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Abstract
Homeostasis, also known as adaptation, refers to the ability of a system to counter-
act persistent external disturbances and tightly control the output of a key observable.
Existing studies on homeostasis in network dynamics have mainly focused on ‘perfect
adaptation’ in deterministic single-input single-output networks where the distur-
bances are scalar and affect the network dynamics via a pre-specified input node.
In this paper we provide a full classification of all possible network topologies capa-
ble of generating infinitesimal homeostasis in arbitrarily large and complex multiple
inputs networks.Working in the framework of ‘infinitesimal homeostasis’ allows us to
make no assumption about how the components are interconnected and the functional
form of the associated differential equations, apart from being compatible with the net-
work architecture. Remarkably, we show that there are just three distinct ‘mechanisms’
that generate infinitesimal homeostasis. Each of these three mechanisms generates a
rich class of well-defined network topologies—called homeostasis subnetworks. More
importantly, we show that these classes of homeostasis subnetworks provides a topo-
logical basis for the classification of ‘homeostasis types’: the full set of all possible
multiple inputs networks can be uniquely decomposed into these special homeostasis
subnetworks. We illustrate our results with some simple abstract examples and a bio-
logically realistic model for the co-regulation of calcium (Ca) and phosphate (PO4) in
the rat. Furthermore, we identify a new phenomenon that occurs in the multiple input
setting, that we call homeostasis mode interaction, in analogy with the well-known
characteristic of multiparameter bifurcation theory.
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1 Introduction

A homeostatic process is characterized by the following property: approximately zero
steady-state error to external disturbance, whichmeans that an observable of interest is
tightly controlled. Homeostasis is biologically important because it protects organisms
against changes induced by the environment. A familiar example is thermoregulation,
where the body temperature of an organism remains roughly constant despite varia-
tions in its environment (Morrison 1946). Another example is a biochemical reaction
network, where the equilibrium concentration of some important molecule might not
change much while the concentration of another reactant changes (Reed et al. 2017).
Further examples include regulation of cell number and size (Lloyd 2013), sleep
control (Wyatt et al. 1999), and expression level regulation of housekeeping genes
(Antoneli et al. 2018).

Homeostasis can be mathematically defined as follows (see Sect. 2.1). Consider a
dynamical system depending on an external parameter I which varies over an open
interval ]I1, I2[ of external stimuli. Suppose there is a family of equilibrium points
X(I) and an observable φ such that the input–output function z(I) = φ(X(I)) is
well-defined on ]I1, I2[. In this situation, we say that the system exhibits homeostasis
if, under variation of the external parameter I, the input–output function z(I) remains
‘approximately constant’ over the interval of external stimuli.

There are two formulations of ‘approximately constant’ often considered by
researchers. The first, more stringent, called perfect homeostasis, is widely studied
in control engineering and synthetic biology under the name ‘perfect adaptation’
[cf. Mello and Tu (2003); Ma et al. (2009); Ang and McMillen (2013); Araujo and
Liotta (2018); Khammash (2021); Frei and Khammash (2021)]. Perfect homeostasis
is defined as the ability of a system to reset to its pre-stimulated output level, called the
set point, after responding to arbitrary external stimuli. It is obvious that this condition
is equivalent to the requirement that the input–output function is identically constant.

The second, more general, called near-perfect homeostasis, requires that the input–
output function stays within a ‘narrow’ range under variation of external stimuli over
a bounded interval. Hence, a typical ‘plot’ of the input–output function has a bounded
region of homeostasiswhere it is approximately constant, called theplateau, flanked by
regions of escape from homeostasis, where it varies monotonically. See plots of input–
output functions fitting data sets sampled from real biological systems in Morrison
(1946), Golubitsky and Stewart (2017b), Nijhout et al. (2018).

The notion of near-perfect homeostasis has appeared in the literature under the
names near-perfect adaptation (Mello and Tu 2003; Ang and McMillen 2013; Ferrell
2016) and imperfect adaptation (Bhattacharya et al. 2022, 2021). A refinement of the
notion of near-perfect homeostasis, called infinitesimal homeostasis has been proposed
by Golubitsky and Stewart (Golubitsky and Stewart 2017b). Since then, aspects of this
new concept have been explored in several publications (Reed et al. 2017; Golubitsky
and Stewart 2018; Duncan et al. 2018; Duncan and Golubitsky 2019; Golubitsky and
Wang 2020; Wang et al. 2021; Madeira and Antoneli 2022).

In this paper, we shall study near-perfect adaptation from the point of view of
infinitesimal homeostasis theory. Other contributions on near-perfect homeostasis
include (Bhattacharya et al. 2023; Blanchini et al. 2022; Gross et al. 2019) and
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references therein. These three groups propose distinct approaches to near-perfect
homeostasis, under various assumptions on the functional formof the dynamics.More-
over, since all these approaches are distinct from the one presented here, it would be a
too large detour for us to try to explain and compare all these ideas. Nevertheless, we
believe that a review unifying all these ideas would an extremely valuable achieve-
ment that could bring closer the several groups working in this subject under different
viewpoints.

We say a systemwith input–output function z(I) exhibits infinitesimal homeostasis
if dz

dI (I0) = 0 for some input value I0 ∈]I1, I2[. The vanishing of the derivative of z
at I0 implies that I0 is a critical point of z. Moreover, the second order derivative of z
with respect to I0 can be used to give a quantitative estimate on the size of the interval
]I1, I2[ where z(I) stays within z(I0) ± δ, for a given δ > 0 (see Golubitsky and
Stewart (2022) for details). As we shall see in a moment, there are some additional
advantages in adopting this point of view, besides providing a plausible notion of
near-perfect homeostasis.

Nijhout, Reed, and Best (Nijhout et al. 2004, 2015, 2018; Best et al. 2009; Nijhout
and Reed 2014; Nijhout et al. 2017, 2019) among others, have shown that homeostasis
is an important phenomenon in biochemical reaction networks. In a biochemical net-
work, each node represents the concentration of a chemical substrate and each arrow
denotes a chemical interaction between the molecules at the head and tail of the arrow.
In an input–output network formulation, one node is designated as the input node ι and
another is designated as the output node o. The modeling assumes that some external
stimuli (represented by an input parameter, or simply an input, I) affects the network
dynamics only at the input node, and the end result of computation by the network
dynamics is the value of the output node. In this setting, there is a canonical choice
for the smooth observable φ: the coordinate function of the output node.

Motivated by these examples, Wang et al. (2021) introduced the notion of ‘abstract
input–output network’ and devised a scheme for the classification of ‘homeostasis
types’ in such networks. The notion of homeostasis type of a networkmakes precise the
idea that homeostasis may be caused by different ‘mechanisms’ in that network. The
results of Wang et al. (2021) apply to the case of single-input single-output networks
where the external stimuli can only affect one input node via a single scalar input.

Even though single-input single-output (SISO) networks are quite popular in many
engineering domains (Ma et al. 2009; Ang and McMillen 2013; Araujo and Liotta
2018; Bhattacharya et al. 2022), the single input node and single input assumptions
seem unrealistic in biology, as disturbances that arise are typically very complex and
do not have a single well-defined entry point (Gupta and Khammash 2022). As far as
the input is concerned, there are two possible ways to extend the work of Wang et al.
(2021) in order to include more complex situations:

(1) Multiple input nodes. A single input affects more than one of several input nodes.
(2) Multiple inputs. Several inputs affect more than one of several input nodes.

Regarding (1), Madeira and Antoneli (2022) extended the classification of Wang
et al. (2021) to the setting of multiple input nodes and used this extended theory
to completely work out the homeostasis types of a representative model for bacterial
chemotaxis (Clausznitzer et al. 2010; Tindall et al. 2008). As for (2), an interesting
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biologically relevant example is the regulation of extracellular dopamine (eDA) in
response to variation in the activities of the enzyme tyrosine hydroxylase (TH) and
the dopamine transporters (DAT) (Best et al. 2009; Golubitsky and Stewart 2018).
Another biologically relevant example of the second situation is the mathematical
model of Granjon et al. (2017) for the physiological co-regulation of calcium (Ca) and
phosphate (PO4) in the rat. We will discuss this model in details in Sect. 3.

Let us recall the results of Madeira and Antoneli (2022). The main discovery
of Wang et al. (2021) is that, in a given abstract input–output network, there is a
finite number of ‘distinct mechanisms’ that may cause homeostasis, i.e. may force
the derivative of the input–output function to vanish (at a fixed value of the input).
These ‘distinct mechanisms’, called ‘homeostasis types’, bijectively correspond to a
specific subnetworks of the abstract input–output network. These subnetworks, called
homeostasis subnetworks, can be characterized in purely topological terms. In the
single-input single-output theory of Wang et al. (2021), the homeostasis subnetworks
can be divided into two classes: structural and appendage. The structural subnetworks
correspond to feedforwardmechanisms and the appendage subnetworks correspond to
feedbackmechanisms. These are called, respectively, ‘opposermodules’ and ‘balancer
modules’ in the control theoretic literature (Araujo and Liotta 2018). In Madeira and
Antoneli (2022) the single-input single-output theory is generalized, for the first time,
to account for multiple input nodes. The main result is that everything from the single-
input case generalizes, except that there is a new class of homeostasis subneworks,
called input counterweight: every abstract multiple input node network has exactly
one input counterweight subnetwork, which can be topologically characterized, as
well.

In this paper we further build on the theory of Wang et al. (2021); Madeira and
Antoneli (2022) to completely solve the problem of classifying the homeostasis types
for input–output networks with multiple input nodes and multiple inputs (Sect. 2.3).
More precisely, given an input–output network with multiple inputs we show that
one can consider each parameter at a time. Thus, effectively reducing the problem of
classification of homeostasis types to the single input case (still with multiple input
nodes), that has been completely solved in Madeira and Antoneli (2022). Afterwards,
we show how to combine these partial classifications for the single input cases into an
algorithm that provides the full classification on the multiple inputs setting (Sect. 2.8).

The first issue to consider in the multiple inputs case is to obtain an analogue of the
‘determinant formula’ for the gradient of the inputs-output function (cf. Golubitsky
and Stewart 2017b; Golubitsky et al. 2020; Wang et al. 2021; Madeira and Antoneli
2022). Versions of this ‘determinant formula’ have been obtained by several authors:
Ma et al. (2009), Golubitsky andWang (2020) for three-node networks andAraujo and
Liotta (2018), Aoki et al. (2019) for arbitrary networks under the name ‘RPAequation’.
In Sect. 2.3 we introduce a definition of a multiple-input single-output network and
prove a multivariate generalization of ‘determinant formula’ (Lemma 2.1) mentioned
above. A similar result to our ‘determinant formula’ has been obtained in Tang and
McMillen (2016).

The main result of this paper allows us to completely classify homeostasis subnet-
works of multiple inputs ‘core’ network (Sects. 2.4, 4.1). In the multiple inputs setting
two new features arise. The first is related to being able to consider one parameter at a

123



Homeostasis in networks with multiple inputs Page 5 of 40 17

time.More specifically, for each scalar input IM we define a unique subnetwork, called
IM -specialized subnetwork, that contains all the homeostasis subnetworks associated
to the input IM (Sect. 2.5). When we have all the homeostasis subneworks of the
specialized subnetworks we can proceed by considering two cases: (i) a pleiotropic
subnetwork if it appears in all IM -specialized subnetworks, (ii) a coincidental subnet-
work otherwise. Then we show that a pleiotropic subnetwork can only be of structural
or appendage classes (Sects. 2.6, 4.2), whereas a coincidental subnetwork can be of
structural, appendage or input counterweight class (Sect. 2.7). Furthermore, all our
results hold generically in the setting of influence networks, which includes all ODE
models used in biology (see Sect. 2.2).

