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Abstract
First-principles-based modelings have been extremely successful in providing crucial
insights and predictions for complex biological functions and phenomena. However,
they can be hard to build and expensive to simulate for complex living systems. On
the other hand, modern data-driven methods thrive at modeling many types of high-
dimensional and noisy data. Still, the training and interpretation of these data-driven
models remain challenging. Here, we combine the two types of methods to model
stochastic neuronal network oscillations. Specifically, we develop a class of artificial
neural networks to provide faithful surrogates to the high-dimensional, nonlinear oscil-
latory dynamics produced by a spiking neuronal network model. Furthermore, when
the training data set is enlargedwithin a range of parameter choices, the artificial neural
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networks become generalizable to these parameters, covering cases in distinctly dif-
ferent dynamical regimes. In all, our work opens a new avenue for modeling complex
neuronal network dynamics with artificial neural networks.

Keywords Artificial neural network · Gamma oscillations · Data-driven methods ·
Generalization

Mathematics Subject Classification 92C20 · 68T07 · 60J28

1 Introduction

The last fewdecades have seen rapid developments of first-principles-basedmathemat-
ical models to study living systems. Based on a collection of a priori physiological and
physical principles, the evolution of mathematical models can offer significant advan-
tages in understanding, reproducing, and predicting complex biological phenomena.
However, first-principle-based models can be prohibitively expensive to build due to
the large number of parameters and variables characterizing the complexity of bio-
logical details, e.g., multiple time scales, complicated interactions between biological
elements, among others. Alternatively, modern data-driven models focusing on phe-
nomenological or empirical observations are gaining ground in mathematical biology,
in that they are designed to deal with high dimensional and noisy data (Janes and Yaffe
2006; Hasenauer 2015; Solle 2017; Jack et al. 2018; AlQuraishi and Sorger 2021).
However, one is still faced with the daunting task of making sense of the coordinates
and parameters of the data-driven models to identify interpretable and biologically
meaningful features.

In this study, we investigate how the combination of the two classes of methods
can be used to study spiking neuronal networks (SNNs). SNNs are capable of pro-
ducing highly nonlinear, high-dimensional, and multi-timescale dynamics, and have
been widely used to investigate cognitive functions and their computation principles
(see, e.g., Tao 2006; Ghosh-Dastidar and Adeli 2009; Ponulak and Kasinski 2011;
Nobukawa et al. 2017;Börgers andKopell 2003;Chariker et al. 2016). First-principles-
based model reduction methods such as coarse-graining and mean-field theories have
been developed to better understand SNN dynamics (Wilson and Cowan 1972; Brunel
and Hakim 1999; Buice and Cowan 2007; Cai 2006; Cai et al. 2021; Li and Hui
2019). On the other hand, artificial neural networks (ANN, and its offspring, deep
neural networks, or DNN) are a modern data-driven method inspired by the nervous
system. DNN has been extremely successful in both engineering applications (image
processing, natural language processing, etc.) and applied mathematics (parameter
estimation, numerical ordinary/partial differential equations, inverse problems, etc.).
See Aggarwal et al. (2018); Schmidhuber (2015); Chon and Cohen (1997); Li (2020);
Raissi et al. (2019), for instance. In particular, it has been shown recently that DNN
can well approximate both finite and infinite-dimensional operators (Barron 1994;
Kovachki et al. 2021). The idea of using DNN surrogates in models to replace the
firing rate of SNN was first explored by Zhang and Young (2020). This motivates us
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to propose a first-principle-informed deep-learning framework that replaces the
crucial and complex SNN dynamics by the representation of artificial neurons.

The neuroscience problem we address in this paper is the γ -band oscillations, a
type of 30–90 Hz oscillatory physiological dynamics prominent in many brain regions
(Andrew Henrie and Shapley 2005; Brosch et al. 2002; Bauer 2006; Buschman and
Miller 2007; Pieter Medendorp 2007; van Wingerden 2010; Csicsvari 2003; Popescu
et al. 2009; Van Der Meer and David Redish 2009). Remarkably, in previous studies,
γ -oscillations can be produced in simple, idealized SNN models involving only two
neural populations, excitatory (E) and inhibitory (I) (Chariker et al. 2018; Zhang 2014;
Rangan andYoung2013;Li et al. 2019).More specifically, due to transient noise and/or
external stimulus, highly correlated spiking patterns (previously termedmultiple-firing
events, or MFEs) are repeatedly produced from the competitions between E/I pop-
ulations, involving the interplay between multiple timescales. MFEs are a type of
stochastic, high-dimensional emergent phenomena, with rapid and transient dynami-
cal features that are sensitive to the biophysical parameters of the network. The strong
fluctuation from input and recurrent neuronal interactions hinders the ability of previ-
ous mean-field approaches to trace such transitions. Therefore, it is a very challenging
task to build model reductions that can provide biological insights for γ -oscillations
in a wide range of parameter regimes.

This paper explores learning the complex γ -oscillations with first-principle-
informedDNNs. Our previous study revealed that the complex γ -oscillatory dynamics
can be captured by a Poincare mapping F projecting the network state at one initiation
of an MFE to the next initiation (Cai et al. 2021). Therefore, F is a high-dimensional
mapping subjected to biophysical parameters of SNNs and is thus very hard to analyze.
Some early theoretical work about sampling MFEs from integrate-and-fire neuronal
networks with all-to-all connection are available in Zhang (2014), Zhang (2014),
Zhang and Rangan (2015). However, to pursue analytical results, the scopes of studies
were limited to very specialized situations. Instead of continue working on model-
specific MFE sampling method, we approximate F by A. using coarse-graining (CG)
and discrete cosine transform (DCT) to reduce the dimensionality of the state space,
and B. benefiting from the representation power of DNNs. Specifically, DNNs pro-
vide a unified data-driven framework for varying SNN model parameters, revealing
the potential of generalization to different dynamical regimes of the emergent net-
work oscillations. Despite the significant underlying noise and the drastic dimensional
reductions, our DNNs successfully capture the main feature of the γ -oscillations in
SNNs. This effectively makes the DNN a surrogate of the SNNs. In principle, this
work could be easily extended to partial synchrony and oscillatory dynamics in more
biologically realistic networks using, e.g., Hodgkin-Huxley models or neuronal com-
partmental models (Hodgkin and Huxley 1952; Bressloff 1994).

The organization of this paper is as follows. Section 2 introduces the neuronal net-
work model that serves as the ground truth. The descriptions and capturing algorithms
of MFEs are depicted in Sect. 3. Section 4 discusses how to set up the training set
for artificial networks. The main results are demonstrated in Sect. 5. Section 6 is the
conclusion and discussion.
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2 Neuronal networkmodel description

Throughout this manuscript, we study SNN dynamics with a Markovian integrate-
and-fire (MIF) neuronal network model. This model imitates a small, local circuit of
the brain and sharesmany features of local circuits in living brains, including extensive
recurrent interactions between neurons, leading to the emergence of γ -oscillations.We
will evaluate the performance of DNNs based on their predictive power of dynamics
produced by the MIF model.

2.1 AnMarkovian spiking neuronal network

We consider a simple spiking network consisting of NE excitatory (E) neurons and NI

inhibitory (I) neurons, all homogeneously connected. The membrane potential (V ) of
each neuron is governed by Markovian dynamics, with the following assumptions:

1. V takes value in a finite, discrete state space;
2. For neuron i , Vi is driven by both external and recurrent E/I inputs from other

neurons, through the effect of the arrival of spikes (or action potentials);
3. A spike is released from neuron i when Vi is driven to the firing threshold. Imme-

diately after that, neuron i enters the refractory state before resetting to the rest
state;

4. For a spike released by neuron i , a set of post-synaptic neurons is chosen randomly.
Their membrane potentials are driven by this spike.

We now explain these assumptions in detail.

