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Abstract
In epidemics, waning immunity is common after infection or vaccination of individ-
uals. Immunity levels are highly heterogeneous and dynamic. This work presents an
immuno-epidemiological model that captures the fundamental dynamic features of
immunity acquisition and wane after infection or vaccination and analyzes mathemat-
ically its dynamical properties. The model consists of a system of first order partial
differential equations, involving nonlinear integral terms and different transfer veloc-
ities. Structurally, the equation may be interpreted as a Fokker-Planck equation for
a piecewise deterministic process. However, unlike the usual models, our equation
involves nonlocal effects, representing the infectivity of the whole environment. This,
together with the presence of different transfer velocities, makes the proved existence
of a solution novel and nontrivial. In addition, the asymptotic behavior of the model is
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analyzed based on the obtained qualitative properties of the solution. An optimal con-
trol problem with objective function including the total number of deaths and costs of
vaccination is explored. Numerical results describe the dynamic relationship between
contact rates and optimal solutions. The approach can contribute to the understanding
of the dynamics of immune responses at population level and may guide public health
policies.

Mathematics Subject Classification 92D30 · 93C95 · 93C20 · 92-10

1 Introduction

In many infectious diseases, immunity acquired from infection wanes over time. The
same holds for immune responses elicited by vaccines. Typical examples are influenza
and COVID-19 where immunity wanes within a few months (Rambhia and Rambhia
2019;Goldberg et al. 2022). The durability of natural immunity and immune responses
triggered byvaccines are crucial for decisionmaking and interventions in public health.
Antibodies seem to be the protective mechanism for these infections but often more
specific immune responses such as specific T cell groups are needed to build up
immunity and maintain immune memory. Immunity waning is highly heterogeneous
in the population between individuals and changes over time (Lavine et al. 2021).

Several mathematical models have been developed to assess effectiveness and the
possibility of waning immunity after infection or vaccination (Montalbán et al. 2022;
Iyaniwura et al. 2023; Pell et al. 2022; Gosh et al. 2022; Domenech de Celles et al.
2022; Veliov and Widder 2016). To a lesser extent, the models investigated the opti-
mal timing of vaccine administration, accounting for the waning immunity between
seasons for infectious diseases such as influenza (Costantino et al. 2019). A popula-
tion with heterogeneous immunity is considered inMontalbán et al. (2022). However,
individual immunity is modeled as constant over time. In addition, Montalbán et al.
(2022) consider no change in immunity levels due to previous infection or vaccination
and do not study decision (control) aspects. Iyaniwura et al. (2023) used a distributed
delay equations framework to describe the dynamics of waning immunity in a popu-
lation with vaccine or natural infection induced immunity at an endemic stage. They
performed a bifurcation analysis showing that waning immunity from natural infec-
tion influences the bifurcation type more than vaccine associated waning immunity.
Furthermore, they derived a control reproduction number and showed the interplay
between the decrease in immunity rate and the transmission rate of the pathogen. Sim-
ilar approaches were used by Pell et al. (2022) and Gosh et al. (2022). Domenech de
Celles et al. (2022) showed in a simulation study how immunological heterogeneity
plays a role in determining the durability of vaccine protection. A model with het-
erogeneous dynamic immunity where sub-populations were structured with respect to
the host immunity was developed and analysed by Veliov and Widder (2016). In all
these cases investigation of control aspects was either not present or played a rather
limited role.
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In Sect. 2 of this study we propose a model that examines the dynamics of an infec-
tious disease, taking into account the waning immunity following natural infection or
vaccination. It is designed with the following key considerations:

(1) The individuals are heterogeneous with respect to their (dynamic) immunity level;
(2) After infection, individual immunity increases progressively until recovery begins;
(3) With the onset of recovery, immunity starts to decrease over time;
(4) infectiousness, susceptibility, mortality, and recovery rates depend on the individ-

ual immunity;
(5) The infectiousness of the environment is represented by the aggregated infectious-

ness of infected individuals, weighted by activity level, as a share of the overall
activity level of the population.

The model is formulated in terms of a system of Partial Differential Equations
(PDEs) where the latter feature introduces a nonlocal effect in the form of a nonlinear
term that incorporates integrals of state variables across the whole range of immunity
levels.

From a mathematical perspective, the proposed model is challenging for the
following reasons:

(i) It consists of a system of first order PDEs (each of which is of size-structured type,
see, e.g.,Martcheva and Pilyugin (2006))with different velocity fields, hence,with
different characteristic lines. This creates a substantial problem in the analysis of
the system, because a reformulation of the PDE system as an Ordinary Differential
Equation (ODE) system in a closed form cannot be obtained.

(ii) Because of the form of the non-local term describing the infectiousness of the
environment, the Lipschitz constant of the equations may tend to infinity along the
solution, which substantially complicates the proof of global existence.

As previously mentioned, several authors have investigated disease dynamics, con-
sidering factors such as waning immunity and the acquisition of immunity during
infection or post-vaccination. Similar to our model is the work of White and Med-
ley (1998), which involves equations with different transfer velocities. However, the
authors focus on the formal steady-state equations, without examining the overall
PDE system. Other studies, such as Rouderfer and Becker (1994), Barbarosa and Röst
(2015), Ehrhardt et al. (2019), also consider first order PDEs, but either the velocity
fiends are identical or a single PDE (together with ODEs) is involved.

Mathematical features of the model, such as the existence of a solution and the
asymptotic behavior, are examined in Sect. 3. The model is then extended in Sect. 4
to encompass effects of vaccination. Additionally, an optimal vaccination problem
is formulated in Sect. 4.2, which could potentially be utilized to design vaccine
administration strategies.

Finally, in Sect. 5 numerical results are presented for several scenarios, which
include the behavior of the epidemic with and without vaccination, as well as optimal
vaccination policies.Whilemathematical properties of thePDE-systemare analyzed in
some detail, the optimal vaccination problem is analyzed only numerically. Here, anal-
ysis focuses on significant qualitative observations regarding the optimal vaccination
policy and the corresponding evolution of the epidemic under optimal vaccination.
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In the appendix of this work we prove global existence of a solution, even for more
general systems than our particular model requires. The proof is not straightforward
andmay be of independentmathematical interest (see Sect. 3.2 formore explanations).

2 The basic model with dynamic immunity

To model the dynamics of the immunity over time, we use a function ω : R �→ [0, 1],
whose value, ω(t), at time t is interpreted as the immunity level of an individual at
time t . The larger this number ω(t), the higher is the immunity of the individual,
which implies lower susceptibility and lower infectiousness. From an empirical point
of view, the individual immunity level may be quantified, e.g., proportional the amount
of antibodies per ml blood.

Throughout the paper, we assume that after an individual is infected, its immunity
level increases until the time of recovery (Yaugel-Novoa et al. 2022). Therefore, we
describe the evolution of the immunity level after infection at time τ using the equation

ω̇(t) = g(ω(t)), ω(τ) = ξ, t ≥ τ, (2.1)

where ξ ∈ [0, 1] is the initial immunity level at the time of infection τ . The function
g : [0, 1] → [0,+∞) is assumed to be differentiable and to satisfy g(0) > 0, and
g(1) = 0. The description we use for the immune response to the infectious agent
corresponds to the way the immune response may be embedded in a dynamical system
that describes the within-host pathogen dynamics of an infection (see Schuh et al.
(2023)). In this approach the mounting and decline of the immune responses during
an infection process were explicitly captured with an equation describing the overall
immune capacity of the individual against the pathogen including the acqusition of
an immunity level. In our approach we incorporate these immune response dynamics
in an epidemiological model to capture the overall dynamics of the immunity at the
population level.1

In the long run, the immunity level decreases (Yaugel-Novoa et al. 2022). Therefore,
beginning with recovery immunity wanes over time and we describe its decrease by
the equation

ω̇(t) = f (ω(t)), ω(τ) = ξ, t ≥ τ, (2.2)

where ξ ∈ [0, 1] is the immunity level at the time of recovery τ . It is assumed that
f : [0, 1] → (−∞, 0], is continuously differentiable with f (0) = 0, f (1) < 0.
While in a population the individual immunity levels change as described above, at

any point in time the individuals in a population may have differing immunity levels,
depending on their individual history with the disease. Therefore, the immunity status
of a whole population can be modeled as a frequency distribution over the possible

1 A quadratic function g is used in this paper, however depending on the current in-body severeness of the
infection; in our model the severeness itself depends on the immunity which also influences the time of
recovery and hence, the immunity level at.
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values of the immunity level, ω ∈ [0, 1]. Note that ω here denotes just one possible
value of the function ω(·).

Based on these considerations, we denote by S(t, ω) ≥ 0 and I (t, ω) ≥ 0 the size
of the susceptible, respectively infected, population of immunity level ω at time t .
Thus the total population N at time t is

N (t) =
∫ 1

0
[S(t, ω) + I (t, ω)] dω.

In this paper, we assume that the susceptibility and infectiousness of an individual
depend only on its immunity level. Immunological memory may have been acquired
through a history of previous exposure to the relevant pathogen through infection or
vaccination.

The susceptibility is represented by σ(ω) ≥ 0, where the continuous function
σ : [0, 1] → [0,∞) is presumably decreasing in ω. Similarly, the infectiousness
of infected individuals is expressed by i(ω), with i being a continuous non-negative
function.

We denote by c > 0 the contact rate of susceptible individuals, while the contact
rate of infected individuals is represented by cI ∈ (0, c]. In principle, the contact
parameters can be extended to depend on ω, because people who know that they are
well protected by immunity may have more contacts. Moreover, dependence on time
may be used for the description of seasonal or other time dependent behaviour of
the individuals. However, in this paper, we assume for simplicity that c and cI are
constant.

We model the rate of new infections by the expression cD(t)σ (ω)S(t, ω). This
expresses the fact that the probability of an infection for each susceptible individual is
proportional to its contact rate, its susceptibility and the infectiousness of the environ-
ment D(t). For one individual D can be considered as a stochastic process, depending
on the actions of the individual and on the (random) infectiousness of its contacts.
As we are finally interested in a model at the population level and consider classes
of population groups with immunity level ω instead of individuals, we estimate the
infectiousness of the environment as an average infectiousness. Infectious individuals
of all immunity levels contribute with their infectiousness and at their contact rate to
overall infectiousness. Here, themodel is based on themean field idea: for any contact,
infectiousness and number of contactees are replaced by a population average.

In order to estimate the probability σ(ω)D(t) that an individual with immunity
level ω is infected at time t , one has also to take into account the contact-adjusted size
of the total population at time t . Therefore, under the assumption of weighted random
mixing, the infectiousness of the environment in which susceptible individuals contact
infected individuals is represented as

D(t) = cI
∫ 1
0 i(ω)I (t, ω) dω

cI
∫ 1
0 I (t, ω) dω + c

∫ 1
0 S(t, ω) dω

. (2.3)
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Finally, the mortality rate of infected individuals is denoted byμ(ω), and the recov-
ery rate from infection is denoted by ρ(ω). Both parameters are nonnegative functions
depending on the current immunity level. In the present studywe do notmodel in detail
the demographic effects of birth and death rates, which may be even time varying or
age-dependent. Neglecting their long-run effects, we basically assume that the birth
rate and "natural" death rate are equal, and the same rates are effective for all relevant
compartments. The mortality rateμ(ω) then represents the excess mortality due to the
epidemic.

Based on these assumptions and the related notations, it is now possible to describe
the time dependent dynamics of the classes of susceptible and infected individuals for
different immunity levels in terms of a system of PDEs for the population sizes S and
I of susceptible and infected individuals with varying immunity level.

