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Abstract
We propose a stochastic framework to describe the evolution of the B-cell reper-
toire during germinal center (GC) reactions. Our model is formulated as a multitype
age-dependent branching process with time-varying immigration. The immigration
process captures the mechanism by which founder B cells initiate clones by gradually
seeding GC over time, while the branching process describes the temporal evolution
of the composition of these clones. The model assigns a type to each cell to represent
attributes of interest. Examples of attributes include the binding affinity class of the
B cells, their clonal family, or the nucleotide sequence of the heavy and light chains
of their receptors. The process is generally non-Markovian. We present its properties,
including as t → ∞ when the process is supercritical, the most relevant case to study
expansion of GC B cells. We introduce temporal alpha and beta diversity indices for
multitype branching processes. We focus on the dynamics of clonal dominance, high-
lighting its non-stationarity, and the accumulation of somatic hypermutations in the
context of sequential immunization. We evaluate the impact of the ongoing seeding of
GC by founder B cells on the dynamics of the B-cell repertoire, and quantify the effect
of precursor frequency and antigen availability on the timing of GC entry. An appli-
cation of the model illustrates how it may help with interpretation of BCR sequencing
data.
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1 Introduction

During an infection, the immune system initiates a response to protect the body
from the invading pathogen and establish immunity against future reinfections. This
response often relies on B cells, a class of lymphocytes specialized in the production
of antibodies that neutralize invaders by binding to foreign target molecules on the
pathogen called antigens. Since each antibody binds to specific molecules, a highly
diverse B-cell repertoire is essential for achieving robust immune protection. While
naive B cells express antibodies with considerable molecular diversity due to somatic
recombination (Dreyer and Bennett 1965; Tonegawa 1983), the B-cell repertoire must
undergo additional diversification to effectively respond to a vast array of evolving
pathogens (Janeway et al. 2005).

The B-cell repertoire further diversifies during affinity maturation, the Darwinian
evolutionary process that occurs in germinal centers (GC) (Janeway et al. 2005;
MacLennan 1994; De Silva andKlein 2015). GC are temporary structures that develop
in secondary lymphoid tissues such as lymphnodes, spleen, tonsils, andPeyer’s patches
in the gut. They provide the microenvironment that supports and regulates adaptation
of theB-cell repertoire to the invading pathogen. They are continually seeded byBcells
selected for their ability to bind to the antigen (Schwickert et al. 2007). They include
two distinct anatomical compartments, the dark and light zones, betweenwhich B cells
traffic back and forth to undergo successive rounds of proliferation and somatic hyper-
mutation followed by antigen-mediated selection (Eisen and Siskind 1964; Weigert
et al. 1970; Jacob et al. 1991; Muramatsu et al. 2000). Somatic hypermutation occurs
at an extraordinarily high rate estimated at ∼ 2 × 10−4 − 10−3 per base pair per
generation which is about a million times greater than the mutation rate observed in
other parts of the genome (Berek and Milstein 1987; McKean et al. 1984).

Understanding the rules of affinity maturation has major clinical applications. For
example, several clinical trials currently in progress are testing novel HIV vaccines
that seek to harness this process to elicit B cells able to secrete broadly neutralizing
antibodies (bnAbs) similar to those isolated in people living with HIV (Leggat et al.
2022). By deciphering the rules governing antibody maturation, immunologists could
manipulate GC to devise effective immunogens (i.e., molecules capable of inducing
an immune response) and vaccination strategies aimed at preventing HIV acquisition
and infection against other pathogens.

Mathematical models have played a crucial role in advancing our understanding
of the dynamics of GC B cells, shedding light on this complex evolutionary sys-
tem. Notably, pioneering work in the field can be found in (Agur et al. 1991; Kepler
and Perelson 1993a, b, 1995; Oprea and Perelson 1997; Kleinstein and Singh 2001;
Meyer-Hermann et al. 2001; Iber and Maini 2002) while a recent review is provided
in Buchauser and Wadermann (2019). Many of these models are formulated as agent-
based models that evaluate properties of GC via simulations. While this approach
considers the stochastic nature of GC reactions, it may be computer-intensive and
only yield conclusions for chosen parameter values. In this paper, we propose a com-
prehensive stochastic framework that allows for a more systematic exploration of
properties across a range of plausible parameter values. We demonstrate the utility of
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this framework by showing that it predicts established properties of GC, while offering
explanations for these properties and enabling the identification of new ones.

Somatic hypermutation and the competition between GC B cells are two central
factors that structure evolution and adaptation of the B-cell repertoire. We propose
a model that captures the most salient features of the process by assuming that the
dynamics of GC B cells is controlled by three mechanisms: (1) the continual recruit-
ment of founder B cells; (2) clonal expansion; and (3) somatic hypermutation of the
BCR-encoding immunoglobulin (Ig) gene loci.

The continual recruitment of founder B cells induces an influx of B cells into GC
and initiates the formation of clones (Schwickert et al. 2007, 2009; Turner et al. 2017).
Wemodel this mechanism using a counting process, potentially time-inhomogeneous.
Evolution of B-cell clones is driven by cellular division, death, and differentiation,
whichwedescribe using an age-dependent branching process. Finally, accumulation of
somatic hypermutations, the mechanism which randomly alters the binding properties
of BCR, is captured by assigning a type to each cell and defining a network specifying
the set of admissible transitions between types as cells divide. It is important to note
that types need not represent nucleotide or amino acid sequences of BCR, but could
instead reflect associated properties such as binding affinity classes or clonal fami-
lies. Differences in the probability of death between types capture differential fitness
(competition) between different types of B cells. The resulting model is a multitype
age-dependent branching process with immigration, potentially time-varying, extend-
ing previously considered models (e.g., Sevastyanov 1957; Jagers 1968; Hyrien et al.
2005, 2017, 2015; Pakes and Kaplan 1974; Mitov et al. 2018; Slavtchova-Bojkova
et al. 2023a, b; Yakovlev and Yanev 2006). The model allows tailored network archi-
tectures to study evolution of a variety of features of the BCR repertoire. Numerical
methods have been proposed to implement these models (e.g., saddlepoint approxi-
mations to moments Hyrien et al. 2010).

We demonstrate the flexibility of the framework by studying threemodel structures.
The first one classifies B cells according to their binding affinity for a given antigen
(see Sect. 3.5.1). We show that, as a class, lower binding affinity B cells have a com-
petitive advantage over their higher-affinity counterparts because of their propensity to
engage in GC reactions earlier, attributed to their higher abundance. We also find that
clonal families should contain B cells with diverse binding affinity levels that grow in
size at the same rate within their respective clones, a finding aligning with previous
observations (Kuraoka et al. 2016; Bannard and Cyster 2017). No definitive mecha-
nisms have been put forth to explain this phenomenon; our model shows that it could
be, in part, attributed to the combined effects of clonal expansion and somatic hyper-
mutation (Sect. 3.7). Mathematically, this property emerges from the communication
between cell types (or, equivalently, the irreducibility of the mean offspring matrix).
From a biological standpoint, it results from the fact that somatic hypermutation may
alter affinity for the antigen, and that these alterations can be reversed.

Several studies have shown that early GC harbor B cells from multiple clonal
families, potentially hundreds, and gradually loose this clonal diversity to become
oligoclonal (i.e., dominated by a few clones) (Kroese et al. 1987; Janeway et al. 2005;
Faro and Or-Guil 2013; Tas et al. 2016). To study evolution of clonal dominance, we
consider a second model in which each type identifies a clonal family. Analysis of the
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Fig. 1 Principle of a successful sequential immunization strategy. The vaccine regimen begins with a
priming immunogen seeking to induce B cells with genetic and molecular signatures expected to allow HIV
bnAb production. B cells induced by the prime consist of both desired and non-desired (on- and off-target)
B cells that express BCR with limited somatic hypermutations and lack the ability to neutralize the virus.
To induce B cells with neutralizing activities, the immune system is boosted by a series of immunogens
designed to support further maturation of B cells from clonal families induced by previous vaccine doses
and select somatic hypermutations relevant for broad neutralization against HIV. After each vaccination,
on-target B cells compete with off-target B cells for antigen-mediated selection

model supports that oligoclonality arises from differential binding affinity between
clones. It also suggests that clonal dominance may be a temporary feature repeatedly
lost to newer clones until the GC reaction stops (see Sects. 3.5.2, 5).

We introduce a third model designed to examine the divergence of BCR sequences
from their unmutated (germline) ancestors, driven by the accumulation of somatic
hypermutations. This model is relevant for characterizing the evolution of the B-cell
repertoire in the context of immunization. Most vaccines achieve protection through
induction of antibodies (Plotkin 2008). Protective vaccines against the human immun-
odeficiency virus (HIV) have remained elusive to date. However, about 20–30% of
people with HIV infection develop bnAbs which neutralize many of the globally cir-
culating HIV strains through binding conserved regions of the virus (Doria-Rose et al.
2009). VRC01 is one bnAb that specifically targets the CD4 binding site on the HIV
virus. The efficacy of passive immunization with VRC01 against HIV acquisition was
recently tested in two clinical trialswhich showed that protection againstHIV infection
by VRC01 was confined to viruses highly susceptible to neutralization (Corey et al.
2021). Novel vaccines that seek to induce HIV bnAbs via sequential immunization are
currently being evaluated (Haynes and Mascola 2017; Leggat et al. 2022) (see Fig. 1
for a description of their principle). One challenging goal of this strategy is selection
of somatic hypermutations similar to those of HIV bnAbs, including rare substitu-
tions, capable of neutralizing the virus. One metric for assessing the vaccine-induced
immune response is the distance between the sequences of vaccine-elicited BCR to
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Fig. 2 Dynamics of germinal center B cells as captured by the proposed model. Founder B cells join the GC
at random time points (T1, T2, T3, T4 . . .). These arrival times are described by a point process, potentially
time-inhomogeneous. Each founder B cell initiates a clonal family in which B cells either divide or die. Each
cell is assigned a type at birth; when it divides it may produce offspring of different types (e.g., reflecting
the impact of somatic hypermutations). In the example depicted here, the population includes two types of
B cells, but more complex models with arbitrary number of types may be constructed

that of a designated target bnAb. The third model describes the progression of these
distances over time (Sect. 6).

The remainder of this paper is organized as follows. Section2 provides a brief
review of how antibodies are encoded and their structure. The general model is defined
in Sect. 3; see Fig. 2 for a graphical overview. Section3.2 discusses the model that
describes the seeding of GC. Section3.3 focuses on the particular case where this
model is a time-inhomogeneous Poisson process. Section3.4 presents the multitype
branching process that describes clonal expansion and the impact of somatic hypermu-
tation. The specificmodels introduced earlier are defined in Sect. 3.5.Model properties
are presented in Sects. 3.6, 5 and 6 to explore patterns of the dynamics of GC reac-
tions. Our study of clonal dominance relies on measuring the alpha and beta diversity
of B-cell repertoires; these indices are presented in Sect. 4 in the general context of
multitype branching processes. Throughout, results are discussed and illustrated in the
context of sequential immunization, introduced in Sect. 6.1. Technical details (proofs)
are provided in the Appendix.

2 Encoding and structure of antibodies

Antibodies consist of four polypeptide chains arranged in two identical pairs, with each
pair consisting of a heavy and a light chain connected by disulfide bonds (Fig. 3). The
stem of the (Y-shaped) antibody molecule, called the constant region, determines the
class of the antibody (IgG, IgA, IgM, IgD, and IgE). The tips of the antibody molecule
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are known as the antigen-binding regions or variable regions. The variable regions of
the antibody molecule contains regions called complementarity-determining regions
(CDR). There are three CDRs in both the variable heavy and variable light chains,
denoted as CDR1, CDR2, and CDR3. These loops are the most variable parts of
the antibody, and their unique sequences are responsible for antigen recognition. The
unique sequence of amino acids in the CDRs allows each antibody to bind to a specific
target antigen or a closely related group of antigens. Between the CDRs, there are four
regions known as framework regions (FR1-FR4) which provide the structural scaffold
for the variable region. While they are less variable than the CDRs, variations in the
nucleotide sequence of the FRs can still affect the antigen-binding properties of the
antibodies. The combination of the CDRs and the adjacent FRs forms the antigen-
binding site of the antibody.

The genetic information encoding the variable regions is divided into multiple
variable (V), diversity (D, only for heavy chains), and joining (J) gene segments.
During B cell development, the DNA of the B cell randomly rearranges one gene
segment from each V(D)J category per chain. The selected gene segments are joined
together, and any excess DNA between them is removed. This process which takes
place in the bone marrow is called somatic recombination. It results in a functional
gene encoding the variable region of the antibody. Variable regions are approximately
110–130 amino acid long in heavy chains, and slightly shorter in light chains. Most
positions are encoded by the V gene.

After the B cell encounters an antigen, it may undergo somatic hypermutation in
the variable regions of its Ig genes. This process introduces random mutations into
these genes, primarily in the CDRs. B cells with mutated antibodies that bind more
effectively to the antigen receive a survival advantage and are selected for further
proliferation, eventually leading to the production of high-affinity antibodies. Somatic
hypermutation further improves these antibodies for optimal antigen recognition. This
process produces more effective antibodies over time during an immune response. See
Janeway et al. (2005) for further details.

3 Stochastic modeling of GC B-cell dynamics

3.1 Classification of B cells into types

All BCR expressed on the surface of a B cell (around 120,000; Alt et al. 2015, p. 154)
share the same nucleotide sequence that determines their antigen specificity (Janeway
et al. 2005; Alt et al. 2015). During a GC reaction, proliferating B cells accumulate
somatic hypermutations in their Ig gene loci, causing BCR sequences to drift away
from the original (naive) sequence assembled during somatic recombination. This
evolutionary process, which enables adaptation of theB-cell repertoire,may be studied
frommany angles. Aside from the sequence of the B-cell receptors, relevant properties
(attributes) include their binding affinity class and clonal family. We propose a unified
modeling framework in which a generic type is assigned to each B cell. These types
are indexed by a setK, and we let K = |K| denote the total number of types, possibly
infinite, in the model. Types represent arbitrary attributes, but it may be convenient
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Fig. 3 Structure of antibodies; see Sect. 2 for details

to identify them by the first K integers and set K = {1, . . . , K } when useful. Every
B cell is assumed to belong to one of these K types which induce a partition of the
B-cell repertoire.

