, 1–17 (1996)

7. Byrne, H.M., Chaplain, M.A.J.: Necrosis and apoptosis: distinct cell loss mechanisms
in a mathematical model of avascular tumour growth. J. Theor. Med.1, 223–235 (1998)

8. Chaplain, M.A.J., Sleeman, B.D.: Modelling the growth of solid tumours incorporating
a method for their classification using non-linear elasticity theory. J. Math. Biol.31,
431–473 (1993)

9. Drozdov, A.D., Khanina, H.: A model for the volumetric growth of a soft tissue. Math.
Comput. Modell.25, 11–29 (1997)

10. Folkman, H., Brem, H.: Angiogenesis and inflammation. In: Inflammation: Basic Prin-
ciples and Clinical Correlates, Second Edition. (eds. Gallin, J.I., Goldstein, I.M., Sny-
derman, R.). New York: Raven Press (1992)

11. Folkman, J., Hochberg, M.: Self-regulation of growth in three dimensions. J. Exp. Med.
138, 745–753 (1973)

12. Friedman, A., Reitich, F.: Analysis of a mathematical model for the growth of tumours.
J. Math. Biol.38, 262–284 (1999)

13. Graeber, T.G., Osmanianm, C., Jacks, T., Housman, D.E., Koch, C.J., Lowe, S.W., Gi-
accia, A.J.: Hypoxia-mediated selection of cells with diminished apoptotic potential in
solid tumours. Nature379, 88–91 (1996)

14. Greenspan, H.P.: Models for the growth of a solid tumour by diffusion. Stud. Appl.
Math.52, 317–340 (1972)



Growth-induced stress in avascular tumours 499

15. Helmlinger, G., Netti, P.A., Lichtenbeld, H.C., Melder, R.J., Jain, R.K.: Solid stress
inhibits the growth of multicellular tumour spheroids. Nature Biotech.15, 778–783
(1997)

16. Jackson, T.L., Senter, P.D., Murray, J.D.: Development and validation of a mathemat-
ical model to describe anti-cancer prodrug activation by antibody-enzyme conjugates,
J. Theor. Med. (To appear, 1999)

17. Kerr, J.F.R.: Shrinkage necrosis; a distinct mode of cellular death. J. Path.105, 13–20
(1971)

18. Kerr, J.F.R., Wyllie, A.H., Currie, A.R.: Apoptosis: a basic biological phenomenon with
wide-ranging implications in tissue kinetics. Br. J. Cancer26, 239–257 (1972)

19. Landman, K.A., Please, C.P.: Tumour dynamics and necrosis: surface tension and sta-
bility. J. Theor. Med. (submitted)

20. McElwain, D.L.S., Morris, L.E.: Apoptosis as a volume loss mechanism in mathematical
models of solid tumour growth. Math. Biosci.39, 147–157 (1978)

21. Malvern, L.E.: Introduction to the mechanics of a continuous medium. Prentice Hall,
New Jersey, 1969

22. Muthukkaruppan, V.R., Kubai, L., Auerbach, R.: Tumor-induced neovascularisation in
the mouse eye. J. Natn. Cancer Inst.69, 699–705 (1982)

23. Orme, M.E., Chaplain, M.A.J.: Two-dimensional models of tumour angiogenesis and
anti-angiogenesis strategies. IMA J. Math. Appl. Med. Biol.14, 189–205 (1997)

24. Paweletz, N., Knierim, M.: Tumor-related angiogenesis. Crit. Rev. Oncol. Hematol.9,
197–242 (1989)

25. Perumpanani, A.J., Byrne, H.M.: Extracellular matrix concentration exerts selection
pressure on invasive cells, Eur. J. Cancer (in press)

26. Please, C.P., Pettet, G.J., McElwain, D.L.S.: A new approach to modelling the formation
of necrotic regions in tumours. Appl. Math. Lett.11, 89–94 (1998)

27. Please, C.P., Pettet, G.J., McElwain, D.L.S.: Avascular tumour dynamics and necrosis.
Math. Mod. Meth. Appl. Sci. (to appear)

28. Sherratt, J.A., Nowak, M.A.: Oncogenes, antioncogenes and the immune-response to
cancer - a mathematical model. Proc. Roy. Soc. Ser. B248, 261–271 (1992)

29. Simon, B.R.: Multiphase poroelastic finite element models for soft tissue structures.
Appl. Mech. Rev.45, 191–218 (1992)

30. Skalak, R., Zargaryan, S., Jain, R.K., Netti, P.A., Hoger, A.: Compatability and the
genesis of residual stress by volumetric growth. J. Math. Biol.34, 889–914 (1996)

31. Sleeman, B.D., Nimmo, H.R.: Fluid transport in vascularized tumours and metastasis.
IMA J. Math. Appl. Med. Biol.15, 53–63 (1997)

32. Spencer, A.J.M.: Continuum Mechanics. Longman, London, 1980
33. Sutherland, R.M., Durand, R.E.: Growth and cellular characteristics of multicell spher-

oids. Recent Results in Cancer Research95, 24–49 (1984)
34. Sutherland, R.M.: Cell and environment interactions in tumor microregions: the multi-

cell spheroid model. Science240, 177–184 (1988)
35. Thompson, K.E., Byrne, H.M.: Modelling the internalisation of labelled cells in multi-

cellular spheroids. Bull. Math. Biol.61, 1–23 (1999)
36. Ward, J.P., King, J.R.: Mathematical modelling of avascular tumour growth. IMA J.

Math. Appl. Med. Biol.14, 39–69 (1997)


