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Abstract. We extend the quasi-steady-state approximation (QSSA) with respect to the class
of differential systems as well as with respect to the order of approximation. We illustrate the
first extension by an example which cannot be treated in the frame of the classical approach.
As an application of the second extension we prove that the trimolecular autocatalator can be
approximated by a fast bimolecular reaction system. Finally we describe a class of singularly
perturbed systems for which a higher order QSSA can easily be obtained.

1. Introduction

Mathematical modeling of processes with different time scales leads in general to
singularly perturbed systems (SPS) of the form

ẋ = f (x, y, t, ε) ,

εẏ = g(x, y)+ εg̃(x, y, t, ε) ,
(1)

wherex ∈ Rm, y ∈ Rn,0 < ε � 1, f, g̃ are bounded asε tends to zero. The
first equation is called the slow subsystem and the second represents the fast one. A
variety of perturbation methods have been developed to investigate singularly per-
turbed systems: matched asymptotic expansions [15], WKB-methods [16], multiple
scale methods [11], boundary layer functions [24], averaging [2]. Renormalization
group theory is a new unifying method for global asymptotic analysis [4].

Geometric singular perturbation theory is another approach for the qualitative
analysis of singularly perturbed systems [7], especially it provides a mathemati-
cal justification for the reduction of system (1). It is based on the existence of an
invariant manifoldM of the form

y = ψ(x, t, ε) = ψ0(x)+ εψ1(x, t)+ O(ε2) (2)

K.R. Schneider: Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse
39, 10117 Berlin, Germany. e-mail:schneider@wias-berlin.de

T. Wilhelm: Institute of Freshwater and Fish Ecology, Müggelseedamm 310, 12587 Berlin,
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for systems of type (1) and reduces (1) to the regularly perturbed system (RPS) of
lower order

ẋ = f (x, ψ(x, t, ε), t, ε) . (3)

A necessary condition for the existence of this so-called slow manifold (2) is that
the associated system

ẏ = g(x, y) (4)

to (1) possesses a familyy = ψ0(x) of hyperbolic steady states wherex has to
be considered as a parameter. If this condition is fulfilled, system (1) is called a
regular singularly perturbed system (RSPS). If furthermore the hyperbolic fixed
points are asymptotically stable and the considered initial values lie in their domain
of attraction, then the long-time dynamics of system (1) can be approximated by
the regularly perturbed system (3) [7,23]. Under the (simple) quasi-steady-state
approximation (QSSA) we understand the approximation of the dynamics of (1)
by the system

ẋ = f (x, ψ0(x), t,0) , (5)

wherey = ψ0(x) is the family of asymptotically stable steady states of (4). The
higher order QSSA takes into account also higher order terms of (2).

The QSSA is sometimes called pseudo-steady-state hypothesis, Bodenstein’s
method or method of adiabatic elimination. It plays a prominent role in modeling
biological [9], chemical [6,19,22] (especially in atmospheric chemistry [10] and
combustion chemistry [17]) and physical [8,21] systems. The QSSA is the key
assumption in deducing the velocity equations in enzyme kinetics [12,20] and can
be used in the homogeneous [3] as well as in the nonhomogeneous case [14].

There are, however, systems containing fast and slow processes whose asso-
ciated system (4) has no hyperbolic fixed point. As an example we consider an
arbitrary chemical reaction system with two very fast reactions

Y2
k1→ Y1, 2Y2

k2→ P (k1, k2 � 1) , (6)

where P is assumed to have constant concentration. Under the assumption of spa-
tial homogeneity and mass-action kinetics the reaction system is described by the
differential equations

ẋ = f (x, y1, y2) ,

εẏ1 = y2 + εg̃1(x, y1, y2) , (7)

εẏ2 = −y2 − ay2
2 + εg̃2(x, y1, y2) ,

whereε = 1/k1 � 1, a = 2k2/k1 = O(1) andf, g̃1, g̃2 are smooth functions.
The corresponding associated system

ẏ1 = y2 ,

ẏ2 = −y2 − ay2
2

has a continuum of steady states described byy2 = 0. Systems with such a property
are called singular singularly perturbed systems (SSPS). The condition described
above for the applicability of the QSSA is not fulfilled for SSPS.
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The goal of this note is to extend the class of differential equations to which the
QSSA can be applied. In section 2 we prove that the existence of some conservation
property (linear or nonlinear first integrals) of the corresponding associated system
allows the transformation of a SSPS into a RSPS generically. Moreover, in section
3 we demonstrate that under some circumstances it is necessary to apply higher
order QSSA. As an interesting example we treat the simplified ‘Brusselator’ model
which shows that trimolecular reactions can be approximated by fast bimolecular
ones. In section 4 we characterize a class of singularly perturbed systems where
higher order QSSA can simply be determined only by means of the fast subsystem.