3.2 Seeding of germinal centers as a counting process

Schwickert et al. (2007) experimentally showed that GC are open structures that are
continually visited and seeded by naive follicular B cells (Schwickert et al. 2007). We
describe the ongoing seeding of GC using K type-specific immigration processes, one
per cell type. These processes are formulated by defining K sequences of positive and
increasing random variables (r.v.) {Tk�, � = 1, 2 . . .} where 0 ≤ Tk1 ≤ Tk2 · · · a.s.,
k ∈ K. Each of these sequences represents the successive time points at which type-k
founder B cells join the GC reaction. The first type-k founder B cell enters the GC
at time Tk1, the second one at time Tk2, and so on. The sequence {Tk�, � = 1, 2 . . .}
generates a counting process �k(t) = ∑∞

�=1 1{Tk�≤t}, t ≥ 0, which represents the
number of type-k founder B cells that have entered the GC by time t . Let {T�, � =
1, 2 . . .} = ⋃

k∈K{Tk�, � = 1, 2 . . .} denote the collection of all time points at which
founder B cells enter the GC, and define the overall immigration process

�(t) =
∞∑

�=1

1{T�≤t} =
∑

k∈K
�k(t) (t ≥ 0), (1)

which represents the total number of founder B cells that have joined the GC by time t ,
regardless of type. The specification of the counting processes {�k(·)}k∈K is context-
dependent. Given its importance in applications, the Poisson process is treated in detail
in the next section. An example where they are not defined as Poisson processes is
given in Sects. 3.5.2 and 5.

3.3 A time-inhomogeneous Poisson race

Throughout this section, we assume that:
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(A1) {�k(·)}k∈K are mutually independent Poisson processes with local intensities
rk(t) > 0 and mean measures Rk(t) = ∫ t0 rk(x)dx < ∞, t ≥ 0, k ∈ K.

The rate at which founder B cells enter GC has not been fully elucidated, and each
�k(·) could be formulated as a time-homogeneous Poisson process for simplicity.
The ability of naive antigen-specific B cells to enter pre-existing GC is impacted by
multiple factors, including antigen availability. Turner et al. (2017) showed that B
cells that acquire a small amount of antigen can enter GC at any stage of the reaction;
however, naive antigen-specific B cells may be recruited during a more restricted time
window (within 6–10 days) (Turner et al. 2017). Taken together, these findings support
specifying�k(·) as a time-inhomogeneous Poisson process with rate r(·) functionally
related to antigen availability.

We refer toResnick (1992) andDurrett (2004) for discussions on Poisson processes,
and recall the following useful five facts about them:

• Fact 1: P{�k(t) = n} = Rk(t)ne−Rk (t)/n!, n = 0, 1 . . ., k ∈ K, t ≥ 0.
• Fact 2: E(�k(t)) = Var(�k(t)) = Rk(t), k ∈ K, t ≥ 0.
• Fact 3: If�1(·) and�2(·) are independent, possibly time-inhomogeneous, Poisson
processes with local intensities r1(·) and r2(·), then �1(·) + �2(·) is a Poisson
process with local intensity r1(·) + r2(·).

• Fact 4: If �1(·) + �2(·) jumps by one unit at time t , then the probability that the
jump is due to �1(·) is r1(t)/(r1(t) + r2(t)).

• Fact 5:The time of arrival of the first type-k founder in the GC, Tk1, is a continuous
r.v. with probability density function (p.d.f.) fk1(t) = rk(t)e−Rk (t), t ≥ 0, and
expectation μk1 = ∫∞

0 e−Rk (v)dv.

When K is finite, we deduce from Fact 3 that �(·) is a Poisson process with local
intensity r(·) = ∑

k∈K rk(·). When K = ∞, this property still holds if R(t) =∑
k∈K Rk(t) < ∞, t ≥ 0.
To identify the type of the �-th founder, define a r.v. I� = (I�k, k ∈ K) where I�k

denotes the number of type-k founder B cells that entered the GC at time T�, � =
1, 2 . . .. We assume that a single B cell immigrates at each time T�; hence, I�k ∈ {0, 1}
and

∑
k∈K I�k = 1 with probability one. We also assume that {I�}∞�=1 are independent

and identically distributed (i.i.d.) r.v. with p.g.f. g(s) = E
(
sI�
) = ∑

k∈K gksk where
sα =∏k∈K sαk

k .
On occasion, we will make the following assumption:

(A2) There exists positive constants {gk}k∈K such that
∑

k∈K gk = 1 and rk(t) =
gkr(t) for every t ≥ 0 and k ∈ K.

Under Assumption (A2), temporal fluctuations in the influx of founder B cells remain
identical across types, up to the multiplicative constants gk . Together with Fact 4, this
implies that gk = rk(t)/

∑
i∈K ri (t) is the probability that a founder B cell that joins

the GC at time t is of type k. Assumption (A2) implies that these probabilities remain
unchanged throughout time, even when r(·) is time-dependent. When each process
�k(·), k ∈ K, is a time-homogeneous Poisson process with rate gkr0 for some constant
r0 ∈ (0,∞), then �(·) is a time-homogeneous Poisson process with rate r(·) ≡ r0.

For every k ∈ K, the r.v. Tk1 denotes the waiting time until the first type-k founder
enters the GC. According to Fact 5, Tk1 has a distribution with hazard rate rk(·). If
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Fig. 4 From left to right: median, mean, and ratio of medians (or means) of the time to first type-k founder
joining the GCwhen the time-inhomogeneous Poisson process has local intensity rk (t) = gkr0t

γ (r0 = 1).
These parameters are plotted as a function of γ ∈ (−1, 1)

immigration is time-homogeneous, with rk(t) = gkr0, t ≥ 0, then Tk1 ∼ Exp(gkr0).
If rk(t) = gkr0tγ for some constants r0 > 0 and γ > −1, then Tk1 has a Weibull

distribution with shape and scale parameters 1 + γ and
(
1+γ
gkr0

) 1
1+γ

, heavy tailed

when the immigration rate decreases over time at a polynomial rate γ ∈ (−1, 0).

Its median and mean are
(
1+γ
gkr0

) 1
1+γ

ln(2)
1

1+γ and
(
1+γ
gkr0

) 1
1+γ

�
(
1 + 1

1+γ

)
where

�(z) = ∫∞
0 uz−1e−udu, and the ratio of themedians ormeans of thewaiting time until

first type-k and first type-k′ founders join the GC are both given by (gk′/gk)
1

1+γ . We
note that the assumption of a decreasing immigration rate may partly reflect current
vaccination strategies where doses are typically administered as a bolus.

Figure 4 shows the median, mean, and ratio of medians or means of Tk1 as a
function of γ , for various values of the precursor frequency gk and of gk/gk′ . As gk
decreases, both the median and mean increase. The median is neither a decreasing nor
monotone function of γ ∈ (0,∞): it increases for γ ∈ (−1, (gkr0e1 − ln 2)/ln 2)
and decreases for γ ∈ (gkr0e1 − ln 2)/ln 2,∞). The ratio comparing the medians
for two cell types (less versus more abundant) decreases for γ ∈ (−1,∞). When the
influx of B cells recruited by the GC slows down (γ ∈ (−1, 0)), the median waiting
time is disproportionately longer for rarer cell types, and shorter when the influx
accelerates. For instance, with an immigration rate decreasing at a rate of γ = −1/2
(i.e., rk(t) = gkr0t−1/2), every halving of the frequency of the founder B cells (i.e.,
gk/gk′ = 2) causes the median or mean waiting time to increase by a factor of 4

(= 2
1

1−1/2 ), compared to 2 (= 2
1

1−0 ) when immigration is stationary (rk(t) = gkr0,
γ = 0).

Remark 1 (Biological relevance) During an immune response, the recruitment of new
B cells by GC may slow down when the amount of antigen that fuels the reaction
decreases (Turner et al. 2017). The time until rare B cells (which tend to join the
reaction later than more common ones, as discussed below and in Remark 2) join the
GC may be longer than the waiting time for more common B cells. The fueling of GC
by a continual supply of antigen, perhaps characteristic of chronic infections or GC
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in the gut, could increase the likelihood of rare B cells entering GC. This observation
has clinical applications, particularly for the development of vaccines that seek to
elicit responses from B cells with rare genetic and molecular signatures which could
benefit from sustained immunogen delivery. A related phenomenon has been recently
reported (Lee et al. 2022).

The recruitment of founder B cells into GC can be cast as a competition between
classes of B cells that race against each other to place some of their members into the
GC reaction. Let

N (K1,K2) :=
∑

k1∈K1

�k1

(
min
k2∈K2

Tk21
)

denote the number of type-k1 founder B cells, k1 ∈ K1, that have joined a given GC
by the time the first type-k2 founder B cell, k2 ∈ K2, joins the same GC; this time is
mink2∈K2 Tk21.

Suppose that K1 and K2 are two non-overlapping subsets of K, that Assump-
tion (A2) holds, and

∑
k∈K1∪K2

Rk(t) < ∞, t ≥ 0. Then,
∑

k1∈K1
�k1(t) and∑

k2∈K2
�k2(t) are independent Poisson processes, and N (K1,K2) has a geomet-

ric distribution with success probability
∑

k2∈K2
gk2/

∑
k∈K1∪K2

gk which does not
depend on r(·); that is,

P
{
N (K1,K2) = n

} =
∑

k2∈K2
gk2

∑
k∈K1∪K2

gk

( ∑
k1∈K1

gk1
∑

k∈K1∪K2
gk

)n

(n = 0, 1 . . .). (2)

Moreover,

∑
k2∈K2

gk2
∑

k∈K1∪K2
gk

N (K1,K2)
D−→ Exp(1) as

∑
k2∈K2

gk2
∑

k∈K1∪K2
gk

→ 0. (3)

It immediately follows from (2) that E(N (K1,K2))

=
∑

k1∈K1
gk1∑

k2∈K2
gk2

and Var(N (K1,K2)) =
(∑

k1∈K1
gk1∑

k2∈K2
gk2

)2

+
∑

k1∈K1
gk1∑

k2∈K2
gk2

. Thus, when

Assumption (A2) holds, the mean number of type-k1 founder B cells, k1 ∈ K1, joining
the GC during the time interval [0,mink2∈K2 Tk21] grows inversely proportional to the
precursor frequency of type-k2 cells, k2 ∈ K2:

∑
k2∈K2

gk2 .

Remark 2 (Biological relevance) The proportions {gk, k ∈ K} represent the frequen-
cies of antigen-specific B cells among each type of B-cell precursors recruited by GC.
It has been estimated that, in humans, the frequency of VRC01-class CD4 binding site
antibody precursors is about 1 in 2.4 million B cells. Precursors for other HIV-like
bnAbs (e.g., PGT121) may be even more rare (Jardine et al. 2016; Steichen et al.
2016). The practical implication of the above results is that immunogens used by
germline-targeting vaccines must substantially enrich the pool of on-target B-cells so
they will not be outcompeted by off-target B cells selected for entry in GC induced
by boost vaccination.
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The continual seeding of GC has also implications on the diversification of the
B-cell repertoire. Our results suggest that GC tend to be initially colonized by com-
monly found precursors (e.g., B cells founding clones with ‘average’ binding affinity
potential, sufficient to enter GC) before they recruit the rarest ones (e.g., B cells able
to produce high binding affinity B cells). By the time the first high affinity B cell joins
the reaction, the GCwill have been visited by many B cells with lower binding affinity
potential. Each of these early founder B cells may initiate a clone at a time where
competition for the antigen may not yet be at its peak. This mechanism may therefore
support diversification of GC B cells during the earliest stage of the reaction. The
waiting time until the highest binding affinity B cells join the reaction allows B cells
with lower binding affinity to undergo somatic hypermutations, further diversifying
the BCR repertoire. Thus, as a class, lower binding affinity B cells have a temporary
competitive advantage over high binding affinity B cells due to the timing of their
arrival which allows them to clonally expand. Although (rare) high binding affinity
founder B cells tend to join GC later, their clones may still outnumber lower affinity
clones if they have higher fitness. Another consequence of the continual seeding is
clonal instability in the GC, a phenomenon studied in Sect. 5 which also diversifies
the B-cell repertoire through the turnover of dominant clones.

3.4 Branchingmechanism and intra-clonal evolution

For every k ∈ K, the lifespan of any type-k cell is described by a non-lattice r.v. τk
with cumulative distribution function (c.d.f.) Gk(x) = P{τk ≤ x}, x ∈ [0,∞), with
Gk(0) = 0. At the end of its lifespan, every type-k cell produces a random number of
offspring described by a r.v. ξk = (ξk j , j ∈ K)where ξk j denotes the number of type- j
daughter cells.We assume that cells either die or divide; hence,

∑
j∈K ξk j ∈ {0, 2}. Let

hk(s) = E

(∏K
j=1 s

ξk j
j

)
, s = (s1, . . . , sK ), denote the probability generating function

(p.g.f.) of ξk . Lastly, within a clone, every cell evolves independently of every other
cell.