The second new feature of multiparameter setting is related to the occurrence of
overlapping between coincidental subnetworks contained in distinct IM -specialized
subnetworks. These non-trivial interactions between homeostasis subnetworks inmul-
tiple inputs networks leads to the appearence ofhomeostasis mode interactionorhigher
codimension homeostasis. The notion of mode interaction is familiar in bifurcation
theory. In a steady-state bifurcation the eigenvectors of the linearized equation corre-
sponding to simple eigenvalues are calledmodes. Amodewhose eigenvalues lie on the
imaginary axis is said to be critical. Generically, it is expected that an one-parameter
system has only one critical mode. However, in systemswithmore than one parameter,
one expects multiple critical modes. The steady-state bifurcations that may arise in
nonlinear systems near a (multi-) parameter value at which there are multiple critical
modes are thought of as resulting from a nonlinear interaction of several criticalmodes.
This process is called mode interaction and the (multi-) parameter values at which
there are multiple critical modes are called higher codimension bifurcation points.
We assert that there is an analogue process in the context of infinitesimal homeosta-
sis (Ex. 2.16). Duncan et al. (2023) investigates the appearance of codimension-two
homeostasis mode interaction in the different setting of infinitesimal homeostasis with
a single input parameter.

We end this introduction by briefly mentioning other aspects of the infinitesimal
homeostasis approach that wewill not pursue in this paper: singularity theory network-
preserving changes of coordinates (Golubitsky and Stewart 2017a, b, 2018; Antoneli
and Stewart 2022), biological robustness (Kitano 2004, 2007a, b; Khammash 2016;
Thom 1969, 1975, 1977; Hunt et al. 1992; Ott and Yorke 2005), numerical discovery
and continuation (Govaerts 2000; Ermentrout 2002; Donovan 2019), classification
of infinitesimal homeostasis in small ‘core networks’ (Huang and Golubitsky 2022),
infinitesimal homeostasis for limit cycles (Yu and Thomas 2022) and miscellaneous
applications to biology (Antoneli et al. 2018; Madeira and Antoneli 2022; Golubitsky
et al. 2020; Golubitsky and Wang 2020).

Structure of the Paper. In Sect. 2 we give the definitions and state the main results of
the paper. We discuss some simple abstract examples to illustrate the definition and
results. In Sect. 3 we apply our results to a ‘real biological system’, a mathematical
model of calcium and phosphate metabolism proposed in Granjon et al. (2017). In
Sect. 4 we give the proofs of all our results. Finally, in Sect. 5 we briefly discuss our
results in the context of the theory of infinitesimal homeostasis and conclude the paper
with an outlook for future research.
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2 Homeostasis in multiple inputs networks

In this section we state the main results of the paper and provide the necessary
definitions.

2.1 Dynamical theory of infinitesimal homeostasis

Golubitsky and Stewart proposed a mathematical method for the study of homeosta-
sis based on dynamical systems theory (Golubitsky and Stewart 2017b, 2018) [see
the review (Golubitsky et al. 2020)]. In this framework, one consider a system of
differential equations

Ẋ = F(X , I) (2.1)

where X = (x1, . . . , xn) ∈ R
n is the vector of state variables and I = (I1, . . . , IN ) ∈

R
N is the vector of input parameters.
Suppose that (X∗, I∗) is a linearly stable equilibrium of (2.1). By the implicit

function theorem, there is a function X̃(I) defined in a neighborhood of I∗ such that
X̃(I∗) = X∗ and F(X̃(I), I) ≡ 0. See Jahedi et al. (2022) for results on the generic
existence and robustness of X̃(I).

A smooth function φ : R
n → R is called an observable. Define the input–output

function z : R
N → R associated to φ and X̃ as z(I) = φ(X̃(I)). The input–output

function allows one to formulate several definitions that capture the notion of home-
ostasis (see Ma et al. 2009; Ang and McMillen 2013; Tang and McMillen 2016;
Golubitsky and Stewart 2017b, 2018).

Definition 2.1 Let z(I) be the input–output function associated to a system of
differential Eqs. (2.1). We say that z(I) exhibits

(a) Perfect Homeostasis on an open set � ⊆ dom(z) if

∇z(I) = 0 for all I ∈ � (2.2)

That is, z is constant on �.
(b) Near-perfect Homeostasis relative to a set point Is ∈ � ⊆ dom(z) if, for fixed δ,

|z(I) − z(Is)| � δ for all I ∈ � (2.3)

That is, z stays within the range z(Is) ± δ over �.
(c) Infinitesimal Homeostasis at the point Ic ∈ dom(z) if

∇z(Ic) = 0 (2.4)

That is, Ic is a critical point of z. ♦
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It is clear that perfect homeostasis implies near-perfect homeostasis, but the con-
verse does not hold. Inspired by Nijhout, Reed, Nijhout et al. (2004); Best et al.
(2009); Golubitsky and Stewart (2017b, 2018) introduced the notion of infinitesimal
homeostasis that is intermediate between perfect and near-perfect homeostasis. It is
obvious that perfect homeostasis implies infinitesimal homeostasis. On the other hand,
it follows from Taylor’s theorem that infinitesimal homeostasis implies near-perfect
homeostasis in a neighborhood of Ic, see Golubitsky and Stewart (2022). It is easy to
see that the converse to both implications is not generally valid (see Reed et al. 2017).

The notion of infinitesimal homeostasis allows one to apply the tools from singu-
larity theory. For instance, by considering higher degeneracy conditions, in addition to
(2.4), one is lead to distinct forms of infinitesimal homeostasis that can be classified by
elementary catastrophe theory (see Golubitsky and Stewart 2017b, 2018 for details).
Finally, when combined with coupled systems theory (Golubitsky and Stewart 2006)
the formalism of Golubitsky and Stewart (2017b), Golubitsky and Stewart (2018),
Golubitsky et al. (2020) becomes very effective in the analysis of model equations.

2.2 Networks and dynamical systems

Before defining the appropriate class of dynamical systems (in Sect. 2.3) for our results
we will briefly discuss the relation between networks and dynamics.

A large portion of the literature on network dynamical systems modeling seems to
suggest that there is a unique way to associate a system of differential equations to a
given directed graph G. With some rare exceptions, e.g. Bick et al. (2023), a precise
definition of what is a “network dynamical system” is completely overlooked and the
pairwise interaction interpretation (see below) is assumedwithout further justification.
In fact, there are at least, two possible ways to attach a (class of) dynamical system(s)
to a directed graph G. In order to discuss the distinction between these two possibilities
we need precise definitions. Let G be a directed graph with k nodes.

(1) Pairwise interaction interpretation. In this interpretation the dynamics is encoded
by a weighted adjacency matrix A compatible with the directed graph G. That is,
A ji �= 0 if and only if there is a link from node j to node i . For simplicity, suppose
that each node of G represent an identical dynamical system of the form ẋi =
F(xi ), where xi ∈ R

n is the state vector of node i and F : R
n → R

n is a smooth
function that describes the internal dynamics of node i . The interaction between
nodes is given by a smooth pairwise coupling function G : R

n × R
n → R

n , also
calledpoint-to-point coupling (Golubitsky andStewart 2002). The tuple (A, F, G)

defines a network dynamical system through the set of differential equations

ẋi = F(xi ) +
k∑

j=1

A ji G(xi , x j ) for i = 1, . . . , k (2.5)

The dynamics is determined by the evolution of the joint state of all nodes
(x1, . . . , xk) through (2.5). It is important to note that network dynamical systems
described via (2.5) have only additive interactions. Specifically, the interactions
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are in general nonlinear in the state variables xi , but linear in the coupling weights
A ji Aguiar and Dias (2018). By letting F and G vary over all smooth functions on
the state spaceR

n , for a given family of weighted adjacency matrixA defining the
same directed graph G, one obtains a space of vector fields X∞

A (Rn). While setup
(2.5) is arguably one of the most commonly used formulations of network-based
modeling, it imposes a severe restriction that might not hold in real-world systems
(Bick et al. 2023).

(2) Influence network interpretation. In this interpretation the dynamics is given by
a smooth vector-valued function H = (H1, . . . , Hk) that is compatible with the
directed graph G. That is, the component function Hi explicitly depends on the
state vector x j if and only if there is a link from node j to node i . Now the weights
are implicitly incorporated into the function H . The dynamics is defined by the
system of ODEs

ẋi = F(xi ) + Hi (x1, . . . , xk) for i = 1, . . . , k (2.6)

here Hi : (Rn)k → R
n determines the influence of the joint state (x1, . . . , xk)

on the i-th node state xi . The function Hi may depend not only on two node
states, but may involve multiple nodes concurrently. Network dynamical systems
of the form (2.6) have been considered in the groupoid formalism (Golubitsky
and Stewart 2006, 2022). Now, despite node dependencies being captured by a
graph, this does not exclude the possibility of nonlinear interactions involving
three or more nodes, called higher-order interactions. By letting F and H vary
over all smooth functions on the state spaceR

n one obtains a space of vector fields
X∞
G (Rn), this is the space of all dynamical systems (2.6) that are compatible with

the network structure G. The main goal of the groupoid formalism is to study the
space X∞

G (Rn), rather than considering (2.6) for a specific F and H . This yields
insights on how the ‘generic’ dynamical behavior of such a system depends on
the imposed network structure encoded by G.

It is easy to see that the space of vector fields X∞
G (Rn) contains the space of vector

fieldsX∞
A (Rn), for all families of weighted adjacencymatricesA defining the directed

graph G. In fact, X∞
G (Rn) is the largest space of vector fields that can be attached to

a directed graph G. Likewise, X∞
A (Rn), for a fixed A, is the smallest space of vector

fields that can be attached to a family of weighted adjacency matrix A. Remarkably,
it seems that in order to generalize (2.5) to include higher order interactions only up
to a fixed level, directed graphs are not enough to capture all the interaction relations.
It is necessary to consider ‘higher dimensional’ generalizations of graphs, such as
hypergraphs or simplicial complexes (Bick et al. 2023).

In this paper we adopt the influence network interpretation. As mentioned before,
this approach emphasizes the ‘generic’ properties and how they are affected by the net-
work structure encoded by G. This leads to the notion ofmodel-independent approach,
which is thoroughly explored in the book Golubitsky and Stewart (2022). The model-
independent approach contrasts with the more common model-dependent one, where
specificmodel equations are solved, usually numerically. Both approaches have advan-
tages and disadvantages and should not be seen as competing against each other, on the
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contrary, they complement each other. Specific models are useful in connection with
experimental tests, when the equations are obtained from precise laws. In a model-
independent approach the exact equationsmay not be known, nevertheless one still can
predict, from known properties of the equations, what types of behaviors are expected
and which ones are forbidden.

2.3 Multiple-input single-output networks

A multiple-input single-output (MISO) network, or simply a multiple inputs network,
is a network G with n distinguished input nodes ι = {ι1, ι2, . . . , ιn}, all of them
associated to at least one input parameter IM , M = 1, . . . , N , one distinguished
output node o, and r regulatory nodes ρ = {ρ1, . . . , ρr }. The associated system of
differential equations have the form

ẋι = fι(xι, xρ, xo, I)

ẋρ = fρ(xι, xρ, xo)

ẋo = fo(xι, xρ, xo)

(2.7)

where I = (I1, · · · , IN ) ∈ R
N is the vector of input parameters, or simple the

vector of inputs, and X = (xι, xρ, xo) ∈ R
n × R

r × R is the vector of state variables
associated to the network nodes.