∂

∂t
S(t, ω) + ∂

∂ω
( f (ω)S(t, ω)) = −cD(t)σ (ω)S(t, ω) + ρ(ω)I (t, ω), (2.4)

∂

∂t
I (t, ω) + ∂

∂ω
(g(ω)I (t, ω)) = cD(t)σ (ω)S(t, ω) − (ρ(ω) + μ(ω))I (t, ω),

(2.5)

with initial conditions

S(0, ω) = S0(ω), I (0, ω) = I 0(ω), ω ∈ [0, 1], (2.6)

(S0 and I 0 are initial data) and the zero flux boundary conditions

f (ω)S(t, ω) = 0, g(ω)I (t, ω) = 0, ω ∈ {0, 1}, t ≥ 0.

Due to the assumptions f (0) = g(1) = 0 and f (1) < 0, g(0) > 0, the initial
conditions and the zero-flux condition are equivalent to

S(t, 1) = 0, I (t, 0) = 0, t > 0. (2.7)

Moreover, due to the meaning of ω, and for consistency of the initial and boundary
conditions it is natural to assume that S0(1) = I 0(0) = 0.

In infectious disease epidemiology, modeling by size-structured systems is a well
established approach, see e.g. Rouderfer and Becker (1994); White and Medley
(1998); Martcheva and Pilyugin (2006); Barbarosa and Röst (2015); Veliov and Wid-
der (2016); Ehrhardt et al. (2019). Each of the equations (2.4) and (2.5) is a standard
size-structured equation. The equation represents the evolution of the concentration
of a substance moving according to a given velocity field in presence of in- or outflow
(the term on the right-hand side). It can be derived by the same (conservation of mass)
argument as the advection equation (see e.g. Britton N.F. 1986) for a compressible gas.
In contrast with the physical models, in population dynamics such equations usually
contain non-local terms (the function D(t) in our case). Moreover, we deal with a sys-
tem of two (later three) equations with different transfer velocities, which substantially
complicates the analysis.
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There is an alternative view of a system represented by equations (2.4), (2.4) (and
subsequently, (4.5)), also widely used in mathematical biology. We discuss it in the
remaining part of this section, where we normalize the population size such that

N (0) = 1.

Consequently, the compartment sizes, S and I (and V , in the next section) can be
interpreted as proportions of the total population belonging to the respective sub-
populations.

At the individual level we basically consider a Markovian stochastic process with
hybrid state space: the state of any individual at any given time is characterized by their
immune status and the compartment to which they belong at the time. The immune sta-
tus takes continuous values, while the compartments are finite in number. In particular,
compartments are the susceptible, the infected, subsequently also the vaccinated, and
the dead individuals. Randomness is introduced only during the discrete transitions
between compartments. In the intervals between these transitions, the continuous state
progresses according to compartment-specific ordinary differential equations (2.2) and
(2.1). Transitions take place in accordance with a Poisson process, with the deceased
status serving as an absorbing state for all values of immunity level, and are governed
by a time- and state-dependent infinitesimal generator

Q(t, ω) =
⎛
⎝−cD(t)σ (ω) cD(t)σ (ω) 0

ρ(ω) −ρ(ω) − μ(ω) μ(ω)

0 0 0

⎞
⎠ (2.8)

If we assume for a moment that D(t) is a given function, the process can be
considered as a piecewise deterministic process2: in this case we may interpret the
proportions S(t, ω), I (t, ω) as probabilities of being in the susceptible or infected
state with immunity ω at time t . Then, equations (2.4)-(2.5), augmented by

∂

∂t
G(t, ω) = μ(ω)I (t, ω), (2.9)

where G(t, ω) denotes the “probability” of being dead at time t (and having died
at immunity level ω) is the Fokker-Planck (or Kolmogorov forward) equation of the
process, see e.g., Annunziato and Borzi (2018).

The standard class of piecewise deterministic processes, sometimes also called
"correlated random walk", was introduced by Davis (1984) and has been used exten-
sively in theoretical biology, see, e.g., Rudnicki and Tyran-Kamińska (2000). Our
model extends the standard piecewise deterministic case because D(t) is defined by
(2.3), involving integrals over ω in a nonlinear way. Basically, the jump rate from S to
I depends on the distribution of the whole population over all relevant compartments
and all values of immunity levels at any point in time.

2 We thank an anonymous referee for pointing out this connection.
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3 Existence of solution and asymptotic behaviour

3.1 Notion of solution

The following assumptions hold throughout the paper.
Standing Assumptions. The functions f and g are differentiable with Lipschitz

derivatives, defined in a neighborhood of [0, 1], with f (0) = g(1) = 0, and the
derivatives f ′(ω) < 0 on (0, 1], g′(ω) < 0 in ω ∈ [0, 1). The function i : [0, 1] →
[0,∞) is measurable and bounded, the functions σ, ρ, μ, S0, I 0 : [0, 1] → [0,∞)

are continuous, differentiable on (0, 1) except for a finite number of points,3 and the
derivatives are Lipschitz continuous in each interval of existence. Moreover, S0(1) =
I 0(0) = 0 and

∫ 1
0 (S0(ω) + I 0(ω)) dω = 1.

Solution of a system (2.3)–(2.7) may be defined in several ways (cf. Kato and
Torikata (1997)). Here, we define the notion of solution by the method of characteris-
tics. For reasons of further analysis, we restrict the definition to the case of Lipschitz
continuous solutions (although the solutions may be discontinuous for general initial
or boundary data).

Denote � := [0, T ] × [0, 1], and let �̃ ⊂ R
2 be an open neighborhood of �. For

γ := (τ, ξ) ∈ �̃ we denote by ω f [γ ](·) and ωg[γ ](·) the solutions of (2.2) and (2.1),
respectively. Due to the assumptions for f and g, the set [0, 1] is an invariant domain
for both equations; hence, considering a sufficiently small neighborhood �̃ of �, the
solutions are defined on [0, T ] for every γ ∈ �̃.

Further, denote � f := ({0} × [0, 1]) ∪ ([0, T ] × {1}) (the left-upper boundary
of �), �g := ({0} × [0, 1]) ∪ ([0, T ] × {0}) (the left-lower boundary of �). Due
to the assumptions for f and g, we have that ∪γ∈� f ω f [γ ](t) = [0, 1]. Similarly,
∪γ∈�g ωg[γ ](t) = [0, 1]. Again due to the properties of f and g, there are unique

functions γ f : �̃ → � f and γ g : �̃ → �g such that ω f [γ f (t, ω)](t) = ω

and ωg[γ g(t, ω)](t) = ω for all �̃. Moreover, due to the (Lipschitz) continuous
dependence of the solutions of (2.2) and (2.1) on the initial data, the functions
ω f , ωg, γ f , γ g have Lipschitz continuous derivatives with respect to γ and t .

For the (dummy) real numbers t, ω, d, s, i , denote (in relation to (2.4)–(2.5))

F S(t, ω, d, s, i) := −cdσ(ω)s + ρ(ω)i − f ′(ω)s, (3.1)

F I (t, ω, d, s, i) := cdσ(ω)s − (ρ(ω) + μ(ω))i − g′(ω)i, (3.2)

where the argument t is included for further use. For shortness we introduce the
notations

γ f (γ ) := (τ f (γ ), ξ f (γ )), γ g(γ ) := (τ g(γ ), ξ g(γ )),

for γ ∈ �, and

S̄0(γ ) :=
{

S0(ξ) if γ = (0, ξ),

0 if γ = (τ, 1),
Ī 0(γ ) :=

{
I 0(ξ) if γ = (0, ξ),

0 if γ = (τ, 0).

3 The assumption can be relaxed by replacing “finite number” with “countable number”.
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Fig. 1 Characteristic lines and illustration of the notations

for γ ∈ � f and γ ∈ �g , respectively. Figure1 illustrates these notations.
The so-called “characteristic lines” staring from � f cover �, more precisely, the

mapping {γ ∈ � f , t ∈ [τ f (γ ), T ]} 
 (γ, t) �→ (t, ω f [γ ](t)) ∈ � is bijective. A
similar fact applies to the characteristic lines emanating from �g . Then any pair of
continuous functions (S, I ) : � → R

2 uniquely determines two family of functions
of t parameterized by γ :

zS[γ ](t) := S(t, ω f [γ ](t)), γ ∈ � f , t ∈ [τ f (γ ), T ] (3.3)

z I [γ ′](t) := I (t, ωg[γ ′](t)), γ ′ ∈ �g, t ∈ [τ g(γ ′), T ]. (3.4)

Vice versa, any pair of continuous functions (zS[·](·), z I [·](·)) defined on the sets as
in the previous exposed lines determines a continuous pair (S, I ) : � → R

2 by the
relations

S(t, ω) := zS[γ f (t, ω)](t), I (t, ω) := z I [γ g(t, ω)](t).

These facts explain the following definition.

Definition 3.1 The pair of continuous functions S, I : 
 → R is called a solution
of system (2.3)–(2.7) if the functions zS and z I defined by (3.3)–(3.4) are absolutely
continuous in t and satisfy the equations

ż S[γ ](t) = F S(t, ω f [γ ](t), D(t), zS[γ ](t), I (t, ω f [γ ](t))),
γ ∈ � f , t ∈ [τ f (γ ), T ] (3.5)

ż I [γ ′](t) = F I (t, ωg[γ ′](t), D(t), S(t, ωg[γ ′](t)), z I [γ ′](t)),
γ ′ ∈ �g, t ∈ [τ g(γ ′), T ], (3.6)

together with (2.3) and with initial conditions

zS[γ ](τ f (γ )) = S̄0(γ ), z I [γ ′](τ g(γ ′)) = S̄0(γ
′).
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Equivalently, for any γ = (t, ω) ∈ � it holds that

S(γ ) =
∫ t

τ f (γ )

F S(
s, ω f [γ ](s), D(s), S(s, ω f [γ ](s)), I (s, ω f [γ ](s))) ds + S̄0(γ f (γ )),

(3.7)

I (γ ) =
∫ t

τ g(γ )

F I (s, ωg[γ ](s), D(s), S(s, ωg[γ ](s)), I (s, ωg[γ ](s))) ds + Ī 0(γ g(γ )).

(3.8)

Remark 3.1 We mention that if S and I are differentiable and satisfy equations (2.3)–
(2.7) in the classical sense, then the corresponding representations (zS[·](·), z I [·](·))
on the characteristic lines solve equations (3.3), (3.4). Moreover, the representation
(3.7), (3.8) is valid. The latter fact is not straightforward, however it can be directly
checked using the identities ∂

∂t ω
f [γ ](s)+ f (ω) ∂

∂ω
ω f [γ ](s) = 0 for all γ = (t, ω) ∈

� f , and a few more similar identities that appear when plugging the expressions of S
and I in (3.7)–(3.8) into (2.4)–(2.5).

3.2 Existence of a“smooth" solution

In this subsection we present a theorem claiming existence of a solution of system
(2.3)–(2.7) which is regular enough to enable the subsequent analysis. Although the
proof is based on the Banach contraction mapping theorem, it is not straightforward
due to two reasons: (i) the Lipschitz constants of F S and F I may tend to infinity
with the time due to the expression (2.3) for D, which makes the existence on [0,∞)

problematic; (ii) due to the involvement of different transfer velocity fields f and g,
the system (2.4)–(2.5) cannot be reduced to a closed form ODE system along the
characteristics; (iii) proving the non-negativity of the solution is not straightforward
at all. Therefore, we present in the Appendix a detailed proof of the existence theorem
formulated below. In fact, we even prove a more general theorem assuming a few
properties of the functions F S and F I in (3.7)–(3.8) and not necessarily the specific
form of (3.1)–(3.2).

Theorem 3.1 Under the standing assumptions, system (2.3)–(2.7) has a unique solu-
tion (S, I ) on [0,∞)×[0, 1] which is Lipschitz continuous on every set [0, T ]×[0, 1],
T > 0. The solution is nonnegative and satisfies

∫ 1
0 [S(t, ω) + I (t, ω)] dω > 0 for

all t ∈ [0,∞). Moreover, for each ω ∈ [0, 1] and T ∈ (0,∞) the derivatives
∂
∂t S(t, ω), ∂

∂t I (t, ω) exist on (0, T ] except of finite number of points, and for each

t ∈ (0,∞) the derivatives ∂
∂ω

S(t, ω), ∂
∂ω

I (t, ω) exist on (0, 1) except of finite number
of points.