Let C(k) denote any type-k cell. Define pk0 = P{C(k) → ∅} and pki j = P{C(k) →
(C(i),C( j))} where pk0 is the probability that any type-k cell completes its lifespan
without producing any offspring either because it dies, or differentiates into a plasma
or memory B cell, or exits the GC; and pki j denotes the probability that any type-
k cell divides into two cells of types i and j , respectively, with i, j, k ∈ K. Put
pk2 = 1 − pk0 for the probability of division of any type-k cell. Let qki j = P{C(k) →
(C(i),C( j))|C(k) divides} = pki j/(1 − pk0) denote the conditional probability that
any type-k cell divides into one type-i andone type- j cell. The conditional probabilities
{qki j }i, j∈K capture the impact of somatic hypermutation on type-k cells that manifests
at division.Notice that {C(k) → (C(i),C( j))} = {C(k) → (C( j),C(i))}. Hence, for
every k ∈ K, the p.g.f. hk(s) may be expressed as hk(s) = pk0 +∑i∈K

∑K
j=i p

k
i j si s j ,

hk(1) = 1.
Let mi j = E(ξi j ) = ∂hi (s)

∂s j
|s=1 = ∑ j

n=1 p
i
nj + ∑K

n= j p
i
jn denote the expected

number of type- j cells produced by any type-i cell at the end of its lifespan. Define
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Fig. 5 Four examples of network architectures describing the interconnection between cell types. In each
example, the nodes represent the types and the edges identify the set of admissible transitions between types.
For simplicity, self-renewing division (without change in type) and cell death are not shown in the graphs.
Architecture 1: The process includes five types, with each type representing a binding affinity class (from
lowest (1) to highest (5)) positioned along two mutational pathways; type-1 cells may produce type-2 and
type-3 cells, and vice versa, allowing offspring to reversibly enter either one of the pathways: type-2 cells are
less likely than type-3 cells to produce offspring of highest affinity (type-5); this first example is introduced
in Sect. 3.5.1. Architecture 2: The model includes countably many types, each type representing one of
the clonal families seeding a GC, ranked in the order in which they join the GC; in this second example,
introduced in Sect. 3.5.2, the types do not connect. Architecture 3: Each type in the model represents the
nucleotide sequence of the immunoglobulin gene loci that encode the heavy and/or light chains of the BCR;
in this third example, briefly introduced in Sect. 3.5.3, transitions between types arise through somatic
hypermutation. Architecture 4: The model offers a simplified description of the accumulation of somatic
mutations in the Ig gene loci of B cells; the state space is a 5-dimensional vector: its first two entries
represent the number of mutated and unmutated positions among those at which the germline and a target
bnAb match (ν11 ∪ ν12); its last three entries represent the number of mutated and unmutated positions
among those at which the germline and bnAb do not match (ν21 ∪ ν22 ∪ ν23); specifics about the model,
in particular why three entries are needed in the latter case, are explained in Sect. 6

the associated matrix of mean offspring

M =
⎛

⎜
⎝

m11 · · · m1K
...

. . .
...

mK1 · · · mKK

⎞

⎟
⎠ ,

and write mi = ∑
j∈K mi j for the total mean number of offspring produced by any

type-i cell. Then, mi j = (1 − pi0)
(∑ j

n=1 q
i
nj +∑K

n= j q
i
jn

)
. Let β i

jk = ∂2hi (s)
∂s j ∂sk

|s=1 =
E{ξi j (ξik − δik)} where δik = 1{i=k}, for every i, j, k ∈ K.

Let Z(t) = (Zk(t))k∈K, t ≥ 0, where Zk(t) is the number of type-k cells at
time t , k ∈ K, generated by the above-defined multitype branching process. Put
Z(t) =∑K

k=1 Zk(t) for the size of the clonal family at time t .
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3.5 Examples of model structures

We consider a few illustrative examples of model structures, shown in Fig. 5.

3.5.1 Example 1: modeling evolution of binding affinity classes

The role of GC is to generate high binding affinity B cells through somatic hypermu-
tation, antigen-mediated selection, and clonal expansion. Our first model classifies the
B cells that populate a GC into types that each represents a binding affinity class for
one of the antigens fueling the reaction. The affinity level of an antibody refers to its
strength in binding to a specific antigen and the stability of the resulting complex. A
higher affinity indicates a stronger interaction between the antibody and antigen.

Many clonal families originate from a founding B cell with a relatively low affinity,
but nevertheless sufficient to secure entry into the GC. Their descendants are subjected
to somatic hypermutation which may either leave binding affinity virtually unchanged
or altered. When their affinity improves, B cells are more likely to persist in the GC,
captured by a decrease in the probability of death (pk0). The branching mechanism
and topology of the transition network are formulated to describe propagation of the
members of a clonal family over the various affinity classes under a given scenario.
The example shown in Fig. 5 allows two mutational pathways. Both of them enable
enhancement of affinity, but one is a mutational dead-end, prematurely restricting
improvement of affinity. It extends the catenary model studied in Kleinstein and Singh
(2001).

3.5.2 Example 2: an infinite-type model of clonal dominance

In the second example, GC B cells are classified according to the founder B cell from
which they descend: descendants of the first founder are all of type 1; descendants
of the second founder are all of type 2; and so on. Thus, here, each type identifies a
particular clonal family, types do not communicate with each other, K = {1, 2 . . .},
and K = ∞. The offspring mean matrix is

M = 2

⎛

⎜
⎝

1 − p10 0 0 · · ·
0 1 − p20 0 · · ·
...

. . .
. . .

⎞

⎟
⎠ , (4)

and the lifespan of any type-k cell follows a distribution with c.d.f. Gk(·). We use
this model to study the dynamics of clonal dominance within GC. The model predicts
that GC are initially clonally highly diverse, before gradually loosing their clonal
diversity and converging toward dominance by a few clonal families. These predictions
corroborate previous experimental observations. Additionally, clones that dominate a
GC reaction are eventually replaced by new ones, until the reaction stops.
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3.5.3 Example 3: mutational gains and losses relative to a germline gene and a
target antibody

Evolution of the BCR repertoire may be described at the sequence level by building a
model in which each type represents the nucleotide sequence of a particular BCR and
postulating how somatic hypermutations induce transitions between types at division
(Fig. 5, architecture 3). However, the complexity of the rules of somatic hypermutation
and affinity-based selection makes the formulation of such a model difficult (requiring
specification of ≥ 4L(4L − 1) transition probabilities for nucleotide sequences of
length L). In this paper, we propose a simpler evolutionary model that focuses on
gains and losses of mutations relative to a germline and a target antibody sequence.
The model partitions positions of the heavy and/or light chain sequence into 5 distinct
subsets to capture mutations at positions at which the bnAb and germline match or
differ (Fig. 5, architecture 4; see also Sect. 6).

3.6 Properties of the general model

Let X�, � = 1, 2 . . ., be i.i.d. r.v. representing the type of the �-th founder B cell. When
assumption (A1) holds, it follows from Fact 4 that P

{
X� = k

} = rk(t)/r(t), k ∈ K.

Let Z(�)(t) = (
Z (�)
k (t), k ∈ K), t ≥ 0, where Z (�)

k (t) denotes the number of type-k
cells in the �-th clone t units of time after its initiation, and with initial condition
Z(�)(0) = eX�

where ek is a K -dimensional vector with all entries equal to 0 except
for a one in the k-th place. We assume that:

(A3) {Z(�)(·)}∞�=1 are i.i.d. copies of Z(·) started with one cell of type {X�}∞�=1.

Put F(t; s) = (
Fk(t; s), k ∈ K) where Fk(t; s) = E

(
sZ

(1)(t)|X1 = k
)
denotes the

conditional p.g.f. ofZ(1)(t), given the process begins with one type-k cell. These p.g.f.
are the unique solutions of the nonlinear integral equations:

Fk(t; s) =
∫ t

0
hk(F(t − u; s))dGk(u) + sk(1 − Gk(t)) (k ∈ K) (5)

with boundary conditions Fk(0; s) = sk , k ∈ K [see Mode (1971), Athreya and Ney
(1972)].

For every t ≥ 0, define Akj (t) = E(Z (1)
j (t) | Z(1)(0) = ek) and Bk

i j (t) =
E(Z (1)

i (t)(Z (1)
j − δi j )|Z(1)(0) = ek) where, for every i, j, k ∈ K, Akj (t) denotes

the average number of type- j cells at time t in a clone started from a single type-k
founder B cell of age 0 at time 0, Bk

i j (t) is the second-order factorial moment of the
number of type-i and type- j cells at time t in a clone started from a single type-k cell
at time 0, and δi j = 1 if i = j and 0 otherwise. Put A(t) = (

A jk(t), j, k ∈ K). The
variance of Z j (t) started from a single type-k cell is V k

j (t) = Var(Z (1)
j (t)|Z(1)(0) =

ek) = Bk
j j (t)+ Akj (t)− A2

k j (t). It follows from (5) that Ai j (t) and Bi
jk(t), i, j, k ∈ K,
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satisfy the integral equations

Akj (t) =
K∑

�=1

mk�

∫ t

0
A� j (t − u)dGk(u) + δk j (1 − Gk(t)), (6)

and

Bk
i j (t) =

K∑

�=1

mk�

∫ t

0
B�
i j (t − u)dGk(u)

+
K∑

k1=1

K∑

k2=1

βk
k1k2

∫ t

0
Ak1i (t − u)Ak2 j (t − u)dGk(u). (7)

Let G∗
k(s) = ∫∞

0 e−sxdGk(x) denote the Laplace transform of Gk(·), k ∈ K, and
define the matrix

M∗(s) =
⎛

⎜
⎝

G∗
1(s)m11 · · · G∗

1(s)m1K
...

. . .
...

G∗
K (s)mK1 · · · G∗

K (s)mKK

⎞

⎟
⎠ .

If M∗(s) is irreducible, then its Perron-Frobenius root ρ∗(s) always exists, and we
can define [see Mode (1971)]:

Definition 1 (Malthusian parameter) The Malthusian parameter α is the solution,
assuming it exists, of the equation ρ∗(α) = 1 where ρ∗(α) denotes the Perron–
Frobenius root of M∗(α) (i.e., ρ∗(α) is the largest eigenvalue of M∗(α)). The
Malthusian parameter α always exists in the super- and critical cases; its existence
must be verified in the subcritical case. When α exists, we have α < 0, = 0, or > 0
depending on whether the process is subcritical, critical, or supercritical, respectively.

Suppose that M is positive regular (i.e., ∃n ∈ {1, 2 . . .} such that the entries of
Mn are all strictly positive), and the p.d.f. gk(t) = dGk(t)/dt , k ∈ K, are squared
integrable. Let u = (uk, k ∈ K) and v = (vk, k ∈ K) denote strictly positive right and
left eigenvectors ofM∗(α) associatedwith its Perron–Frobenius root and chosen so that
u1� = uv� = 1 where 1 = (1, . . . , 1). Then, the average intra-clonal composition,
normalized by eαt , stabilizes over time: e−αt A(t) → C , as t → ∞, for some fixed
matrix C = (c jk, j, k ∈ K) (Mode 1971). When K > 1 (finite), this result remains
valid under mild assumptions. When K = ∞, it may still hold depending on the
offspring and lifespan distributions.

Let W(t) = e−αtZ(t). We may assume that

(A4) In the supercritical case (α > 0), W(t)
a.s.−→ Wv as t → ∞ for some r.v. W

such that W = 0 (or > 0) a.s. if lim
t→∞Z(t) = 0 (or �= 0).
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Remark 3 For single-type Bellman–Harris processes, specific conditions under which
Assumption (A4) holds are given in Harris (1963) (Ch. VI, Theorem 21.1 and Corol-
lary). For multitype Markov branching processes, see Athreya and Ney (1972) (Ch. V,
Sect. 7.5, Theorem 2). For multitype age-dependent branching processes, see Mode
(1971) (Sect. 3.13, Theorem 13.1). Also, convergence may hold in probability or in
mean square instead of almost surely.

Remark 4 Intra-clonal dynamics is affected by whether the clonal family ultimately
survives. Assuming (A4) holds, and letting q = P{W = 0} denote the probability of
extinction, we have conditional on non-extinction that

P
{
e−αtZ(t) ≤ x|Z(t) > 0

} t→∞−→ 1 − 1 − P{Wv ≤ x}
1 − q

. (8)

Otherwise, the process converges to 0 as t → ∞ (extinction).

To describe the dynamics of GC B cells, define the vector Y(t) = (Yk(t), k ∈ K),
t ≥ 0, where Yk(t) denotes the number of type-k B cells at time t in the GC. We
assume that the GC does not contain any B cell at time t = 0, and setY(0) = 0 where
0 denotes the K -dimensional null vector. Define Y (t) :=∑K

k=1 Yk(t). For every t ≥ 0,
Y(t) can be expressed as

Y(t) =
�(t)∑

�=1

Z(�)(t − T�)1{�(t)>0}, (9)

where Z(�)(u) = (
Z (�)
k (u)

)
k∈K represents the composition of the �-th clone u units

of time after it started, setting Z(�)(u) = 0, u < 0. We refer to Y(·) as a K -type
age-dependent branching process with non-homogeneous immigration.

Let �(t; s) = E{sY(t)|Y(0) = 0} denote its p.g.f., M(t) = (
Mi (t)

)
i∈K

and C(t) = (
Ci j (t)

)
i, j∈K where Mi (t) = E(Yi (t)|Y(0) = 0) and Ci j (t) =

Cov(Yi (t),Y j (t)|Y(0) = 0) denote the expectation and covariance of Y(t). Adapting
a result from Mitov et al. (2018), we deduce when Assumptions (A1,A2) hold that

�(t; s) = exp

(

−
∫ t

0
r(t − x)

[

1 −
∑

i∈K
gi Fi (x; s)

]

dx

)

, (10)

with the boundary condition �(0; s) = 1. Moreover, for every j, k ∈ K,

Mj (t) =
∫ t

0
r(t − x)A j (x)dx and C jk(t) =

∫ t

0
r(t − x)C jk(x)dx, (11)

where A j (x) =∑i∈K gi Ai j (x) and C jk(x) =∑i∈K gi Bi
jk(x).
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3.7 Classes of B cells that communicate do not vanish

Under Assumption (A4), the proportion of type-k cells in a clonal family not going
extinct tends a.s. to vk/

∑K
k′=1 vk′ as t → ∞. Since v has strictly positive entries, all

types are predicted to grow at the same exponential rate α, regardless of the proba-
bility at which they die or self-renew. This property arises from the irreducibility of
the mean offspring matrix M (i.e., the fact that all types communicate). It is illus-
trated in Fig. 6 using simulations based on a two-type process. From a biological
standpoint, communication between types is driven by somatic hypermutation. Its
biological interpretation in the context of Model 1 (Sect. 3.5.1) is that clonal families
in which high binding affinity B cells can mutate into lower binding affinity B cells
(and vice versa) may include non-negligible numbers of B cells of varying binding
affinity levels, even those less likely to survive. Kuraoka et al. (2016) made a similar
observation in mouse experiments, reporting clonally related B cells competing for
a same epitope but with affinity orders of magnitude different (Kuraoka et al. 2016).
They observed cases where low-affinity B cells accounted for 22–27% of GC B cells.
This observation, which has been interpreted as an indication of the permissiveness
of GC to retain low or moderate affinity B cells (Kuraoka et al. 2016; Bannard and
Cyster 2017), is not fully understood. While several factors could explain it, including
the possibility of an affinity threshold (Kuraoka et al. 2016), the asymptotic behavior
of Z(t) indicates that clonal expansion and somatic hypermutation could also jointly
contribute.