Single neurondynamics.Let us index the NE excitatory neurons from1, . . . , NE , and
the NI inhibitory neurons from NE +1, . . . , NE +NI . For neuron i (i = 1, . . . , NE +
NI ), the membrane potential Vi lies in a discrete state space Γ

Vi ∈ Γ := {−Mr ,−Mr + 1, . . . ,−1, 0, 1, . . . , M} ∪ {R},

where the states Mr , M , and R are the inhibitory reversal potential, the spiking
threshold, and the refractory state, respectively.Once a neuron is driven to the threshold
M , its membrane potential Vi enters the refractory state R. After an exponentially
distributed waiting time with mean τR, Vi is reset to the rest state 0. Vi is driven by
the external (i.e., from outside the network itself) and recurrent inputs to neuron i . It
is worth noting that, while a neuron is in the refractory state R, Vi does not respond
to any stimuli.

The external stimulus serves as an analog of feedforward sensory input, e.g., from
the thalamus or from other brain regions. In this paper, the external inputs to individual
neurons are modeled as series of impulsive kicks, whose arrival times are drawn from
independent & identical Poisson processes. The rates of the Poisson processes, λE,I ,
are taken to be constants across the E/I populations. Each kick received by neuron i
increases Vi by 1.

The recurrent inputs to a neuron are the spikes from other neurons. That is, an E/I
neuron will spikewhen its membrane potential Vi reaches threshold M , sending an E/I
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kick to its postsynaptic neurons (the choice of which will be discussed momentarily).
Each recurrent E spike received by neuron i takes effect on Vi after an independent,
exponentially distributed time delay τ ∼ Exp(τ E ). The excitatory spikes received by
neuron i that have not yet taken effect form a pending E-spike pool, with size HE

i .
Therefore, HE

i increases by 1 when an E kick arrives at neuron i , and drops by 1 when
a pending spike takes effect. This discussion applies to the I spikes as well: the size of
the pending I-spike pool is H I

i , and the waiting time of the pending spikes is subjected
to τ ∼ Exp(τ I ).

In summary, the state of neuron i is therefore described by a triplet

(Vi , H
E
i , H I

i ).

We note that the pool sizes HE
i and H I

i may be viewed as E and I synaptic currents
of neuron i in the classical leaky integrate-and-fire neuron model (Gerstner 2014).

Impacts of spikes. The effects of the recurrent E/I spikes on membrane potentials
are different. When a pending E-spike takes effect, Vi is increased by [SQ,E ] + uE ,
where

uE ∼ Bernoulli(p) and p = SQ,E − [SQ,E ],

where Q ∈ {E, I } and [. . .] denotes the floor integer function. Likewise, when a
pending I-spike takes effect, Vi is decreased by [SQ,I ] + uI , where

uI ∼ Bernoulli(q) and q = SQ,I − [SQ,I ],

Vi is strictly bounded to the state space Γ . Should Vi exceed M after an E-spike
increment, it will reset to R, and neuron i spikes immediately. On the other hand,
should Vi go below −Mr due to an I-spike, it will stay at −Mr instead.

A homogeneous network architecture. Instead of having a predetermined network
architecture with fixed synapses, the set of postsynaptic neurons of each spike are
decided on-the-fly. That is to say, a new set of postsynaptic neurons is chosen indepen-
dently for each spike. More specifically, when a type-Q′ neuron spikes, the targeted
postsynaptic neurons in the Q populations, excluding the spiking neuron itself, are
chosen with probabilities PQQ′

(Q, Q′ ∈ {E, I }). We point out that the motivation of
this simplification is for analytical and computational convenience by making neurons
interchangeablewithin each subtype, and is standard inmanyprevious theoretical stud-
ies (Cai 2006; Brunel and Hakim 1999; Wilson and Cowan 1972; Buice and Cowan
2007; Cai et al. 2021; Gerstner 2014).

To summarize, the state space of the network is denoted as �. A network state
ω ∈ � consists of 3(NE + NI ) components

ω = (V1, . . . , VNE , VNE+1, . . . , VNE+NI ,

HE
1 , . . . , HE

NE
, HE

NE+1, . . . , H
E
NE+NI

,

H I
1 , . . . , H I

NE
, H I

NE+1, . . . , H
I
NE+NI

). (1)
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Table 1 Parameters regarding the network architecture (first row) and individual neuronal physiology
(second row)

Parameter group Parameter Meaning Value

Network architecture NE Number of E cells 300

N I Number of I cells 100

PEE E-to-E coupling probability 0.15

PE I I-to-E coupling probability 0.50

P I E E-to-I coupling probability 0.50

P I I I-to-I coupling probability 0.40

SEE E-to-E synaptic weight [3.5, 4.5]
SE I I-to-E synaptic weight [−2.5,−1.5]
SI E E-to-I synaptic weight [2.5, 3.5]
SI I I-to-I synaptic weight [−2.5,−1.5]

Neuronal physiology M Threshold potential 100

−Mr Inhibitory reversal potential −66

τR Expectation of refractory period 3 ms

τ E Expectation of E-spike pending time 2 ms

τ I Expectation of I-spike pending time 4 ms

λE Total external spikes/s to E 3 kHz

λI Total external spikes/s to I 3 kHz

Symbols, meanings, and values of relevant parameters are depicted

2.2 Parameters used for simulations

The choices of parameters are adopted from our previous studies (Li and Hui 2019;
Cai et al. 2021;Wu et al. 2022). For all SNN parameters used in the simulations, we list
their definitions and values in Table 1. Here, we remark that the projection probability
between neurons PQ′Q (Q, Q′ ∈ {E, I }) are chosen to match the anatomical data in
the macaque visual cortex, see (Chariker et al. 2016) for reference. Also, τ E < τ I ,
since it is known that the Glu-AMPA receptors act faster than the GABA-GABA
receptors, with both on a time scale of milliseconds (Koch 1999).

On the other hand, four parameters concerning recurrent synaptic coupling strength
will be tested and varied in this study. This is because they are sensitive to
SNN dynamics, and yet hard to directly measure by current experiments meth-
ods (Chariker et al. 2016; Xiao et al. 2021). The range of tested parameter set
� = {SEE , SE I , SI E , SI I } ⊂ R

4 is also given by Table 1.

3 Multiple-firing events

In the studies of γ -oscillations. In many brain regions, electrophysiological record-
ings of the local field potentials reveal temporal oscillations with power peaking in the
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γ -frequency band (30–90 Hz) (Andrew Henrie and Shapley 2005; Brosch et al. 2002;
Bauer 2006; Buschman and Miller 2007; Pieter Medendorp 2007; van Wingerden
2010; Csicsvari 2003; Popescu et al. 2009; Van Der Meer and David Redish 2009).
Because of the belief that these coherent rhythms play a crucial role in cognitive com-
putations, there has been much work on understanding their mechanisms in different
brain areas, in disparate dynamical regimes, and within various brain states (Azouz
and Gray 2000, 2003; Frien 2000; Womelsdorf 2012; Liu and Newsome 2006; Fries
2001, 2008; Bauer et al. 2007; Pesaran 2002; Womelsdorf 2007; Başar 2013; Krystal
2017; Mably and Colgin 2018).

To explain the neural basis of γ -oscillations, a series of theoretical models have
found transient, nearly synchronous collective spiking patterns that emerge from the
tight competitions between E and I populations (Whittington 2000; Rangan andYoung
2013; Traub 2005; Chariker and Young 2015; Chariker et al. 2018). More specifically,
rapid & coherent firing of neurons occurs within a short interval, and such spiking
patterns recur with γ -band frequencies in a stochastic fashion. This phenomenon is
termedmultiple-firing events (MFEs).MFEs are triggered by a chain reaction initiated
by recurrent excitation, and terminated by the accumulation of inhibitory synaptic
currents. In this scenario, the γ -oscillations appear in electrophysiological recordings
as the local change of the electric field generated byMFEs.We refer readers to Rangan
and Young 2013; Chariker and Young 2015; Chariker et al. 2018; Li and Hui 2019;
Cai et al. 2021; Wu et al. 2022 for further discussions of MFEs.