We write a vector field associated with the system (2.7) as

F(X , I) = ( fι(X , I), fρ(X), fo(X))

and call it an admissible vector field for the network G.
Let f j,xi denote the partial derivative of the j th node function f j with respect to

the i th node variable xi . We make the following assumptions about the vector field F
throughout:

(a) The vector field F is smooth and has a linearly stable equilibrium at (X∗, I∗).
Therefore, by the implicit function theorem, there is a function X̃(I) defined in a
neighborhood of I∗ such that X̃(I∗) = X∗ and F(X̃(I), I) ≡ 0.

(b) The partial derivative f j,xi can be non-zero only if the network G has an arrow
i → j , otherwise f j,xi ≡ 0.

(c) Only the input node coordinate functions fιk depend on at least one of the com-
ponents of the vector of input parameters I and the partial derivative of fιk ,IM

generically satisfies

∂ fιk
∂IM

= fιk ,IM �= 0. (2.8)

for some M = 1, . . . , N .

Remark 2.2 In this paper we explicitly exclude the possibility that the output node is
one of the input nodes. This assumption is included purely for the sake of convenience.
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In fact, all the results should be valid in this case, but then all the theorems and proofs
should be properly adapted to take this particular case into account. This possibility,
in the case of single input networks will be considered with great detail in another
publication (Antoneli et al. 2023). ♦

The network structure provides a distinguished class of observables for an admis-
sible system, namely, the state variables. In the particular case of an input–output
network the observable of interest is given by the output state variable xo.

Definition 2.3 Let G be a multiple inputs network and F be a family of admissible
vector fields with an equilibrium point X̃(I) = (

xι(I), xρ(I), xo(I)
)
. The mapping

I 
→ xo(I) is called the input–output function of the network G, relative to the family
of equilibria

(
X̃(I), I

)
. ♦

Infinitesimal homeostasis in a multiple inputs network is given by the critical points
of xo(I), namely, the zeros of the gradient vector

∇xo =
(

∂xo

∂I1
,
∂xo

∂I2
, · · · ,

∂xo

∂IN

)
(2.9)

By a straightforward application of Cramer’s rule Wang et al. (2021) obtained a
determinant formula for the derivative of the input–output function in the single-input
single-output case. Madeira and Antoneli (2022) generalized the determinant formula
of Wang et al. (2021) to the case of multiple input nodes networks. In the following
we further generalize the determinant formula of Madeira and Antoneli (2022) to the
case of multiple inputs networks.

Let J be the (n + r + 1) × (n + r + 1) Jacobian matrix of an admissible vector
field F = ( fι, fσ , fo), that is,

J =
⎛

⎝
fι,xι fι,xρ fι,xo

fρ,xι fρ,xρ fρ,xo

fo,xι fo,xρ fo,xo

⎞

⎠ (2.10)

For each 1 ≤ M ≤ N , consider the (n + r + 1) × (n + r + 1) matrix 〈HM 〉 obtained
from J by replacing the last column by (− fι,IM , 0, 0)t , is called IM -generalized
homeostasis matrix:

〈HM 〉 =
⎛

⎝
fι,xι fι,xρ − fι,IM

fρ,xι fρ,xρ 0
fo,xι fo,xρ 0

⎞

⎠ (2.11)

Here all partial derivatives f	,x j are evaluated at
(
X̃(I), I

)
.

Lemma 2.1 Let xo(I) be input–output function of a multiple inputs network. The
partial derivative of xo(I) with respect to the M-th parameter IM satisfies

∂xo

∂IM
= det〈HM 〉

det(J )
(2.12)
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where det(J ) and det〈HM 〉 are evaluated at the equilibrium point X̃(I). Hence,

∇xo = 1

det(J )
(det〈H1〉, det〈H2〉, . . . , det〈HN 〉) (2.13)

Moreover, I0 is a point of infinitesimal homeostasis if and only if

det〈HM 〉 = 0 for all 1 ≤ M ≤ N (2.14)

as a function of I evaluated at I0.

Proof Implicit differentiation of the equation F(X̃(I), I) = 0 with respect to I yields
the linear system

J

⎛

⎝
x ′

i
x ′
ρ

x ′
o

⎞

⎠ = −
⎛

⎝
fι,IM

0
0

⎞

⎠ (2.15)

Since X̃(I) is assumed to be a linearly stable equilibrium, it follows that det(J ) �=
0. On applying Cramer’s rule to (2.15) we can solve for ∂xo

∂IM
(I) obtaining (2.12).

Applying (2.12) to (2.9), we obtain Eq. (2.13). ��

Remark 2.4 An explicit expression for det〈HM 〉 can be obtained by expanding it with
respect to the last column and the ιm-th row:

det〈HM 〉 =
n∑

m=1

± fιm ,IM det(Hιm ) (2.16)

where Hιm is obtained from H by removing the last column and the ιm-th row. When
there is a single input, i.e. N = 1, the gradient ∇xo reduces to ordinary derivative x ′

o
and (2.13) gives the formula for x ′

o obtained in Madeira and Antoneli (2022). When
there is a single input and a single input node, N = n = 1, there is only one matrix
Hιm = H , called the homeostasis matrix and (2.13) gives the corresponding formula
for x ′

o obtained in Wang et al. (2021). ♦

2.4 Core networks

Wang et al. (2021) introduced a fundamental construction for the study of homeostasis
in input–output networks, called ‘core subnetwork’. Madeira and Antoneli (2022)
extended this construction to the case of input–output networks with multiple input
nodes and single input parameter. Here we extend the arguments ofWang et al. (2021),
Madeira and Antoneli (2022) to the case of multiple inputs networks.
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Fig. 1 The possible connections in G. Here, inputs are highlighted by dotted circles of distinct colors. The
arrows from each input to distinct input nodes are of the same color (the same color of the corresponding
dotted circle)

Let (X∗, I∗) be a linearly stable equilibrium of theG-admissible ODE system (2.1).
Then (X∗, I∗) it satisfies the system of equations

fι1(xι1 , . . . , xιn , xρ, xo, I1, . . . , IN ) = 0

...

fιn (xι1 , . . . , xιn , xρ, xo, I1, . . . , IN ) = 0

fρ(xι1 , . . . , xιn , xρ, xo) = 0

fo(xι1 , . . . , xιn , xρ, xo) = 0

(2.17)

Partition the nodes of the network G as follows: (i) input nodes (whose dynamics
explicitly depends on at least one input), (ii) the output node and (iii) the regulatory
nodes, that can be classified into three types depending if they are upstream from the
output node or/and downstream from at least one input node. More precisely, the set
of regulatory nodes may be partitioned as:

(a) Those nodes σ that are both upstream from o and downstream from at least one
input node ιm ,

(b) Those nodes d that are not downstream from any input node ιm ,
(c) Those nodes u which are downstream from at least one input node ιm , but not

upstream from o.

Figure1 shows the types of connections which can be found in G.

Definition 2.5 Let G be a multiple inputs network. The core subnetwork Gc of G is the
subnetwork whose nodes are: (i) the input nodes ι1, . . . , ιn , (ii) the regulatory nodes
σ that are upstream from the output node and downstream of at least one input node,
and (iii) the output node o. The arrows of Gc are the arrows of G connecting the nodes
of Gc. ♦

Theorem 2.2 Let G be a multiple inputs network and Gc the corresponding core sub-
network. Then the input–output function xc

o of Gc exhibits infinitesimal homeostasis at
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I∗ if and only if the input–output function xo of G exhibits infinitesimal homeostasis
at I∗.

Proof Follows from Theorem 4.2. ��
Theorem 2.2 allows one to assume, without loss of generality, that G is a core

network, that is G = Gc, as far as infinitesimal homeostasis is concerned.

2.5 Structure of infinitesimal homoestasis

In this subsection, unless explicitly stated, we assume that G is a core multiple inputs
network with input nodes ι1, . . . , ιn and inputs I1, . . . , IN .

By Lemma 2.1 a network G exhibits infinitesimal homeostasis at a point I0

whenever the vector-valued function (when evaluated at (X̃(I), I)) vanishes at I0:

�h = (
det〈H1〉, det〈H2〉, . . . , det〈HN 〉). (2.18)

here det〈HM 〉 are the determinants of the IM -generalized homeostasis matrices.
In order to analyze and simplify these determinants let us introduce some termi-

nology. A multivariate vector-valued polynomial, or, simply a polynomial mapping is
a mapping P : R

k → R
k with polynomial components. That is, if P is a polynomial

mapping, there exist multivariate polynomials P1, P2, . . . , Pk : R
k → R such that we

can write P as

P(x1, . . . , xk) = (
P1(x1, . . . , xk), . . . , Pk(x1, . . . , xk)

)
.

We say that P is irreducible if and only if each component Pj is irreducible. Suppose
there is a multivariate polynomial function p : R

k → R that is common factor to all
components Pj . Then we can factor p from the polynomial vector P as

P(x1, . . . , xk) = p(x1, . . . , xk)
(
P̃1(x1, . . . , xk), . . . , P̃k(x1, . . . , xk)

)
.

We say that p is a scalar factor of P .
Recall that the nonzero entries of the IM -generalized homeostasis matrices 〈HM 〉

are the partial derivatives f j,xi and f j,IM . In particular, det〈HM 〉 is a homogeneous
polynomial function of degree (n + r + 1) in the partial derivatives f j,xi and f j,IM .
Hence, the vector-valued function �h is a (formal) polynomial mapping on the ‘vari-
ables’ f j,xi and f j,IM . The scalar-valued function �h(I) (depending on the vector of
input parameters I) is obtained by evaluating the partial derivatives f j,xi and f j,IM at
X̃(I).

Let us motivate the next definition with a simple observation. In the multiparameter
setting, even a core network may have nodes that are not affected by all inputs. For
example, consider the 5-node multiple inputs network G shown in Fig. 2. In this figure
inputs are highlighted by dotted circles of distinct colors. The arrows from each input
to distinct input nodes are of the same color (the same color of the corresponding
dotted circle). The network shown in (a) has three input nodes, ι1, ι2 and ι3, and two
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Fig. 2 A 2-parameter 5-four node network (a) and its IM -specialized subnetworks (b) and (c). Here, inputs
are highlighted by dotted circles of distinct colors. The arrows from each input to distinct input nodes are
of the same color (the same color of the corresponding dotted circle). The 2-parameter network (a), has 5
nodes: three input nodes ι1, ι2, ι3, one output node o and one regulatory node σ . The two IM -specialized
subnetworks of (a) are always single-input multiple input node networks (see Definition 2.6). The I1-
specialized subnetwork (b) has 1 input node (ι1). Notice that ι2 becomes a regulatory node for this network.
The I2-specialized subnetwork (c) has 2 input nodes (ι2, ι3)

inputs, I1 (blue) and I2 (red). Although, G is a core network, the input node ι1 is
not affected by the parameter I2, and the node ι3 is not affected by parameter I1. To
overcome this difficulty, we define the ‘specialized networks’ relative to a single input
parameter.

Definition 2.6 Let G be a core multiple inputs network with inputs I1, . . . , IN . The
IM -specialized subnetwork GIM is defined as the (single input) input–output subnet-
work of G consisting of all the input nodes that receive the input IM , all the regulatory
nodes that are downstream from those input nodes and the output node. The arrows of
GIM are the arrows of G between the nodes of GIM . The subnetwork DIM = G\GIM

generated by the nodes in G that do not belong to GIM is called the IM -vestigial
subnetwork. ♦

The specialized subnetworkGIM can be considered as amultiple input node network
with single input IM , as studied in Madeira and Antoneli (2022), by ‘forgetting’ the
effect of the other parameters and reducing to the core network using the core reduction
theoremof (Madeira andAntoneli 2022, Thm. 3.2). The input nodes ofGIM are exactly
the input nodes of G that are affected by the parameter IM .