2. Extension of the QSSA with respect to the class of SPS

We consider the class of singularly perturbed systems of the form (1) under the
assumptions

(A1). f, g, g̃ are continuous and locally lipschitzian inx ∈ Rm andy ∈ Rn.
(A2). The associated system (4) to (1) has a first integralκ : Rm×Rn → Rk, k ≤

n, such that there exists a splittingy = (y1, y2) with dimy1 = k and the
property that the derivativeκy1 is invertible and||κ−1

y1
|| is uniformly bounded

on its domain.

Theorem. Assume hypotheses(A1), (A2) are satisfied. Then the SPS(1) can be
transformed into a SPS whose number of fast variables isn− k.

Proof. Using the splittingy = (y1, y2) we rewrite (1) as

ẋ = f (x, y1, y2, t, ε) ,

εẏ1 = g1(x, y1, y2)+ εg̃1(x, y1, y2, t, ε) , (8)

εẏ2 = g2(x, y1, y2)+ εg̃2(x, y1, y2, t, ε) .

Sinceκ is a first integral of (4) it satisfies the relation

κy(x, y) g(x, y) = 0 . (9)

Thus, we have by (1)

εκ̇ = κxεẋ + κyεẏ = ε κxf (x, y, t, ε)+ κyg(x, y)+ ε κyg̃(x, y, t, ε)

= ε
(
κxf (x, y, t, ε)+ κyg̃(x, y, t, ε)

)
. (10)

Now we introduce new coordinates byx = x, y2 = y2, σ = κ(x, y1, y2). From
hypothesis (A2) it follows thatσ = κ(x, y1, y2) can be solved globally fory1,

y1 = w(x, σ, y2) . (11)

Thus, we have

εσ̇ = ε
(
κx(w(x, σ, y2), y2)f (x,w(x, σ, y2), y2, t, ε)

+ κy(w(x, σ, y2), y2)g̃(x,w(x, σ, y2), y2, t, ε)
)
.
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Hence, system (8) is equivalent to

ẋ = f (x,w(x, σ, y2), y2, t, ε) ,

σ̇ = κx(w(x, σ, y2), y2)f (x,w(x, σ, y2), y2, t, ε) (12)

+ κy(w(x, σ, y2), y2)g̃(x,w(x, σ, y2), y2, t, ε) ,

εẏ2 = g2(x,w(x, σ, y2), y2)+ εg̃2(x,w(x, σ, y2), y2, t, ε)

havingn− k fast variables.

Remark 1. If the associated system to (12)ẏ2 = g2 has a hyperbolic fixed point,
then system (12) represents a RSPS to which the QSSA can be applied if this fixed
point is stable.

Remark 2. The first integral of the associated system (4) can be found as a solution
of the system of linear first-order PDE’s (9). If it has no solution, then the associated
system (4) does not possess a first integral.

Remark 3. If system (4) has a first integral, it always has a continuum of steady
states. If we differentiate relation (9) with respect toy on the solution set of
g(x, y) = 0 we get the relationκygy = 0. Sinceκy is not identically zero it
follows thatgy is singular ong(x, y) = 0.

Remark 4. In modeling biological, chemical and biochemical systems, linear trans-
formations have been used to transform special SSPS into RSPS [9]. However, in
many cases, as e.g. for the given example (6,7), no linear transformation can trans-
form the system into a RSPS.