The alternation of fast and slow phases is one of the most significant dynamical
features of MFEs (Fig. 1). Namely, at the beginning of an MFE, a chain reaction leads
to a transient state where many neurons fire collectively in a short time interval (the
fast phase). On the other hand, during the interval between two successive MFEs (an
inter-MFE interval, or IMI), the neuronal network exhibits low firing rates while the
system recovers from the extensive firings via a relatively quiescent period (the slow
phase). These two phases can be discriminated by the temporal coherence of spikes in
the raster plot where the time and location of spikes are indicated (Fig. 1A, blue dots).
Here, MFEs and IMIs are separated by vertical lines - we will discuss the method of
capturing MFEs momentarily in Sect. 3.2.

The complexity of MFEs is partially reflected by their sensitivity to spike-timing
fluctuations (Xiao and Lin 2022). Specifically, during an MFE, the missing or mis-
placement of even a small number of spikes can significantly alter the path of network
dynamics. Furthermore, the high dimensionality of state space � and the high degree
of nonlinearity make MFE hard to analyze. On the other hand, the network dynamics
during IMIs are more robust to perturbations and exhibit low-dimensional features
(Cai et al. 2021; Wu et al. 2022).

3.1 Spike-timing sensitiveness of transient dynamics

We illustrate this slow-fast dichotomy through a comparison between two differ-
ent numerical simulations, one using the stochastic simulation algorithm (SSA) and
another one using tau-leaping (Fig. 1).
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Fig. 1 Divergence between SSA and tau-leaping methods. A Raster plot from SSA (blue) and tau-leaping
method (orange) using same seed. B HEE trajectories from SSA and tau-leaping method. C-D Voltage
trajectories of an E/I neuron from SSA and tau-leaping method. Vertical red/black lines indicate the begin-
nings/endings of MFEs. (solid: SSA, dashed: tau-leaping) (color figure online)

Stochastic simulation algorithms vs. tau-leaping. In SSA, the timings of state tran-
sitions in phase space are exact, since the next state transition is generated by the
minimum of finitely many independent, exponentially distributed random variables
(seeAppendix). On the other hand, algorithms simulating random processes with fixed
time steps, such as tau-leaping, introduce errors to event times at every step. In a tau-
leaping simulation with a fixed step size ofΔt , the effect of spikes (interactions among
neurons) is processed after each time step. Hence, within each time step, all events are
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uncorrelated, and changes are held off until the next update. Therefore, the precision
of SSA is determined by the computational precision of the C++ code, which is much
higher than tau-leaping.

Comparison. Intuitively, tau-leaping methods can well capture the slow network
dynamics during IMIs, but not the fast chain reactions during MFEs. The detailed
comparison is depicted in Fig. 1, where we choose Δt = 0.5 ms for the tau-leaping
method. To constrain differences induced by stochastic fluctuations, we couple the
two simulations with the same external noise, leaving the intrinsic noise (the random
waiting times of pending spikes and refractory states) generated within the algorithms
themselves. The raster plots depict spiking events produced by both methods and
diverge rapidly during MFEs (Fig. 1A. blue: SSA; orange: tau-leaping), since the cru-
cial coherence between firing events is not accurately captured by tau-leaping. This
point is also supported by the comparison between voltage traces of single-neurons
(Fig. 1C, D): Although well aligned at the beginning, the spike timings of the neurons
are strongly affected by the transient fluctuation during MFEs.

In addition to the firing events, we also illustrate the comparison between pending
spikes. Here we define

HQ′Q =
∑

i∈Q
HQ′
i , Q, Q′ ∈ {E, I },

i.e., the total number of pending Q′-spikes for type-Q neurons. Figure 1Bdemonstrates
the divergence of HEE collected from different simulations. Because of the identical
external randomnoise, trajectories from the twomethods are similar in thefirst hundred
milliseconds. However, very rapidly, the accumulation of errors in the first fast phase
causes a large divergence. Other pending spikes statistics yield similar disagreement
between the two methods (data not shown).

Therefore, in the rest of this paper, we use SSA to simulate the SNN dynamics,
which is treated as the “ground truth".

3.2 CapturingMFEs from network dynamics

The first step of investigating MFE is the accurate detection of MFEs patterns from
the temporal dynamics of SNN. Due to the lack of a rigorous definition in previous
studies, we develop an algorithm to capture MFEs based on the indication of recurrent
excitation (Algorithm 1), splitting the spiking patterns into consecutive phases of
MFEs and IMIs.

The algorithm capturing MFEs. Our basic assumption is that the existence of the
cascade of recurrent excitation has a causal relation with MFEs. Therefore, given a
temporal spiking pattern generated by the SNN, Algorithm 1 detects the initiation of
a candidate MFE with the following criteria:

• Two E-to-E spikes take place consecutively, where the second one is triggered due
to the influence of the first one;
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Fig. 2 The amount of recurrent excitation serves as the indicator of MFEs.A-BNumber of E spikes caused
by recurrent excitation within each 0.25 ms interval. (SEE , SI E , SE I , SI I ) = (4, 3, −2.2,−2) for A;
(4.44, 2.88,−2.22,−1.70) for B C-D Raster plot of the two simulations. Vertical red and black lines
indicate the beginnings and endings of MFEs respectively

• The second E-to-E spike should occur within a 4 ms interval following the first
one (twice the excitatory synaptic timescale τE = 2ms).

After the cascade of spiking events, the candidate MFE is deemed terminated if no
additional E spike takes place within a 4 ms time-window. Furthermore, to exclude
isolated firing events clustering by chance, we apply merging and filtering processes
to each of the MFE candidates. More specifically, consecutive MFE candidates are
merged into one if they occur within 2 ms. Candidates are eliminated if their duration
is less than 5 ms or the number of spikes involved is less than 5. We comment that
the filtering threshold is chosen based on the size of 400-neuron networks. A different
filtering standard is employed for larger networks, presented in Sect. 4.3.

Algorithm 3.2, based on the timing of recurrent E-spikes, is employed throughout
this manuscript to detect MFEs. Two examples of different choices of parameters are
illustrated in Fig. 2, where the initiation and termination of MFEs are indicated by
red and black vertical lines. In the rest of the paper, we denote the time sections of
initiations and terminations of the m-th MFE as tm and sm . Therefore, the m-th MFE
takes place during the interval [tm, sm], whereas the IMI after that is [sm, tm+1].

4 LearningMFEs with artificial neural networks

Viewed within the framework of random dynamical systems, SNN dynamics exhibit-
ing γ -oscillation can be effectively represented by a Poincare map theory (Wu et al.
2022). Consider a solution map of the SNN dynamics depicted in Sect. 2,

ω(t) = Φθ
t (ω0, ξ

t
0),

where ω0 ∈ � is the initial condition of the SNN, θ ∈ � indicates SNN parameters
and ξ t0 is the realization of all external/internal noises during the simulation from time
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Algorithm 1 Capturing MFE
procedure Recording, Merging and Filtering MFE

repeat
A new event in simulation happens
if State == Recording MFE then

5: if # of EE spikes within previous 4 ms < 2 then
State ← Not in MFE
Record post-MFE network state ω

end if
else

10: if Two EE spikes occur within 4 ms then
Record at first EE spikes as pre-MFE network state ω

end if
end if

until current time > terminate time
15: Merge any consecutive MFE candidates with space < 2 ms

for i = 1 to number of merged candidates do
if (Length of candidate i)>5 ms & (Number of spike)>threshold & (peak HEE )>(100 + start

HEE ) then
Register candidate i as MFE, output all recorded network state

end if
20: end for

end procedure

0 to t . (The solution map satisfiesΦt+τ = Φt ◦Φτ .) To study the recurrence of MFEs,
we focus on the time sections {tm} on which ω(tm) returns to the initiation of the mth
MFE. Therefore, we define a sudo-Poincare map:

ω(tm+1) = Fθ (ω(tm)) = Φθ
tm+1−tm (ω(tm), ξ

tm+1
tm ). (2)

We note that Fθ is not a Poincare map in the rigorous sense, since the initiation of
MFEs depends on the temporal dynamics in a short interval (Algorithm 3.2).