Definition 2.7 Let G be a core multiple inputs network with inputs I1, . . . , IN . The
IM -homeostasis matrix 〈HIM 〉 associated to GIM , is the generalized homeostasis
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matrix of the multiple input–output network GIM (see Madeira and Antoneli (2022,
Sec 2.3)). Similarly, the corresponding IM -vestigial subnetwork DIM has an associ-
ated jacobian matrix JDIM

(see Madeira and Antoneli (2022, Sect. 3.2)). To simplify
the notation, in the case where the IM -vestigial subnetwork is empty (DIM = ∅), we
write det(JDIM

) ≡ 1. ♦

Now we need to specify the set � ⊆ R
N of allowable parameter values. This set

depends on the admissible vector field F and the type of model being considered. For
instance, in a biochemical network the set � is the positive orthant of some R

N . The
subset of non-singular parameters of F on � is defined as

�J = {I ∈ � : det(J ) �= 0}. (2.19)

where J = (DF)
(X̃(I),I)

is the jacobian. The set �J also depends on the vector field
F and, generically, is an open dense subset of �.

Lemma 2.3 For each M = 1, . . . , N, we have:

det〈HM 〉 = det(JDIM
) det〈HIM 〉, (2.20)

Moreover, det(JDIM
) �= 0 over �J and the irreducible factors of det(JDIM

) never

are irreducible scalar factors of �h.

Proof In case DIM = ∅, the result follows from the convention that det(JDIM
) ≡

1. In case DIM �= ∅, the vestigial subnetwork is composed by nodes that are not
downstream from the input nodes affected by the parameter IM . Hence, we can apply
to GIM the ‘core network’ theorem for networks with multiple input nodes and a
single input parameter (Madeira and Antoneli 2022, Thm 3.2). The statement about
the irreducible factors of det(JDIM

) follows from an argument similar to the one
employed in Madeira and Antoneli (2022, Prop 3.8). ��

Lemma 2.3 allows us to further simplify the components of �h, by considering the
determinants det〈HIM 〉. This reduce to the situation already studied in Madeira and
Antoneli (2022).

Definition 2.8 The vector determinant associated to an input–output network is the
vector-valued function defined by

ĥ = (
det〈HI1〉, det〈HI2〉, . . . , det〈HIN 〉), (2.21)

where det〈HIM 〉, M = 1, . . . , N , is the determinant of generalized homeostasis
matrix of the IM -specialized subnetwork GIM . The vector-valued function ĥ can be
considered as a (formal) polynomial mapping on the ‘variables’ f j,xi and f j,IM . ♦

Proposition 2.4 The vector-valued functions ∇xo, �h and ĥ, defined on � → R
N , have

the same set of zeros on �J .
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Proof The first equality follows fromLemma 2.1 and the second equality follows from
Lemma 2.3. ��

The König-Frobenius theorem (Schneider 1977; Brualdi and Cvetkoić 2009) (see
also Wang et al. (2021); Madeira and Antoneli (2022)) imply that the components
of the polynomial mapping ĥ can be factorized as the product of the determinants
of the irreducible diagonal blocks of each 〈HIM 〉 (defined up to row and column
permutations). An irreducible block B of some 〈HIM 〉 is called a homeostasis block.
We can further collect the factors that are common irreducible diagonal blocks of all
matrices 〈HIM 〉 and bring them to the front as scalar factors. Then we can write

ĥ = det(B1) · · · det(Bk)

⎛

⎝
∏

j1

det
(

B j1
I1

)
, . . . ,

∏

jN

det
(

B jN
IN

)
⎞

⎠ (2.22)

Therefore, we can split the problem of classifying homeostasis types supported by G
into two cases according to whether the components of ĥ have a common scalar factor
or not.

Definition 2.9 Let G be a core multiple inputs network and consider its vector deter-
minant ĥ as in (2.22). A homeostasis block corresponding to scalar factor det(Bi )

(i = 1, . . . , k) of ĥ is called a pleiotropic homeostasis block. The other homeostasis
blocks of G are called coincidental. ♦

Remark 2.10 In genetics, pleiotropy refers to the phenomenon when a single locus
affects multiple traits (Stearns 2010). Here, we employed the term pleiotropic home-
ostasis referring to the fact that the nullification of one single homeostasis block leads
to the annulment of the whole homeostasis vector ĥ. ♦

Recall that the homeostasis types of a single parameter input–output network G are
given in terms of the factors of h = det(H) (see Wang et al. (2021); Madeira and
Antoneli (2022))

det(H) = det(B1) · · · det(Bk), (2.23)

where each irreducible block B j can be of three types, called appendage, structural
and counterweight. There is only one counterweight block defined as the only irre-
ducible block that contains all the partial derivatives of f with respect to the input I.
Infinitesimal homeostasis of type B j occurs if det(B j ) = 0 and det(Bi ) �= 0 for all
i �= j . This is generic when there is only one input parameter.

Now, suppose thatG has N inputs affecting n input nodes. Generically, it is expected
that N irreducible factors of ĥ can simultaneously vanish at a fixed input value.

Definition 2.11 Let G be a multiple inputs core network. Let B be a homeostasis block
of size 	. We say that the homeostasis class of B is

(a) Input counterweight if B contains partial derivatives with respect to inputs (the
simplest counterweight block is of the form fιm ,IM ),
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(b) Appendage if B has 	 self-couplings,
(c) Structural if B has exactly 	 − 1 self-couplings. ♦

It follows from the argument in (Madeira and Antoneli 2022, Sec. 3.4), applied to
the specialized subnetworks GIM , that each homeostasis block of G is of one of the
classes in Definition 2.11.

Definition 2.12 Let G be a core multiple inputs network.

(a) We say that pleiotropic homeostasis occurs when at least one pleiotropic block has
vanishing determinant at some fixed input value. The pleiotropic blocks determine
the pleiotropic homeostasis types of G.

(b) We say that coincidental homeostasis occurs when a N -tuple of coincidental
blocks

(
B j1
I1 , . . . , B jN

IN

)
has simultaneously vanishing determinants at some fixed

input value. The N -tuples of coincidental blocks determine the coincidental
homeostasis types of G. ♦

Definition 2.13 Let G be a core multiple inputs network and B be a homeostasis block.
The homeostasis subnetwork KB associated to B is defined as follows. The nodes of
KB are the nodes σ and ρ of G such that fσ,xρ is a non-zero entry of B. The arrows of
KB are the arrows σ → ρ of G such that σ, ρ ∈ KB with σ �= ρ. ♦

2.6 Pleiotropic homeostasis types

In this section we classify the pleiotropic sub-blocks of a multiple inputs core network.

Proposition 2.5 Let G be a multiple inputs core network and B be a pleiotropic block
of G.

(i) Then B is either appendage or structural.
(ii) More precisely, B is an appendage (respect. structural) block if and only if it is

〈HIM 〉-appendage (respect. 〈HIM 〉-structural) block, for all M = 1, . . . , N.

Proof (i) From the results of Wang et al. (2021), Madeira and Antoneli (2022), we
see that, for each M = 1, . . . , N , B can be classified with respect to the special-
ized subnetwork GIM associated to the input IM as an 〈HIM 〉-input counterweight,
an 〈HIM 〉-structural or an 〈HIM 〉-appendage block. As the derivatives fι j ,IM would
appear in the expression of det(B) if it was a 〈HIM 〉-input counterweight block, we
conclude that det(B)must be either an 〈HIM 〉-structural or an 〈HIM 〉-appendageblock,
for all M = 1, . . . , N .
(ii) This follows immediately from the fact that the classification is based on the
number of self-coupling entries. ��

In Remark 2.4 we observed that when the network G has a single parameter the
theory developed here reduces to the situation considered in Madeira and Antoneli
(2022). The next result shows that when the multiple inuts network G has a single
input node then the theory essentially reduces to the case where there is only one
input parameter, considered in Wang et al. (2021). This is an extreme case where only
pleiotropic homeostasis occurs.
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Proposition 2.6 Suppose the core multiple inputs network G has only one input node
ι and multiple inputs I1, . . . , IN . Then, we have:

∇xo = det(H)

det(J )

(
fι,I1 , . . . , fι,IN

)

where det(H) is the homeostasis determinant of the network G, as a polynomial
function of the partial derivatives f j,xi . In particular, Condition (2.8) implies that
infinitesimal homeostasis occurs if and only if det(H) = 0.

Proof This is a consequence of Lemma 2.1 and of Eq. (2.16) for det〈HM 〉 when G has
a single input node. ��

Therefore, Proposition 2.6 implies that the classification of homeostasis types of a
multiple inputs network with a single input node is exactly the same as that of a single
input parameter single input node network. However, it is not true that we expect to see
the same ‘homeostasis phenomena’ in both networks. In order to see this, suppose that
G has a single input node, but multiple inputs (I1, . . . , IN ) affecting the input node.
Consequently, the function h, which is the same polynomial on the partial derivatives
f j,xi , becomes a multivariate function when evaluated at X̃(I1, . . . , IN ). Generically,
it is expected that N irreducible factors of (2.23) can simultaneously vanish at a fixed
value (I0

1 , . . . , I0
N ).

Returning to the general case, the next result gives a complete topological classifi-
cation of the homeostasis subnetworks corresponding to the pleiotropic homeostasis
types.

Theorem 2.7 Let G be a multiple inputs core network, B be a pleiotropic block of G
and KB be the corresponding homeostasis subnetwork to B in G.

(i) Then KB is either an appendage or structural subnetwork of all IM -specialized
subnetworks GIM .

(ii) More precisely, KB is an appendage (respect. structural) subnetwork if and only
if it is a 〈HIM 〉-appendage (respect. 〈HIM 〉-structural) subnetwork, for some
(and hence for all) M = 1, . . . , N.

Proof The result follows from Theorems 4.3 and 4.4 for the appendage case and
Theorems 4.8 and 4.9 for the structural case. See Sect. 4.2 for precise characterization
of each type of subnetwork. ��

2.7 Coincidental homeostasis types

The occurrence of coincidental homeostasis reflects the fact that the mechanism lead-
ing to homeostasis is not the same with respect to all the inputs. The coincidental
homeostasis types are given by all the possible combinations of coincidental blocks.
A coincidental type can be of structural class, appendage class or input counterweight
class. Thus, depending on the network, a coincidental type can have the form of a mix
of these three classes.
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In the simplest case the determinant of a coincidental block can be an entry of some
〈HIM 〉 of the form fxιm ,IM . Since, by assumption, these entries cannot vanish it may
happen that some coincidental types do not yield infinitesimal homeostasis.

On one hand, as shown in Proposition 2.6, networks that have only one input node,
only support pleiotropic homeostasis. On the other hand, it is easy to find networks
that support only coincidental homeostasis (see Sect. 2.9).

Still, one may wonder whether there is a multiple inputs core network that do
not support either pleiotroic nor coincidental homeostasis, that is, it does not support
infinitesimal homeostasis. The next proposition shows that this cannot happen, namely,
any multiple inputs core network always support at least one type of homeostasis.

Proposition 2.8 A multiple inputs core network G always supports infinitesimal
homeostasis.