3.8 On selection and competition between B cells

Several processes contribute to the regulation of B cells in GC. Homeostasis maintains
a balance betweenB-cell amplification and excessive immune activation.Additionally,
antigen-mediated selection favors B cells that have undergone mutations that result in
higher affinity for the antigen. These selected B cells receive stronger survival signals
compared to those with lower affinity, which are more prone to undergoing apoptosis.

The model accounts for some, but not all, of these processes. For instance, it cap-
tures, at least partially, variations in antigen-mediated selection among B cells by
introducing type-specific probabilities of cell death (p0k ). These probabilities can dif-
fer, resulting in some cell types in the model having lower fitness and being more
susceptible to cell death than others.

However, themodel does not consider the homeostaticmechanisms that regulate the
growth of GC B-cell populations. Specifically, in cases where a clonal family is driven
by a supercritical process that does not go extinct, its size will grow exponentially.
Therefore, when describing the composition of a population based on cell counts, the
model is best suited for depicting the organization of GC or individual clonal families
during their early phase. Over extended time periods, the model can be used to track
the temporal evolution of the relative frequencies of B cell classes using Y(t)/Y (t) or
Z(t)/Z(t).

Another critical aspect of GC dynamics involves the competition among B cells,
both between and within clonal families and types. When a new B cell with higher
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Fig. 6 Behavior of a two-type process, with and without immigration. Panels A1-A4 show results
from 10 independent simulations of the model without immigration, with (m11,m12,m21,m22) =
(0.20, 0.50, 0.55, 0.20) and G(·) assumed exponential with parameter λ = 1/24. Each trajectory rep-
resents the evolution of one clone. Each of them begins with one type-2 (∼ high binding affinity) cell. Panel
A1 (resp., A2): number of low (resp., high) binding affinity B cells per clone over time; Panel A3: count
of high versus low binding affinity B cells which grow at the same rate; Panel A4: ratio of the numbers
of low and high binding affinity B cells plotted over time; the black straight line indicates its a.s. limit
� 0.37. Panels B1-B4 are identical to panels A1-A4, except that simulations were conducted by setting
(m11,m12,m21,m22) = (0, 0.30, 0.55, 0.20). The a.s. limit is � 0.31 in this setting. Panels C1-C4 are
similar to those above, but the model now includes immigration. The parameters of the branching process
were identical to those used for panels B1-B4; the immigration Poisson process was time-homogeneous
and assumed that g1 = g2 = 0.5 and r0 = 0.25

affinity than those already present in the GC joins the population, competition could
increase the likelihood of death of other, less competitive cell types, resulting in a
reduction of their Malthusian parameter. While the model does not explicitly detail
this phenomenon, it partially captures it when comparing the growth of two dis-
tinct cell types. To illustrate, consider two different, non-communicating cell types
k �= k′. Assume that each of them satisfies Assumption (A4) such that Zk(t − Tk) ∼
vkWkeαk (t−Tk ) and Zk′(t−Tk′) ∼ vk′Wk′eαk′ (t−Tk′ ). The ratio Zk(t)/Zk′(t), represent-
ing the odds of selecting a cell of type k versus type k′, provides insights into how the
frequencies of cell types k and k′ evolve over time. We use it in Sect. 5 to compare the
size of clonal families. For every t ≥ max(Tk, Tk′), conditional on non-extinction for
both clonal families (WkWk′ > 0), this ratio satisfies:

Zk(t − Tk)

Zk′(t − Tk′)
a.s.∼ Wkvke−αk Tk

Wk′vk′e−αk′Tk′
e(αk−αk′ )t (as t → ∞).
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Thus, the odds would remain similar to those in a model where the Malthusian param-
eter in the k-th clone decreases upon the initiation of the more competitive k′-th clonal
family, provided that the difference between the Malthusian parameters is αk′ − αk .
Overall, despite some limitations, we have observed that the model can effectively
replicate certain experimental observations.

4 Temporal diversity of the B-cell repertoire

Adiverse BCR repertoire is essential for effective immune protection against infection
and a potential benefit for responses to antigens structurally related to those from
past infections or vaccinations (Kuraoka et al. 2016). However, it can also give rise
to significant amounts of B cells expressing binding antibodies unlikely to progress
toward pathogen neutralization; instead, these B cells may compete with and restrict
those capable of generating neutralizing antibodies. We propose to measure evolution
of diversity over time in terms of the K types of the model to gain further insights
into the organization of the B-cell repertoire. In this regard, we introduce indices of
temporal α and β diversities for multitype branching processes. We applied them in
Sect. 5 to study the turnover of clonal families within GC.

4.1 Temporal alpha diversity

Alpha diversity is a fundamental concept in ecology to quantify species diversity
within a given habitat. Popular alpha diversity indices include the Hill numbers. When
applied to the proposed multitype branching process with immigration to quantify the
diversity of types in a GC at time t , the Hill number of order q, defined on the event
{Y (t) =∑K

k=1 Yk(t) > 0}, is given by

Dq
Y (t) =

(
K∑

k=1

Yk(t)q

Y (t)q

)1/(1−q)

∈ [1, K 1/(1−q)], (12)

where q ∈ (0, 1) ∪ (1,∞) determines the sensitivity of the index to the relative
frequency of each type, with the influence of the most abundant types increasing with
q (Hill 1973). The higher Dq

Y (t), the higher diversity. Letting q → 0, Dq
Y (t) tends to

D0
Y (t) =∑K

k=1 1{Yk (t)>0} (species richness), representing the total number of types in
the GC at time t . Setting q = 2 yields the inverse Simpson diversity index (Simpson
1949) used in Sect. 5 to assess evolution of clonal diversity, whereas letting q → 1
gives the exponential of the Shannon index:

D1
Y (t) := exp

(

−
K∑

k=1

Yk(t)

Y (t)
log

(
Yk(t)

Y (t)

))

∈ [1, K ]. (13)
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Clone-specific Hill numbers are defined on {Z(t) = ‖Z(t)‖ > 0} as Dq
Z (t) =

(∑K
k=1

Zk (t)q

Z(t)q

)1/(1−q)

. Since the summands in Dq
Y (t) and Dq

Z (t) are positive, both

Dq
Y (t) and Dq

Z (t) are well defined when K = ∞.

Proposition 1 Suppose that Assumption (A4) holds. Then, conditional on non-
extinction (W > 0), we have for every K ∈ {1, 2 . . .} that limt→∞ Dq

Z (t)
a.s.=

(∑K
k=1 v

q
k /(
∑K

k′=1 vk′)q
)1/(1−q)

for every q ∈ (0, 1)∪ (1,∞), limt→∞ Dq
Z (t)

a.s.= K

as q → 0, and limt→∞ D1
Z (t)

a.s.= exp

(

−∑K
k=1

vk∑K
k=1 vk

log

(
vk∑K
k=1 vk

))

as q → 1.

The proof follows easily from Assumption (A4) and Proposition 1 in Hill (1973).

4.2 Temporal beta diversity

The variation in species composition between two habitats or time points may be
measured using beta diversity indices (Whittaker 1960, 1972). We consider these
indices to quantify the degree of temporal dissimilarity (turnover) of the K types in
a clonal family and a GC. These indices are defined using either presence-absence,
or abundances (counts), or relative abundances (proportions) of types. The Jaccard
distance (Jaccard 1912) between the collection of types present in a clonal family at
times t1 and t2 is defined using absence-presence of types as

JZ (t1, t2) = 1 − |S(t1) ∩ S(t2)|
|S(t1) ∪ S(t2)| ∈ [0, 1], (14)

where S(t) = {k ∈ K : Zk(t) > 0} is the set of types in the clone at time t . A value of
0 indicates identical type representation at times t1 and t2, and 1 no overlap in types.
This index does not take frequency of types into account in measuring diversity. The
Bray–Curtis index, which quantifies the degree of compositional dissimilarity within
a clonal family at times t1 and t2 using

BCZ (t1, t2) =
K∑

k=1

|Zk(t1) − Zk(t2)|
Z(t1) + Z(t2)

∈ [0, 1], (15)

is defined based on the vector of counts Z(t) and normalized by Z(t1) + Z(t2) to
range between 0 (no compositional variation) and 1 (full turnover of types). A popular
beta diversity index based on relative abundances to measure the overlap between the
composition of a clonal family at times t1 and t2 is the Hellinger distance HZ (t1, t2) =√
1 − BZ (t1, t2) where

BZ (t1, t2) =
K∑

k=1

√
Zk(t1)

Z(t1)

√
Zk(t2)

Z(t2)
∈ [0, 1] (16)
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is the Bhattacharyya coefficient, representing the cosine of the angle between the vec-
tors

√
Z(t1)/Z(t1) and

√
Z(t2)/Z(t2) (Bhattacharyya 1946). Another similar index

also based on the relative abundances Z(t)/Z(t) is the proportion of similarity (Whit-
taker 1972):

PZ (t1, t2) =
K∑

k=1

min

{
Zk(t1)

Z(t1)
,
Zk(t2)

Z(t2)

}

= 1 − 1

2

K∑

k=1

∣
∣
∣
∣
Zk(t1)

Z(t1)
− Zk(t2)

Z(t2)

∣
∣
∣
∣ . (17)

Both BZ (t1, t2) and PZ (t1, t2) range between 0 (no compositional similarity between
t1 and t2) and 1 (perfect similarity). The Hellinger distance HZ (t1, t2) also ranges
between 0 (absence of change in the proportion of types from t1 to t2) and 1 (complete
turnover of types). These indices are all defined conditional on Z(max(t1, t2)) > 0.
They emphasize different aspects of the composition of a clonal family. For multitype
branching processes, they behave as follows:

Proposition 2 Let K ∈ {1, 2 . . .} ∪ {∞}, δ ≥ 0, and suppose that Assumption (A4)

holds. Then, conditional on {W > 0}, we have as t → ∞ that JZ (t, t + δ)
a.s.−→ 0,

BCZ (t, t + δ)
a.s.−→ bcZ (δ, α) := 1 − e−αδ

1 + e−αδ
∼ 1 − e−αδ as αδ → ∞,

whereas HZ (t, t + δ)
a.s.−→ 0, BZ (t, t + δ)

a.s.−→ 1, and PZ (t, t + δ)
a.s.−→ 1, for every

δ > 0.

See Sect. 7.1 for a proof. Proposition 2 shows that the Bray–Curtis index of the
compositional beta diversity of a clonal family not becoming extinct converges over
time to a finite constant in the admissible range [0, 1], depending on δ. Convergence
to 1 as δ → ∞ occurs exponentially fast with δ and reflects the continual expansion
of the clonal family as δ increases. Interestingly, asides from δ, the limit in t depends
solely on α. Thus, as t → ∞, the Bray–Curtis index becomes insensitive to any aspect
of the offspring and lifespan distributions beyond those captured by the Malthusian
parameter, and to the number of types, K . It partitions the family of supercritical
multitype branching processes into equivalence classes indexed by α and includ-
ing processes with identical Bray–Curtis diversity. Hence, two non-extinct multitype
branching populations with identical Bray–Curtis indices have similar Malthusian
parameter α, whereas when their Bray–Curtis indices differ, the one with the highest
index is expected to have a larger Malthusian parameter because bcZ (δ, α) increases
with α. It follows easily from Proposition 2 that

α̂Z (t, δ) = 1

δ
log

(
1 + BCZ (t, t + δ)

1 − BCZ (t, t + δ)

)
a.s.−→ α as t → ∞

for every δ ≥ 0 if Assumption (A4) holds and conditional on non-extinction.
The indices HZ (t, t + δ), BZ (t, t + δ), and PZ (t, t + δ) tend to 0 or 1 as t → 0

regardless of δ. The behavior of these indices reflects intra-clonal stabilization of the
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frequency of the types as t increases. See (Jagers and Nerman 1996) for further discus-
sion on the asymptotic composition of supercritical multitype branching processes.

Indices of beta diversity may also be defined at the GC level; for example,

BCY (t1, t2) =
K∑

k=1

|Yk(t1) − Yk(t2)|
Y (t1) + Y (t2)

, BY (t1, t2) =
K∑

k=1

√
Yk(t1)

Y (t1)

√
Yk(t2)

Y (t2)
, (18)

and HY (t1, t2) = √
1 − BY (t1, t2). The asymptotic behavior of GC-specific indices

must be treated on a case-by-case basis. For the model studied in Sect. 5, HY (t, t + δ)

converges a.s. to 0 as δ → ∞ when the branching mechanism is the same across
clonal families.

5 Oligoclonality, diversity of clonal families, and instability of clonal
dominance

5.1 Background and notation

Germinal center reactions begin polyclonal and tend to finish oligoclonal (Kroese et al.
1987; Küppers et al. 1993; Faro andOr-Guil 2013; Tas et al. 2016). The cross-sectional
experiments that established these findings did not capture the temporal trajectory of
individual clones. Thus, for example, we do not know whether clones that dominate a
GC remain dominant over time.

To gain further insights into the dynamics of clonal dominance, we consider the
infinite-type process introduced in Sect. 3.5.2 and formulate the overall immigration
process �(·) as a time-inhomogeneous Poisson process with rate r(·). The order
of arrival induced by this process determines the types in the model. Since each type
represents a specific clone, the sequence {Tk�}∞k=1 a.s. satisfies Tk1 = Tk and Tk� = ∞,
� = 2, 3 . . .. The first identity indicates that the time at which the first member of the
k-th clone joins the GC (Tk) is the time at which the first type-k founder B cell joins
the GC. The second identity ensures that each clone has a unique arrival time in the
GC. Consequently, the type-specific immigration processes {�k(·)}∞k=1 are neither
Poisson processes nor independent. The composition of the k-th clone at time t is
Z(k)(t) = (0, . . . , 0, Z (k)

k (t), 0, . . .
)
; hence, Y(t) = (Z (1)

1 (t − T1), Z
(2)
2 (t − T2), . . .