This paper aims at investigating Fθ . It is generally impractical to study Fθ in an
analytical manner due to the high dimensionality of �. To overcome the difficulty, we
propose a first-principle-informed deep learning framework.

4.1 Dissecting F� into slow/fast phases

We first dissect Fθ guided by SNN dynamics. In the regime of γ -oscillations, the
SNN dynamics is composed of the regular alternation of slow/fast phases, though
the duration and detailed dynamics of each phase may vary. Therefore, the pseudo-
Poincare map Fθ is equivalent to the composition of two maps:

Fθ = Fθ
1 ◦ Fθ

2 , Fθ
1,2 : � → �. (3)

More specifically, Fθ
1 maps the network state at the initiation of an MFE to its termi-

nation, while Fθ
2 maps the network state from the beginning of an IMI to the initiation
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of the next MFE, i.e.,

Fθ
1 (ω(tm)) = ω(sm), Fθ

2 (ω(sm)) = ω(tm+1) .

Wedenote Fθ
1,2 asMFE and IMImappings, respectively. To summarize, the dynamical

flow of Φ t is equivalent to:

... ω(tm)
Fθ
1−−→

MFE
ω(sm)

Fθ
2−−−−−−→

IMI
ω(tm+1)

Fθ
1−−→

MFE
ωsm+1 ...

Our previous studies demonstrated that the slow and relatively quiescent dynamics
during IMIs can be well captured by classical coarse-graining methods, i.e., the IMI
mapping Fθ

2 may be represented by the evolution of certain Fokker-Planck equations
(Cai 2006). However, this is not the case for the MFE mapping Fθ

1 due to the highly
transient and nonlinear dynamics. Instead, we turn to deep neural networks (DNN)
due to their success in tackling high-dimensional and nonlinear problems. In the rest
of this section, our goal is to train a DNN with relevant data and generate surrogates
of Fθ

1 .

4.2 First-principle-based reductions of the problem

Instead of requiring the DNN to learn the full map Fθ
1 and directly link the network

state from ω(tm) to ω(sm), we prepare a training set T θ
train with first-principle-based

dimensional reduction, noise elimination, and enlargement for robustness to facilitate
the training process.

The DNN used in this paper has a feedforward structure with 4 layers, consisting
of 512, 512, 512, and 128 neurons, respectively. We leave the detailed information of
the DNN architecture to Appendix.

4.2.1 Coarse-graining SNN states

Approximating the features of MFE mapping Fθ
1 with a DNN (or any statistical

machine learning method) immediately faces the curse of dimensionality. Namely,
Fθ
1 maps a 3N -dimensional space � to itself. To cope with N , we propose a coarse-

graining model reduction with a priori physiological information.
Instead of enumerating the actual state of every neuron, we assume the E and

I neuronal populations form two ensembles. That is, the state of a type-Q neuron
can be viewed as randomly drawn from a distribution ρQ(v, HE , H I ) of the Q-
ensemble, where Q ∈ {E, I }. Furthermore, note that there is no fixed architecture of
synaptic connection in SNN (see Sect. 2)—any neurons in the same population has
the same probability to be projected when a spike occurs. Therefore, it is reasonable
to decorrelate v and the (HE , H I ), i.e.,

ρQ(v, HE , H I ) ∼ pQ(v) · qQ(HE , H I ), (4)

where pQ and qQ are marginal distributions of ρQ .
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More specifically, pE (v), pI (v) yield the distributions of neuronal voltages for
both populations on a partition of the voltage space Γ :

Γ = Γ1 ∪ Γ2 ∪ ... ∪ Γ22 ∪ ΓR
= [−Mr , 0) ∪ [0, 5) ∪ ... ∪ [M − 5, M = 100) ∪ {R}. (5)

On the other hand, the distribution of pending spike qQ(HE , H I ) is effectively repre-
sented by the total number of pending spikes summed over each population, HQE and
HQI . To summarize, we define a coarse-grained mapping C : � 
→ �̃ by projecting
the network state ω onto a 50-dimensional network state ω̃:

C(ω) = ω̃

=
(
pE (v), pI (v), HEE , HEI , H I E , H I I

)

=
(
nE1 , nE2 , · · · , nE22, n

E
R , nI1, n

I
2, · · · , nI22, n

I
R,

HEE , HEI , H I E , H I I
)

. (6)

Here, nQk denotes the number of type-Q neurons whose potentials lie in Γk , and �̃ ⊂
R
50 represents the coarse-grained state space. The precise definition of nQk is given in

the Appendix.

4.2.2 Training DNN

We now train a DNN to learn the coarse-grained mapping F̃θ
1 with the coarse-grained

network states, ω̃sm = F̃θ
1 (ω̃tm ), where ω̃t = C(ω(t)). That is, for a set of fixed SNN

parameters (θ ), the DNN forms a mapping

F̂θ,ϑ
1 : �̃ 
→ �̃

where ϑ is the hyperparameter for the trained DNN. From a simulation of SNN
dynamics producing K MFEs, each piece of data of the training set is composed by

– Input: xm = ω̃tm , the coarse-grained network states at the initiation of the m-th
MFE, and

– Output: ym = (ω̃sm ,SpE ,SpI ), the coarse-grained state at the m-th MFE termi-
nation and the numbers of E/I-spikes during MFEs (m ∈ {1, 2, ..., K }).

The training process aims for the optimal ϑ to minimize the following L2 loss function

Lθ (ϑ) = 1

K

K∑

m=1

‖ym − F̂θ,ϑ
1 (xm)‖2L2 , (7)

and we hope to obtain the optimal coarse-grained MFE mapping F̂θ
1 as an effective

surrogate of F̃θ
1 .
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p̂E (v); D The distribution of the second DCT mode of p̂I (v)

4.2.3 Pre-processing: Eliminating high-frequency noises

Using a discrete cosine transform (DCT), we pre-process the training data (x, y) by
eliminating the noisy dimensions in potential voltage distributions pQ , i.e., the high-
frequency modes.

The raw distributions of membrane potentials pQ(v) contain significant high-
frequency components (Fig. 3A). This is partially due to the stochasticity and the
small number of neurons in the MIF model. Unfortunately, the high-frequency com-
ponents could lead to “conservative" predictions, i.e., the training of DNN converges
to the averages of post-MFE voltage distributions to minimize Lθ (ϑ). Therefore,
different inputs would yield similar outputs.

To resolve this issue, we apply aDCTmethod to remove the high-frequency compo-
nents from training data (x, y), only preserving the first eight modes. This is sufficient
to discriminate a pair of neurons whose membrane potentials |v1 − v2| > 5, where
v1, v2 ∈ Γ . For |v1 − v2| < 5, the two neurons are either placed in the same or
consecutive two bins after coarse-graining. Therefore, the E spikes needed to involve
them in the upcoming MFE differ by at most 1.

More specifically, in the training set, 1.86 × 105 pairs of network state (x, y) are
collected from a 5000-second simulation of the SNN network (see Eq. 6). For the
voltage distribution components of each state, pE (v) and pI (v), we remove the high-
frequency components by

p̂Q = F−1
c ◦ T ◦ Fc{ pQ}, Q ∈ {E, I }. (8)
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Here, Fc indicates the DCT operator and T is a truncation matrix preserving the first
eight components. Finally, in the training data (x, y), the coarse-grained network state
ω̃ is replaced as

ω̃ =
(
p̂E (v), p̂I (v), HEE , HEI , H I E , H I I

)
.