Proof In order to prove the proposition, consider all input nodes ιm , such there is an
ιm-simple node σ (σ �= ιm) that receives an arrow from ιm and such that fσ,xιm

= 0
(Haldane homeostasis). Let Gm be the core subnetwork between the input node ιm and
output node o (Madeira and Antoneli 2022, Def. 2.13). By definition, Gm is a single
input–output network. Then, by the characterization of structural homeostasis in net-
works with single one input node (see Wang et al. 2021), the homeostasis determinant
of Gm vanish, i.e., if Hc

ιm
is the homeostasis matrix of Gm , then det Hc

ιm
= 0. This

fact together with (Madeira and Antoneli 2022, Eq. 3.39) implies that det〈HIM 〉 = 0,
for all M = 1, . . . , N . To conclude the argument, we claim that this construction
does not force det(J ) = 0, generically. This follows from that fact that one of the
terms that appear in the expression of the Jacobian determinant is the product of all
the self-couplings of nodes of G. As the construction above does not assume that the
self-couplings to be equal to zero, the claim holds. ��

Finally, we state below a sufficient condition for a core multiple inputs network
to support coincidental homeostasis. The network of Fig. 4b shows that the condition
given below is sufficient, but not necessary, for a core multiple inputs network to
support coincidental homeostasis.

Proposition 2.9 Let G be a multiple inputs core network. If none of the input nodes of
G is an absolutely super-simple node (see Definition 4.1), then G supports at least one
coincidental homeostasis type.

Proof Note that an input node is an absolutely super-simple node if and only if it is
the first absolutely super-simple node of the network. Hence, the hypothesis that none
of the input nodes of G is an absolutely super-simple node is equivalent to: the first
absolutely super-simple node of G is not an input node. First, suppose that pleiotropic
homeostasis does not occurs in G. Then by Proposition 2.8 it follows that coincidental
homeostasis must occur in G. Now suppose that pleiotropic homeostasis does occur
in G. Clearly, as the input nodes are not absolutely appendage, by Theorem 2.7, they
do not belong to a pleiotropic-appendage subnetwork. In addition, none of the input
nodes belong to any absolutely super-simple structural subnetwork, as the input nodes
are not absolutely super-simple and cannot be between two absolutely super-simple
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Fig. 3 Three-node core networks with one input per input node

nodes (this is a consequence of Madeira and Antoneli (2022, Lem 3.15)). Hence,
by Theorem 2.7, none of the input nodes belong to a pleiotropic-structural subnet-
work. Therefore, each input node belong to a counterweight subnetwork and thus
coincidental homeostasis must occur. ��

Remark 2.14 As previously explained, Proposition 2.9 does not provide us with a
necessary condition for the occurrence of coincidental homeostasis. It is then a open
problem to determine necessary and sufficient conditions for the occurrence of coin-
cidental homeostasis. As it will be exemplified in Sect. 2.9, the interaction between
the different subnetworks makes this a non-trivial problem. ♦

123



Homeostasis in networks with multiple inputs Page 21 of 40 17

2.8 Algorithm to determine all homeostasis types

Using the results obtained here, togetherwithWang et al. (2021);Madeira andAntoneli
(2022), one can write down a general algorithm to find all homeostasis types of a given
multiple inputs core network G.

Step 1 For each parameter IM with M = 1, . . . , N determine the IM -specialized
subnetwork GIM as in Definition 2.6.

Step 2 Since each GIM is a single parameter multiple input–output network one can
apply the algorithm of (Madeira and Antoneli 2022, Sect. 2.6) to determine
all the homeostasis subnetworks K of each GIM .

Step 3 Determine the homeostasis subnetworks that are common to all GIM . The
output of this step is the list of pleiotropic homeostasis types.

Step 4 Determine the N -tuples formedbycombinations of the remaininghomeostasis
subnetworks. The output of this step is the list of coincidental homeostasis
types.

2.9 Some simple examples

In this section we present some examples of small networks exhibiting an astonishing
array of phenomena that can arise in the multiparameter setting.

For instance, there are networks that do support both pleiotropic and coincidental
homeostasis (e.g. Example 2.16) and networks that support only one of each type:
Example 2.15 supports only pleiotropic homeostasis. Whereas Example (...) supports
only coincidental homeostasis.

Moreover, we will see that when there is a proper coincidental type (i.e. all deter-
minants can vanish) non-trivial interaction between the homeostasis subnetworks can
occur.

Let us start with the minimal non-trivial examples. There are some constraints to
get non-trivial networks:

(a) There must be at least two inputs.
(b) There must be at least two input nodes (see Proposition 2.6).
(c) The output node is distinct from the input nodes (see Remark 2.2).

Therefore, the network must have at least three nodes, two input nodes ι1, ι2 and the
output node o. In addition, let us make the simplifying assumption that each input
parameter affects exactly one input node. Granted these conditions, it is not difficult to
show that, up to core-equivalence and input-relabeling, there are exactly 8 networks,
shown in Fig. 3. Two core networks are core-equivalent if they have identical vector
determinants, up to permutation (cf. Wang et al. 2021, Def. 1.9).

Example 2.15 Consider the eight 3-node core networks shown in Fig. 3. We begin by
determining the specialized subnetworks. Since the networks have one input per input
node the specialized subnetwork is a single parameter single input 3-node network.
Then we can use the results from Golubitsky and Wang (2020) to write the vector
determinant. We also note that, by definition, fι1,I1 and fι2,I2 cannot vanish.
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Fig. 4 Three-node core network
with input affecting both input
nodes

Network (a). In this example we have

I1 → ι1 → o I2 → ι2 → o

Therefore, the vector determinant is given by

ĥ = (
fι1,I1 fo,xι1

, fι2,I2 fo,xι2

)
.

Hence, the network only supports coincidental homeostasis, given by the simultaneous
vanishing of the irreducible (structural) factors fo,xι1

and fo,xι2
.

Network (b). In this example we have

I1 → ι1 →
ι2↑↓
o I2 → ι2 → o

In the second specialized network we omitted the arrow o → ι2, since it does not
affect the vector determinant. Therefore, the vector determinant is given by

ĥ = (
fι1,I1 fo,xι1

fι2,xι2
, fι2,I2 fo,xι2

)
.

Hence, the network does not support pleiotropic homeostasis. There are two possibil-
ities for the occurrence of coincidental homeostasis

(1) fo,xι1
(structural) and fo,xι2

(structural),
(2) fι2,xι2

(appendage) and fo,xι2
(structural).

Now, the jacobian determinant of the network is

det(J ) = fι1,xι1

(
fι2,xι2

fo,xo − fι2,xo fo,xι2

)
.

Hence, the occurrence of homeostasis in case (2) necessarily forces det(J ) = 0 (see
Remark 2.17). Therefore, coincidental homeostasis only can occur in case (1).
Network (c). In this example we have

I1 → ι1 →
ι2↑↓
o I2 → ι2 →

ι1↑↓
o

Therefore, the vector determinant is given by

ĥ = (
fι1,I1 fo,xι1

fι2,xι2
, fι2,I2 fo,xι2

fι1,xι1

)
.
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Now, the jacobian determinant of the network is

det(J ) = fι1,xι1
fι2,xι2

fo,xo − fι1,xo fι2,xι2
fo,xι1

− fι2,xo fι1,xι1
fo,xι2

Hence, the network only supports coincidental homeostasis. Moreover, from the 4
possible combinations of factors of ĥ the only that does not force det(J ) = 0 is given
by fo,xι1

and fo,xι2
(see Remark 2.17).

Network (d). In this example we have

I1 → ι1

ι2↗ ↘→ o I2 → ι2

ι1↗ ↘→ o

In both specialized networks we omitted the arrow o → ι2 since it does not affect the
vector determinant. Therefore, the vector determinant is given by

ĥ = (
fι1,I1( fι2,xι1

fo,xι2
− fo,xι1

fι2,xι2
), fι2,I2( fι1,xι2

fo,xι1
− fo,xι2

fι1,xι1
)
)
.

Hence, the network only supports coincidental homeostasis, given by the simultaneous
vanishing of the two irreducible (structural) factors.
Network (e). In this example we have

I1 → ι1

ι2↙ ↖→ o I2 → ι2 → ι1 → o

In the second specialized network we omitted the arrow o → ι2, since it does not
affect the vector determinant. Therefore, the vector determinant is given by

ĥ = fo,xι1

(
fι1,I1 fι2,xι2

, fι2,I2 fι1,xι2

)
.

Hence, the network does support pleiotropic homeostasis. In order for coincidental
homeostasis to occur, both irreducible factors below must vanish simultaneously

fι2,xι2
and fι1,xι2

Now the jacobian determinant of the network is

det(J ) = fι1,xι1
fι2,xι2

fo,xo + fι1,xι2
fι2,xo fo,xι1

Thus, the vanishing of the two factors force det(J ) to vanish and so coincidental
homeostasis can not occur in this network (see Remark 2.17).
Network (f). In this example we have

I1 → ι1

ι2↗ ↘→ o I2 → ι2 → o

123



17 Page 24 of 40 J. L. de Oliveira Madeira, F. Antoneli

Therefore, the vector determinant is given by

ĥ = (
fι1,I1( fι2,xι1

fo,xι2
− fo,xι1

fι2,xι2
), fι2,I2 fo,xι2

)
.

Hence, the network does not support pleiotropic homeostasis. In order for coincidental
homeostasis to occur, both irreducible factors below must vanish simultaneously

fι2,xι1
fo,xι2

− fo,xι1
fι2,xι2

and fo,xι2
.

Note that both factors are of structural homeostasis type. The vanishing of fo,xι2
reduces the first factor to fo,xι1

fι2,xι2
. The jacobian determinant of the network is

det(J ) = fι1,xι1
fι2,xι2

fo,xo

Hence, the condition fι2,xι2
= 0 forces det(J ) = 0, whereas fo,xι1

= 0 does not (see
Remark 2.17). Therefore, the vanishing of the factor fo,xι1

0 is the only possibility for
the occurrence of coincidental homeostasis.
Network (g). In this example we have

I1 → ι1 → ι2 → o I2 → ι2 → o

Therefore, the vector determinant is given by

ĥ = fo,xι2

(
fι1,I1 fι2,xι1

, fι2,I2
)
.

Hence, the network does not support coincidental homeostasis. In order for pleiotropic
homeostasis to occur the irreducible (structural) factor fo,xι2

must vanish. Here, the
obstruction to the occurrence of coincidental homeostasis is due to the fact that the
second component of ĥ consists only of the non-vanishing factor fι2,I2 .
Network (h). In this example we have

I1 → ι1 → ι2 → o I2 →
ι1↑↓
ι2 → o

In the first specialized network we omitted the arrow ι2 → ι1, since it does not affect
the vector determinant. Therefore, the vector determinant is given by

ĥ = fo,xι2

(
fι1,I1 fι2,xι1

, fι2,I2 fι1,xι1

)
.

Hence, pleiotropic homeostasis occurs when the irreducible (structural) factor fo,xι2
vanishes. Coincidental homeostasis is given by the simultaneous vanishing of the
irreducible factors fι2,xι1

and fι1,xι1
. ♦

Next, we consider an example obtained from the network shown in Fig. 3g by
adding the influence from input I2 on node ι1. The main difference from the networks
in Example 2.15 is the appearance of an input counterweight factor. This illustrates
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the effect of having more than one input node affected by the same input (see Fig. 4).
Note that this is core equivalent to adding the influence from input I2 on node ι1 on
the network shown in Fig. 3h.