)

from (9).
For every k ∈ K = {1, 2 . . .}, the lifespan of every type-k B cell in the GC is a

r.v. with c.d.f. Gk(·), and their probability of division is pk2. Since binding affinity
may differ between clones, we assume that these probabilities are independent and
identically distributed (i.i.d.) r.v. with c.d.f. H(x) = P{pk2 ≤ x}, x ∈ [0, 1]. Likewise,
the c.d.f.Gk(·) could be assumed to be randomly sampled from a family of distribution
functions. Here, none of the types communicate and, conditional on {pk2,Gk(·)}, we
define the Malthusian parameter of the k-th clone as the root αk of the equation

2pk2

∫ ∞

0
e−αk xdGk(x) = 1, (19)
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assuming such a root exists a.s.; it always does when pk2 ≥ 0.5. When each Gk(·) is
an exponential distribution with parameter λ, the Malthusian parameters are given by
αk = (2pk2 − 1)λ and form a sequence of i.i.d. r.v. with c.d.f.

P{αk ≤ u} = P{pk2 ≤ (1 + u/λ)/2} = H

(
λ + u

2λ

)

(u ∈ (−λ, λ)). (20)

The conditional probability of extinction of the k-th clone, given {pk2,Gk(·)}, defined as
the smallest non-negative root of the equation fk(s) = s where fk(s) = 1− pk2+ pk2s

2,
is pkext = min{1, pk2/(1− pk2)}. If Assumption (A4) holds for the k-th clone, it follows

that Z (k)
k (t)

a.s.= c′
kWkeαk t (1 + o(1)) where c′

k = (mk − 1)/αkm2
k

∫∞
0 ue−αudGk(u)

and mk = 2p2k (Athreya and Ney 1972).

Definition 2 (Clonal dominance)We say that the k-th clone dominates theGC reaction
at time t if its size is equal to or exceeds that of any other clone at time t ; that is, if

Z (k)
k (t − Tk) ≥ Z (k′)

k′ (t − Tk′), k′ ∈ {1, . . . , �(t)}\{k}.

We study temporal evolution of clonal dominance using Fk(t) = Z (k)
k (t−Tk)/Y (t),

the fraction of B cells in the GC at time t belonging to the k-th clone.We set Fk(t) = 0
when Y (t) = 0. We study evolution of the alpha and beta diversities of clonal families
within GC using indices introduced in Sect. 4. Following initiation of a GC, species
(clonal) richness is given by

D0
Y (t) =

�(t)∑

k=1

1{Z (k)
k (t−Tk )>0} ∈ [0,�(t)] (t ≥ 0).

Assuming independence of �(t) and {Z (k)
k (t − Tk)}∞k=1, the expected count of clonal

families satisfies E(D0
Y (t)) ∈ [(1 − Q)R(t), R(t)] where Q = lim

t→∞P{Z (1)
1 (t) = 0}.

Species richness does not account for the abundance of non-extinct clonal families
and grows indefinitely with t when Q > 0. In particular, when r(t) = r0, t ≥ 0, it
can be shown that E(D0

Y (t)) ∼ r0(1 − Q)t , such that increasing in the probability of
extinction of clonal families (and of cell death) will proportionally reduce the number
of clonal families in the GC. The Simpson index (Simpson 1949) which accounts for
the abundance of clonal families and specializes to

SY (t) :=
�(t)∑

k=1

Z (k)
k (t − Tk)2

Y (t)2
=

�(t)∑

k=1

Fk(t)
2 ∈ [0, 1], (21)

is the probability that two cells sampled with replacement at time t from a given GC
belong to a same clonal family. The inverse of the Simpson index D2

Y (t) = SY (t)−1

provides a measure of the alpha clonal diversity: the higher S(t)−1, the larger the
clonal diversity, accounting for evenness (Rempala and Seweryn 2013). The Bray–
Curtis index and proportion of similarity comparing clonal composition in a GC
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at times t1 and t2 (t1 ≥ t2) are BCY (t1, t2) = ∑�(t2)
k=1

|Z (k)
k (t1−Tk )−Z (k)

k (t2−Tk )|
Y (t1)+Y (t2)

and

PY (t1, t2) = 1 − 1
2

∑�(t2)
k=1

∣
∣ Z

(k)
k (t1−Tk )
Y (t1)

− Z (k)
k (t2−Tk )
Y (t2)

∣
∣. The Bhattacharyya coefficient

is BY (t1, t2) = ∑�(t2)
k=1

√
Fk(t1)Fk(t2). Here, we ask what these indices reveal about

clonal dynamics in the absence and presence of differential fitness between clones,
as previously considered (Tas et al. 2016). We note that the clone-specific diversity
indices are D2

Z (t) = 0, SZ (t) = 1, and BZ (t, t + δ) = 0 for every t, δ ≥ 0, because
each clone includes a single type.

5.2 Clonal dynamics in the absence of differential fitness

In this section, we assume absence of differential fitness between clones.

Proposition 3 Suppose that all clones have identical offspring and lifespan distri-
butions. Let α denote their common Malthusian parameter. Suppose that α > 0,
Assumption (A4) holds, and (A5) there exists a positive, increasing function f (·)
such that f (t) = o(t) and limt→∞ R(t − f (t))/R(t) = 1. Then, for every δ ≥ 0,
as t → ∞, Fk(t)

a.s.−→ Wke−αTk/
∑∞

k′=1 Wk′e−αTk′ , k = 1, 2 . . ., SY (t)
a.s.−→

∑∞
k=1 W

2
k e

−2αTk/(
∑∞

k′=1 Wk′e−αTk′ )2 ∈ (0, 1), JY (t, t + δ)
P−→ 0, BCY (t, t +

δ)
a.s.−→ (1 − e−αδ)/(1 + e−αδ), HY (t, t + δ)

a.s.−→ 0, BY (t, t + δ)
a.s.−→ 1, and

PY (t, t + δ)
a.s.−→ 1.

See Sect. 7.2 for a proof. Proposition 3 shows that, in the absence of differential
fitness between clones, clonal dominance is a stable property unlikely to be challenged
by other clones once established. Since the relative abundance Fk(t) is asymptotically
proportional to e−αTk a.s.−→ 0 (k → ∞) and {Wk}∞k=1 is an i.i.d. sequence, clones
that arrive early in the GC are the most likely to become dominant. The relative
size of the dominant clone tends to increase with α and decrease with the immigra-
tion rate (causing Tk − Tk−1 to stochastically decrease). Although the smaller α, the
longer it may take for clonal dominance to establish, the replacement of a dominant
clone by another clone joining the reaction later is unlikely to happen because this
would require a sequence of independent r.v. with a decreasing trend to break a record
value that increases with k: suppose the k∗-th clone is dominant and Wk∗ > 0; then,
informally, in order for the k-th clone (k > k∗) to become dominant, we must have
logWk − logWk∗ � α(Tk − Tk∗) � R(Tk) − R(T ∗

k ); in particular, if the immigration
process is time-homogeneous, the increment between logWk∗ and logWk must grow
linearly with k − k∗, requiring the distribution of logWk (given Wk > 0) to be heavy
tailed, which is not possible since Wk has finite moments (Harris 1963). Convergence
of Simpson’s index to a strictly positive r.v. reflects stabilization of the composition
of GC in terms of clonal families and that the established order and composition are
GC-specific. Also, limt→∞ SY (t) < 1 shows that GC do not converge toward mono-
clonality. The higher α, the higher SY (t) (i.e., the more concentrated the distribution of
clone size). Convergence of the Bray–Curtis index to the same limit as for Z(·) estab-
lished in Proposition 2 arises from the fact that all clones obey the same offspring and

123



A branching stochastic evolutionary model of the B-cell... Page 25 of 44 10

lifetime distributions. Convergence of other beta diversity indices (to 0 or 1) captures
absence of detectable temporal variation in clonal dominance.

5.3 Differential fitness induces unstable clonal dominance

We now assume that {αk}∞k=1 is a sequence of non-degenerate r.v., and show that any
dominant clone is eventually outcompeted.

Proposition 4 Suppose that Assumption (A4) holds, lim
t→∞ R(t) = ∞, P{α1 > 0} > 0,

H+(x) = P{α1 ≤ x |α1 > 0}, x ≥ 0, is absolutely continuous, and
∫∞
0 gk(x)δdx <

∞ for some δ > 1, k = 1, 2 . . .. Then, as t → ∞, (i) Fk(t)
a.s.−→ 0, and (ii) ∃k′ ∈

{k + 1, k + 2 · · · } a.s. such that Fk(t)/Fk′(t)
a.s.−→ 0.

See Sect. 7.3 for a proof. Proposition 4 states that (i) the relative size of every
clone within a GC becomes eventually negligible and (i i) every dominant clone is
eventually outcompeted with probability one and regularly replaced as long as the GC
reaction continues: an average of at least 3 weeks in lymph nodes and spleens, and
much longer in Peyer’s patches. The replacement of dominant clones contributes to
the diversification of the BCR repertoire by allowing new clones to expand over time.
Informally, the replacement of a dominant clone occurs primarily when a new clone
that joins the GC is not on a path to extinction and has a Malthusian parameter higher
than that of the dominant clone. The phenomenon is also driven by a record process;
however, unlike the one describes in Sect. 5.2, here the record process associates with
the Malthusian sequence: α(t) = max{αk, k ∈ {1 . . . , �(t)} : Wk > 0}, t ≥ 0. Let
L(t) denote the number of such record values between times 0 and t . Since the number
of clones joining theGCbetween the L(t)-th and (L(t)+1)-th records tends to increase
exponentially with L(t) (Neuts 1967), the rate of clonal turnover should rapidly slow
down with L(t), unless, for instance, the Malthusian parameters of founder B cells
visiting the GC increase stochastically over time. This scenario could potentially occur
if the GC was to recruit B cells released by other concurrent GC, exhibiting a high
affinity for any of the antigens driving the reaction.

5.4 Simulations: impact of the shape of immigration

We assumed that every Gk(·) is an exponential distribution with mean 1 so each unit
of time represented the average duration of one mitotic cycle. For reference, the mean
mitotic cycle of activated B cells has been estimated to last 8–10h (Chan et al. 2021).
We also assumed that pk0 was uniformly distributed in the interval [0.35, 1]. Thus,
each process Z (k)

k (·) was super-critical with probability 0.23 (= 0.15/0.65). We were
interested in studying the impact of the shape of the immigration rate on the dynamics
of clonal families, considering three scenarios with different immigration rates: (1)
r(t) = r0t−1/2, where immigration intensity decreases at a rate of −1/2 as discussed
in Sect. 3.3; (2) r(t) = r0, with a constant rate over time; and (3) r(t) = r0t1/2,
where immigration intensity increases at a rate of γ = 1/2. The immigration r(t)
has not yet been estimated based on experimental data. However, in the stationary
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Fig. 7 Temporal evolution of clonal dominance and clonal diversity. Top: Evolution of the absolute and

relative size of individual clonal families (i.e., Z (k)
k (t) and Fk (t)) within a GC (each line represents one

clonal family). Bottom: Evolution of clonal diversity within the GC, as measured by the Inverse Simpson
index, in three scenarios corresponding to r(t) = r0t

−1/2 (left), r(t) = r0 (center), and r(t) = r0t
1/2

(right), with r0 = 10 in all three cases. See Sect. 5.2 for detail

case, it seems reasonable to assume that it is at least one order of magnitude faster
than the mean mitotic cycle duration. Consequently, we set r0 = 10 in all three cases.
For computational reasons, we simulated the process over 20 units of time. Assuming
that mitotic cycles and GC reactions last on average 10h and 3 weeks, respectively,
a duration of 20 units of time would cover almost half of the lifespan of a GC. We
simulated the process 10 times in each scenario to identify patterns in the temporal
trajectories of the Simpson index.

Results from the simulations are presented in Fig. 7. The top two panels show the
evolution of the absolute and relative size of individual clonal families. Over the 20
time units, three clonal families reached clonal dominance (right panel). The bottom
three panels indicate that clonal diversity, as measured by the Simpson diversity index,
increases initially before leveling off between 5 and 10 units of time after initiation
of the reaction. This pattern holds in the three immigration scenarios. In scenario (1)
where the immigration rate decreases, the Simpson index tends to gradually decrease
thereafter, suggesting that clonal diversity consistently reduces as the influx of founder
B cells slows down. In the other two scenarios, diversity appears to also decrease but
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at a slower rate or less consistently among simulations. These results illustrate the
potential benefit in sustaining the influx of B cells into GC in order to increase clonal
diversity.

5.5 Biological relevance

Recent studies estimated that around a few hundreds of founder B cells colonize
GC, clearing the field from a commonly held belief that GC are seeded by 2–10 B
cells (Faro and Or-Guil 2013; Tas et al. 2016; Kroese et al. 1987). Our model leads
to a similar conclusion and supports the hypothesis that oligoclonality results from
differential binding affinity between clones. We note that past studies were based on
cross-sectional data. They could not track the number of clones accumulated in GC
over their entire lifespan and may not have accounted for those that were outcompeted
and eliminated before the GC were observed and for clones that had not yet joined
the GC. Therefore, reported estimates may represent lower bounds for the number of
founder B cells that join GC, and their actual number could be larger. Proposition 4
also suggests that clones with the highest binding affinity will tend to arrive late in GC,
such that clonal dominance at a particular time point need not reflect optimal binding
affinity.

6 Convergent evolution within BCR repertoires

6.1 Steering the repertoire via sequential immunization

Antibodies play a key role in protective immunity against various pathogens. Although
only a handful of people are known to have been cured from HIV thus far, numerous
studies have demonstrated that the bnAbs that emerge in a significant proportion
of individuals with HIV infection can neutralize a wide array of circulating viral
strains by targeting conserved HIV epitopes, the specific sites on the antigen that these
bnAbs bind to, marking a promising avenue for potential therapeutic interventions.
Particularly, a successful vaccine regimen might be designed by recapitulating the
process giving rise to bnAbs via a sequence of strategically designed prime-boost
immunogens that can trigger the activation of B cells with the molecular and genetic
traits of targeted bnAbs and guide a subset of theB-cell repertoire toward neutralization
against HIV by selecting appropriate somatic hypermutations. Figure1 provides an
illustration of the principle of this strategy assuming two boosts; a successful vaccine
might require a larger number of boosts.