Now we illustrate our approach by considering system (7). The corresponding
PDE (9) reads in our case

κy1y2 + κy2(−y2 − ay2
2) = 0 , (13)

which has the solution

κ(y1, y2) = y1 + a−1 ln(1 + ay2) . (14)

Becauseκy1 ≡ 1, we can useσ = κ(y1, y2) as nonlinear coordinate trans-
formation in the whole phase plane. Substituting

y1 = σ − a−1 ln(1 + ay2) (15)

into (7) yields

ẋ = f̂ (x, σ, y2) ,

σ̇ = ˆ̃g1(x, σ, y2)+ (1 + ay2)
−1 ˆ̃g2(x, σ, y2) , (16)

εẏ2 = −y2 − ay2
2 + ε ˆ̃g2(x, σ, y2) .

This is a RSPS whose associated systemẏ2 = −y2 −ay2
2 has the hyperbolic stable

fixed pointy2 = 0 (we are only interested in non-negative steady states). After
applying the (simple) QSSA we obtain the reduced system

ẋ = f̃ (x, σ,0) ,
(17)

σ̇ = ˆ̃g1(x, σ,0)+ ˆ̃g2(x, σ,0) ,

which has the same long-time dynamics as the original system (7) for 0< ε � 1.
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3. Higher order QSSA

As mentioned above, the simple QSSA consists in using the zeroth order approxi-
mation of the invariant manifoldM in (2) to study the corresponding system (1).
Sometimes this approach is not sufficient to get the desired information about the
dynamics of (1). In these cases it is necessary to use higher order QSSA that is,
instead ofy = ψ0(x) we use then-th order approximation

y = ψ̃n(x, t, ε) = ψ0(x)+ εψ1(x, t)+ · · · + εnψn(x, t) , (18)

where the functionsψi are the coefficients in the representation (2) of the invariant
manifoldM. To compute the functionsψi we substitute (18) into (1) and exploit
the invariance property ofM. By this way we get

ε ẏ = g(x, ψ̃n(x, t, ε))+ εg̃(x, ψ̃n(x, t, ε), t, ε)+ O(εn+1)

= ε

(
∂ψ0

∂x
+ ε

∂ψ1

∂x
+ · · · + εn−1∂ψn−1

∂x

)
f (x, ψ̃n(x, t, ε), t, ε)

+ ε2
(
∂ψ1

∂t
+ · · · + εn−2∂ψn−1

∂t

)
+ O(εn+1) . (19)

By comparing the coefficients multiplied byε we get forψ1 the relation

gy(x, ψ0(x))ψ1(x, t)+ g̃(x, ψ0(x), t,0) = ∂ψ0

∂x
f (x, ψ0(x), t,0) . (20)

Thus, we have

ψ1(x, t) = g−1
y (x, ψ0(x))

(
∂ψ0

∂x
f (x, ψ0(x), t,0)− g̃(x, ψ0(x), t,0)

)
. (21)

To demonstrate the importance of the higher order QSSA we consider the
trimolecular autocatalator which is a simplified ‘Brusselator’.

From the very beginning of modeling small mass-action kinetic systems, it has
been supposed that two-component bimolecular systems cannot have limit cycles
(The final proof has been given in [18].). Hence, for the sake of simplicity, two-
component systems with trimolecular reactions, such as the famous ‘Brusselator’,
has been studied. There is a vast literature devoted to the ‘Brusselator’ (cf. [13]).
Nevertheless, such models often have been criticized because of their unrealistic
trimolecularity. Thus, attempts have been undertaken to explain the trimolecular
reaction as an approximation by bimolecular ones (cf.[5] and citations therein). In
what follows we consider the well-known trimolecular autocatalator (also known
as Higgins-Selkov-, Schnakenberg- or Gray-Scott-system [1]) which contains the
same trimolecular reaction as the ‘Brusselator’:

S → X

X + 2Y
k→ 3Y (22)

Y → P
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whereS andP denote substances with constant concentrations andk is a positive
parameter. Under the assumptions of spatial homogeneity and mass-action kinetics
the dynamic behavior is described by the differential equations

ẋ = 1 − kxy2 ,

ẏ = kxy2 − y .
(23)

Here we have scaled out the reaction rates for the (constant) influx reaction for
X and the efflux reaction for Y. We shall prove that the trimolecular autocatalator
(22) can be understood as an approximation of the bimolecular reaction system

S → X

2Y
k1
⇀↽
k−1

Z

X + Z
k2→ Y + Z

Y → P

(24)

wherek1, k−1, k2 are positive parameters,k−1 is assumed to be large. Under the
same assumptions as for system (22) and by introducing the small parameterε =
1/k−1, the corresponding mathematical model reads

ẋ = 1 − k2xz ,

εẏ = −2εk1y
2 + 2z+ ε(k2xz− y) , (25)

εż = εk1y
2 − z .