Example 2.16 Consider the 2-parameter 3-node core network shown in Fig. 4. The
specialized subnetworks are:

I1 → ι1 → ι2 → o ι1 →↖ ↗
I2

ι2 → o

Therefore, the vector determinant is given by

ĥ = fo,xι2

(
fι1,I1 fι2,xι1

, fι1,I2 fι2,xι1
− fι2,I2 fι1,xι1

)
.

Pleiotropic homeostasis can occur by the vanishing of the irreducible (structural) factor
fo,xι2

. In order for coincidental homeostasis to occur both irreducible factors (the first
is structural and the second is input counterweight) belowmust vanish simultaneously

det
(

B2
I1

)
= fι2,xι1

and det
(

B1
I2

)
= fι1,I2 fι2,xι1

− fι2,I2 fι1,xι1
.

Occurrence of coincidental homeostasis requires the simultaneous vanishing of fι2,xι1
and fι1,xι1

. Now, the jacobian determinant of the network is

det(J ) = fo,xo

(
fι1,xι1

fι2,xι2
− fι1,x2 fι2,x1

)
.

Hence the vanishing of the two factors above forces det(J ) = 0. Thus, coincidental
homeostasis cannot occur in this network (see Remark 2.17). ♦

Remark 2.17 In three of the eight networks of Example 2.15, networks (b), (e), (f),
and the network of Example 2.16, we faced a situation where the vanishing of cer-
tain factors, that could cause coincidental homeostasis, forced the vanishing of the
jacobian determinant of the network. In other words, the homeostasis point occurs
at the same value of the input parameters that makes the family of equilibria to
undergo a steady-state bifurcation. Strictly speaking, this means that the situation
mentioned above cannot be considered as a ‘proper’ infinitesimal homeostasis and
thus we have excluded these cases. Indeed, the definition of infinitesimal homeostasis
(Definition 2.1) excludes the simultaneous occurrence of homeostasis and steady-
state bifurcation. However, if one considers extending the definition of homeostasis to
include such cases (see Duncan et al. (2018); Duncan and Golubitsky (2019) for some
advances in this direction) then one may get a much richer variety of phenomena. ♦
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3 Application of the theory to amodel of calcium and phosphate
homeostasis

In this section, we shall apply our theory to a ‘real biological system’, a mathematical
model for the metabolic regulation of calcium and phosphate proposed by Granjon
et al. (2017). Our aim here is to exemplify an application of the results of this paper
to mathematical model from the literature, rather than exploit the details of calcium
metabolism under physiological and pathological conditions.

Calcium is an essential metal ion that takes part in many signaling pathways and
biochemical processes, including bone metabolism. Hence, its extracellular concen-
tration must be tightly regulated (Blaine et al. 2015). Importantly, the regulation of
extracellular calcium concentration is coupled to phosphate homeostasis (Blaine et al.
2015), which is an anion essential to human body. An explanation of the many path-
ways involved in calcium and phosphate metabolism is beyond the scope of this paper,
and the interested reader is referred to Blaine et al. (2015) and Melmed et al. (2015,
Ch 29).

The model used here is adapted from Granjon et al. (2017) and can be described
by a network with 7 nodes (two input nodes, one output nodes and four regulatory
nodes) and two inputs (see Fig. 5). The two inputs represent (1) the calcium intake
(I1) and (2) the phosphate intake (I2). This is a quite natural choice, since one can
assume that the intake of these ions depend on the availability of food, which can
be reasonably variable. These inputs directly affect, respectively, the dynamics of the
intestinal concentration of free calcium (xι1) and of free phosphate (xι2). Hence, these
concentrations correspond to the two input nodes. The output node corresponds to the
extracellular concentration of calcium xo. Since calcium and phosphate metabolism is
regulated by a complex network of hormones and signalingmolecules, we include here
the components that were highlighted by Granjon et al. (2017). The four regulatory
nodes are (1) the extracellular phosphate concentration xρ1 , (2) the concentration
of calcitriol, i.e. the active form of vitamin D, xρ2 , (3) the PTH concentration xρ3

and (4) the FGF23 concentration xρ4 . Calcitriol, PTH and FGF23 are hormones that
regulate bone metabolism, kidney reabsorption and intestinal absorption of calcium
and phosphate, respectively (Melmed et al. 2015, Ch 29).

Following the abstract formulation introduced in Sect. 2.3, we can describe this
dynamical system by the following system of ODEs

ẋι1 = fι1(ι1, ρ2, o, I1)
ẋι2 = fι2(ι2, ρ1, ρ2, I2)
ẋρ1 = fρ1(ι2, ρ1, ρ2, ρ3, ρ4, o)

ẋρ2 = fρ2(ρ1, ρ2, ρ3, ρ4, o)

ẋρ3 = fρ3(ρ1, ρ2, ρ3, o)

ẋρ4 = fρ4(ρ1, ρ2, ρ4)

ẋo = fo(ι1, ρ1, ρ2, ρ3, o)

(3.1)

123



Homeostasis in networks with multiple inputs Page 27 of 40 17

Fig. 5 The network associated to the dynamical system (3.1) and its associated specialized subnetworks. a
The core network associated to (3.1). From a modeling perspective, I1 represents the calcium intake, I2
the phosphate intake, xι1 the intestinal concentration of free calcium, xι2 the intestinal concentration of free
phosphate, xo the extracellular concentration of calcium, xρ1 the extracellular phosphate concentration,
xρ2 the concentration of calcitriol, xρ3 the PTH concentration and xρ4 the FGF23 concentration. b The I1-
specialized subnetwork GI1 . The I1-absolutely super-simple nodes are in green and the appendage nodes
in orange. c The I2-specialized subnetworkGI2 . The I2-absolutely super-simple nodes are in green and the
other I2-absolutely simple nodes in pink. SinceGI2 has no appendage nodes, it does not support appendage
homeostasis. Consequently, the system does not support pleiotropic-appendage homeostasis. Moreover,
since the absolutely super-simple nodes of GI1 and GI2 are different from each other (with the exception
of o), by Theorem 4.8, the network does not support pleiotropic-structural homeostasis. Consequently, the
network supports only coincidental homeostasis. All the nodes belong to both IM -specialized subnetworks
GIM

, for M = 1 and M = 2

Since we our aim will be to describe the possible types of homeostasis supported
by this system rather then to analyze the specific values that the dynamical system
can assume, the abstract formulation of the system as given in (3.1) will be enough to
our purposes. We refer the reader interested in the precise formulation of the system
to Granjon et al. (2017). The multiple-input single-output network associated to the
dynamical system above is given by Fig. 5.

The homeostasis determinants with respect to the inputs I1 and I2, respectively,
are given by

det〈H1〉 = fι1,I1 fo,xι1
det

(
BI1

)
and det〈H2〉 = fι2,I2 fρ1,xι2

det
(
BI2

)

(3.2)
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where the blocks BI1 and BI2 are given by

BI1 =

⎛

⎜⎜⎜⎜⎝

fι2,xι2
fι2,xρ1

fι2,xρ2
0 0

fρ1,xι2
fρ1,xρ1

fρ1,xρ2
fρ1,xρ3

fρ1,xρ4

0 fρ2,xρ1
fρ2,xρ2

fρ2,xρ3
fρ2,xρ4

0 fρ3,xρ1
fρ3,xρ2

fρ3,xρ3
0

0 fρ4,xρ1
fρ4,xρ2

0 fρ4,xρ4

⎞

⎟⎟⎟⎟⎠
,

and

BI2 =

⎛

⎜⎜⎜⎜⎝

fι1,xι1
0 fι1,xρ2

0 0
0 fρ2,xρ1

fρ2,xρ2
fρ2,xρ3

fρ2,xρ4

0 fρ3,xρ1
fρ3,xρ2

fρ3,xρ3
0

0 fρ4,xρ1
fρ4,xρ2

0 fρ4,xρ4

fo,xι1
0 fo,xρ2

fo,xρ3
0

⎞

⎟⎟⎟⎟⎠
.

Hence, the vector determinant is given by

ĥ =
(

fι1,I1 fo,xι1
det

(
BI1

)
, fι2,I2 fρ1,xι2

det
(
BI2

))
. (3.3)

Note that by the structure of ĥ in (3.3), it is clear that the coordinates of ĥ have
no common factor. Hence, according to Definition 2.9, the system does not support
pleiotropic homeostasis. As by Proposition 2.8, the system must support in general
some type of infinitesimal homeostasis, we conclude that it may present coincidental
homeostasis. By our algorithm described in Sect. 2.8, this conclusion can also be
derived directly from the analysis of the network corresponding to the dynamical
system (3.1) (see Fig. 5).

We shall now list all the possible types of coincidental homeostasis thatmay happen.
To simplify notation, we list the factor that appear in the coordinates of ĥ that may be
equal to 0, and the corresponding classification of homeostasis.

(1) fo,xι1
(I1-structural) and fρ1,xι2

(I2-structural);
(2) fo,xι1

(I1-structural) and det
(
BI2

)
(I2-structural);

(3) det
(
BI1

)
(I1-appendage) and fρ1,xι2

(I2-structural);
(4) det

(
BI1

)
(I1-appendage) and det

(
BI2

)
(I2-structural).

The theoretical results above give the list of all possible homeostasis types of the
general admissible system (3.1). As often, in a model-independent approach, we can
not say much about what happens in a specific model equation of the form (3.1), such
as the original model in Granjon et al. (2017). However, it may happen that some of
the homeostasis types above do not occur in a specific model equation. For instance, it
is easy to check if case (1) above can occur in a specific model equation: it is enough to
compute fo,x1 and fρ1,xι2

and verify that they never vanish. When this is the case, we
can conclude that this homeostasis type cannot occur in that specific model equation.
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Fig. 6 Numerical computation of the input–output function xo(I1,I2) of a generic admissible vector field
(3.1) truncated up to quadratic order. Infinitesimal homeostasis occurs at (I01 ,I02 ) ≈ (2.9, 12.7), with
xo(2.9, 12.7) ≈ 0.09. Panel a shows the 3D plot of the graph of xo(I1,I2). Here, the scale of the z-axis
(xo) is different from the the scale of the other two axes. Panel b shows the contour plot (level curves) of
xo(I1,I2). Near the homeostasis point the function xo(I1,I2) is topologically equivalent to hyperbolic
saddle. The input–output function was numerically computed using xppaut (Ermentrout 2002) and plotted
using r (R Core Team 2023)

On the other hand, if they both can vanish, then it may be possible to find homeostasis
points by numerical computation.

In general, there is no obstruction for a ‘generic’ admissible system to display all
possible homeostasis types. Moreover, it is not difficult to numerically find a point of
infinitesimal homeostasis in a ‘generic’ admissible system. In Fig. 6 we present the
result of a numeric computation of the input–output function xo(I1, I2) of a generic
admissible vector field (3.1) truncated up to quadratic order. The numeric computation
allows us to find that infinitesimal homeostasis occurs at (I0

1 , I0
2 ) ≈ (2.9, 12.7). The

plateau is located at xo(2.9, 12.7) ≈ 0.09. Near the singularity the function xo(I1, I2)
is topologically equivalent to a hyperbolic saddle—a Morse singularity in R

2 with
normal form h(I1, I2) = I2

1 − I2
2 (see Golubitsky and Stewart (2018) for more

details). Recall that a Morse singularity has codimension 0, thus it is structurally
stable, namely any small perturbation of xo(I1, I2) (induced by a small perturbation
of the admissible vector field) is topologically equivalent to the unperturbed function.
The flatness of the input–output function xo(I1, I2) near the homeostasis point is
reflected in the graph Fig. 6a, which shows that for (I1, I2) ∈ [6, 15] × [−2, 7], the
value of xo stays in [0, 2].