Two obstacles to the elicitation of bnAbs through vaccination are the exception-
ally high mutation frequency characteristic of HIV bnAb which vaccines may have
to induce and the difficulty of the germline precursors of HIV bnAbs to bind with
the envelopes of circulating viral strains. In addition, some mutations necessary for
neutralization may be rare, and the process of somatic hypermutation can either lead
to mutations at positions where the bnAbs align with the germline or erase previously
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acquired mutations conducive to bnAb development. Neither of these outcomes may
be desirable as they can impede or prevent maturation towards neutralization.

To quantify the process of steering BCR towards bnAbs, we introduce a model
that describes the accumulation of somatic hypermutations in BCR relative to their
germline and the targeted bnAb. To fix ideas, our model focuses on the region encoded
by the V gene, also known as the V segment.

6.2 Foreword to themodeling approach

In HIV vaccine research, evolution of the B-cell repertoire may be assessed by
sequencing the heavy and light chains of thousands of antigen-specific B cells and
comparing the mutations accumulated in their Ig gene loci with those found in rele-
vant bnAbs. Multiple metrics may be designed to quantify this evolution in individual
BCR sequences, depending in part on the class of B cells that the vaccine is expected
to induce. Here, we opt for a simple, generic metric that enumerates mutations in five
distinct regions of the heavy chain V segment. These regions are defined by whether
mutations occur at positions where the aligned bnAb and germline gene sequences
match or do not match. The proposed metric can be restricted to specific positions of
the V segment without altering the model structure and interpretation.

Acknowledging the intricate nature of somatic hypermutation and antigen-mediated
selection, we adopt a high-level modeling approach: instead of detailing BCR matu-
ration on a per-position and per-nucleotide basis, we focus on counting the number of
amino acid substitutions within the five identified regions. On one hand, aggregating
multiple positions and nucleotide substitutions obscures the ability to specify how the
accumulation of mutations alters antigen-mediated selection or the fitness of B cells.
On the other hand, aggregation is expected to average out the impact of mutations on
selection of B cells by the vaccine, at the level at which assumptions are postulated.

Our model offers a useful framework to understand some aspects of the evolution
of the BCR repertoire. We use it in Sect. 6.7 to interpret BCR sequencing data. The
analysis underscores the potential challenges in precisely replicating a particular anti-
body. Regardless, achieving neutralization through vaccination might not necessarily
require reproducing a specific bnAb, as other unidentified antibodies could also induce
broad neutralization.

6.3 Partitioning theV segment into 5 classes of positions

Let B = (B1, . . . , BL) andG = (G1, . . . ,GL) denote the amino acid sequence of the
V segment of a given targeted antibody and its germline V gene. To fix ideas, suppose
that the antibody is VRC01; its heavy chain is encoded by theVH1-2*02 allele (Fig. 8).
Let V denote the set of amino acid positions of the bnAb V segment. This set may
be partitioned into two subsets: the positions at which the germline and bnAb amino
acids are identical and those at which they differ. We respectively denote these two
subsets by V1 and V2; they satisfy V1 ∪V2 = V and V1 ∩V2 = ∅. Let L = |V| denote
the length of the V segment, and put La = |Va |, a = 1, 2. For VRC01, L = 98,
L1 = 57, and L2 = 41.
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Now, let S = (S1, . . . , SL ′) denote the amino acid sequence of any BCR, to be
compared against both its germline V gene and the bnAb. Let V11(S) = {p ∈ V1 :
Sp = Gp} denote the set of positions within V1 at which S matches the germline
and the bnAb. Define also V12(S) = {p ∈ V1 : Sp �= Gp} = V1\V11(S), V21(S) =
{p ∈ V2 : Sp = Gp}, V22(S) = {p ∈ V2 : Sp = Bp}, and V23(S) = {p ∈ V2 :
Sp �= Gp, Sp �= Bp} = V2\(V21(S) ∪ V22(S)). The mutations accumulated in S
that moved the BCR away from the bnAb are identified by V12(S), those shared with
the bnAb belong to V22(S), whereas those that moved the BCR sequence S away
from the germline V gene without changing its Hamming distance to the bnAb are in
V23(S). See Fig. 8 for an illustrative example. Mutations may change the size of the
subsets Vab(S); however, by construction, the subsets V2b(S), b = 1, 2, 3 are invariant
to mutations in V1; likewise, mutations in V2 do not change the subsets V11(S) and
V12(S).

Define L(S) = (L11(S), L12(S), L21(S), L22(S), L23(S)) where Lab(S) =
|Vab(S)| is the size (number of positions) in Vab(S), (a, b) ∈ {(1, 1), (1, 2),
(2, 1), (2, 2), (2, 3)}. The total number ofmutations inS is N (S) = L12(S)+L22(S)+
L23(S). A successful sequential immunization regimenmight elicit BCRgetting closer
to targeted bnAbs as they accumulate mutations. A simple measure of the immune
response toward this goal is the net mutational gain/loss relative to a bnAb, defined as
�(S) = L22(S) − L12(S), with a positive value indicating overall progression of the
sequence toward the target antibody. The dynamic model formulated in the next three
sections describes the evolution of L(S) when S is sampled from a tree generated by
a multitype branching process.

6.4 Themutational model, absent of cell kinetics

Let S(0) = (S(0)
1 , . . . , S(0)

L ) denote the amino acid sequence of the V segment of the
BCR of any B cell at birth.Wemake the simplifying assumption that the two daughters
of a dividing B cell inherit identical Ig gene sequences from their mother at division,
represented by S(1) = (S(1)

1 , . . . , S(1)
L ). Unless a synonymous mutation occurs, the

sequences S(0) and S(1) differ at the mutated position. Let π̃ denote the probability
that mutations occur in the V segment. Allen et al. (1987) estimated that the BCR of
one out of every other B cell inherits one mutation from their mother (Allen et al.
1987), such that we may set π̃ ∈ (0; 0.5) when focusing on the V segment. In what
follows, we formulate a mutational model that describes the accumulation of somatic
hypermutations in the subsets Vab, assuming at most one mutation happens per cell
cycle.

For a = 1, 2, let πS(0)

a denote the conditional probability that a mutation occurs in
S(0) at one position in Va , given a mutation occurs. Mutations arise according to the
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following 10 scenarios (cases):

L(S(1)) = L(S(0)) +

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1|1 :=
(
−1 1 0 0 0

)
w.p. πS(0)

1 πS(0)

1|1 Case 1.1

e2|1 :=
(
1 −1 0 0 0

)
w.p. πS(0)

1 πS(0)

2|1 Case 1.2

e3|1 :=
(
0 0 0 0 0

)
w.p. πS(0)

1 (1 − πS(0)

1|1 − πS(0)

2|1 ) Case 1.3

e1|2 :=
(
0 0 −1 1 0

)
w.p. πS(0)

2 πS(0)

1|2 Case 2.1

e2|2 :=
(
0 0 −1 0 1

)
w.p. πS(0)

2 πS(0)

2|2 Case 2.2

e3|2 :=
(
0 0 1 −1 0

)
w.p. πS(0)

2 πS(0)

3|2 Case 2.3

e4|2 :=
(
0 0 0 −1 1

)
w.p. πS(0)

2 πS(0)

4|2 Case 2.4

e5|2 :=
(
0 0 1 0 −1

)
w.p. πS(0)

2 πS(0)

5|2 Case 2.5

e6|2 :=
(
0 0 0 1 −1

)
w.p. πS(0)

2 πS(0)

6|2 Case 2.6

e7|2 :=
(
0 0 0 0 0

)
w.p. πS(0)

2 (1 −∑6
i=1 πS(0)

i |2 ) Case 2.7

whereπS(0)

i |a denotes the conditional probability that amutation occurs inS(0) according
to Case a.i, given that a mutation occurs in Va . They reflect the impact of somatic
hypermutation, accounting for both synonymous and non-synonymous mutations. Put
πS(0)

3|1 = 1 −∑2
i=1 πS(0)

i |2 and πS(0)

7|2 = 1 −∑6
i=1 πS(0)

i |2 .

In Case 1.1, a non-synonymous mutation in V11(S(0)) moves the BCR further
from the germline and bnAb. The mutation causes a one-position decrease in the
size of V11(S(0)) and a one-position increase in that of V12(S(0)), as indicated by
the increment e1|1 = (−1, 1, 0, 0, 0). In Case 1.2, a non-synonymous mutation in
V12(S(0)) reverts a prior mutation back to the germline amino acid; hence, the change
of e2|1 = (1,−1, 0, 0, 0). In Case 1.3, a mutation occurs in V1 without altering either
V11(S(0)) or V12(S(0)). Hence, the absence of any difference between S(0) and S(1)

indicated by e3|1 = (0, 0, 0, 0, 0). Such mutations include synonymous mutation
occurring in V11(S(0)) and any mutations occurring in V12(S(0)) that do not revert to
the germline/bnAb amino acid.

In Case 2.1, a non-synonymous mutation in V21(S(0)) matches the bnAb amino
acid at the mutating position, bringing the BCR one amino acid closer to the bnAb.
In Case 2.2, a non-synonymous mutation also in V21(S(0)) does not match the bnAb
amino acid at the mutating position and grows V23(S(0)) by one position. In Case 2.3,
a non-synonymous mutation in V22(S(0)) reverts the BCR to the germline amino acid.
In Case 2.4, a non-synonymous mutation occurs in V22(S(0)) which does not match
the germline amino acid. In Case 2.5, a non-synonymous mutation in V23(S(0)) reverts
the BCR back to the germline amino acid. In Case 2.6, a non-synonymous mutation
also in V23(S(0)) matches the bnAb amino acid. In Case 2.7, a mutation, possibly
synonymous, in V2 matches neither the germline nor the bnAb amino acid, leaving
the subsets V21(S(0)), V22(S(0)), and V23(S(0)) unchanged. We note that mutations
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withinV21(S(0)) andV22(S(0))must necessarily be synonymous, whereas those within
V23(S(0)) can be either synonymous or non-synonymous.

6.5 A parametrization of the transition probabilities

We present a parametrization of the probabilities πS(0)

i and πS(0)

i |a structured around the

number of positions in Vab(S(0)) to facilitate their interpretation and selecting their
values in simulations. We note that, depending on S(0), not all 10 transitions presented
in Sect. 6.4 are possible; for instance, Case 1.1 cannot happen when S(0)

1 = 0. These

cases are handled by setting πS(0)

i |a = 0.
The probability of a mutation occurring in V1 compared to V2 may depend on the

relative sizes of these two sets, and we write πS(0)

1 = ρ1
L1
L = 1 − πS(0)

2 for some
constant ρ1 ∈ (0, L

L1
) which represents the selection bias in favor of (ρ1 ∈ (1, L1/L))

or against (ρ1 ∈ (0, 1)) bnAb-like mutations. When ρ1 = 1, the odds of a mutation
occurring in V1 instead of V2 is L1

L2
and depends solely on the size of V1 relative to

that of V2. Since mutation rates vary across positions along the Ig gene sequences,
positions in V1 may collectively have a higher (or lower) probability of mutation than
those in V2, and we can adjust ρ1 ∈ (1, L

L1
) to increase the likelihood of the mutation

occurring in V1 relative to V2, and vice versa when ρ1 ∈ (0, 1).
To specify the probabilities πS(0)

i |a , it will be convenient to define the events

Ma = {a mutation occurs in Va}, MS(0)

ab = {a mutation occurs in Vab(S(0))}, and
SS(0)

ab = {the mutated sequence S(1) belongs to Vab(S(0))}. Then, for mutations occur-

ring in V1, we have that πS(0)

1|1 = P
{MS(0)

11 , SS(0)

12 |M1
}
, πS(0)

2|1 = P
{MS(0)

12 ,

SS(0)

11 |M1
}
, πS(0)

3|1 = πS(0)

3|1,1 + πS(0)

3|1,2 where πS(0)

3|1,1 = P
{MS(0)

11 ,SS(0)

11 |M1
}
and

πS(0)

3|1,2 = P
{MS(0)

12 ,SS(0)

12 |M1
}
. Similarly, for mutations occurring in V2, we have

that πS(0)

1|2 = P
{MS(0)

21 , SS(0)

22 |M2
}
, πS(0)

2|2 = P
{MS(0)

21 , SS(0)

23 |M2
}
, πS(0)

3|2 = P
{MS(0)

22 ,

SS(0)

21 |M2
}
, πS(0)

4|2 = P
{MS(0)

22 , SS(0)

23 |M2
}
, πS(0)

5|2 = P
{MS(0)

23 , SS(0)

21 |M2
}
, πS(0)

6|2 =
P
{MS(0)

23 , SS(0)

22 |M2
}
, and πS(0)

7|1 = πS(0)

7|1,1 + πS(0)

7|1,2 + πS(0)

7|1,3 where πS(0)

7|2,1 = P
{MS(0)

21 ,

SS(0)

21 |M2
}
, πS(0)

7|2,2 = P
{MS(0)

22 , SS(0)

22 |M2
}
, and πS(0)

7|2,3 = P
{MS(0)

23 , SS(0)

23 |M2
}
.

Following the reasoning used to specify πS(0)

1 , we assume that

P
{MS(0)

11 |M1
} = ρ1|1

L11(S(0))

L1
= 1 − P

{MS(0)

12 |M1
}
,

for some constant ρ1|1 ∈ (0, L1
L11(S(0))

) modulating the odds of a mutation occurring in

V11(S(0)) compared toV12(S(0)), after accounting for the number of positions. The per-
position mutation rate is greater in V11(S(0)) than V12(S(0))when ρ1|1 ∈ (1, L1

L11(S(0))
),

equal when ρ1|1 = 1, and lower when ρ1|1 ∈ (0, 1).

Additionally, we set P
{SS(0)

11 |MS(0)

11

} = σ1|1P
{SS(0)

12 |MS(0)

11

}
where σ1|1 rep-

resents the odds of a mutation occurring in V11(S(0)) being synonymous. Most
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nucleotide substitutions of the third base (wobble position) of every codon induce
synonymous mutations, whereas substitutions in the first and second bases induce
non-synonymous mutations; hence, we set σ1|1 = 1/3 as an approximation in simula-

tions. Similarly, we set P
{SS(0)

12 |MS(0)

12

} = σ2|1P
{SS(0)

11 |MS(0)

12

}
where σ2|1 represents

the odds of a mutation occurring in V12(S(0)) not reverting to the germline. We
deduce that P

{SS(0)

11 |MS(0)

11

} = σ1|1
1+σ1|1 and P

{SS(0)

12 |MS(0)

12

} = σ2|1
1+σ2|1 . Therefore,

πS(0)

1|1 = ρ1|1
1+σ1|1

L11(S(0))
L1

, πS(0)

3|1,1 = σ1|1ρ1|1
1+σ1|1

L11(S(0))
L1

, πS(0)

2|1 = 1
1+σ2|1

(
1 − ρ1|1 L11(S(0))

L1

)
,

and πS(0)

3|1,2 = σ2|1
1+σ2|1

(
1 − ρ1|1 L11(S(0))

L1

)
.