Including more equations with different characteristic curves (such as the system
with vaccination in the next section) does not change the proof. Since we allow depen-
dence of the functions F S and F I on time in the proof, the presence of a control
function in the equations is also covered by the existence theorem as proved in the
Appendix.

123



An immuno-epidemiological model... Page 11 of 41 71

The differentiability property in the claim of the theorem is crucial: it not only
enables integration of equations (2.4)–(2.5) with respect to ω but also permits to
interchange the order of integration and differentiation. This, in turn, implies that the
aggregated compartment sizes

Ŝ(t) :=
∫ 1

0
S(t, ω) dω, Î (t) :=

∫ 1

0
I (t, ω) dω.

can be represented as in the following corollary.

Corollary 3.2 Let (S, I , D) be the solution of (2.3)–(2.7) on [0,∞)×[0, 1]. Then the
aggregated compartment sizes Ŝ(t), Î (t) are given by

Ŝ(t) =
∫ 1

0
S0(ω) dω − c

∫ t

0
D(t)

∫ 1

0
σ(ω)S(t, ω) dω dt +

∫ t

0

∫ 1

0
ρ(ω)I (t, ω) dω dt,

(3.9)

Î (t) =
∫ 1

0
I 0(ω) dω + c

∫ t

0
D(t)

∫ 1

0
σ(ω)S(t, ω) dω dt −

∫ t

0

∫ 1

0
(ρ(ω) + μ(ω))I (t, ω) dω dt .

(3.10)

In addition, the total number of individuals decreases according to

N (t) = Ŝ(t) + Î (t) = −
∫ 1

0
μ(ω)I (t, ω) dω. (3.11)

Proof Integrate equations (6.1)–(2.5) over ω ∈ [0, 1] and exchange the order of inte-
grals and differentials on the left hand side. This is possible due to the properties of S
and I in Theorem 3.1. Apply the zero flux conditions (specified after (2.6)), to obtain

expressions for dŜ(t)
dt and d Î (t)

dt . These derivatives exist for all t except for a finite
number of points on every bounded set [0, T ]. Finally, integrate over t ∈ [0, 1] to
obtain equations (3.9)–(3.10). Equation (3.11) is then obtained by adding up. ��

3.3 Descend of the epidemics and basic reproduction numbers

The goal of this subsection is to obtain conditions under which the number of infected
individuals decreases and converges to a disease-free state. We proceed under the
assumption that the conditions stipulated in Theorem 3.1 are satisfied and introduce
the notation

˙̂S(t) := dŜ(t)

dt
and ˙̂I (t) := d Î (t)

dt
.

Using the estimation

cD(t) ≤ cI
∫ 1
0 i(ω)I (t, ω) dω

Ŝ(t)
, (3.12)
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which can easily be derived from the definition (2.3), we obtain by differentiating
equation (3.10)

˙̂I (t) ≤ cI
∫ 1
0 i(ω′)I (t, ω′) dω′

Ŝ(t)

∫ 1

0
σ(ω)S(t, ω) dω −

∫ 1

0
(ρ(ω) + μ(ω))]I (t, ω) dω,

hence,

˙̂I (t) ≤
∫ 1

0

[
cI i(ω)

∫ 1

0
σ(ω′) S(t, ω′)

Ŝ(t)
dω′ − (ρ(ω) + μ(ω))

] I (t, ω)

Î (t)
dω Î (t).

(3.13)

In two steps we eliminate the dependence of the estimation on the densities of S and
I , focusing on the worst case:

˙̂I (t) ≤
∫ 1

0
[cI σ̄ i(ω) − (ρ(ω) + μ(ω))] I (t, ω)

Î (t)
dω Î (t), σ̄ := sup{σ(ω) : ω ∈ [0, 1]},

(3.14)

˙̂I (t) ≤
∫ 1

0
max

ω∈[0,1]{cI σ̄ i(ω) − (ρ(ω) + μ(ω))} dω Î (t). (3.15)

Define the numbers

λt :=
∫ 1

0

[
ρ(ω) + μ(ω) − cI i(ω)

∫ 1

0
σ(ω′) S(t, ω′)

Ŝ(t)
dω′] I (t, ω)

Î (t)
dω,

λ := min
ω∈[0,1]{ρ(ω) + μ(ω) − cI σ̄ i(ω)}.

Obviously λt ≥ λ for any t ≥ 0. Thus we obtain the following proposition.

Proposition 3.3 At any time t, if the current normalized densities of susceptible and
infected individuals, S(t, ·)/Ŝ(t) and I (t, ·)/ Î (t), satisfy the inequality λt > 0 then
the number of infected individuals strictly decreases at this time. Moreover,

Î (t) ≤ e−λ(t−τ) Î (τ ), 0 ≤ τ ≤ t, k = 1, 2, 3. (3.16)

The next corollary claims that the susceptible population does not asymptotically
extinct. Furthermore, it provides an estimate of the maximum population reduction
attributable to the disease.

Corollary 3.4 Assume that λ > 0 and denote b := max{0,maxω∈[0,1]{cI σ̄ i(ω) −
ρ(ω)}} Then for any initial state (S0(·), I 0(·)) satisfying

∫ 1
0 I 0(ω) dω < λ

λ+b , the

susceptible population size Ŝ(t) satisfies

Ŝ(t) ≥ Ŝ(0) − b

λ + b
> 0, t ≥ 0.
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Proof From equation (3.9) and (3.12) we have

˙̂S(t) = −cD(t)
∫ 1

0
σ(ω)S(t, ω)dω +

∫ 1

0
ρ(ω)I (t, ω) dω

≥ −cD(t)σ̄ Ŝ(t) +
∫ 1

0
ρ(ω)I (t, ω) dω

≥
∫ 1

0
(−cI i(ω) + ρ(ω)) I (t, ω) dω ≥ −bÎ (t),

because cI i(w) − ρ(ω) ≤ b, ω ∈ [0, 1]. Then,

Ŝ(t) = Ŝ(0) +
∫ t

0

˙̂S(s) ds � Ŝ(0) − b
∫ t

0
Î (s) ds

� Ŝ(0) − b
∫ t

0
e−λs Î (0) ds � Ŝ(0) − b

λ
Î (0)

� Ŝ(0) − b

λ

λ

λ + b
= Ŝ(0) − b

λ + b
> 0

The last inequality follows from

Ŝ(0) = 1 − Î (0) ≥ 1 − λ

λ + b
= b

λ + b
.

��
Wemention that in absence of disease, i.e. I 0(·) = 0, the density of the susceptible

individuals converges to the Dirac delta function concentrated at zero, irrespectively
of the starting distribution S(t, ω). To formally show this fact we consider the purely
susceptible population starting from S0(ω) with

∫ 1
0 S0(ω) dω = 1. Then S(t, ω) and

I (t, ω) = 0 solves (2.4)–(2.5), where S is the solution of

∂

∂t
S(t, ω) + ∂

∂ω
( f (ω)S(t, ω)) = 0

with S(0, ω) = S0(ω) and S(t, 1) = 0. Solving the last equation along the
characteristics, after some elementary calculation we show that for every ϕ ∈
L∞(0, 1)

∫ 1

0
S(t, ω)ϕ(ω) dω =

∫ 1

0
S0(ξ)ϕ(ω f [0, ξ ](t)) dξ.

Let ϕ(ω) = 1 on [0, ε], else ϕ(ω) = 0. Due to the properties of f we have that
ω f [0, ξ ](t) ≤ ω[0, 1](t) and there is t(ε) such that for any t ≥ t(ε) we have
ω f [0, 1](t) ≤ ε. Then

∫ ε

0
S(t, ω) dω =

∫ 1

0
S(t, ω)ϕ(ω) dω =

∫ 1

0
S0(ξ)ϕ(ω f [0, ξ ](t)) dξ =

∫ 1

0
S0(ξ) dξ = 1
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for t ≥ t(ε). In particular, S(t, ω) = 0 for a.e. ω ∈ [ε, 1] for such t . Now, take an
arbitrary ϕ ∈ W 1,∞ (the domain is [0, 1], therefore W 1,∞ is the set of all Lipschitz
continuous functionswith the usual norm).We can estimate (using the obvious relation∫ 1
0 S(t, ω) dω = 1)

∫ 1

0
S(t, ω)ϕ(ω) dω = ϕ(0) +

∫ 1

0
S(t, ω)[ϕ(ω) − ϕ(0)] dω.

For t ≥ t(ε) the last term can be estimated by

∫ ε

0
S(t, ω)[ϕ(ω) − ϕ(0)] dω ≤ ‖ϕ′‖∞

∫ ε

0
S(t, ω)ω dω

≤ ε‖ϕ′‖∞
∫ 1

0
S(t, ω) dω = ε‖ϕ′‖∞.

We can define the Dirac δ-function as an element of the dual space (W 1,∞)∗, and we
can also view S(t, ·) as such. Then

∣∣
∫ 1

0
S(t, ω)ϕ(ω) dω − δ0ϕ

∣∣ ≤ ε‖ϕ‖W 1,∞ .

for t ≥ t(ε), which means that S(t, ·) −→ δ0 with t → +∞ in the norm of (W 1,∞)∗.

Basic reproduction numbers. Next, we investigate the related issue of basic repro-
duction number. For this, we consider a “small” portion of infected individuals,
I 0(ω), ω ∈ [0, 1], inserted in the susceptible population S0(ω), ω ∈ [0, 1], with∫ 1
0 (S0(ω) + I 0(ω)) dω = 1. This initially infected population changes over time due
to recovery, mortality and increased immunity level, according to the equation

∂

∂t
I (t, ω) + ∂

∂ω
(g(ω)I (t, ω)) = −(ρ(ω) + μ(ω))I (t, ω),

with side conditions I (0, ω) = I 0(ω), I (t, 0) = 0. The solution, call it I 0(t, ω) (in
the same sense as defined in the previous subsections), can be presented as

I 0(t, ω) =
{

0 if ω ∈ [0, ωg[0, 0](t)),
y[ξ ](t) if ω = ωg[0, ξ ](t) ∈ [ωg[0, 0](t), 1], ξ ∈ [0, 1],

where y[ξ ](·) is the solution of theODE (along the characteristic lineω = ωg[0, ξ ](t))

ẏ[ξ ](t) = −(ρ(ωg[0, ξ ](t)) + μ(ωg[0, ξ ](t)))y[ξ ](t) − g′(ωg[0, ξ ](t))y[ξ ](t),
y[ξ ](0) = I 0(ξ).

Thus, abbreviating κ := ρ + μ,
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y[ξ ](t) = e− ∫ t
0 (κ(ωg[0,ξ ](s))+g′(ωg[0,ξ ](s))) ds I 0(ξ).

Below we need the linearization of the function D in (2.3) with respect to I = I 0

at I = 0 and S0, which is cI
∫ 1
0 i(ω′)I 0(t, ω′) dω′. Following the terminology in

Diekmann and Heesterbeek (2000), we represent the “next generation” of infected
individuals resulting from the “small” group of initially infected population I 0(ω) as
the solution of the equation

∂

∂t
I (t, ω) + ∂

∂ω
(g(ω)I (t, ω)) = cI

∫ 1

0
i(ω′)I 0(t, ω′) dω′ σ(ω)S0(ω),

I (0, ω) = 0, I (t, 0) = 0.

Integrating in ω (see Corollary 3.2 and its proof), we obtain for Î (t) := ∫ 1
0 I (t, ω) dω

the expression

˙̂I (t) = cI

∫ 1

0
i(ω′)I 0(t, ω′) dω′

∫ 1

0
σ(ω)S0(ω) dω,

= cI

∫ 1

ωg[0,0](t)
i(ω′)I 0(t, ω′) dω′

∫ 1

0
σ(ω)S0(ω) dω, Î (0) = 0.