Fig. 3A, B depicts an example of pre-processing a voltage distribution. We leave the
rest of the details regarding the DCT methods to the Appendix.

4.2.4 Robustness of training

The robustness issue of DNN has been addressed in many previous studies (Good-
fellow et al. 2014; Yuan 2019). One approach to improving robustness is via data
augmentation, in which the training set is enlarged by adding modified copies of
existing data (Shorten and Khoshgoftaar 2019). Motivated by this idea, we propose
a training set T θ

train to account for more irregular inputs than SNN-produced network
states, helping the trained DNN generate realistic and robust predictions for MFE
dynamics. Based on the pre-processed network states ω̃, we increase the variability
of the first eight frequency modes of p̂Q(v) as they are the most salient information
revealed by DCT.

T θ
train consists of pairs of pre/post-MFE network states (xm, ym). A candidate initial

state close to a pre-MFE state xm in T θ
train is generated as follows:

1. The voltage distributions p̂Q(v). We first collect the empirical distributions of all
frequency modes (by concerning each entry of Fc{ pQ}) from 1.86 × 105 pre-
processed pre-MFE network states. The empirical distributions are fitted by direct
combinations of Gaussian and exponential distributions (see, e.g., Fig. 3C, D). We
then increase the variances of fitted distributions by a factor of three, from which
the 2nd-8th frequency modes are sampled. On the other hand, the first mode comes
from the distributions with the original variances, since it indicates the number of
neurons outside the refractory state. Finally, the higher order of DCT frequency
modes are treated as noises and truncated.

2. The pending spikes HQ′Q . Likewise, the “fit-expand-sample" operations similar
to how we treated the 2nd-8th frequency modes in p̂Q(v) are applied to sample the
number of pending spikes.

It is also important to make sure all training data are authentic abstractions of SNN
states in MFE dynamics, i.e., an MFE can be triggered in a short-time simulation
(5ms) from a pre-MFE state. Therefore, we perform a simulation that begins with
each initial state generated by the enlargement above, and collect the corresponding
pre-MFE states (x) and post-MFE states (y) if an MFE emerges. The enlargement of
distributions of MFE magnitudes is shown in Fig. 18

In summary, the enlarged T θ
train consists of 3 × 105 pairs of (xm, ym):

T θ
train =

{
(xm, ym) : m = 1, 2, ..., 3 × 105

}
,
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where 50%of the data comes directly fromnetwork simulation (after pre-processing
of DCT), and the rest comes from the data augmentation process.

4.3 Generalization for different SNN parameters

Varying the synaptic coupling strengths. Trained with data from a dynamical sys-
tem parameterized by θ , DNN produces a surrogate mapping F̂θ

1 . Recall that θ is a
parameter point in a 4D cube of recurrent synaptic coupling strength

� =
{
(SEE , SI E , SE I , SI I ) ∈

[3.5, 4.5] × [2.5, 3.5] × [−2.5,−1.5] × [−2.5,−1.5]} .

We treat F̂θ
1 as a milestone, and further propose a parameter-genericMFEmapping

F̂1 : �̃ × � 
→ �̃.

That is, given any point θ ∈ � and a pre-MFE state, the DNN predicts the post-MFE
state. The optimization problem and loss function are analogous to Eq. 7.

The training set Ttrain for parameter-generic MFE mapping consists of SNN states
from 20000 different of parameters points, which are randomly drawn from �. To
ensure reasonable SNN dynamics, each parameter point θ is tested by the following
criteria

( fE , f I ) = L(θ)

fE ≤ 50 Hz and f I ≤ 100 Hz,

where L(θ) is a simple linear formula estimating firing rates of E/I populations based
on recurrent synaptic weights (for details see Appendix and Li et al. 2019). For each
accepted point in parameter space, we perform a 500ms simulation of SNN and collect
20 pairs of pre-processed, coarse-grained pre- and post-MFEs states (see Sect. 4.2).
The chosen parameter space is wide to generate various network dynamics and various
MFEs. The firing rates of networks with parameters that can produce accepted MFEs
are shown in Fig. 19, and the various sizes of produced MFEs are shown in Fig. 17.

Varying the network size.Ourmethod is generic to γ -oscillations produced by SNNs
of different sizes. We demonstrate this on a 4000-neuron SNN (3000 E and 1000 I
neurons) sharing all parameters with the previous 400-neuron SNN, except that the
synaptic weights (SQQ′

) are 1/10 of the values listed in Table 1. This change of
synaptic weights aims to control the total recurrent E/I synaptic drives received by
each neuron and allows the different network models to have the same mean-field
limit. While deferring DNN predictions of SNN dynamics to Sect. 5, we here note the
minor modifications to adopt our methods to the 4000-neuron SNN.

First, the filtering threshold ofMFE is increased from 5 to 50 spikeswhen collecting
MFE-related data (see Sect. 3.2), since the MFEs are larger. Second, because of the
central limit theorem, less intrinsic stochasticity are observed in the SNN dynamics.
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This leads to an immediate side effect: The span of pre/post-MFE network states
collected from SNN simulations is relatively narrower within �, i.e., the training data
is less “general". To compensate, we expand the spans of T θ

train more courageously.
That is, during the enlarging step of the training set, the components of pre-MFE states
are sampled from distributions with more significant variance expansions.

4.4 Training result

The trained DNNs provide faithful surrogate MFE mappings for both F̂θ
1 and F̂1.

Parameter-specific MFE mappings. We first illustrate F̂θ
1 at a particular parameter

point

θ = (SEE , SE I , SI E , SI I ) = (4, 3,−2.2,−2).

We test the predictive power of F̂θ
1 on a testing set

T θ
test =

{
(x ′

m, y′
m) : m = 1, 2, ..., M = 6 × 104

}
,

where (x ′
m, y′

m) are coarse-grained pre/post-MFE states without pre-processing col-
lected fromSNNsimulations. In Fig. 4A, one example ofDNNprediction to post-MFE
pE (v) is compared to the SNN simulation results starting from the same x ′

m . Also,
the comparison between predicted vs. simulated E/I-spike numbers during MFEs is
depicted in Fig. 4B. To demonstrate the accuracy of F̂θ

1 , Fig. 4C depicts the L2 losses
of different components of post-MFE states. The L2 loss of predicted pQ(v) is ∼4,
while the averaged L2 difference between the post-MFE voltage distributions in the
testing set is

mean
1≤m,�≤M

‖ pEm (v) − pE� (v)‖2 + ‖ pIm(v) − pI� (v)‖2 ≈ 20 ,

Notably, DCT pre-processing effectively improves DNN predictions of voltage distri-
butions by reducing the L2 loss from ∼10 to ∼4. A similar comparison is observed
for the prediction of pending spike numbers in the post-MFE states (Fig. 4C inset).

Parameter-generic MFE mappings. Likewise, F̂1 also provides faithful predictions
following SNN dynamics in different parameter regimes by labeling training data
with synaptic strength parameters. Figure 4D shows a similar comparison between L2

losses of different components of post-MFE states.

5 Producing a surrogate for SNN

Here, we depict how our ANN predictions provide a surrogate of the spiking network
dynamics. We focus on the algorithm to replace Fθ for a fixed θ . The algorithm for
parameter-generic F is analogous.
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Fig. 4 DNNs predictions of post-MFE states. A Mapping F̂θ
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(4, 3, −2.2,−2). A Left: a pre-MFE pE (v); Right: post-MFE pE (v) produced by ANN (blue) vs. spiking
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Recall that SNN dynamics is divided into a fast phase (MFEs) and a slow phase
(IMIs). Our first-principle–informed DNN framework produces a surrogate mapping
F̂θ
1 and replaces the pseudo-Poincaremapping Fθ if complemented by Fθ

2 .We approx-
imate the IMI mapping Fθ

2 by evolving SNN with a tau-leaping method, thereby
producing the surrogate to the full SNN dynamics by alternating between the two
phases.