In order to specify the probability of a mutation occurring in V2, we assume that

mutations in V2 target V21(S(0))with probability πS(0)

1|2 +πS(0)

2|2 +πS(0)

7|2,1 = ρ1|2 L21(S(0))
L2

,

where the coefficient ρ1|2 modulates the per position mutation rate within V21(S(0))

relative to V22(S(0))∪V23(S(0)). Likewise, mutations that occur in V2 target V22(S(0))

with probability πS(0)

3|2 + πS(0)

4|2 + πS(0)

7|2,2 = ρ2|2 L22(S(0))
L2

, whereas those that tar-

get V23(S(0)) occur with probability πS(0)

5|2 + πS(0)

6|2 + πS(0)

7|2,3 = ρ3|2 L23(S(0))
L2

. Since

ρ1|2 L21(S(0))
L2

+ ρ2|2 L22(S(0))
L2

+ ρ3|2 L23(S(0))
L2

= 1, we deduce that

ρ3|2 = L2

L23(S(0))

(

1 − ρ1|2
L21(S(0))

L2
− ρ2|2

L22(S(0))

L2

)

1{L23(S(0))>0}.

Wenext assume thatP
{SS(0)

22 |MS(0)

21

} = σ12|2P
{SS(0)

21 |MS(0)

21

}
andP

{SS(0)

23 |MS(0)

21

} =
σ13|2P

{SS(0)

21 |MS(0)

21

}
, where the parameters σ12|2 and σ13|2 modulate the odds of a

mutation inMS(0)

21 matching the target antibody sequence andmatching neither the tar-
get antibody nor the germline sequences, respectively, relative to a mutation matching
the germline sequence. Since P

{SS(0)

21 |MS(0)

21

}+P
{SS(0)

22 |MS(0)

21

}+P
{SS(0)

23 |MS(0)

21

} =
1, it follows that P

{SS(0)

21 |MS(0)

21

} = 1
1+σ12|2+σ13|2 , P

{SS(0)

22 |MS(0)

21

} = σ12|2
1+σ12|2+σ13|2 , and

P
{SS(0)

23 |MS(0)

21

} = σ13|2
1+σ12|2+σ13|2 .

Similarly, we assume that P
{SS(0)

21 |MS(0)

22

} = σ21|2P
{SS(0)

22 |MS(0)

22

}

and P
{SS(0)

23 |MS(0)

22

} = σ23|2P
{SS(0)

22 |MS(0)

22

}
, where the parameters σ21|2 and σ23|2

modulate the odds of a mutation inMS(0)

22 matching the germline sequence and match-
ing neither the target antibody nor the germline sequences, respectively, relative to
a mutation matching the bnAb sequence. Since P

{SS(0)

21 |MS(0)

22

}+ P
{SS(0)

22 |MS(0)

22

}+
P
{SS(0)

23 |MS(0)

22

} = 1,wededuce thatP
{SS(0)

21 |MS(0)

22

} = σ21|2
1+σ21|2+σ23|2 ,P

{SS(0)

22 |MS(0)

22

} =
1

1+σ21|2+σ23|2 , and P
{SS(0)

23 |MS(0)

22

} = σ23|2
1+σ21|2+σ23|2 .

Finally, we assume that P
{SS(0)

21 |MS(0)

23

} = σ31|2P
{SS(0)

23 |MS(0)

23

}
and

P
{SS(0)

22 |MS(0)

23

} = σ32|2P
{SS(0)

22 |MS(0)

23

}
, where the parameters σ31|2 and σ32|2 modu-

late the odds of a mutation in MS(0)

23 matching the germline sequence and matching
neither the target antibody sequence, respectively, relative to a mutation matching
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the bnAb sequence. Since P
{SS(0)

21 |MS(0)

23

}+ P
{SS(0)

22 |MS(0)

23

}+ P
{SS(0)

23 |MS(0)

23

} = 1,

we deduce that P
{SS(0)

21 |MS(0)

23

} = σ31|2
1+σ31|2+σ32|2 , P

{SS(0)

22 |MS(0)

23

} = σ32|2
1+σ31|2+σ32|2 , and

P
{SS(0)

23 |MS(0)

23

} = 1
1+σ31|2+σ32|2 .

Since π1|2 = P{SS(0)

22 |MS(0)

21

}
P
{MS(0)

21 |M2}, the above assumptions lead to

π1|2 = ρ1|2σ12|2
1+σ12|2+σ13|2

L21(S(0))
L2

. Likewise, π2|2 = ρ1|2σ13|2
1+σ12|2+σ13|2

L21(S(0))
L2

, π3|2 =
ρ2|2σ21|2

1+σ21|2+σ23|2
L22(S(0))

L2
, π4|2 = ρ2|2σ23|2

1+σ21|2+σ23|2
L22(S(0))

L2
, π5|2 = ρ3|2σ31|2

1+σ31|2+σ32|2
L23(S(0))

L2
,

π6|2 = ρ3|2σ32|2
1+σ31|2+σ32|2

L23(S(0))
L2

, and π7|2 = 1 −∑6
i=1 πi |2.

6.6 A branching process of convergent evolution

In a clone started from a naive B cell, the BCR sequence of the founder B cell is
such that L(S) = (L1, 0, L2, 0, 0) because it is unmutated. As cells divide, mutations
accumulate in the clonal family, and BCR sequences S accumulate mutations, and the
collection of vectors L(S) represents the position of the clonal family with respect to
the germline and bnAb sequences. Here we investigate whether the BCR repertoire
converges to a bnAb, and whether convergence to a bnAb requires a highly favorable
set of circumstances.

To describe the intra-clonal evolution of the distances L(S), we define a multitype
age-dependent branching process in which every cell is assigned a type represented
by a vector � that takes values in the set

K = {� = (�1, . . . , �5) ∈ N
5 : �1 + �2 = L1; �3 + �4 + �5 = L2},

where N = {0, 1 . . .} represents the set of non-negative integers. The entries of � are
interpreted just as those of L(S), as described in Sect. 6.4.

For every
(
�(0), �(1), �(2)) ∈ K × K × K, the conditional probability that any cell

of type �(0) divides into one cell of type �(1) and one cell of type �(2), given it divides,
is assumed to be

q�(0)

�(1)�(2) =

⎧
⎪⎨

⎪⎩

1 − π̃ if no mutation occurs, and �(1) = �(2) = �(0)

π̃π�(0)

a π�(0)

i |a if �(1) = �(2) = �(0) + ei |a
0 otherwise.

(22)

The first equation specifies the probability of no mutation occurring. The second
one specifies the probability of a mutation occurring in Va according to Case a.i, as
described in Sect. 6.4, with both daughters inheriting the same set of mutations from
their mother. The third equation reflects the assumption that both daughter cells cannot
inherit different mutations from their mother.

We assume that the probability of death and the lifespan distribution of every cell
are independent of its type: p�

0 = p0 and G�(·) ≡ G(·), � ∈ K. This assumption
is motivated by the aggregation of positions and amino acid substitutions in defining
the five regions, as discussed in Sect. 6.2. Together with the conditional probabilities
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q�(0)

�(1)�(1) , they model the combined outcome of mutation and antigen-mediated selec-
tion. Because it does not distinguish these two processes, the proposed model is partly
phenomenological. The entries of M = (m�(0)�(1) )�(0),�(1)∈K are given by m�(0)�(1) =
2(1 − p0)q�(0)

�(1)�(1) , such that M = 2(1 − p0)Q where Q = (q�(0)

�(1)�(1) )�(0),�(1)∈K.

Proposition 5 Suppose that Q is irreducible, p0 < 1/2, and (A4) holds. Let G∗(·)
and G∗,−1(·) denote the Laplace transform of G(·) and the inverse of G∗(·). Then, as
t → ∞, e−αtZ(t)

a.s.−→ Wv where α = G∗,−1
(
1/(2(1− p0))

)
and v = (v�)�∈K is the

left eigenvector of Q associated with its eigenvalue 1 and such that
∑

�∈K v� = K.

See Sect. 7.4 for a proof. The irreducibility assumption on Q holds, for example, if
mutations in V1 and V2 are reversible. It follows from Proposition 5 that, conditional
on survival (i.e., W > 0), the frequency of mutations within a clone converges a.s.
over time; specifically,

Z(t)
∑

�∈K Z�(t)
= e−αtZ(t)
∑

�∈K e−αt Z�(t)
a.s.−→ v

K
as t → ∞, (23)

such that the entries of the vector v/K provide the asymptotic mean frequency of
the number of positions of V falling into the subsets Vab, (a, b) ∈ {(1, 1), (1, 2),
(2, 1), (2, 2), (2, 3)}, in expanded clones.

6.7 Drift of the BCR repertoire relative to HIV bnAbs

We randomly selected 1000 BCR sequences sampled from human subjects, none of
which were living with HIV (Guo et al. 2019). All BCR were inferred to be encoded
by the VH1-2*02 allele. We calculated the number of mutations relative to VH1-
2*02 and the net mutational gain/loss against four HIV bnAbs: VRC01, 3BNC117,
IOMA, DH270.1, all originating from VH1-2*02 (Fig. 8, middle row). As expected,
BCR induced by antigens unrelated to HIV preferentially accumulate mutations that
are distinct from those observed in the HIV bnAbs, as evidenced by the amount of
mutational losses increasing with the number of mutations. Thus, sequential HIV
vaccines may have to select for rare mutations to steer antibodies toward bnAbs. The
data also suggest that inducing bnAb-specific mutations is more challenging for some
bnAbs than other, as indicated by the faster drift of some BCRs away from IOMA and
DH270.1 relative to 3BNC117 and VRC01.

To interpret this observation, we used our model to first examine the evolution
of the BCR repertoire relative to VRC01. We set the probability of death (p0) to
4
10 to ensure the survival of clonal families while preventing excessive expansion for
computational feasibility. TheVsegment of heavy chains accounts for slightly less than
half of the variable domain, but is somewhat more prone to somatic hypermutations
than other parts of the BCR. Therefore, taking Allen et al. (1987)’s estimate of the
mutation rate into consideration, we set the probability of mutation in the V segment
(π̃) to 1

4 . The mutation rate may differ between V1 and V2, partly because some bnAb-
specificmutationsmay bemuch less frequent than non-bnAb specificmutations. These
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Fig. 8 Top row: Amino acid sequences of the VH1-2*02 gene, V gene-encoded region of the heavy chain
of VRC01 and of an arbitrary BCR. The 41 amino acids of VRC01 that differ from those of the germline
VH1-2*02 gene form the subset V2 and are painted in red; the remaining 57 amino acids (black) define V1.
In the BCR sequence example, grey amino acids define V11(S), those painted in red define V12(S), those
in purple define V21(S), those in blue define V22(S), and those in green define V23(S). See Sect. 6.3 for a
definition of these subsets. Second row: Number of mutated amino acids versus net mutational gain/loss in
BCR sequences sampled from the B cell repertoire of several individuals, compared to four HIV-1 bnAbs
(3BNC117, VRC01, IOMA, DH270.1) encoded by VH1-2*02. Third to fifth row: Number of mutated
amino acids versus net mutational gain/loss in individual cells for several values of ρ1 from simulations of
a branching process. Each dot represents one cell or BCR, and each color identifies one clonal family. We
set σ12|1 = 1

10 in row 3, σ12|1 = 1
2 in row 4, σ12|1 = 4

5 in row 5. See Sect. 6.7 for detail (color figure
online)

probabilities also depend on the antigens to which B cells are exposed. Thus, we
considered several values of ρ1 = 1

10 ,
1
4 ,

1
2 ,

3
4 ,

9
10 to perform a sensitivity analysis.

The BCR sequencing data used in our analysis resulted from exposures to highly
diverse antigens. Therefore, we do not expect the per-position mutation rates to differ
between the sets Vab(S(0)), and put ρ1|1 = ρ1|2 = ρ2|2 = 1. As argued in Sect. 6.5, we
set σ1|1 = 1

3 to specify the likelihood of a mutation in V11(S(0)) being synonymous.
To specify the probability of a mutation in V12(S(0)) not reverting to a germline amino
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Fig. 9 Mutational paths toward a targeted antibody sequence.Eachhorizontal block of adjacent vertical bars
represents one antibody sequence, partitioned into nucleotide positions. Arrows represent one-nucleotide
mutations between antibody sequences. This diagram gives a simplified overview of the sets of mutational
paths induced by somatic hypermutations started from an unmutated (germline) antibody sequence toward
a targeted antibody sequence. Progression toward the targeted antibody may be hampered by the fact that as
sequences accumulate targeted mutations, the number of candidate unfavorable mutations increases relative
to those that are favorable. When the antibody is one mutation away from the target, the remaining mutation
is up against all other potential mutations. This challenge may be collectively addressed by the multiple B
cells from a clonal family that may express identical or similar antibody sequences, each offering a chance
of successfully mutating toward the targeted sequence

acid, we set σ2|1 = 1
10 . This choice is based on several considerations. Firstly, in

the best-case scenario where reverting to a germline amino acid requires a single
mutation, most substitutions at the wobble base, whichmay account for approximately
one-third of all mutations, would not qualify. Among the remaining two-thirds of
potential mutations at the first and second bases, only those that induce the specific
germline amino acid would produce a reverse mutation, acknowledging however that
the (effective) average number of candidate amino acid mutations is likely lower
than 19 (ignoring mutations into stop codons). Furthermore, as mutations accumulate,
some positions may require two or even more simultaneous mutations to revert to the
germline amino acid. With an effective average number of five amino acid mutations,
we might expect σ2|1 � 2

15 in the best-case scenario; accounting for cases requiring
more than one mutations provides support for setting σ2|1 = 1

10 or lower. We note
that the choice of σ2|1 has limited impact if L12(S(0))/L1 is small. Following a similar
line of arguments, we set σ12|1 = 1

10 to specify the probability of a mutation in
V12(S(0)) matching the bnAb amino acid, acknowledging that a lower value may be
more appropriate to study drift of the B cell repertoire following exposure to HIV-
related antigens whichmay induce bnAb-like mutations with higher probability. Thus,
we explored values of σ12|1 = 1

5 and σ12|1 = 1
2 in sensitivity analyses. Based on

previous arguments regarding synonymous mutations, we set P
{SS(0)

21 |MS(0)

21

} = 1
3 .