Changing the variable ω′ = ωg[0, ξ ](t) and substituting I 0 with y[ξ ] we obtain the
expression

˙̂I (t) = cI

∫ 1

0
i(ωg[0, ξ ](t)) y[ξ ](t) ∂

∂ξ
ωg[0, ξ ](t) dξ

∫ 1

0
σ(ω)S0(ω) dω.

Since by a standard argument ∂
∂ξ

ωg[0, ξ ](t) = e
∫ t
0 g′(ωg[0,ξ ](s) ds , we obtain that

˙̂I (t) = cI

∫ 1

0
σ(ω)S0(ω) dω

∫ 1

0
i(ωg[0, ξ ](t))e− ∫ t

0 κ(ωg[0,ξ ](s)) ds I 0(ξ) dξ.

Integrating in t we obtain the expression

Î (∞) = cI

∫ 1

0
σ(ω)S0(ω) dω

∫ 1

0

∫ ∞

0
i(ωg[0, ξ ](t))e− ∫ t

0 κ(ωg[0,ξ ](s)) ds

dt
I 0(ξ)∫ 1

0 I 0(ω) dω
dξ

∫ 1

0
I 0(ω) dω.

The left-hand side represents the total amount of secondary infections directly caused
by I 0, while the last multiplier on the right is the total amount of initially infected.
Thuswe can define the basic reproduction number of the disease, under the assumption

123



71 Page 16 of 41 G. Angelov et al.

that exact information about the ω-density of the initially infected and the susceptible
population:

R0[S0(·), I 0(·)] = cI

∫ 1

0
σ(ω)S0(ω) dω

∫ 1

0

∫ ∞

0
i(ωg[0, ξ ](t)) e− ∫ t

0 κ(ωg[0,ξ ](s)) ds

dt
I 0(ξ)∫ 1

0 I 0(ω) dω
dξ.

Wemention that the above improper integral may diverge. Clearly, a natural sufficient
condition for convergence is that μ(1) + ρ(1) > 1.

Changing the variable t with ω = ωg[0, ξ ](t) and the variable s with η =
ωg[0, ξ ](s) we obtain the equivalent formula

R0[S0(·), I 0(·)] = cI

∫ 1

0
σ(ω)S0(ω) dω

∫ 1

0

∫ 1

ξ

i(ω)

g(ω)
e
− ∫ ω

ξ
κ(η)
g(η)

dη dω
I 0(ξ)∫ 1

0 I 0(ω) dω
dξ.

If exact information about the ω-density of the initially infected individuals is not
available, a worst case scenario is included in the definition, as it is usual in the
considerations of the basic reproduction number (see e.g. Von den Driessche and
Watmough 2008). If only the density of S0 is known considering the worst case of

I 0(ξ)∫ 1
0 I 0(ω) dω

gives the expression

Î (∞) ≤ cI

∫ 1

0
σ(ω)S0(ω) dωM

∫ 1

0
I 0(ω) dω,

where

M := max
ξ∈[0,1]

∫ ∞
0

i(ωg[0, ξ ](t) e− ∫ t
0 κ(ωg[0,ξ ](s)) ds dt = max

ξ∈[0,1]

∫ 1

ξ

i(ω)

g(ω)
e
− ∫ ω

ξ
κ(η)
g(η)

dη dω.

This leads to the definition of basic reproduction number of the disease, under the
assumption that exact information about the ω-density of susceptible population is
known:

R0[S0(·)] = cI

∫ 1

0
σ(ω)S0(ω) dωM.

Finally, if no exact information about the initial density of the susceptible population
is available, then the worst case scenario gives the basic reproduction number

R0 = cIM max
ω

σ(ω).
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Notice that one can estimate R0[S0(·)] and R0 using the obvious inequality

M ≤ maxω i(ω)

minω κ(ω)
.

In particular, this gives

R0 ≤ cI max
ω

σ(ω)
maxω i(ω)

minω(ρ(ω) + μ(ω))
. (3.17)

For comparison,wemention that in the case of data independent ofω, the estimation
of basic reproduction number (3.17) reduces to cI iσ

ρ+μ
, which coincides with the usual

expression for the basic reproduction in the SIR model.

4 Modeling and optimization of vaccination

In this section we introduce a control variable that represents the vaccination efforts
and consider a class of optimization problems for the vaccination policy.

4.1 Modelling vaccination

Including vaccination requires an extension of the basic model 2.3–2.7. We assume
that only susceptible individuals are vaccinated. It is necessary then to model the act
of vaccination together with the immunological behavior of vaccinated individuals.

We denote by v(t, ω) the vaccination rate applied to susceptible individuals of
immunity level ω at time t . This means, that v(t, ω)S(t, ω) individuals of immunity
level ω become vaccinated at time t .

The effect of vaccination on immunity is not immediate. Like newly infected indi-
viduals, vaccinated individuals gain immunity over time, until their immunity level
reaches a maximum, possibly depending on the immunity level before vaccination.
After that, the immunity level slowly decreases in the sameway as that of all susceptible
individuals with the same immunity level (Goel et al. 2021).

Therefore, we augment the model by adding a compartment, representing newly
vaccinated individuals acquiring immunity after vaccination. Similarly as for suscep-
tible and infected individuals, the size of this compartment is counted separately for
each immunity level over time, and is denoted by V (t, ω). The process of acquiring
immunity from vaccination (in a relatively short period after vaccination) is modeled
in a similar way to the increase of immunity during illness, namely by the equation

ω̇(t) = h(ω(t)), ω(τ) = ξ, t ≥ θ, (4.1)

where ξ ∈ [0, 1] is the initial immunity level at the time of vaccination τ . The function
h(ω) : [0, 1] → [0,∞), represents how fast immunity builds up at the current immu-
nity level ω. Presumably, it is a decreasing function, with h(0) > 0 and h(1) = 0, that
is, with similar properties as the function g.
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When reaching their individual maximum immunity level, newly vaccinated indi-
viduals leave the vaccinated compartment and are counted as susceptible individuals
with the attained new immunity level. This means that their decrease in immunity
will change in the same way as for susceptible individuals of the same immune level.
The transition process from vaccinated to susceptible occurs with a rate r(ω), so that
1/r(ω) is the average duration of increase in immunity depending on the current
immunity level.

Since vaccinated individuals behave in their activities as susceptible, the infectious-
ness of the environment, D(t), takes the form

D(t) = cI
∫ 1
0 i(ω)I (t, ω) dω

cI
∫ 1
0 I (t, ω) dω + c

∫ 1
0 (S(t, ω) + V (t, ω)) dω

. (4.2)

The overall model with vaccination takes the form

∂

∂t
S(t, ω) + ∂

∂ω
( f (ω)S(t, ω)) = − (cD(t)σ (ω) +v(t, ω)) S(t, ω) + ρ(ω)I (t, ω) + r(ω)V (t, ω),

(4.3)
∂

∂t
I (t, ω) + ∂

∂ω
(g(ω)I (t, ω)) = cD(t)σ (ω)(S(t, ω) + V (t, ω)) − (ρ(ω) + μ(ω))I (t, ω), (4.4)

∂

∂t
V (t, ω) + ∂

∂ω
(h(ω)V (t, ω))) = − (cD(t)σ (ω) +r(ω)) V (t, ω) + v(t, ω)S(t, ω), (4.5)

with initial conditions

S(0, ω) = S0(ω), I (0, ω) = I 0(ω), V (0, ω) = 0, ω ≥ 0. (4.6)

and boundary conditions

S(t, 1) = 0, I (t, 0) = 0, V (t, 0) = 0, t ≥ 0. (4.7)

Remark 4.1 As long as the immunity level of people is not measured in reality, the
dependence of v on ω is an idealization. The time from last vaccination or from the
last infection could be considered (as practiced in reality) as a proxy for the individual
immunity level. It is also possible to consider the vaccination rate depending on time
only: v = v(t). In this case one can formally substitute v(t, ω) = v(t) in the equations,
which means equal vaccination rate for all ω.

Remark 4.2 Since V (0, ω) = 0, the formulae for the basic reproduction numbers
remain the same as in the no-vaccination case.

4.2 Optimal vaccination policies

In this subsection we use the model involving the vaccination rate v(t, ω) to formulate
an optimal control problem, which reflects the desire of acting in an rational way.
Literature considers a number of reasonable objectives for public health interventions,
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in particular vaccination, involving the burden on hospitals, the number of sick indi-
viduals, the cost of policy measures, as well as direct or indirect economic losses due
to the disease or due to the policy measures, see e.g. Bloom et al. (2020); Caulkins
et al. (2021). We focus on the following three objectives (to be minimized) posed on
a fixed time-horizon [0, T ].

(i) The most important objective is expressed by the total number of deaths; on
average this number represents also the total number of sick people, hence it also
reflects the economic cost of the epidemics in absenceof additional restrictivemeasures
such as partial lock-down (not employed anymore in most of the countries after 2022).

(ii) Due to various reasons (religious, disbelief, feeling of violation of freedom, etc.)
a part of the society is not willing to vaccinate; this is the reason because of which in
several European countries the vaccination level is rather low. The decision makers,
i.e. governments have to take into account the social tension created by compulsory
vaccination and the resulting “social disutility”. Consideration of disutility directly
resulting from policy measures is not typical in the literature, although it is a factor
that often strongly influences the real decision maker (especially at a political level).
We refer to Bloom et al. (2020), Section 4.2 (after (4)), where social disutility of policy
measures is involved in the objective function.

(iii) The cost of vaccination, which is perhaps less significant than the first two
especially in public health emergency situations.

The first objective is clearly contradictory to the other two. Therefore, in the spirit
of Pareto’s approach to multi-criteria optimization problems, we define the weighted
aggregated objective to be minimized as

J (v) :=
∫ T

0

∫ 1

0
μ(ω)I (t, ω) dω dt + α

∫ T

0

∫ 1

0
v(t, ω)2 dω dt

+β

∫ T

0

∫ 1

0
v(t, ω)S(t, ω) dω dt (4.8)

Here, α ≥ 0 and β ≥ 0 are weighting parameters. The choice of the above quadratic
specifications of the disutility function is somewhat arbitrary, although the quadratic
form is not needed in the subsequent numerical simulations. This choice reflects the
fact that the social disutility marginally increases with the vaccination rate. The opti-
mization (minimization) is subjected to the constraints (4.2)–(4.7) and the control
constraint v(t, ω) ≥ 0.

In this paper, we do not deeply investigate issues as existence of an optimal solution,
necessary optimality conditions, convergence of numericalmethods, etc.However, due
to the linear-convex form of the objective functional and the linearity of the equations
(4.3)–(4.5) with respect to v, one may expect that an optimal solution exists and the
optimal control is Lipschitz continuous. Although this is far not enough to claim
convergence of our numerical approach, the results of the numerical experiments (see
the next section) and the pertaining sensitivity analysis support such a claim.

Thenumerical approachweemploy is the so-calleddirect method in optimal control,
which consists of direct discretization of the equations and the objective functional in
time and space (for ω), as briefly described in Subsection 5.1.
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5 Numerical experiments

In the following section we provide several purely illustrative numerical experiments
for the evolution of the model dynamics with and without vaccination. Moreover, we
also analyze the impact of optimal vaccination policies among sub-populations with
differing immunity level.

5.1 Numerical approximation

In order to obtain numerical solution to (4.2)–(4.7) we use the so called upwind scheme
which is of first order accuracy, see LeVeque 2002. Consider for example equation
(4.3), which can be written in the following way:

∂

∂t
S(t, ω) + ∂

∂ω

(
f (ω)S(t, ω)

) = F S(t, ω, D(t), Z(t, ω)), (5.1)

with the initial/boundary conditions (4.6) and (4.7). Here, Z(t, ω) :=(
S(t, ω), I (t, ω), V (t, ω)

)
and F S is the right-hand side of (4.3).