To resemble the IMI dynamics, we first initialize the network state ω from the
coarse-grained post-MFE state ω̃ predicted by Fθ

1 . Since neurons in the MIF model
are exchangeable, ω can be randomly sampled from C−1(ω̃). Specifically, we evenly
assign voltage to each type-Q neuron based on p̂Q . On the other hand, same-category
pending spikes stay “pooled" and are assigned to each neuron interchangeably. After
that, the network state ω is evolved by a tau-leaping method with 1-ms timesteps. This
process is terminated if more than three E-to-E spikes or six E spikes occur within
1 ms, after which the next MFE is deemed to start and the network state ω is fed to
Fθ
1 for another round of prediction.1 The loop Fθ alternating between Fθ

1 and Fθ
2

is thus closed. The mathematical descriptions of the SNN surrogate algorithm are
summarized as follows:

(i) (ω̃sm ,SpE ,SpI ) = F̂θ
1 (xm), where ω̃sm is the coarse-grained post-MFE state.

1 The different criteria ofMFE initiation fromAlgorithm 1 aims to ensure the robustness of capturingMFE,
due to the lack of network state information within each timestep in the tau-leaping simulations.
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Fig. 5 Surrogates of spiking network dynamics produced by the parameter-specific MFE mapping F̂θ
1 . A,

C, E resembling a 400-neuron spiking network; B, D, F resembling a 4000-neuron network. A, B Example
of pre and post-MFE voltage distributions pE and pI in the surrogate dynamics. C, D 10th level curves of
the first two principal components of pE and pI . (Blue: 20k examples from the enlarged training set, red:
2k examples from the surrogate dynamics.) E, F Raster plots of simulated surrogate dynamics and the real
dynamics starting from the same initial profiles (color figure online)

(ii) Sample ω(sm) from C−1(ω̃sm ).
(iii) Evolve the network dynamics with the tau-leaping method and initial condition

ω(sm). Stop the simulation with terminal value ωsm+1 .
(iv) xm+1 = C(ωsm+1).
(v) Repeat (i)-(iv) with m = m + 1.

We demonstrate the resembling power by producing the raster plot of SNN dynam-
ics labeling all spiking events with neuron index vs. time in Figs. 5 and 6. While the
spiking events during IMIs are given by tau-leaping simulation, the spiking patterns
during MFEs consist of events uniformly randomly assigned to neurons and times
within the MFE interval (with the total number of spikes (SpE ,SpI ) predicted by our
DNN). The durations of the MFEs are randomly sampled from the empirical distribu-
tion collected from the SNN simulations. In the rest of the section, we give the details
of our surrogate SNN dynamics constructed upon F̂θ

1 and F̂1.

Parameter-specific predictions. We use the enlarged training set as described in
Section 4 to generate F̂θ

1 (xm). Here, θ = (SEE , SI E , SE I , SI I ) = (4, 3,−2.2,−2)
for the 400-neuron SNN, and the synaptic weights are normalized by 10 times in the
4000-neuron SNN.

We first focus on the surrogate dynamics of the 400-neuron SNN. Figure 5A gives
examples of pre-MFEvoltage distributions pQ generated by the tau-leaping simulation
andpost-MFE pQ generated byDNNpredictions.We further compare the distributions
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Fig. 6 Surrogates of spiking network dynamics produced by the parameter-generic MFE mapping F̂1. A-F
are in parallel to Fig. 5

of thefirst twoprincipal components of pQ occurring in the surrogate dynamics and the
training set (Fig. 5B. red: surrogate dynamics; blue: the training set).On the plane of the
first two principal components, voltage distributions produced by surrogate dynamics
distribute consistently with training sets, suggesting that the surrogate dynamics align
very well with the ground-truth network dynamics. The red/blue contours indicate
each tenth of the level curves of the ks-density of the distributions. We also compare
the raster plots of the two dynamics, where the initial SNN conditions are the same
(Fig. 5E).

The right half of Fig. 5 depicts the surrogate dynamics to the 4000-neuron SNN
model. The biased distribution of the principal components of pQ is probably due to
A. the relatively more narrow training sets (see discussions in Sect. 4.3), and B. the
large 1 ms timestep in tau-leaping.

Parameter-generic predictions.The surrogate dynamics generated by the parameter-
generic surrogate MFE mapping F̂1 and tau-leaping are depicted in Fig. 6, whose
panels are analogous to Fig. 5. (The “real" raster plots of SNN dynamics in Fig. 6E is
fixed the same as Fig. 6E.) The comparable results demonstrate that the DNNs produce
faithful surrogates to the SNN dynamics. Interestingly, by comparing panels C and D
of Figs. 5 and 6, we find that the principal components of pQ in the surrogate dynamics
generated by F̂1 are much less biased than F̂θ

1 . While a detailed explanation is beyond
the current scope of this study, our current conjecture is that the more general training
set of F̂1 helps it deal with the less regular pre-MFE network states in the surrogate
dynamics.
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6 Discussions and conclusions

In this paper, we build an artificial neural network (ANN) surrogate of γ -dynamics
arising from a biological neuronal circuit. The neuronal circuit model is a stochastic
integrate-and-fire network that has beenwell-studied. Similar tomanyothermodels (Li
et al. 2019; Zhang 2014; Rangan and Young 2013), it can exhibit semi-synchronous
spiking activities called the multiple-firing events (MFEs), which are transient and
highly nonlinear emergent phenomena of spiking neuronal networks.

In our study, the sensitive & transient MFE dynamics are represented by the MFE
mappings that project the pre-MFE network states to post-MFE network states. The
MFE mappings are faithfully approximated by ANNs, despite the significant intrin-
sic noise in the model. On the other hand, the slower and quieter dynamics between
consecutiveMFEs are evolved by standard tau-leaping simulations. Remarkably, a sur-
rogate of spiking network dynamics is produced by combining ANN approximations
and tau-leaping simulations, generating firing patterns consistent with the spiking net-
work dynamics. Furthermore, the ANN surrogate can be generalized to a wide range
of synaptic coupling strengths.

This paper explores the methodology of learning biological neural circuits with
ANNs. In this study, the biggest challenges of developing a successful ANN surrogate
are A. processing the high-dimensional, noisy data and B. building a representative
training set. Both challenges are addressed by thefirst-principle-basedmodel reduction
techniques, i.e., coarse-graining and discrete cosine transform. The model reductions
remove the excessive intrinsic noise. The training set collects network states from sim-
ulations of SNNs and is enlarged to represent a broader class of voltage distributions.
Therefore, the training set covers the “rare" voltage distributions occurring in spiking
network dynamics with low probabilities.

Future work. The idea of ANN surrogates elaborated in this paper can be extended
and applied to other network models. First, many models of brain dynamics share the
difficulties of dimensionality, robustness, and generalizability. Therefore, we propose
to extend our ideas to model more sophisticated dynamical phenomena of the brain,
such as other types of neural oscillations, and to neural circuits with more complicated
network architecture. Furthermore, the power of ANNs to handle large data sets may
allow us to extend our framework to deal with experimental data directly. In general,
we are motivated by the recent success demonstrating the capability of deep neural
networking in representing infinite-dimensional maps (Li et al. 2020; Lu 2021; Wang
et al. 2021). Therefore, in future work, we suggest exploring more complex network
structures (e.g., theDeepONet Lu 2021) to buildmappings between the states of neural
circuits.