4 Classification of homeostasis types

In this section we present the proofs of the main results of the paper.
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4.1 Reduction to the core network

In this section, unless explicitly stated, we assume that G is a multiple inputs network
with input nodes ι1, . . . , ιn , and inputs I1, . . . , IN .

The definition of core subnetwork implies that the admissible system of Eqs. (2.17)
can be written as

fι1(xι1 , . . . , xιn , xρ, xd , xo, I1, . . . , IN ) = 0

...

fιn (xι1 , . . . , xιn , xρ, xd , xo, I1, . . . , IN ) = 0

fρ(xι1 , . . . , xιn , xρ, xd , xo) = 0

fu(xι1 , . . . , xιn , xρ, xu, xd , xo) = 0

fd(xd) = 0

fo(xι1 , . . . , xιn , xρ, xd , xo) = 0

(4.1)

Now we can freeze the variables xd at an appropriate value and obtain an admissible
system for Gc from system (4.1).

Lemma 4.1 Suppose that the point X∗ = (x∗
ι1
, . . . , x∗

ιn
, x∗

ρ, x∗
u , x∗

d , x∗
o ) is a linearly

stable equilibrium of (4.1). Then the Gc-admissible system obtained from (4.1) by
freezing xd at x∗

d , given by

ẋι1 = fι1(xι1 , . . . , xιn , xρ, x∗
d , xo, I1, . . . , IN )

...

ẋιn = fιn (xι1 , . . . , xιn , xρ, x∗
d , xo, I1, . . . , IN )

ẋρ = fρ(xι1 , . . . , xιn , xρ, x∗
d , xo)

ẋo = fo(xι1 , . . . , xιn , xρ, x∗
d , xo)

(4.2)

has a linearly stable equilibrium X∗
c = (x∗

ι1
, . . . , x∗

ιn
, x∗

ρ, x∗
o ).

Proof Clearly, X∗
c is an equilibrium of (4.2). As shown inMadeira andAntoneli (2022,

Lem 3.1), it is linearly stable. Indeed, the Jacobian matrix J of (4.1) evaluated at X∗ is

J =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

fι1,xι1
· · · fι1,xιn

fι1,xρ fι1,xd 0 fι1,xo

...
. . .

...
...

...
...

...

fιn ,xι1
· · · fιn ,xιn

fιn ,xρ fιn ,xd 0 fιn ,xo

fρ,xι1
· · · fρ,xιn

fρ,xρ fρ,xd 0 fρ,xo

0 · · · 0 0 fd,xd 0 0
fu,xι1

· · · fu,xιn
fu,xρ fu,xd fu,xu fu,xo

fo,xι1
· · · fo,xιN

fo,xρ fo,xd 0 fo,xo

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.3)
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Therefore, the eigenvalues of J are the same eigenvalues of fd,xd , fu,xu and of the
matrix Jc, where

Jc =

⎛

⎜⎜⎜⎜⎜⎝

fι1,xι1
· · · fι1,xιn

fι1,xρ fι1,xo

...
. . .

...
...

...

fιn ,xι1
· · · fιn ,xιn

fιn ,xρ fιn ,xo

fρ,xι1
· · · fρ,xιn

fρ,xρ fρ,xo

fo,xι1
· · · fo,xιn

fo,xρ fo,xo

⎞

⎟⎟⎟⎟⎟⎠
(4.4)

Since Jc is the Jacobian matrix of (4.2) calculated at X∗
c , it follows that if X∗ is a

linearly stable equilibrium then so it is X∗
c . ��

Theorem 4.2 Let xo(I) be the input–output function of the admissible system 2.17 for
the network G and let xc

o(I) be the input–output function of the admissible system (4.2)
for the corresponding core network Gc. Then xc

o exhibits infinitesimal homeostasis at
I∗ if and only if xo exhibits infinitesimal homeostasis at I∗.

Proof For each weighted homeostasis matrix 〈HM 〉, we have:

〈HM 〉 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

fι1,xι1
· · · fι1,xιn

fι1,xρ fι1,xd 0 − fι1,IM

...
. . .

...
...

...
...

...

fιN ,xι1
· · · fιN ,xιn

fιN ,xρ fιN ,xd 0 − fιN ,IM

fρ,xι1
· · · fρ,xιn

fρ,xρ fρ,xd 0 0
0 · · · 0 0 fd,xd 0 0

fu,xι1
· · · fu,xιn

fu,xρ fu,xd fu,xu 0
fo,xι1

· · · fo,xιn
fo,xρ fo,xd 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.5)

Hence, for each 1 ≤ M ≤ N , we have:

det〈HM 〉 = det( fd,xd ) det( fu,xu ) det〈Hc
M 〉 (4.6)

where

〈Hc
M 〉 =

⎛

⎜⎜⎜⎜⎜⎝

fι1,xι1
· · · fι1,xιn

fι1,xρ − fι1,IM

...
. . .

...
...

...

fιn ,xι1
· · · fιn ,xιn

fιn ,xρ − fιn ,IM

fρ,xι1
· · · fρ,xιn

fρ,xρ 0
fo,xι1

· · · fo,xιn
fo,xρ 0

⎞

⎟⎟⎟⎟⎟⎠
(4.7)

From Lemma 4.1, we have

det(J ) = det( fd,xd ) det( fu,xu ) det(Jc) (4.8)
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Applying (4.6) and (4.8) to (2.13), we get:

∇xo = 1

det(Jc)

(
det〈Hc

1 〉, det〈Hc
2 〉, . . . , det〈Hc

N 〉) = ∇xc
o (4.9)

Therefore, xo and xc
o have exactly the same critical points. ��

4.2 Classification of pleiotropic homeostasis types

In this sub-section, unless explicitly stated, we assume that G is a core multiple inputs
network with input nodes ι1, . . . , ιn , and inputs I1, . . . , IN , with n, N ≥ 2.

We shall now study the subnetworks associated to pleiotropic homeostasis blocks.
Bearing this in mind, we start by extending the classification of nodes from Madeira
and Antoneli (2022).

Definition 4.1 Let G be a multiparameter core network.

(a) A directed path connecting nodes ρ and τ is called a simple path if it visits each
node on the path at most once.

(b) An ιmo-simple path is a simple path connecting the input node ιm to the output
node o.

(c) A node is ιm-simple if it lies on an ιmo-simple path.
(d) A node is ιm-appendage if it is downstream from ιm and it is not an ιm-simple

node.
(e) A node is IM -absolutely simple if it is an ιm-simple node, for every m such that

fιm ,IM �≡ 0.
(f) A node is IM -absolutely appendage if it is an ιm-appendage node, for every m

such that fιm ,IM �≡ 0.
(g) An ιm-super-simple node is an ιm-simple node that lies on every ιmo-simple path.
(h) An IM -absolutely super-simple node is a node that lies on every ιmo-simple path,

for every m such that fιm ,IM �≡ 0. ♦

It is immediate that the output node o is an IM -absolutely super-simple node, for
all M = 1, . . . , N .

4.2.1 Pleiotropic-appendage homeostasis

To study the structure of pleiotropic-appendage homeostasis, we shall first generalize
the concepts of path equivalence and appendage subnetworks employed inWang et al.
(2021), Madeira and Antoneli (2022) to the current context.

Definition 4.2 Let K be a nonempty subnetwork of G. We say that nodes ρi , ρ j of K
are path equivalent in K (or K-path equivalent) if there are paths in K from ρi to ρ j

and from ρ j to ρi . A K-path component is a path equivalence class in K. ♦
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Definition 4.3 The G-complementary subnetwork of an ιmo-simple path S is the sub-
network C S consisting of all nodes of G not on S and all arrows in G connecting those
nodes. ♦

Definition 4.4 Let G be a multiparameter core network.

(a) For every m = 1, . . . , n, we define the ιm-appendage subnetwork AGm as the sub-
network of G composed by all ιm-appendage nodes and all arrows in G connecting
ιm-appendage nodes.

(b) For every M = 1, . . . , N , we define the IM -appendage subnetwork AGIM
as the

subnetwork of G composed by all IM -absolutely appendage nodes and all arrows
in G connecting IM -absolutely appendage nodes. That is,

AGIM
=

⋂

1≤m≤n:
fιm ,IM �≡0

AGm .

(c) The appendage subnetwork AG is the subnetwork of G composed by nodes which
are IM -absolutely appendage, for all M = 1, . . . , N , and the arrows connecting
such nodes. That is,

AG =
⋂

1≤M≤N

AGIM
=

⋂

1≤m≤n

AGm .

Now we can characterize the structure of pleiotropic-appendage homeostasis. Let
B be a pleiotropic appendage block. By a similar argument employed in Madeira and
Antoneli (2022), we conclude that B must be the jacobian matrix of the corresponding
subnetwork KB .

Theorem 4.3 Let KB be a subnetwork of G associated with a pleiotropic-appendage
block B. Then the following statements are valid:

(i) Each node in KB is an IM -absolutely appendage node, for all M = 1, . . . , N.
(ii) For every ιmo-simple path S, nodes in KB are not C S-path equivalent to any

node in C S\KB, for all m = 1, . . . , n;
(iii) KB is a path component of AG .

Proof Statements (a) and (b) follow by applying (Madeira and Antoneli 2022, Thm
3.11) to each of the core subnetworks GIM . Statement (c) is proved along the same
line as (Madeira and Antoneli 2022, Thm 3.11c). ��

Now we shall verify that the conditions listed in Theorem 4.3 are also sufficient to
guarantee the existence of a pleiotropic-appendage homeostasis block.

Theorem 4.4 Suppose K is a subnetwork of G such that:

(i) K is an AG-path component;
(ii) For every ιmo-simple path S, nodes in K are not C S-path equivalent to any node

in C S\K j , for all m = 1, . . . , n.
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Then det(JK) is an irreducible factor of ĥ.

Proof Apply (Madeira and Antoneli 2022, Thm 3.13) to each of the specialized sub-
networks GIm . The validity of condition (b) of (Madeira and Antoneli 2022, Thm 3.13)
for each specialized subnetwork GIM follows directly of condition (b) of this theorem.
It is then enough to prove that K is a path component of AGIM

, for all m = 1, . . . , n.
As K j is a path component of AG = ⋂

1≤M≤N AGIM
, then for each M = 1, . . . , N ,

there is a AGIM
-path component TM such that K ⊆ TM . By condition (b), it follows

that K = TM , for each M = 1, . . . , N . ��

4.2.2 Pleiotropic-structural homeostasis

Now we shall study the pleiotropic-structural blocks.
Let VG be the set of nodes of G, VG

ι the set of nodes that are ιm-super simple,
for all m = 1, . . . , n and VG

I the set of nodes that are IM -absolutely super-simple,
for all M = 1, . . . , N . In Madeira and Antoneli (2022), we introduced the notion
of absolutely super-simple nodes with respect to the input nodes. This suggests that
we can define absolutely super-simple nodes with respect to the inputs. This leads
to the question: Which subset of VG is more suitable to base the characterization of
pleiotropic-structural subnetworks:VG

ι or VG
I . The simple, yet paramount, observation

that the answer to this question is that both sets are equal.

Lemma 4.5 Let G be a multiple inputs core network. Then VG
ι = VG

I .