The QSSA cannot be applied to system (25), because the associated system has no
isolated steady state ((25) is a SSPS). However, with the coordinate transformation

σ = y + 2z , (26)

system (25) can be transformed into a RSPS

ẋ = 1 − k2xz ,

σ̇ = k2xz− (σ − 2z) , (27)

εż = εk1(σ − 2z)2 − z .

The associated systeṁz = −z has the hyperbolic stable fixed pointz = 0. Note that
in contrast to the example (6,7) which requires the nonlinear coordinate transfor-
mation (15), here a linear transformation is suited to transform the SSPS (25) into
the RSPS (27). However, the simple QSSA does not yield our desired result, as the
zeroth order approximation is still to rough. We instead use the general asymptotic
approximation of the slow manifold (2), which can be written in our case as

z = ψ(x, σ, ε) = ψ0(x, σ )+ εψ1(x, σ )+ O(ε2) . (28)

Inserting this Ansatz into (27) we obtain by comparing the corresponding coeffi-
cientsψ0 = 0, ψ1 = k1σ

2 such that we have

z = k1σ
2ε + O(ε2) . (29)
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Inserting this into the first two equations of (27) we get the regularly perturbed
system

ẋ = 1 − εk1k2xσ
2 + O(ε2) ,

(30)
σ̇ = εk1k2xσ

2 − σ + 2εk1σ
2 + O(ε2) ,

with the perturbation parameterε = 1/k−1. In order to get system (23) describing
the trimolecular reaction (22) asε tends to zero we have to fulfill the relations

lim
ε→0

εk1k2 = k, lim
ε→0

εk1 = 0 . (31)

(It follows from (29) limε→0 z = 0 and with (26) limε→0 σ = y.) The last relation
in (31) excludesk1 = O(k−1), but we note thatk1 must not be bounded asε tends
to zero,k1 can growth with orderO(k1−δ

−1 ) where 0< δ < 1. The given derivation
is both, rigorous and simple compared with the approach in [5].

4. Special case for the higher order QSSA

The computation of the coefficients for the higher order QSSA requires some effort.
From the relation (19) which determines the coefficientsψi for the higher order
QSSA we can derive special cases where the computation of these coefficients
is based only on the fast subsystem. Concerning the first order QSSA we get the
following result.

Lemma. Consider the SPS(1). Suppose hypothesis(A1) is valid, andg is contin-
uously differentiable with respect toy. Under the conditions thatg(x, y) = 0 has
a solutiony = ϕ0 whereϕ0 does not depend onx and thatgy(x, ϕ0) is invertible
for all x there is an invariant manifoldM to (1) which can be represented by

y = ψ1(t, x, ε) = ϕ0 − εg−1
y (x, ϕ0)g̃(x, ϕ0, t,0)+ O(ε2) .

Proof. See Eq. (21).

As an example we consider the model of H. Haken [8]

ẋ = −σx − axy ,

εẏ = −y + εbx2 ,

which can be interpreted as a mass-action kinetic system with a very fast reaction
Y → P . It is easy to verify that this model fits into the scope of our Lemma. We
get as the first-order QSSAy = ε bx2, such that the system on the slow manifold
M can be approximated bẏx = −σx − εabx3.

5. Summary

We have shown under which conditions the QSSA can be extended to SSPS. The
corresponding coordinate transformation can be found as a solution of the system
of linear first-order PDE’s (9). We have presented a case study when the simple
QSSA has to be replaced by a higher order QSSA. As an interesting side product
we have got that trimolecular reaction systems can be approximated by fast bimo-
lecular systems. Finally we have selected a class ofSPS where the first-order QSSA
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can be determined only by means of the fast subsystem. A known model due to
H. Haken fits into that class.
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