In order to describe the numerical scheme, we define the uniform mesh ω j , j =
1, ..., M + 1, in the ω-dimension with step size �ω = ωi+1 − ωi . Similarly, in the
t-dimension we define the mesh ti , i = 1, ..., N + 1, with step size �t = ti+1 − ti .
The upwind scheme is represented by the following implicit recurrent equation:

S(ti+1, ω j ) − S(ti , ω j )

�t
= − f (ω j )

( S(ti , ω j+1) − S(ti , ω j )

�ω

)

+ F S(ti , ω j , D(ti ), Z(ti , ω j )),

for i = 1, ..., N and j = 1, ..., M . From the boundary condition (4.7) we have that
S(ti , ωM+1) = 0, for every grid point ti .

The scheme has to take into consideration also the sign of the functions f , g and
h. For the equations (4.4)–(4.6) we have to change f with g or h, the numerator on
the right-hand side to I (ti , ω j )− I (ti , ω j−1) or V (ti , ω j )− V (ti , ω j−1), and account
for the zero boundary condition (4.7).

A necessary condition for convergence of the upwind scheme is the Courant-
Friedrichs-Lewy condition (CFL), see Courant (1967). In our case this condition takes
the form u�t

�ω
≤ C < 1, where u = maxω{ f (ω), g(ω), h(ω)} and C is the Courant

number for the problem. We tested the scheme with various step sizes that satisfy the
CFL condition in order to obtain reliable numerical results.

5.2 Model parameters – the baseline scenario

We outline the parameters selected for a baseline case, which will be used in the
subsequent numerical analysis. In addition, the base case values will be varied to study
the solution sensitivity. It is important to note that all values are selected for illustrative
purposes only and do not correspond to a specific disease: while the current work
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Table 1 Parameters and functions used in the numerical examples, ω ∈ [0, 1]
Model parameters and functions

Contact rate of susceptible individuals c 8

Contact rate of infected individuals cI 3

Susceptibility σ(ω) (1.5 − ω)3

Recovery ρ(ω), r(ω) 120ω1.3

40

Infectiousness i(ω) 0.3(1 − 0.9ω)

Mortality μ(ω) 0.01(1 − ω)

[1ex] Immunity decrease (susceptibles) f (ω) −0.005ω

Immunity increase (infected individuals) g(ω) 0.04(1 − ω)

Immunity increase (vaccinated individuals) h(ω) 0.02(1 − ω)

Disutility cost parameter α 0.00001

Administration cost parameter β 0.0005

presents a general model and analyzes some of its properties, substantial empirical
work remains to be done in order to apply it to real-world data.

The initial distribution of the compartment sizes is chosen consistently with the
boundary conditions provided in (2.7), respectively (4.7). For the distribution of the
susceptible population at time zero, we take a linear function S0(ω) = 1.9(1 − ω),
so that 95% of the population is susceptible at time t = 0. A parabola is chosen
for modeling the distribution of the initial infected population, I 0(ω) = 0.3ω(1 −
ω), which gives initial infected population 5% of the total. There are no vaccinated
individuals at the beginning: V 0(ω) = 0.

The parameters and functions for modeling contact rates, infectiousness, recovery
and mortality are summarized in Table 1.

Table 1 also shows the specific functions f , g and h, which are specified as affine,
such that the sign of their slope determines gain or loss of immunity over time.

In order to propose reasonable functional specifications, the following factors were
taken into account. Susceptibility, infectiousness and mortality, σ, ι, and μ, decrease
when immunity is higher. The specific form of the recovery rates ρ and r ensures
that the average duration of recovery is shorter when immunity is higher; for zero
immunity ρ(0) = 1/40, thus for ω = 0 the average duration of recovery is 40 days;
for ω = 0.5 the average duration is about 6 days, for ω = 1 it is negligible.

Figure 1 shows the resulting characteristic curves from solving (2.2) and (2.1).

5.3 Numerical results without vaccination

We start with numerical simulations of the baseline model, excluding vaccination.
Figure 2 gives an overview of the development of the epidemic over the simulation

horizon with two graphs. The first wave of the epidemic plus the emergence of a sec-
ond wave is shown in Fig. 2a. Here, the numbers of individuals in the compartments
of susceptible and infected individuals are aggregated over all immunity levels ω.

123



71 Page 22 of 41 G. Angelov et al.

Fig. 2 Evolution of epidemiological population groups without vaccination

Fig. 3 Evolution of the normalized densities of newly infected and newly recovered individuals

Figure2b captures the development of the average immunity level for susceptible and
infected individuals, i.e.

∫ 1
0 ωS(t, ω) dω/

∫ 1
0 S(t, ω) dω, etc. In addition, the average

immunity level of newly infected and newly recovered individuals is illustrated. In
particular, one can observe an increase of the average immunity level in all compart-
ments after the number of infected individuals peaks (compare with the first plot 2b).
In the susceptible compartment the average immunity increases due to the inflow of
recovered individuals with high immunity level, until the number of infected individ-
uals becomes low enough. The magnitude of the immunity increase for a given initial
immunity level mainly depends on the choice of the function g.

Figure 3 presents the evolution of the densities of the newly infected individuals
and the newly recovered individuals. For each time t (on the horizontal axis), the
related vertical cut pictures the normalized densities σ(·)S(t, ·)/ ∫ 1

0 σ(ω)S(t, ω) dω

and ρ(·)I (t, ·)/ ∫ 1
0 ρ(ω)I (t, ω) dω. The bright yellow spots correspond to higher den-

sities and the dark blue color corresponds to a low density. The immunity of the newly
recovered individuals is much higher than that of the newly infected, which is to be
expected, given that the immunity level increases during the infection.
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Fig. 4 Evolution of epidemiological groups with no mortality rate

Fig. 5 Evolution of epidemiological population groups with constant vaccination

In order to show the long term behavior of the model, we simulate the baseline sce-
nario without mortality, μ(ω) = 0, on a longer period of time, T = 16000 days. As
depicted in Fig. 4a, the system exhibits an oscillatory behaviour with declining ampli-
tude, which suggests convergence towards an endemic equilibrium. Figure4b shows
the decrease of the group of infected individuals when the contact rate cI of infected
individuals has the lower value 0.1. For this value the condition in Proposition 3.3 is
satisfied and we observe convergence to an disease-free equilibrium.

5.4 Simulations with constant vaccination

Before considering the vaccination rate v(t, ω) as a control variable, we analyze in
the current subsection the effect of a constant and ω-independent vaccination rate,
v(t, ω) ≡ v, on the evolution of the epidemics in the baseline case.

In Fig. 5a one can see the number of newly vaccinated individuals, v
∫ 1
0 S(t, ω) dω.

Figure5b presents the number of infected individuals for various vaccination rates v.
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Fig. 6 Saved lives per vaccine
depending on the initial date of
implementing vaccination and
the vaccination rate v

Observe that for v(t, ω) = 0.2 the number of infected individuals approaches zero
after the first wave.

In the next experimentwe consider the results of vaccination depending on the initial
time of implementation of the vaccine. This is done for three constant vaccination rates:
v = 0.15, 0, 20, 0.25. Figure6 shows the saved lives per vaccination (compared with
the case without vaccination) depending the on initial time. It is remarkable that the
three curves are strictly convex, which means that a delay in the implementation of a
vaccine causes more deaths in earlier stages of the epidemics than in later stages. One
reason for that is the increase of the average immunity level in the course of epidemics
due to infections (manifestation of the herd immunity in the present model) and the
marginal increase of immunity due to vaccination is smaller.

5.5 Optimal vaccination

Now, we analyze numerically the control problem, formulated in Subsection 4.2.
The control function v is considered as piece-wise constant. We use the direct
method of optimal control and direct discretization of equations (4.3)–(4.5) by the
scheme described in Sect. 5.1. Furthermore, the integral in (4.8) is approximated by
a second-order quadrature formula. For solving the resulting mathematical program-
ming problem we utilize the SQP method available as a function of the MATLAB™
Optimization Toolbox. The parameters of the baseline scenario are shown in Table 1.

Figure 7 shows the effect of optimal vaccination in the baseline case. In addition
to the overall numbers of susceptible and infected individuals, the yellow line in
Fig. 7a indicates the total number of individuals in the vaccinated group. These are
individuals who are in the process of acquiring immunity due to the vaccination. As
expected, the overall level of infected individuals is greatly reduced compared to the
baseline case without vaccination in Fig. 2a. Surprisingly, the reason for that is not
that the average immunity of the non-infected population is standingly higher than
that of the non-vaccinated population. In Fig. 7b we see the average immunity of all
compartments. Comparing the blue line on the previous plot 2b with that on 7b we
see that they are quite similar, with the difference that the average immunity of the
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Fig. 7 Evolution of epidemiological population groups with optimal vaccination applied

Fig. 8 Optimal Strategy for the baseline scenario: Administered vaccines, i.e. newly vaccinated individuals
and comparison with the average immunity level of the susceptible group

vaccinated population increases to its maximum substantially earlier than that of the
non-vaccinated population. Thus the immunity level of the infected population ismuch
higher exactly in the expansion face of the epidemics which leads to less infections.
Later on, the immunity level of the non-infected population catches up due to the
higher herd immunity.

The optimal vaccination policy is analyzed in Fig. 8. Figure8a shows the optimal
total number of newly vaccinated individuals. It can be seen that the main effort
should be concentrated immediately at the beginning in order to boost immunity in
the population, while only a smaller effort is dedicated later-on in order to replace the
waning immunity and to maintain a low level of infections. Due to the finite horizon
of the optimal control, the vaccination is terminates before the end of the simulation
period.

Because we allow vaccination efforts to depend on the immunity level, optimal
vaccination policy is not only a matter of the overall level and timing of vaccination.
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Fig. 9 Dependence of the optimal vaccination policy on the time horizon [0, t], t = 400, 500, 600

Figure8b shows the distribution of the application of vaccines to individuals with
differing immunity level over time. Again, the abrupt change at the end of the horizon
is due to the stop of vaccination. It can be seen that, at the beginning – when the overall
effort is high, vaccination tends to be given to individuals with lower immunity level
than the average immunity level in the susceptible group. The levels of immunity of
vaccinated individuals then catch up with the average immunity level of susceptible
individuals after around 150 days, and then follow the general decrease of the average
level of immunity.

Dependence on the time-horizon and model predictive control. In practice, any
vaccination policy has to be revised after some time to catch up with new information.
In particular, the improved medical understanding of the disease, changes in the death
rates, new variants of the pathogens may emerge and enhanced vaccines may be
developed. In terms of control, a new optimization is done after some time with
updated information, which is known as Model Predictive Control in the literature.
The question arise, whether our model is suitable for such revisions.

In order to applyModel Predictive Control, wemay solve the optimization problem
on a relatively short horizon, e.g. t = 400 days in the baseline case, apply the obtained
solution during an even shorter time horizon, say 70 days, then update the model
parameters and the current real state of the epidemic, solve the problem on the next
400 days horizon, and so on.

Such an approach only works well if the results with different planning horizons do
not vary too much over the shorter time period (here 70 days). This is tested in Fig. 9,
which shows the dependence of the optimal vaccination policy on the chosen time
horizon [0, t]onwhich theoptimizationproblem is solved.Theplot on the left indicates
that the total number of optimally vaccinated people is practically independent of the
time horizon over the first 70 to 100 days. More relevant, the same applies (even on
a longer horizon) to the aggregated (in ω) vaccination effort (the right Fig. 9). So, it
seems to be reasonable to apply Model Predictive Control.

Trade-off between the objectives. The objective (4.8) puts together three objectives:
the number of deaths and two kinds of vaccination costs. All these goals are relevant
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Fig. 10 The left plot presents the efficient frontier for the three control scenarios; the red dots on the
Pareto curves indicate the Pareto points corresponding to the baseline case. The right plot depicts the time-
dependence of the number of newly vaccinated individuals in the three control scenarios in the baseline
case

for decision-making in public health, but also are contradictory. In order to formulate
the overall objective, weights are applied, modeling the relative importance of the
individual objectives.