Another interesting but challenging issue is the interpretability of ANN surrogates,
e.g., relating statistics, dynamical features, and architectures of the spiking network
models to the ANNs. A potentially viable approach is to map neurons in the spik-
ing networks to artificial neurons, then examine the connection weight after training.
However, it is likely that this idea may need ANNs more complicated than the simple
feed-forward DNN we considered here. To achieve this goal, one may consider dif-
ferent ANNs with different architectures, such as ResNet or LSTM (He et al. 2016;
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Hochreiter and Schmidhuber 1997). These studies may shed some light on how the
dynamics and information flow in neural systems are represented in ANNs.
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7 Appendix

7.1 Tau-leaping and SSA algorithms

The simulations of the SNN dynamics are carried out by two algorithms: Tau-leaping
and Stochastic Simulation Algorithm (SSA). The key difference is that, The tau-
leaping method processes events that happen during a time step τ in bulk, while SSA
simulates the evolution event by event. Of the two, tau-leaping can be faster (with
properly chosen τ ), while SSA is usually more precise with the precision that scales
with C++ execution. Here we illustrate a Markov jump process as an example.

Algorithms. Consider X(t) = {x1(t), x2(t), ..., xN (t)}, where X(t) can take values
in a discrete state space

S = {s1, s2, . . . , sM ⊂ R
N }.

The transition from state X to state si at time t is denoted as T t
si (X), taking an

exponential distributed waiting time with rate λsi←X . Here, si ∈ S(X) which are
states adjacent to state X with a non-zero transition probability. For simplicity, we
assume λsi←X does not explicitly depend on t except via X(t).

Tau-leaping only considers X(t) on a time grid t = jh, for j = 0, 1, ..., T /h,
assuming state transfer occurs for at most one time within each step:

P(X ( j+1)h = si )

=

⎧
⎪⎨

⎪⎩

hλsi←X jh ∀si ∈ S(X jh),

1 − h
∑

si∈S(X jh) λsi←X jh si = X jh,

0 otherwise,

On the other hand, SSA accounts for this simulation problem as:

X(T ) = T tk
Xk

◦ T tk−1
Xk−1

◦ . . . ◦ T t1
X1

(X(0)),

i.e., starting from X0, X transitions to X1, X2, . . . , Xk = X(T ) at time 0 < t1 < t2 <

. . . < tk < T .
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For t� < t < t�+1, we sample the transition time from Exp(
∑

si∈S(X(t)) λsi←X(t)).
That is, for independent, exponentially distributed random variables

τi ∼ Exp(λsi←X(t)),

we have

t�+1 − t� = min
si∈S(X(t))

τi ∼ Exp

⎛

⎝
∑

si∈S(X(t))

λsi←X(t)

⎞

⎠ .

Therefore, in each step of an SSA simulation, the system state evolves forward
by an exponentially distributed random time, whose rate is the sum of rates of all
exponential “clocks". Then we randomly choose the exact state si to which transition
takes place with probability weighted by the sizes of the pending events.

Implementation on spiking networks. We note that X(t) will changes when

1. neuron i receives external input (vi goes up for 1, including entering R);
2. neuron i receives a spike (HE

i or H I
i goes up for 1);

3. a pending spike takes effect to neuron i (vi goes up/down according to synaptic
strengths);

4. neuron i walks out from refractory (vi goes from R to 0).

The corresponding transition rates are directly given (λE and λI ) or the inverses of
the physiological time scales (τ E , τ I , and τR). In an SSA simulation, when the state
transition elicits a spike in a neuron, the synaptic outputs generated by this spike are
immediately added to the pool of corresponding types of effects, and the neuron goes
into the refractory state. However, in a tau-leaping simulation, the spikes are recorded
but the synaptic outputs are processed in bulk at the end of each time step. Therefore,
all events within the same time step are uncorrelated.

7.2 The coarse-grainingmapping

Here we give the definition of the coarse-grained mapping C in Eq. 6. For ∀ω ∈ � that

ω =(V1, . . . , VNE , VNE+1, . . . , VNE+NI ,

HE
1 , . . . , HE

NE
, HE

NE+1, . . . , H
E
NE+NI

,

H I
1 , . . . , H I

NE
, H I

NE+1, . . . , H
I
NE+NI

),

we define

C(ω) = ω̃ = (nE1 , nE2 , . . . , nE22, n
E
R , nI1, n

I
2, . . . , n

I
22, n

I
R,

HEE , HEI , H I E , H I I ),
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where,

nEi =
NE∑

j=1

1Γi (Vj ), for i = 1, . . . , 22;

nER =
NE∑

j=1

1{R}(Vj );

nIi =
NE+NI∑

j=NE+1

1Γi (Vj ), for i = 1, . . . , 22;

nIR =
NE+NI∑

j=NE+1

1{R}(Vj );

and

HEE =
NE∑

j=1

HE
j ; H I E =

NE+NI∑

j=NE+1

HE
j ;

HEI =
NE∑

j=1

H I
j ; H I I =

NE+NI∑

j=NE+1

H I
j .

Here, 1A(a) is an indicator function of set A, i.e., 1A(a) = 1 ∀a ∈ A, otherwise
1A(a) = 0. Γi is a subset of the state space for membrane potential, and

Γi = [−15 + 5i,−10 + 5i) ∩ Γ .

7.3 Pre-processing surrogate data: discrete cosine transform

Here we explain how discrete cosine transform (DCT) works in the pre-processing.
For an input probability mass vector

p = (n1, n2, · · · , n22),

its DCT output Fc( p) = (c1, c2, ..., c22) is given by

ck =
√

2

22

22∑

l=1

nl√
1 + δkl

cos
( π

2N
(2l − 1)(k − 1)

)
, (9)

where δkl is the Kronecker delta function. The iDCT mapping F−1
c is defined as the

inverse function of Fc.
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Fig. 7 Diagram of a feedforward ANN

7.4 The linear formula for firing rates

When preparing the parameter-generic training set, we use simple, linear formulas to
estimate the firing rate of E neurons and I neurons ( fE and f I , see Li and Hui 2019; Li
et al. 2019). We take θ ∈ � for the synaptic coupling strength, while other constants
are the same as in Table 1.

fE = λE (M + C I I ) − λI C E I

(M − CEE )(M + C I I ) + (CE IC I E )

f I = λI (M − CEE ) + λEC I E

(M − CEE )(M + C I I ) + (CE IC I E )

where

CEE = NE PEE SEE , C I E = NE P I E SI E

CE I = N I PE I SE I , C I I = N I P I I SI I .

7.5 The deep network architecture

In general, artificial neural networks (ANNs) are interconnected computation units.
Many different architectures are possible for ANNs; in this paper, we adopt the feed-
forward deep network architecture, which is one of the simplest (Fig. 7).

A feedforward ANN has a layered structure, where units in the i−th layer drive
the (i + 1)−th layer with a weight matrix Wi and a bias vector bi . Computation is
processed from one layer to the next. The first, “input layer" takes an input vector x ,
sending its outputW1x+b1 to the first "hidden layer"; the first hidden layer then sends
output W2 f (W1x + b1) + b2 to the next layer, and so on, until the last, “output layer"
produces an output vector y. In this paper, we implemented a feedforward ANN with
four layers containing 512, 512, 512, and 128 neurons, respectively. We chose the
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Fig. 8 Left: pre-, post- and predictedMFE profiles without DCT + iDCT;Middle: pre-, post- and predicted
MFE profiles with DCT + iDCT; Right: pre-, post- and predicted MFE profiles with network parameters
as additional inputs of ANN. (Left and Middle: SEE , SI E , SE I , SI I = 4, 3, −2.2, -2; Right: 3.82, 3.24,
−2.05, −1.87.)