Proof It is enough to verify that VG\VG
ι = VG\VG

I . First, suppose there is a node
ρ ∈ VG\VG

ι . Then, there is at least one input node ιm such that ρ is not an ιm-super-
simple node. As G is a core network, there is an input IM such that f IM ,ιm �≡ 0, which
implies that ρ is not IM -absolutely super-simple and hence ρ ∈ VG\VG

I . On the other
hand, if ρ /∈ VG

I , then there exists M such that ρ is not IM -absolutely super-simple
⇒ ρ is not ιm-super-simple, for some m such that fIM ,ιm �≡ 0 ⇒ ρ /∈ VG

ι . ��

The importance of Lemma 4.5 is that it allows us to study the set VG
ι = VG

I through
either the characterization with respect to the input nodes or to the inputs, whichever
is more convenient. In particular, we can easily extend many of the results obtained
in Madeira and Antoneli (2022).

A slightly modification of the argument of Lemma 4.5 shows that the set of nodes
that are ιm-simple, for all m = 1, . . . , n, and the set of nodes IM -absolutely simple,
for all M = 1, . . . , N , are also equal. These observations justify the generalization of
the concept of absolutely simple and absolutely super-simple nodes.

Definition 4.5 Let G be a multiparamete core network.

(a) A node ρ is called absolutely super-simple if and only if it is an ιm-super simple
node, for all m = 1, . . . , n. Equivalently, ρ is called absolutely super-simple if
and only if it is an IM -absolutely super-simple node, for all M = 1, . . . , N .
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(b) A node ρ is called absolutely simple if and only if it is an ιm−simple node, for
all m = 1, . . . , n. Equivalently, ρ is called absolutely simple if and only if it is an
IM -absolutely simple node, for all M = 1, . . . , N . ♦

Following Madeira and Antoneli (2022), we now define a total order relation in the
set of absolutely super-simple nodes.

Definition 4.6 Let G be a multiparamete core network. Define a relation on VG
ι = VG

I
as follows: for any pair of nodes σ, τ ∈ VG

ι = VG
I , σ �= ρ, we write σ > ρ when ρ is

downstream from σ by all ιmo-simple paths, for any m = 1, . . . , n. ♦

Lemma 4.6 The relation on VG
ι = VG

I given in Definition 4.6 is a total order.

Proof This result is analogous to (Madeira and Antoneli 2022, Lem 3.15) ��
Consider now the ordered elements of VG

ι : ρ1 > ρ2 > · · · > ρp > o. Similarly to
Wang et al. (2021); Madeira and Antoneli (2022), we say that two elements ρk > ρk+1
of VG

ι are adjacent when ρk+1 is the first element of VG
ι which appears after ρk in

that ordering. We can now use this concept to introduce the elements that are crucial
to characterise pleiotropic-structural homeostasis blocks.

Definition 4.7 Let ρk > ρk+1 be adjacent elements of VG
ι . An ιm-absolutely simple

node ρ is between ρk and ρk+1 if there exists an ιwo-simple path that includes ρk to
ρ to ρk+1 in that order, for some w = 1, . . . , n. ♦

The idea is to construct the structural subnetworks employing the concepts above,
as it was done in Wang et al. (2021); Madeira and Antoneli (2022).

The absolutely super-simple subnetwork, denoted L(ρk, ρk+1), is the subnetwork
whose nodes are absolutely simple nodes between ρk and ρk+1 and whose arrows are
arrows of G connecting nodes in L(ρk, ρk+1). As we can characterise the absolutely
super-simple and absolutely simple nodes (and consequently the absolutely super-
simple subnetworks) with respect to each input node, we can construct the basic
unit of pleiotropic-structural homeostasis in the same way the basic unit of structural
homeostasis was constructed in Madeira and Antoneli (2022).

Definition 4.8 Let ρk and ρk+1 be adjacent absolutely super-simple nodes in G. The
absolutely super-simple structural subnetwork L′(ρk, ρk+1) is the input–output sub-
network consisting of nodes in L(ρk, ρk+1) ∪ B, where B consists of all absolutely
appendage nodes that are C Sm-path equivalent to nodes in L(ρk, ρk+1) for some
ιmo-simple path Sm , for some m ∈ {1, . . . , n}. That is, B consists of all AG-path
components Bi that are C Sm-path equivalent to nodes in L(ρk, ρk+1) for some Sm ,
for some m ∈ {1, . . . , n}. Arrows of L′(ρk, ρk+1) are arrows of G that connect nodes
in L′(ρk, ρk+1). Note that ρk is the input node and that ρk+1 is the output node of
L′(ρk, ρk+1). ♦
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We shall employ the characterisation of super-simple structural subnetworks with
respect to each of the input nodes. This was the strategy employed in Madeira and
Antoneli (2022), and hence we will be able to apply directly the results contained in
Madeira and Antoneli (2022, Sect. 3.4.2) to the case of networks with multiple inputs.

First, for ρk and ρk+1 adjacent ιm-super-simple nodes in the core subnetwork Gm ,
define as in Madeira and Antoneli (2022) the ιm-super-simple structural subnetwork
L′

m(ρk, ρk+1) as the input–output subnetwork consisting of nodes in Lm(ρk, ρk+1) ∪
Bm , where Bm consists of all ιm-appendage nodes that are Cm Sm-path equivalent to
nodes inLm(ρk, ρk+1) for some ιmo-simple path Sm . As usual, arrows ofL′

m(ρk, ρk+1)

are arrows of Gm that connect nodes in L′
m(ρk, ρk+1).

We notice that (Madeira andAntoneli 2022, Lemma 3.21) is still valid in the current
context. Hence, we obtain the following.

Lemma 4.7 Let ρk > ρk+1 be two adjacent absolutely super-simple nodes. Then
L′

m(ρk, ρk+1) = L′(ρk, ρk+1), for every m = 1, . . . , n.

Theorem 4.8 Let KB be a subnetwork of G associated with a pleiotropic-structural
block B. Then G has adjacent absolutely super-simple nodes ρk and ρk+1 such that
KB = L′(ρk, ρk+1).

Proof If B is an irreducible pleiotropic-structural block, then it is a structural block
associated to each specialized subnetwork GIM . Fix an input IM and consider the cor-
responding specialized subnetwork GIM . By Madeira and Antoneli (2022, Thm 3.22),
(Golubitsky and Wang 2020, Thm 6.11) and Lemma 4.7, this implies that there exist
ιm-absolutely super-simple nodes ρkM and ρkM +1 such that KB = L′

m(ρkM , ρkM +1)

for all m such that ιm is an input node of the specialized subnetwork GIM . Now, as
the input and output nodes of all these networks must be the same, we conclude that
there exist absolutely super-simple nodes ρk, ρk+1 such that for all m = 1, . . . , n,
KB = L′

m(ρk, ρk+1). By Lemma 4.7, this means that KB = L′(ρk, ρk+1). ��

The argument in the proof of Theorem 4.8 suggests that, as in the case of input–
output networks with only one input (Madeira and Antoneli 2022; Golubitsky and
Wang 2020), a multiple inputs input–output network supports pleiotropic-structural
homeostasis whenever there are more than one absolutely super-simple node.

Theorem 4.9 If G has absolutely super-simple nodes other than the output node, then
each absolutely super-simple structural subnetwork corresponds to a pleiotropic-
structural homeostasis subnetwork.

Proof Consider the adjacent absolutely super-simple nodes ρk, ρk+1 in G. By
Lemma 4.5, for every m = 1, . . . , n, we have L′

m(ρk, ρk+1) = L′(ρk, ρk+1). As
proved in Madeira and Antoneli (2022, Cor 3.23), this means that the homeostasis
matrix of L′(ρk, ρk+1) is an irreducible structural homeostasis subnetwork of each
IM -specialized subnetwork GIM . Therefore the homeostasis matrix of L′(ρk, ρk+1)

is an irreducible pleiotropic-structural homeostasis subnetwork. ��
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5 Conclusion and outlook

In this paper, we present a framework for the analysis and classification of homeostasis
types multiple input single output networks. We accomplish this by generalizing and
extending the results of Wang et al. (2021) and Madeira and Antoneli (2022) for the
classification of homeostasis types in single-input networks single-output networks.
Wang et al. (2021) treat the case where the single input parameter affects a single
input node and Madeira and Antoneli (2022) consider the case where the single input
parameter may affect multiple input nodes.

In the terminology of Golubitsky and Stewart (2022) our theory is an example
of a model independent approach. This means that the classification results obtained
here provide a complete list of possible behaviors, with respect to homeostasis, that
is independent of the model equations—the list depends only on the topology of the
network. Which of those behaviors will be observed in a particular realization of the
dynamics (e.g. a model equation) depends on the specific form of the dynamics.

We illustrate the application of the theory in several examples. In Sect. 2.9, Exam-
ple 2.15, we analyze the simplest class of multiple inputs networks: the two inputs,
three node networks, where each input node is affected by exactly one input parame-
ter (see Fig. 3). In Example 2.16 we have a two inputs, three node network violating
this condition—namely, with more than one input parameter affecting the same input
node (see Fig. 4). Finally, in Sect. 3 we consider a biologically realistic model for the
co-regulation of calcium and phosphate (Granjon et al. 2017) (see Fig. 5).

In three of the eight networks in Fig. 3—cases (b), (e) and (f)—and the network
in Fig. 4, we found the ‘simultaneous occurrence’ of infinitesimal homeostasis and
steady-state bifurcation, for certain coincidental homeostasis types (see Remark 2.17).
Strictly speaking, this kind of behavior is forbidden by definition, because at a bifur-
cation point the input–output function becomes ill-defined. However, it is possible,
in certain situations, to extend the definition of input–output function to allow for the
presence of singular points (see Duncan et al. 2018; Duncan and Golubitsky 2019).
These extensions of the notion of homeostasis open up the door for a rich variety of
phenomena. For instance, in Mulukutla et al. (2014) the authors investigate glycoly-
sis metabolism and discover a switch mechanism based on a bistability phenomena
occurring simultaneously with homeostasis.

The systematic blending of homeostasis and steady-state bifurcations seems to be
a promising research avenue. In this regard, the infinitesimal homeostasis approach
has some benefit due to its singularity theoretic flavor and the fact that there exists a
mature theory of bifurcations based on singularity theory (Golubitsky and Schaeffer
1985; Golubitsky et al. 1988). In fact, Duncan and Golubitsky (2019) is, in part, an
attempt to explain the observations of Mulukutla et al. (2014) using singularity theory
to uncover the ‘interaction’ between homeostasis and steady-state bifurcations.

In our examples it seems that the interaction between homeostasis and steady-state
bifurcations is ‘caused’ by the overlapping of the subnetworks associated to certain
coincidental blocks in distinct components of the vector determinant. This is distinct
from the phenomena discovered in Duncan et al. (2023), where it is shown that an
interaction between homeostasis and steady-state bifurcations may occur already in
single input node, single input parameter networks.
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Regarding the classification of homeostasis types, we were able to completely
characterize the pleiotropic homeostasis types and have provided necessary and suf-
ficient conditions for its occurrence (Sect. 4). The main result essentially says that
pleiotropic homeostasis types are exactly the homeostasis types that occur in single
input parameter, single input node networks.

As for the coincidental homeostasis type, the situation is much more complex.
On one hand, were able to obtain some sufficient conditions for its occurrence (see
Proposition 2.9). On the other hand, we have given examples where only pleotropic
types can occur (Proposition 2.6) and examples where only coincidental types can
occur (Example 2.16, cases (a), (b), (c), (d), (f) and the network for calcium and
phosphate homeostasis). Furthermore, by Proposition 2.8 any core networkmust have
at least onehomeostasis type.Which implies that if there is no coincidental homeostasis
type the all homeostasis types must be pleiotropic. All these considerations suggest
that a necessary and sufficient condition for occurrence of coincidental types seems
rather elusive (see Remark 2.14) and is an important open problem at the moment.
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