Although the analysis of the optimization problem so far has been focused on the
analysis of one ("standard") choice of these weights (see the baseline scenario defined
in Table 1), it is possible to go deeper by analyzing the efficient frontier (or Pareto
frontier). With conflicting goals, vaccination strategies can be compared by showing
the vectors of their respective partial objectives (deaths, number of vaccinations, social
cost) in a plot. Iterating over the possible weight combinations (α, β) and plotting the
values of partial goals, one gets the Pareto frontier. From the viewpoint of a decision
maker, the efficient frontier depicts those combinations of conflicting goals that are
achievable at the best.

Having three objectives, the efficient frontier is a 2-dimensional manifold in the 3-
dimensional space. In order to showa two-dimensional picture,wevary only theweight
of the administration cost, β, and plot the Pareto curve, holding fixed the parameter
α as in the baseline case (the weight of the deaths is fixed to 1 by normalization of
the overall objective function). Varying the weight β in the range from 0.001 to 0.02
and calculating the corresponding optimal vaccination policy, we obtain (a part of) the
efficient Pareto curve.

We consider three cases for the vaccination control v: (i) the control may depend on
time and immunity level as in the previous considerations, that is, v = v(t, ω); (ii) the
control depends only on time, v = v(t), and the vaccination is uniformly distributed
over individuals of different ω; (iii) the control is constant across time and immunity
levels. The first case represents an idealized situation in which full information about
the immunity level is required, while in the other two scenarios such information
is not needed. This setup allows to quantify the effects of available information on
the objective values, similar to the concept of the value of information in stochastic
optimization.

Fig. 10a shows the efficient frontiers for the three scenarios, and also depicts the
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Fig. 11 Objective function components for different contact rates

locations of the optimized baseline scenarios (β is chosen as in the baseline scenario).
Summarizing, the blue curve in Fig. 10a represents the optimal vaccination admin-
istration cost (in term of the number of vaccinations) versus the optimal achievable
total percentage of deaths for case (i). For any point (b, d) on this efficient frontier,
d is the minimal percentage of deaths that can be achieved by vaccination budget b.
Vice versa, if it is intended to limit the number of deaths to d%, then at least b are
the necessary vaccination costs. By the strict convexity of the Pareto curve, the less is
the number of deaths, the more costly it becomes to obtain any additional reduction
of the of deaths. Similar explanation applies to the other two control scenarios. Note
that the baseline scenario with no vaccination at all is efficient for all three cases. It
lies on the point, where all three curves touch the ordinate.

Fig. 10b shows the overall control strategy (aggregated over ω in case (i)) for the
three baseline cases, related to the red points in Fig. 10a. It suggests that, compared
to the other two scenarios, more people should be vaccinated at the beginning of the
epidemics, if information on the distribution ofω is available (control scenario (i)). The
value of information (and of capacity to act) is demonstrated by the mutual positioning
of the three curves in Fig. 10a: the Pareto frontiers of cases with more information or
capacity to act, clearly dominate the other curves.

5.6 Comparative analysis

We stay with the baseline case and the optimal control problem, considered so far, and
analyze the effect of parameter changes on the objective value. As contact rate plays
a significant role in pathogen transmission, we vary the baseline values for c = 8 and
cI = 3, by multiplying these parameters by a factor ranging from 0.8 to 1.25. For each
parameter valuewe calculate the optimal vaccination policy and plot the corresponding
optimal percent of deaths in Fig. 11a and the remaining part of the optimal objective
value in (4.8) (representing the disutility from, and cost of vaccination) in Fig. 11b. In
both plots, the x-axis shows the values of the contact rate c.
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In the graph in 11a the lowest mortality cost results from the contact rate c = 8.8
and in the second plot 11b the highest vaccination cost occurs for c = 8.4. One can
observe that a lower contact rate does not necessarily imply lower mortality. When
the contact rate increases, the optimal vaccination efforts also increase, but only up to
a point. The vaccination leads to lower mortality rates, but we can also observe from
figure 11b, that the vaccination costs for highest values of the contact rate is reduced.
This fact can be explained by the effect of herd immunity. With higher contact rate
more people obtain immunity from infection and the effect of vaccination is relatively
smaller. In this sense, the vaccination and the herd immunity appear as substitutes
when the contact rates are sufficiently high.

6 Discussion

In this study, we introduce and analyze an epidemiological model that explicitly incor-
porates the impact of waning immunity following infection or vaccination. The model
differs substantially from previous approaches in the epidemiological literature (White
and Medley 1998; Rouderfer and Becker 1994; Barbarosa and Röst 2015; Ehrhardt
et al. 2019). It consists of a system of two PDEs of first order. When vaccination is
considered, a third equation is added. The complexity of the model lies in its math-
ematical intricacies, primarily the inclusion of a nonlocal term, which necessitates
the integration of state variables in a nonlinear fashion. This complexity is further
amplified by the fact that the velocity fields are different in different equations.

A qualitative study of the model is provided that includes existence of a global
solution, conditions for decay of the epidemics from a given state are obtained, and
basic reproduction numbers under various information patterns.

In a further step, we introduce vaccination strategies and formulate an optimal
control problemwith three objectives: the total number of deaths, the social discomfort
created by the pressure that people experience when the vaccination effort is high, and
the direct costs of vaccination. Using plausible scenarios of vaccination, numerical
results provide insights into the dynamics of the epidemiological populations involved,
including the waning immunity with and without vaccination. With respect to the
optimal vaccination strategy the model provides insights into the influence of different
factors on the optimal policy and performance. An interesting fact, for example, is that
vaccination efforts and herd immunity act in a certain sense as substitutes: above a
threshold value of the contact rate, further increase of the contact rate leads to lower
vaccination rate. Below this threshold value, increase of the contact rate leads to
increase of vaccination rate. In addition, we determine the efficient frontier between
vaccine administration costs (direct and indirect) and the number of deaths, using
three different control settings: optimal control policy which is independent of time
and immune level, optimal policy that depends only on the time, and optimal policy
depending on time and immunity level.

Although the model has some striking features such as the description and coupling
of the elicitation of immune responses to the epidemiological process it can only be
considered as a first step towards a more detailed description of immune responses
and their waning over time. In particular, the model covers the immune response
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in a broad sense, without differentiating between innate and adaptive responses and
their antibody and cellular branches. It does not account for their unique dynamical
attributes, such as the time lag between the two, and their varying intensities contin-
gent on the infectious disease under investigation. There is still substantial clinical
and epidemiological empirical work to be done to this type of model with relevant
immuno-epidemiological data. Despite its limitations, the model demonstrates that a
mathematical representation of these dynamic processes is feasible. This could pave
the way for a deeper comprehension of the processes in question and the assessment
of related interventions.

Appendix: Proof of Theorem 3.1

Since the horizon T may change in the subsequent considerations, at some places we
use the notation �T := [0, T ] × [0, 1]. The space of all continuous functions from
a set X ⊂ R

n to R is denoted by C(X), with the usual norm denoted by ‖ · ‖C(X).
For ϕ = (ϕ1, . . . , ϕk) : X → R

k denote ‖ϕ‖C(X) := ∑k
i=1 ‖ϕi‖C(X). The spaces

L1(0, T ) and L∞(0, T ) are defined as usual. Further, L(X) ⊂ C(X) is the subspace
of all Lipschitz continuous functions with Lip(x) denoting the (minimal) Lipschitz
constant of x ∈ L(X). We abbreviate

F =
(

F S

F I

)
Z =

(
S
I

)
or Z = (S, I ), etc.

The existence theorem presented below will be formulated in the terms of a gen-
eral function F in the equations (3.7), (3.8), and with a general relation between the
functions D and (S, I ). Namely, instead of equation (2.3) we set

D = D(Z), D : domD := {Z ∈ L(�T ) : Z ≥ 0} → L1(0, T ), (6.1)

where D has the following properties: there exists constants a > 1 and LD such that

0 ≤ D(Z)(t) ≤ a − 1, (6.2)

|D(Z1)(t) − D(Z2)(t)| ≤ LD max
ω∈[0,1] |Z1(t, ω) − Z2(t, ω)|,

for a.e. t ∈ [0, T ], Z , Z1, Z2 ∈ domD. (6.3)

Keeping in mind the specific form of the functions F S and F I in (3.1), (3.2), we
assume in the general case that there exist constants M and L such that

|F(t, ω, d, s, i)| ≤ Ma(|s| + |i |), (6.4)

|F(t, ω, d, s, i)| − F(t1, ω1, d1, s1, i1)| ≤ La
(
(|s| + |i |)(|t − t1|

+|ω − ω1| + |d − d1|) + |s − s1| + |i − i1|
)

(6.5)
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for all t, t1 ∈ [0, 1], ω,ω1 ∈ [0, 1], d, d1, s, s1, i, i1 ∈ R with |d|, |d1| ≤ a − 1.
Moreover, the following property is fulfilled: for any d ≥ 0, (t, ω) ∈ �

F S(t, ω, d, 0, i) ≥ 0 ∀i ≥ 0, F I (t, ω, d, s, 0) ≥ 0 ∀s ≥ 0. (6.6)

Theorem 6.1 Let the functions f , g, S0, I 0 satisfy the Standing Assumptions (at the
beginning of Subsection 3.1). Let, in addition, the conditions (6.2)–(6.6) be fulfilled.
Then there exists T > 0, independent of the particular initial data (S0, I 0), such that
the system (3.7), (3.8), (6.1) has a unique nonnegative Lipschitz continuous solution
Z = (S, I ) on �T , satisfying the inequality D(Z) ≤ a − 1.

Proof 1.We begin with some preliminary facts and notations. Due to the properties of
f and g, the functions (γ, s) → ω f [γ ](s) and (γ, s) → ωg[γ ](s) are continuously
differentiable on a neighborhood of �T × [0, T ] (T > 0 is arbitrary here). Denote
by λω a common Lipschitz constant of these functions on �1 × [0, 1]. Moreover, the
functions �1 
 γ → γ f (γ ) and �1 
 γ → γ g(γ ) are Lipschitz continuous and we
denote by λγ a common Lipschitz constant.

Let us fix the number T > 0 such that

T ≤ min

{
1,

1

4Lλω a
,

1

2La

}
. (6.7)

Notice that T does not depend on the initial data (S0, I 0).
Let us fix a D ∈ L∞(0, 1) with ‖D‖L∞ + 1 ≤ a. Set

λ := max
{
4λγ , 8ae2Ma(2M(1 + λγ ) + Lλω)

}
(6.8)

and define the set

KT ,a :=
{

Z = (S, I ) ∈ L(�T ) : Lip(Z) ≤ (‖Z0‖C(0,1) + Lip(Z0))λ,

‖Z‖C(�t ) ≤ 2e2Mat‖Z0‖C(0,1) ∀t ∈ [0, T ], (2.6) and (2.7) are satisfied
}
.

(6.9)

On KT ,a we define the mapping F[D] as

F S
[D](Z)(γ ) :=

∫ t

τ f (γ )

F S(s, ω f [γ ](s), D(s), Z(s, ω f [γ ](s))) ds + S̄0(γ f (γ )),

(6.10)

F I[D](Z)(γ ) :=
∫ t

τ g(γ )

F I (s, ωg[γ ](s), D(s), Z(s, ωg[γ ](s))) ds + Ī 0(γ g(γ )),

(6.11)

where γ = (t, ω) ∈ �T . In the next three parts of the proof we shall prove thatKT ,a is
a nonempty complete metric space, F[D] mapsKT ,a toKT ,a , and F[D] is contractive.
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2. Let us prove that KT ,a is not empty. For γ ∈ �T we set S#(γ ) := S̄0(γ f (γ ))

and I #(γ ) := Ī 0(γ g(γ )) (representing the evolution of the initial/boundary data if
F ≡ 0). Since Z0 ∈ L(0, 1) and S0(1) = I 0(0) = 0, the function S̄0 is Lipschitz
continuous with Lip(S̄0) = Lip(S0). Thus Lip(S#) ≤ Lip(S0)Lip(γ f ) ≤ Lip(Z0)λγ .
The same applies to I #, thus the first inequality in the definition of KT ,a is fulfilled
by Z#. The second inequality is also fulfilled since ‖Z#‖C ≤ ‖Z0‖C . The conditions
(2.6) and (2.7) are apparently also fulfilled, thus KT ,a �= ∅.