Leaky ReLU function with a default negative slope of 0.01 as our activation function
f (·).
The training of feedforward ANNs is achieved by the back-propagation (BP) algo-

rithm. Let NN (x) denote the prediction of the ANN with input x , and L(·) the
loss function. With each entry (x, y) in the training data, we minimize the loss
L(y − NN (x)) following the gradients on each dimension of Wi and bi . The com-
putation of gradients takes place from the last layer Wn’s and bn , then “propagated
back" to adjust previous Wi and bi on each layer. We chose the mean-square error as
our loss function, i.e. L(·) = || · ||2

L2 .

7.6 Pre-processing in ANN predictions

Here we provide more examples of the ANN predictions of the voltage profiles. We
compare how ANNs predict post-MFE voltage distributions pE and pI in three dif-
ferent settings in Fig. 8. In each panel divided by red lines, the left column gives
an example of pre-MFE voltage distributions, while the right column compares the
corresponding post-MFE voltage distributions collected from ANN predictions (red)
vs. SSA simulation. Results from ANNs without pre-processing, with pre-processing,
and the parameter-generic ANN are depicted in the left, middle, and right panels.

7.7 Principal components of voltage distributions

The voltage distribution vectors in the form below are used to plot the distribution in
the phase space as shown in middle panels of Figs. 5, 6, 9D, 10D, 11D, 12D, 13, 14,
and 15

(nE1 , nE2 , . . . , nE22, n
E
R , nI1, n

I
2, . . . , n

I
22, n

I
R)
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Fig. 9 DNN predictions and surrogate dynamics in ER random network with 400 neurons.A.Mapping F̂θ
1

in ER network for θ = (SEE , SE I , SI E , SI I ) = (4, 3,−2.2, −2).A.Left: a pre-MFE pE (v) and a pI (v);
Right: post-MFE pE (v) and pI (v) produced by ANN (blue) vs. spiking network simulations (orange). B.
Comparison of E and I spike number duringMFEs, ANN predictions vs. SSA simulations. The distributions
are depicted by 10th contours of max in ks-density estimation; C. Example of pre and post-MFE voltage
distributions pE and pI in the surrogate dynamics. D. Distribution depicted by 10th-contours of the first
two principal components of pE and pI . E. Raster plots of simulated surrogate dynamics and the real
dynamics starting from the same initial profiles (color figure online)

The vectors from the training set (colored in blue in figures) are selected to generate
the basis of the phase space through svd function in numpy.linalg in Python. The first
two rows of the V� are the first two PCs of the space. The scores of vectors from
the training set and approximated results are dot products of these vectors and the
normalized PCs.

The plain ks-density function in MATLAB is used to estimate the kernel smooth-
ing density of the profile distribution based on the data points generated above. The
contours show the level of each tenth of the maximal height (with 0.1% bias for
demonstrating the top) in the distributions.

7.8 Consistent results from fixed random networks

Here we test the capability of our method with fixed network architectures. We select
two types of random graphs: 1. Erd?s-Rényi random graph (ER), and 2. random
graphs with log-normal degree distribution (LN). In both types of graphs, the average
edge density is consistent with Ps in Table 1. Their adjacency matrices are shown
in Fig. 16. The sampling of four types of edges in LN random graphs leverages a
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Fig. 10 DNN predictions and surrogate dynamics in a 400-neuron random network with log-normal degree
distribution. A-E are in parallel to Fig. 9
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Fig. 11 DNN predictions and surrogate dynamics in ER random network with 4000 neurons. A-E are in
parallel to Fig. 9, except that θ = (SEE , SE I , SI E , SI I ) = (0.4, 0.3,−0.22,−0.2)
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Fig. 12 DNNpredictions and surrogate dynamics in a 4000-neuron randomnetworkwith log-normal degree
distribution. A-E are in parallel to Fig. 11

standard deviation of 0.2 in logarithm and constraints from the mean degrees. Results
are obtained from both sizes, 400 and 4000, of the random graphs. For each network,
MFEs are captured from original network simulations and simulations with enlarged
initial profiles (Fig. 18). The trained parameter-specificMFEmappings F̂θ

1 are used to
produce predictions of post-MFE states and surrogate network dynamics (Figs. 9, 10,
11, 12). MFEs are further captured in simulations with various parameter sets sampled
from the 4D cube �. The trained parameter-generic F̂1 is used to produce predictions
and surrogate dynamics, which are shown in Figs. 13 and 14. As seen in Figs. 9, 10,
11, 12, 13 and 14, the performance of the ANN surrogate is consistent with the case
when postsynaptic connections are decided on-the-fly.

7.9 Varying the synaptic coupling strengths generates a broad range of firing
rates andmagnitudes of MFEs

The training of parameter-generic MFE mapping F̂1 needs MFEs from simulations
with a variety of sets of parameter θ . As introduced in Sect. 4.3, the sets sampled from
the 4D cube � are first filtered by the estimated firing rate computed by the linear
formula. A large fraction (about 80%) of the sets from the previous step generate
MFEs that can be captured and accepted by our algorithm. These sets generate a wide
range of firing rates (Fig. 19). The simulated firing rates match the linear formula in
general. The major rejected region appears with high SEE , SI E and low SI I , SE I ,
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Fig. 13 Surrogate dynamics produced by parameter-generic MFE mapping F̂1 in two fixed networks with
400 neurons. Left: ER network; Right: Network with log-normal degree distribution.A-B: Example of pre
and post-MFE voltage distributions pE and pI in the surrogate dynamics. C-D: Distribution depicted by
10th-contours of the first two principal components of pE and pI . E-F: Raster plots of simulated surrogate
dynamics and the real dynamics starting from the same initial profiles

which is in the neighborhood with the accepted region with high firing rate and near
the singular region of the linear formula.

The magnitudes ofMFEs (number of spikes) from various parameters show amuch
wider distribution than the original set of parameters (Fig. 17).

7.10 Extrapolating network dynamics out of2with parameter-generic MFE
mappinĝF1

To test the extrapolation ability of our method, we generate surrogate dynamics in
networks with θ ’s outside of � with the parameter-generic MFE mapping F̂1. The
two θ ’s are (SEE , SI E , SE I , SI I ) = (5, 3,−2.2,−2) and (SEE , SI E , SE I , SI I ) =
(4, 4,−2.2,−2).

Parameter-generic MFE mapping F̂1 trained with MFEs in � can still capture
the neuronal oscillations and predict post-MFE states in the two networks. (Fig. 15)
Behaviors of networks under these two sets of parameters are also reproduced. Strong
recurrent excitation in the former θ makes MFEs readily to be concatenated, while
the less-synchronized character of the latter θ makes MFEs hard to trigger or identify.
This result shows the robustness and capability of extrapolation of our method, while
our future work can focus on improving the precision of prediction in detail (Figs. 18,
19).
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Fig. 14 Surrogate dynamics produced by parameter-generic MFE mapping F̂1 in two fixed networks with
4000 neurons. Left: ER network; Right: Network with log-normal degree distribution. A-F are in parallel
to Fig. 13
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Fig. 15 Surrogate dynamics with a parameter set that lies out of the sampling 4D cube produced
by parameter-generic MFE mapping F̂1. Left: (SEE , SI E , SE I , SI I ) = (5, 3,−2.2,−2); Right:
(SEE , SI E , SE I , SI I ) = (4, 4,−2.2,−2). A-F are in parallel to Fig. 13
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Fig. 16 Fixed random graphs used for SNN simulation. ER: Erd?s-Rényi random graph. LN: random
graphs with log-normal degree distribution. A light-colored block at (i, j) represents a directed synaptic
connection from i to j . The last quarter of the neurons are inhibitory, while the others are excitatory. This
figure is compressed to reduce the file size
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Fig. 17 Distributions of the magnitude of MFEs (number of spikes) from sampled parameters sets and the
specific parameter set (SEE , SI E , SE I , SI I ) = (4, 3,−2.2, −2)

Fig. 18 Distributions of the magnitude of MFEs (number of spikes) from the enlarged set of initial profiles
and a single trajectory
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