Hence, P
{SS(0)

22 |MS(0)

21

} + P
{SS(0)

23 |MS(0)

21

} = 2
3 which gives σ13|2 = 2 − σ12|2 after

algebraic calculations, and we set σ13|2 = 19
10 . Justified by a similar line of arguments,
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we set σ21|2 = 1
10 and σ23|2 = 19

10 . Finally, we assume that σ31|2 = σ32|2 = 1
10 using

the line of arguments used to justify setting σ12|2 = 1
10 .

Results from simulations are displayed in Fig. 8, sorted by values of ρ1 (columns)
andσ12|1 (rows).Whenσ12|1 = 1

10 , overall, patterns observed in simulations are similar
to those from BCR sequencing data, indicating a tendency of the BCR repertoire to
drift away from the bnAb as mutations accumulate in the V segment, unless ρ1 is
close to 0; for example, ρ1 ≤ 1

10 , reflecting that the per-position mutation rate is at
least 10 times higher in V2 than in V1. In the absence of selection bias (ρ1 = 1),
mutations would appear in V2 with a probability of 41.8% (= 41

98 × 100%). Thus,
even with almost 50% chance of inducing a mutation in V2, the BCR repertoire is
expected to rapidly drift away from VRC01 (see panel with ρ = 1.0) because the
bnAb amino acid is only one of the candidate mutations. Our simulations suggest a
value of ρ1 � 0.5 for VRC01, indicating that affinity maturation during exposures to
HIV-unrelated antigens has a preferential bias for inducing mutations at positions at
which VRC01 and VH1-2*02 do not match, and that the probability of this happening
is about twice as large compared to if there was no selection bias (i.e., case where
ρ1 = 1). The results obtained by increasing σ12|1 to 1

2 or
4
5 suggest that this parameter

has some but relatively limited influence on the results, with its impact decreasing
with ρ.

The value of ρ1 appeared to differ between the four bnAbs. After accounting for
the number of mutations in their respective V segment, simulations suggested the
following values of ρ1: ρ1 � 0.5 for 3BNC117 and ρ1 ≥ 0.9 for both IOMA and
DH270.1. Thus, induction of mutations in V2 were less likely for IOMA and DH270.1
than for VRC01 and 3BNC117. One potential explanation is the fact that VRC01
and 3BNC117 are more mutated than IOMA and DH270.1, making the induction of
VRC01- and 3BNC117-like mutations easier. Typically, as BCRs approach a targeted
antibody, the challenge of accumulating additional advantageous mutations tends to
increase because the probability of encountering unfavorable mutations eventually
surpasses that of favorable ones, as illustrated in Fig. 9. This could result in a slowdown
in progress as B cells approach the target. The point of equilibrium towards which
members of a clonal family tend to gravitate is formally described in Proposition 5
and equation (23).

7 Appendices: Proofs

7.1 Proof of Proposition 2

We begin the proof with the Bray–Curtis index. Since Assumption (A4) holds and
W > 0, we have for δ ≥ 0 and t large enough that

BCZ (t, t + δ) =
K∑

k=1

|(vkWeαt − vkWeα(t+δ))(1 + o(1))|
∑K

k′=1(vk′Weαt + vk′Weα(t+δ))(1 + o(1))

=
K∑

k=1

vk |eαt − eα(t+δ)|(1 + |o(1)|)
∑K

k′=1 vk′eαt (1 + eαδ)(1 + |o(1)|)
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=
K∑

k=1

vk |1 − e−αδ|(1 + |o(1)|)
∑K

k′=1 vk′(1 + eαδ)(1 + |o(1)|) .

Therefore, a.s., lim
t→∞ BCZ (t; t + δ) = (1− e−αδ)/(1+ eαδ). This establishes the first

statement. Derivation of the other results of Proposition 2 uses similar arguments and
are not provided.

7.2 Proof of Proposition 3

We have for every k = 1, 2 . . . that limt→∞ e−αt Z (k)
k (t − Tk) = Wkce−αTk (a.s.) for

some constant c > 0. Let Wk(u) = e−αu Z (k)
k (u)/c.

We first show that the series
∑∞

k=1 Wkce−αTk converges a.s. by verifying the con-
ditions of Kolmogorov’s Three Series Theorem. Let A > 0, arbitrary. To prove the
first condition, notice that

∞∑

k=1

P{Wke
−αTk ≥ A} ≤

∞∑

k=1

E(Wke−αTk )

A
= 1

A

∞∑

k=1

E(e−αTk )

= 1

A

∞∑

k=1

(

1 + α

r0

)−k

= 1

A

⎛

⎜
⎝

1

1 −
(
1 + α

r0

)−1 − 1

⎞

⎟
⎠ = 1

A

r0
α

< ∞,

where we have used the assumption that α > 0. To prove the second condition, we
have that

∞∑

k=1

E(Wke
−αTk1{Wke−αTk≤A}) ≤

∞∑

k=1

E(e−αTk ) = r0
α

< ∞. (24)

Lastly, the following inequality proves the third condition:

∞∑

k=1

Var(Wke
−αTk1{Wke−αTk≤A}) ≤

∞∑

k=1

E(W 2
k )E(e−2αTk ) = r0μ2

W

α
< ∞.

The three inequalities above show that the conditions of the Three series Theorem
hold. Now, limt→∞ e−αt Y (t) =∑∞

k=1 Wkce−αTk > 0 (a.s.). Hence,

lim
t→∞ Fk(t)

a.s.= Wke−αTk
∑∞

k′=1 Wk′e−αTk′
.

This completes the proof of the first statement of Proposition 3.
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Next, to get the limit of JY (t, t + δ), let a(t, δ) = ∑�(t)
k=1 1{Wk (t+δ−Tk )>0}, the

number of clones started before or at time t and alive at time t + δ. Then,

JY (t, t + δ) = 1 − a(t, δ)

a(t, 0) + a(t + δ, 0) − a(t, δ)
. (25)

Now, for every t, δ ≥ 0, a(t, δ) satisfies the inequalities

�(t− f (t))∑

k=1

1{Wk (t+δ−Tk )>0} ≤ a(t, δ) ≤
�(t− f (t))∑

k=1

1{Wk (t+δ−Tk)>0}+�(t)−�(t− f (t)).

(26)
Consider first the left-hand side, normalized by �(t − f (t)). Then,

lim
t→∞

1

�(t − f (t))

�(t− f (t))∑

k=1

1{Wk (t+δ−Tk )>0}

= lim
�→∞

1

�

�∑

k=1

1{Wk>0}

+ lim
t→∞

1

�(t − f (t))

�(t− f (t))∑

k=1

(1{Wk (t+δ−Tk )>0} − 1{Wk>0}
︸ ︷︷ ︸

≥0

).

The first term in the right-hand side converges a.s. to P{W1 > 0} by a Strong Law of
Large Numbers for i.i.d. r.v.. For the second one, notice that

P

⎧
⎨

⎩

1

�(t − f (t))

�(t− f (t))∑

k=1

(1{Wk (t+δ−Tk )>0} − 1{Wk>0}) > ε

⎫
⎬

⎭

=
∞∑

�=0

P

{
�∑

k=1

(1{Wk (t+δ−Tk )>0} − 1{Wk>0}) > �ε
∣
∣�(t − f (t)) = �

}

P {�(t − f (t)) = �}

≤
∞∑

�=0

∑�
k=1(P{Wk(t + δ − Tk ) > 0

∣
∣�(t − f (t)) = �} − P{Wk > 0})
�ε

.

Since P{Wk(t + δ − Tk) > 0
∣
∣�(t − f (t)) = �} − P{Wk > 0} is a monotone function

in t for every k, �, we can exchange limit and summation to obtain

lim
t→∞P

⎧
⎨

⎩

1

�(t − f (t))

�(t− f (t))∑

k=1

(1{Wk (t+δ−Tk )>0} − 1{Wk>0}) > ε

⎫
⎬

⎭

≤
∞∑

�=0

�∑

k=1
lim
t→∞P{Wk(t + δ − Tk) > 0

∣
∣�(t − f (t)) = �} − P{Wk > 0}
�ε

= 0.
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We conclude that, for every δ ≥ 0,

lim
t→∞

1

�(t)

�(t− f (t))∑

k=1

1{Wk (t+δ−Tk)>0}
P→ lim

t→∞
R(t − f (t))

R(t)
P{W1 > 0} = P{W1 > 0}.

Proceeding similarly, we show that the right-hand side of (26) normalized by�(t) also

converges in probability to P{W1 > 0}. Therefore, for every δ ≥ 0, a(t, δ)/�(t)
P−→

P{W1 > 0} as t → 0. We finally deduce from (25) that JY (t, t + δ)
P−→ 0 as t → ∞.

Next, to prove the limit of BCY (t, t + δ), we write

BCY (t, t + δ) =
∞∑

k=1

cWk |e−αTk − e−α(Tk−δ)||1 + o(1)|
e−αt Y (t) + e−αt Y (t + δ)

1{Tk≤t+δ}.

Using previous results, we show that

lim
t→∞ BCY (t, t + δ)

a.s.=
∑∞

k=1 cWk |e−αTk − e−α(Tk−δ)|
limt→∞ e−αt Y (t) + limt→∞ e−αt Y (t + δ)

,

from which the result follows. To establish the limit of the Bhattacharyya coefficient,
notice that for every δ ≥ 0

lim
t→∞ BY (t, t + δ) =

∞∑

k=1

√
√
√
√ lim

t→∞ e−αt Z (k)
k (t − Tk)1{k≤�(t+δ)}

limt→∞ e−αt Y (t)

×

√
√
√
√ lim

t→∞ e−α(t+δ)Z (k)
k (t + δ − Tk)1{k≤�(t+δ)}

limt→∞ e−αt Y (t + δ)

a.s.=
∞∑

k=1

√
Wke−αTk

∑∞
k′=1 Wk′e−αTk′

√
Wke−αTk

∑∞
k′=1 Wk′e−αTk′

a.s.= 1,

To establish the limit of the proportion of similarity PY (t, t + δ), we have that

lim
t→∞ PY (t, t + δ)

a.s.= 1 − 1

2

∞∑

k=1

∣
∣
∣
∣

Wke−αTk
∑∞

k′=1 Wk′e−αTk′
− Wke−α(Tk−δ)

∑∞
k′=1 Wk′e−α(Tk−δ)

∣
∣
∣
∣,

and the result follows, completing the proof.

7.3 Proof of Proposition 4

By assumption, limt→∞ R(t) = ∞. Therefore, �(t)
a.s.−→ ∞ as t → ∞, and

the immigration process a.s. generates an infinite sequence {αk}∞k=1. Let αmax =
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inf{x ≥ 0 : H+(x) = 1} denote the upper bound of the support of the condi-
tional distribution of α1, given α1 > 0. Since P{α1 > 0} > 0 by assumption, we
deduce that αmax > 0. Now, H+(·) is assumed to be absolutely continuous. Hence,
αk < αmax a.s., and P{αk′ > max(0, αk)} > 0, k′ = k + 1, k + 2 · · · . Therefore,∑∞

k′=k+1 P{αk′ > max(0, αk)} = ∞. Since the r.v. {αk}∞k=1 are i.i.d., we deduce
from the second Borel–Cantelli Lemma that there exists a.s. an infinite subsequence
{αk�

}∞�=1 ⊆ {αk′ }∞k′=k+1 such that αk�
> max(0, αk), � = 1, 2 . . .. Then, for every

k = 1, 2 . . ., e−αk t Z (k)
k (t)

a.s.−→ Wk using the assumption that
∫∞
0 gk(x)δdx < ∞

for some δ > 1 (see Assumption (A4)). The sequence {Wk�
}∞�=1 is i.i.d and such that

P{Wk�
> 0} > 0, � = 1, 2 . . .. Hence, a.s., ∃�+ ∈ {1, 2 . . .} such that Wk�+ > 0. We

deduce that

0 ≤ lim
t→∞ Fk(t) ≤ lim

t→∞
Z (k)
k (t − Tk)

Z
(k�+ )

k�+
(t − Tk�+ )

= lim
t→∞

⎛

⎝
e−αk (t−Tk )Z (k)

k (t − Tk)

e
−αk�+ (t−Tk�+ )

Z
(k�+ )

k�+
(t − Tk�+ )

eαk (t−Tk )

e
αk�+ (t−Tk�+ )

⎞

⎠

= Wk

Wk�+
lim
t→∞

eαk (t−Tk )

e
αk�+ (t−Tk�+ )

a.s.= 0.

This proves the first claim of Prop. 4 and its second one by setting k′ = k�+ .

7.4 Proof of Proposition 5

We have M∗(s) = G∗(s)M = 2(1 − p0)G∗(s)Q. Hence, the largest eigenvalue
of M∗(s) is ρ∗(s) = 2(1 − p0)G∗(s)ρ∗

Q where ρ∗
Q denotes the largest eigenvalue

of Q. Now, it can be shown that Q is a stochastic matrix. Therefore, ρ∗
Q = 1, and

the associated right eigenvector is u = ( 1
K , . . . , 1

K ). Next, since α is a solution of
the equation ρ∗(α) = 1, we have that G∗(α) = 1/(2(1 − p0)) and we deduce that
α = G∗,−1

(
1/(2(1 − p0))

)
> 0 because the Laplace transform of a real-valued

positive function is strictly decreasing. Using results from Sect. 3.6, we conclude that
e−αtZ(t)

a.s.−→ Wv where v is the left eigenvector of M∗(α) = 2(1− p0)G∗(α)Q and
the left eigenvector of Q associated with its unit eigenvalue which satisfies u1v1 +
· · · + uK vK = 1

K (v1 + · · · + vK ) = 1.
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