Due to the uniform Lipschitz property in the definition of the set KT ,a , it is a
complete metric space in the metric induced by the norm in C(�T ).

3. (Invariance of KT ,a .) Obviously for γ = (0, ξ) we have F S
[D](Z)(γ ) =

S̄0(γ f (0, ξ)) = S0(ξ), and for γ = (τ, 1) we have F S
[D](Z)(γ ) = S̄0(γ g(τ, 1)) =

S̄0(τ, 1) = 0, thus F S[D](Z) satisfies the side conditions in (2.6) and (2.7). The same

applies to F I[D](Z).

Fix an arbitrary Z ∈ KT ,a . Using (6.4), we have for any γ = (t, ω) ∈ �T

|F S
[D](Z)(γ )| ≤ |S̄0(γ f (γ ))| +

∫ t

τ f (γ )

Ma(|S(θ, ω f [γ ](θ))| + I (θ, ω f [γ ](θ))|) dθ

≤ ‖Z0‖C +
∫ t

τ f (γ )

2Mae2Ma θ‖Z0‖C dθ.

Then

|F[D](Z)(γ )| ≤ 2‖Z0‖C

(
1 + 2Ma

∫ t

0
e2Ma θ dθ

)

= 2‖Z0‖C e2Ma t .

Thus F[D](Z) fulfills the growth condition in the definition of KT ,a .
For any Z ∈ KT ,a , γ1 = (t1, ω1), γ2 = (t2, ω2) ∈ �T we have

|F S
[D](Z)(γ1) − F S

[D](Z)(γ2)| ≤ |S̄0(γ f (γ1)) − S̄0(γ f (γ2))|
+

∣∣∣
∫ t1

τ f (γ1)

F S(θ, ω f [γ1](θ), D(θ), z1(θ)) dθ

−
∫ t2

τ f (γ2)

F S(θ, ω f [γ2](θ), D(θ), z2(θ)) dθ
∣∣∣,

where zi (θ) := S(θ, ω f [γi ](θ)). Denote [τ ′, τ ′′] := [τ f (γ1), t1] ∩ [τ f (γ2), t2]. Then
we split the above integrals into three parts (in each of the integrals only two parts
may be non-degenerate). The integration in the first part is on an interval of length
|τ f (γ1)−τ f (γ2)| ≤ λγ |γ1−γ2|, and in the third part – of length |t1− t2| ≤ |γ1−γ2|.
In view of (6.4) and the growth condition in the definition ofKT ,a , the integrands can
be mojorated by Ma(2e2Ma‖Z0‖C(0,1)). Then the sum of these integrals is at most
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4Ma(1+ λγ )e2Ma‖Z0‖C(0,1))|γ1 − γ2|. The integral on [τ ′, τ ′′] can be estimated by

∫ τ ′′

τ ′
|F S(θ, ω f [γ1](θ), D(θ), z1(θ)) − F S(θ, ω f [γ2](θ), D(θ), z2(θ))| dθ

≤
∫ τ ′′

τ ′
La

((
2e2Ma‖Z0‖C(0,1)

) |ω f [γ1](θ) − ω f [γ2](θ)| + |z1(θ) − z2(θ)|
)
dθ

≤ T Lλωa
(
2e2Ma‖Z0‖C(0,1) + (‖Z0‖C(0,1) + Lip(Z0))λ

)
|γ1 − γ2|,

where we make use of (6.4), the growth condition and the Lipschitz property in the
definition ofKT ,a . Combining the obtained estimations and using the same estimations
for F I[D](Z), we obtain that

|F[D](Z)(γ1) − F[D](Z)(γ2)| ≤
(
2λγLip(Z0) + 8Ma(1 + λγ )e2Ma‖Z0‖C(0,1)

+ 2T Lλωa
(
2e2Ma‖Z0‖C(0,1) + (‖Z0‖C(0,1) + Lip(Z0))λ

)
|γ1 − γ2|

=
(
(2λγ + 2T Lλωa λ)Lip(Z0) + (

4ae2Ma(2M(1 + λγ ) + Lλω)

+2T Lλωaλ
)‖Z0‖C(0,1)

)
|γ1 − γ2|

≤
[(1

2
+ 1

2

)
λLip(Z0) +

(1
2

+ 1

2

)
λ ‖Z0‖C(0,1)

]
|γ1 − γ2|

≤ λ (Lip(Z0) + ‖Z0‖C(0,1))|γ1 − γ2|,

where in the last inequality we have used (6.7) and (6.8). This completes the proof of
the invariance of KT ,a .

4. (Contractivity of F[D].) For Z , Z1 ∈ KT ,a we have, using (6.5) and (6.7),

|F S
[D](Z)(γ ) − F S

[D](Z1)(γ )| ≤
∫ t

τ f (γ )

La|Z(s, ω f [γ ](s)) − Z1(s, ω
f [γ ](s))| ds

≤ T La‖Z − Z1‖C(�T ) ≤ 1

2
‖Z − Z1‖C(�T ).

According to the Banach contraction mapping theorem, for any function D ∈
L∞(0, T )with ‖D‖L∞ +1 ≤ a, there exists a unique (S, I ) = (S[D], I [D]) ∈ KT ,D

that solves the system (3.7)–(3.8).

5. (Properties of (S[D], I [D]).) So far we have proved that there exists T > 0 such that
for any D ∈ L∞(0, 1) with ‖D‖L∞ + 1 ≤ a, the system (3.7)–(3.8) has a Lipschitz
continuous solution Z [D] = (S[D], I [D]) on �T . Here T is independent of Z0. The
Lipschitz constant of Z [D] can be estimated by the constant λ∗ := (‖Z0‖C(0,1) +
Lip(Z0))λ ≤ 2Lip(Z0)λ (see (6.8) and (6.9)).

For a fixed D as above, we shorten the notation Z [D] = (S[D], I [D]) to Z =
(S, I ). For any γ = (τ, ξ) ∈ � f the function zS[γ ](t) := S(t, ω f [γ ](t)) satisfies
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(due to the identities ω f [t, ω f [γ ](t)](s) = ω f [γ ](s) and γ f (ω f [γ ](t)) = γ ) the
relation

zS[γ ](t) =
∫ t

τ

F S(s, ω f [γ ](s), D(s), zS[γ ](s), I (s, ω f [γ ](s))) ds + S̄0(γ ),

and an analogical equation is satisfied by z I [γ ′](t) := I (t, ωg[γ ′](t)), γ ′ ∈ �g .
Differentiating these relations, we obtain the followingODEs satisfied by the Lipschitz
functions zS[γ ] and z I [γ ′] on [0, T ]:

ż S[γ ](t) = F S(t, ω f [γ ](t), D(t), zS[γ ](t), I (t, ω f [γ ](t))), γ ∈ � f , (6.12)

ż I [γ ′](t) = F I (t, ωg[γ ′](t), D(t), S(t, ωg[γ ′](t)), z I [γ ′](t)), γ ′ ∈ �g (6.13)

(the so-called equations representing the solution along the characteristic lines). One
can inversely express S(t, ω) = zS[γ f (t, ω)](t) and similarly for I .

Now we shall prove that if D is non-negative, then (S, I ) is also non-negative,
making use of the property (6.6). Denote

p(t) := min

{
0, min

ω∈[0,1] S(t, ω)

}
, q(t) := min

{
0, min

ω∈[0,1] I (t, ω)

}
.

We have p(0) = q(0) = 0 and both functions are Lipschitz continuous. Let [0, tp]
be a maximal sub-interval of [0, T ] such that p(t) = 0 for all t ∈ [0, tp]. Sim-
ilarly, let [0, tq ] be the maximal interval on which q(t) = 0. If tp < tq ≤ T ,
then for every γ ∈ � f and t ∈ [0, tq ] we have I (t, ω f [γ ](t)) ≥ 0, hence
F S(t, ω f [γ ], 0, I (t, ω f [γ ](t))) ≥ 0. Then, by a standard argument, the set s ≥ 0
is invariant with respect to (6.12) on [0, tq ] for any γ ∈ � f , thus zS[γ ](t) ≥ 0 on
[0, tq ]. This contradicts the definition of tp and implies tq ≤ tp. Similarly we can
prove that tp ≤ tq , thus tp = tq =: t̄ .

Assume that t̄ < T and take an arbitrary γ ∈ � f and t ∈ (t̄, T ]. Consider two
cases:
(i) zS[γ ](t) ≥ 0;
(ii) zS[γ ](t) < 0.

In the second case there is a minimal number t ′ ∈ [0, t) such that zS[γ ](s) < 0 on
(t ′, t]. Since Z S[γ ](t̄) ≥ p(t̂) = 0, we have that t ′ ∈ [t̄, t) and zS[γ ](t ′) = 0. In the
expressions belowwe skip the first three arguments of F S , namely, s, ω f [γ ](s), D(s),
since they stay the same in all formulas. We have

zS[γ ](t) =
∫ t

t ′
F S(zS[γ ](s), I (s, ω f [γ ](s))) ds

=
∫ t

t ′

(
F S(zS[γ ](s), I (s, ω f [γ ](s))) − F S(0, I (s, ω f [γ ](s)))) ds

+
∫ t

t ′
F S(0, I (s, ω f [γ ](s))) ds
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≥ −
∫ t

t ′
La|zS[γ ](s)| ds −

∫
Q

Ma|I (s, ω f [γ ](s))| ds,

where Q := {s ∈ [t ′, t] : F S(s, 0, I (s, ω f [γ ](s))) < 0}. Notice that according to
(6.6), I (s, ω f [γ ](s)) < 0 on this set, hence −|I (s, ω f [γ ](s))| = I (s, ω f [γ ](s)) ≥
q(t). Also −|zS[γ ](s)| = zS[γ ](s) ≥ p(s). Then

zS[γ ](t) ≥ La
∫ t

t ′
p(s) ds + Ma

∫
Q

q(s) ds ≥ C
∫ t

t ′
(p(s) + q(s)) ds

≥ C
∫ t

t̄
(p(s) + q(s)) ds,

where C := a max{L, M}. Combining the two cases we obtain that

zS[γ ](t) ≥ min
{
0, C

∫ t

t̄
(p(s) + q(s)) ds

}
= C

∫ t

t̄
(p(s) + q(s)) ds,

Since γ ∈ � f is arbitrary, this inequality implies

p(t) ≥ C
∫ θ

t̄
(p(s) + q(s)) ds. (6.14)

By the same argument, a similar inequality is fulfilled by q. Summing the two
inequalities we obtain that

p(t) + q(t) ≥ 2C
∫ t

t̄
(p(s) + q(s)) ds, t ∈ [t̄, T ].

Since p and q are Lipschitz continuous non-positive functions, we conclude that
p(t) + q(t) = 0 on [t̄, T ], hence also on [0, T ]. Then (6.14) implies that p(t) = 0
and similarly q(t) = 0. This proves the nonnegativity of S and I .

The next step is to proof that the solution (S[D], I [D]) of (3.7)–(3.8) on [0, T ]
depends in a Lipschitz way on D in a sense that will become clear in the next lines.
For any two functions D1, D2 ∈ L∞(0, 1) with ‖D1‖L∞ , ‖D2‖L∞ ≤ a − 1, denote
�(t) := supω∈[0,1] |Z [D1](t, ω) − Z [D2](t, ω)|. For any γ = (t, ω) ∈ �T we have
from (6.5) that

|S[D1](γ ) − S[D2](γ )| ≤ La
∫ t

τ f (γ )

(
A(s) |D1(s) − D2(s)|

+∣∣Z [D1](s, ω f [γ ](s)) − Z [D2](s, ω f [γ ](s))∣∣) ds,

where A(s) := |Z [D1](s, ω f [γ ](s))| ≤ 2e2 MaT ‖Z0‖C , according to the growth
condition in the definition of KT ,a . A similar inequality holds for I . Summing the
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two, and taking the supremum in ω ∈ [0, 1] on the left-hand side, we obtain that

�(t) ≤ 2La
∫ t

τ f (γ )

(
2e2MaT ‖Z0‖C |D1(s) − D2(s)| + �(s)

)
ds.

Using the Grünwal inequality we obtain that

�(t) ≤
∫ t

τ f (γ )

4La e2aL(t−s)e2MaT ‖Z0‖C |D1(s) − D2(s)| ds ≤ L Z‖D1 − D2‖L1(0,t),

where L Z := 4Lae2aL+2aM‖Z0‖C . This inequality gives themeaning of the Lipschitz
property of Z [D].
6. (Proof of the existence claim in Theorem 6.1.) Define the set

NT := {D ∈ L1(0, T ) : 0 ≤ D(t) ≤ a − 1, t ∈ [0, T ]}.

Then the solution Z [D] of (3.7)–(3.8), defined in point 4 of the proof, exists for every
D ∈ NT and we may define

G(D) = D(Z [D]), D ∈ NT .

Due to the properties of D and NT the latter is invariant with respect G. Apparently,
it is a complete metric space. We shall show that the mapping G is contractive with
respect to the norm ‖D‖N := ∫ T

0 e−t N |D(t)| dt , where N > 2L D L Z . Indeed,

‖G(D1) − G(D2)‖N =
∫ T

0
e−t N |D(Z [D1])(t) − D(Z [D2])(t)| dt

≤ L D

∫ T

0
e−t N max

ω∈[0,1] |Z [D1](t, ω) − Z [D2](t, ω)| dt

≤ LDL Z

∫ T

0
e−t N ‖D1 − D2‖L1(0,t) dt

≤ LDL Z

∫ T

0
|D1(s) − D2(s)|

∫ T

s
e−t N dt ds

≤ L D L Z

N

∫ T

0
|D1(s) − D2(s)|e−s N = L D L Z

N
‖D1 − D2‖N

≤ 1

2
‖D1 − D2‖N .

Thus G is a contraction onNT hence it has a fix point D∗. Obviously the pair (Z∗ :=
Z [D∗], D∗) satisfies the system (3.7), (3.8), (6.1).Moreover, Z∗ ∈ KT ,a is a Lipschitz
function, which completes the proof of the existence part of Theorem 6.1.

7. (Proof of the uniqueness claim in Theorem 6.1.) Let for some T ∗ > 0 system (3.7),
(3.8), (6.1) has two nonnegative Lipschitz continuous solutions Zi = (Si , Ii ), i =
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1, 2, on �T ∗
, satisfying D(Zi ) ≤ a − 1. Without any restriction we may assume that

Z1 and Z2 differ from each other for some arbitrary small t > 0 (otherwise we may
compare these solutions starting at a later time chosen so that the solutions immediately
decline from each other).

Consider any T ∈ (0, T ∗] (to be fixed later). Denote Di := D(Zi ). Then |Di (t)| ≤
a − 1, t ∈ [0, T ], and using (6.3) we have

‖D1 − D2‖C(0,T ) ≤ LD ‖Z1 − Z2‖C(�T ).

Moreover, using (3.7) and (6.5) we have that for any γ = (t, ω) ∈ �T

|S1(γ ) − S2(γ )| ≤
∫ t

τ f (γ )
La

(|Z1(s, ω
f [γ ](s))| |D1(s) − D2(s)|

+|Z1(s, ω
f [γ ](s)) − |Z2(s, ω

f [γ ](s))| ) ds

≤
∫ t

τ f (γ )
La

(‖Z1‖C(�T ) LD ‖Z1 − Z2‖C(�T ) + ‖Z1 − Z2‖C(�T )

)
ds

≤ LaT (LD‖Z1‖C(�T ∗
)
+ 1) ‖Z1 − Z2‖C(�T ).

Let us take the supremum in γ ∈ �T in the right-hand side and then fix T so small
that LaT (LD‖Z1‖C(�T ∗

) + 1) < 1/2. We obtain that ‖Z1 − Z2‖C(�T ) ≤ ‖Z1 −
Z2‖C(�T )/2, which leads to the contradiction ‖Z1 − Z2‖C(�T ) = 0. The proof of the
theorem is complete. ��
Proof of of Theorem 3.1 Now, we consider the specific system (2.3)–(2.7). The con-
ditions (6.4)–(6.6) are apparently fulfilled in this case. Inspecting the proof of
Theorem 6.1 we see that the conditions (6.2)–(6.3) are not used in parts 1–5 (they are
only used in parts 6 and 7). We have proved (in parts 1–5) that for any D ∈ L∞(0, T )

with 0 ≤ D(t) ≤ a − 1 for a.e. t ∈ [0, T ], there exists a non-negative Lipschitz con-
tinuous solution Z [D] ∈ KT ,a of (3.7)–(3.8), hence of (2.4)–(2.7). The existence of
Z [D]was obtained due to the contractivity of the operatorF[D] onKT ,a . Hence, Z [D]
can be considered as the uniform limit of the sequence of functions {Zk} generated
by

Zk+1 = F[D](Zk), Z0 = Z#.

Notice that due to (6.4) and the definition of F[D] we have

‖Zk+1‖C ≤ T Ma‖Zk‖C + ‖Z0‖C ,

which implies the estimate

‖Zk‖C ≤ 2‖Z0‖C , provided that T ≤ 1

2Ma
. (6.15)

Further, we shall choose T satisfying the last inequality, in addition to (6.7).
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Denote by 
0 the set of points in (0, 1) on which S0 or I 0 is non-differentiable,
together with the points ω = 0 and ω = 1. Denote

�# := {γ ∈ �T : ξ f (γ ) ∈ 
0 or ξ g(γ ) ∈ 
0} = {ω f [(ξ, 0)](t), ωg[(ξ, 0)](t) :
ξ ∈ 
0, t ∈ [0, T ]}.

This set consists of finite number of curves in�T . Observe that the assumption f ′, g′ <

0 on (0, 1) implies that the set �̄T = �T \ �# consists of finite number of open sets,
further called facets. We remind that γ f (γ ) and γ g(γ ) have Lipschitz derivatives in a
neighborhood of �T . Then the function Z0(γ ) = Z#(γ ) = (S̄0(γ f (γ )), Ī 0(γ g(γ )))

is differentiable with a Lipschitz derivative on each facet of �̄T \ �#. In addition, for
every γ ∈ �T the functions s �→ σ(ω f [γ ](s)) and s �→ σ(ωg[γ ](s)) are differen-
tiable and have Lipschitz derivatives on every of the finite number of intervals for s
in which the argument of σ belongs to one facet. The same applies to the functions
ρ and μ. Thanks to the properties mentioned in this paragraph, we can differentiate
Zk+1 with respect to γ ∈ �̄T using (6.10)–(6.11). Skipping the cumbersome details,
we obtain the following relations:

Lip#
(∂ Zk+1

∂γ

)
≤ c1 + c2Lip

#
( dS0

dω

)
+ T c Lip#

(∂ Zk

∂γ

)
,

where Lip#(Q) is a common Lipschitz constant of a function Q on each facet of �̄T

(for Q : �̄T → R
2 which is Lipschitz on every facet), Lip#

(
dS0
dω

)
is the Lipschitz

constant of dS0
dω on each of the intervals of its existence, c1 and c2 are constants (which

may depend on Lip(D) and ‖Z0‖C ), c is a constant which is independent of Z0 and
D with 0 ≤ D ≤ a − 1. The derivation of this recurrent inequality also uses the fact

that F[D] is an affine mapping of Z . Since Lip#
(

dS0
dω

)
is finite, we obtain inductively

that for every k

Lip#
(∂ Zk+1

∂γ

)
≤

(
c1 + c2Lip

#
( dS0

dω

)) k∑
j=0

(T c) j ≤ 2
(

c1 + c2Lip
#
( dS0

dω

))
,

provided that 2cT ≤ 1. We add the last condition to (6.15) and (6.7). The choice of
T is still independent of the initial distribution Z0 and the particular D. For the limit
Z [D] of Zk we obtain

Lip#
(∂ Z [D]

∂γ

)
≤ 2

(
c1 + c2Lip

#
( dS0

dω

))
.

Since every horizontal and every vertical line intersects �# only finite number of
times, the partial derivatives of Z [D] in each of the variables (t, ω) exist, except a
finite number of points, for every value of the other variable.
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Using the obtained differentiability properties of the solution (S[D], I [D]), we
may employ (3.11) to estimate

d

dt

∫ 1

0
(S[D](t, ω) + I (t, ω)) dω = −

∫ 1

0
μ(ω)I [D](t, ω) dω

≥ −‖μ‖L∞(0,1)

∫ 1

0
I [D](t, ω) dω,

hence

∫ 1

0
(S[D](t, ω) + I [D](t, ω)) dω ≥ 1 − ‖μ‖L∞(0,1)

∫ t

0

∫ 1

0
I [D](t, ω) dω dt

≥ 1 − T ‖μ‖L∞(0,1) ≥ 1

2
,

where, if necessary, we choose the number T even smaller, so that T ‖μ‖L∞(0,1) ≤
1/2 (still being independent of the distribution of the initial data). The inequal-
ity

∫ 1
0 I [D](t, ω) dω ≤ 1 used above, follows from the obtained decrease of∫ 1

0 (S[D](t, ω) + I [D](t, ω)) dω starting from value 1 at t = 0. So we obtain that

∫ 1

0
(cI I [D]((t, ω) + cS[D](t, ω)) dω ≥ 1

2
min{cI , c} > 0, t ∈ [0, T ]. (6.16)

Now we return to conditions (6.2)–(6.3). The first one is apparently fulfilled for
the mapping D defined by (2.3) with a = maxω∈[0,1] ι(ω) (with the convention that
D(0) = 0). Condition (6.3) is not fully used in the proof of Theorem 6.1 (part 6).
What is used, is the inequality

|D(Z [D1])(t) − D(Z [D2])(t)| ≤ L D max
ω∈[0,1] |Z [D1](t, ω) − Z [D2](t, ω)|,

D1, D2 ∈ NT .

Due to (6.16) (which holds for every D ∈ NT ) and the specific form of D, a constant
L D does exist such that the last inequality is fulfilled. For the same reason,D(Z [D])(·)
is Lipschitz continuous for every D ∈ NT , uniformly in D. Thus the fixed point D
of G (which defines a solution Z [D] of (2.3)–(2.7) in point 6 of the proof) is also
Lipschitz continuous. Hence, Z [D] has the desired differentiability property.

It remains to prove that the solution (S, I , D) can be extended to [0,∞). We have
proved that it exists on [0, T ] and that T is independent of particular distribution of
S0 and I 0, given that

∫ 1
0 (S0(ω) + I 0(ω)) dω = 1. Taking new initial data S̃0(ω) =

S(T , ω)/β, Ĩ 0(ω) = I (T , ω)/β with β = ∫ 1
0 (S(T , ω)+ I (T , ω)) dω (so that the new

initial data are normalized), we may apply the obtained existence result: a solution
(S̃, Ĩ , D̃) exists on [0, T ]. Observe that the system (2.3)–(2.5) is homogeneous of first
order. Then (S(T + t, ω), I (T + t, ω), D(T + t)) := (β S̃(t, ω), β Ĩ (t, ω), β D̃(t)) is a
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continuation of the solution on [0, 2T ]. The process can be infinitely continued. This
proves the existence part of Theorem 3.1.

The uniqueness follows from that in Theorem 6.1 and the existence of a number a
such that conditions (6.2)–(6.3) are fulfilled. ��
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