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Abstract
The coexistence of multiple phytoplankton species despite their reliance on similar
resources is often explained with mean-field models assuming mixed populations. In
reality, observations of phytoplankton indicate spatial aggregation at all scales, includ-
ing at the scale of a few individuals. Local spatial aggregation can hinder competitive
exclusion since individuals then interact mostly with other individuals of their own
species, rather than competitors from different species. To evaluate how microscale
spatial aggregationmight explain phytoplankton diversity maintenance, an individual-
based, multispecies representation of cells in a hydrodynamic environment is required.
We formulate a three-dimensional and multispecies individual-based model of phyto-
plankton population dynamics at the Kolmogorov scale. The model is studied through
both simulations and the derivation of spatial moment equations, in connection with
point process theory. The spatial moment equations show a good match between the-
ory and simulations.We parameterized the model based on phytoplankters’ ecological
and physical characteristics, for both large and small phytoplankton. Defining a zone
of potential interactions as the overlap between nutrient depletion volumes, we show
that local species composition—within the range of possible interactions—depends on
the size class of phytoplankton. In small phytoplankton, individuals remain in mostly
monospecific clusters. Spatial structure therefore favours intra- over inter-specific
interactions for small phytoplankton, contributing to coexistence. Large phytoplankton
cell neighbourhoods appear more mixed. Although some small-scale self-organizing
spatial structure remains and could influence coexistence mechanisms, other factors
may need to be explored to explain diversity maintenance in large phytoplankton.

B Frédéric Barraquand
frederic.barraquand@u-bordeaux.fr

Coralie Picoche
cpicoche@gmail.com

1 Institute of Mathematics of Bordeaux, University of Bordeaux and CNRS, Talence, France

2 Scripps Institution of Oceanography, La Jolla, CA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-024-02067-y&domain=pdf
http://orcid.org/0000-0002-0867-2130
http://orcid.org/0000-0002-1842-3197
http://orcid.org/0000-0002-4759-0269


68 Page 2 of 27 C. Picoche et al.

Keywords Aggregation · Coexistence · Individual-based model · Phytoplankton ·
Spatial moment equations · Spatial point process

Mathematics Subject Classification 92D40 · 92-10 · 60G55 · 62M30 · 76Z99

1 Introduction

Phytoplankton communities are among the most important photosynthetic groups on
Earth, being at the bottom of the marine food chain, and responsible for approximately
half the global primary production (Field et al. 1998). Their contribution to ecosystem
functions is only matched by their contribution to biodiversity. Indeed, phytoplankton
communities are characterized by a surprisingly high number of species. For example,
a single sample as small as a fewmL can contain up to seventy species (REPHY 2017;
Widdicombe andHarbour 2021). This observation is usually called the “paradox of the
plankton” (a term coined byHutchinson 1961), which refers to the conflict between the
observed diversity of species competing for similar resources in a seemingly homo-
geneous environment, and models predicting that only a few species will persist by
outcompeting the others (MacArthur and Levins 1964; Huisman and Weissing 1999;
Schippers et al. 2001). Phytoplanktonmodels for coexistence are nowalmost as diverse
as their model organisms (Record et al. 2014), but they often describe only a handful
of species, which does not correspond to the diversity observed in the field. When
modeling rich communities (> 10 species), classical answers to the plankton paradox
involving temporal fluctuations (e.g., Li and Chesson 2016; Chesson 2018) are not
sufficient to maintain a realistic diversity. For instance, we found that a phytoplank-
ton community dynamics model with environmental fluctuations and storage effect
still requires extra niche differentiation for coexistence, which manifests in stronger
intraspecific than interspecific interactions (Picoche and Barraquand 2019). However,
it is not clear that we should resort to hidden niches to explain phytoplankton coexis-
tence, asmostmodels alsomake hidden simplifying assumptions that could be relaxed.
One that we relax here is mean-field dynamics at the microscale. Indeed, field obser-
vations have revealed phytoplankton patchiness for decades, with early records in the
past centuries (Bainbridge 1957; Stocker 2012), from the macro- to the micro-scale
(Leonard et al. 2001; Doubell et al. 2006; Font-Muñoz et al. 2017).

Phytoplankton patchiness can at least be partly explained by the hydrodynamics
of their environment: the size of these organisms is mostly below the size of the
smallest eddy (i.e., the Kolmogorov scale). In a typical aquatic environment such as
the ocean, phytoplankton individuals are embedded in viscousmicro-structures (Peters
and Marrasé 2000) while phytoplankton populations are displaced by a turbulent flow
at slighly larger scales (Martin 2003; Prairie et al. 2012). Phytoplankton organisms
therefore live in an environment where fluid viscosity dominates at the scale of an
individual but turbulent dispersion dominates on length scales characteristic of a small
population of those individuals (Estrada et al. 1987; Prairie et al. 2012).

This leads us to consider demography in the context of this environmental variation
created by hydrodynamic processes. Individual-based models provide a convenient
depiction of population dynamics and movement at the microscale (Hellweger and

123



Local intraspecific aggregation in phytoplankton model communities… Page 3 of 27 68

Bucci 2009). In this framework, population growth is a result of individual births and
deaths. Aggregation of individuals can emerge from local reproduction coupled with
limited dispersal, which can happen in a fluid where turbulence and diffusion are not
strong enough to disperse kin aggregates (Young et al. 2001). The resulting local aggre-
gation can then affect the community dynamics at larger spatial scales, even when all
competitors are equivalent (i.e., with equal interaction strengths irrespective of species
identity). Indeed, the combination of local dispersal after reproduction and local inter-
actions leads to stronger intraspecific interactions than interspecific interactions at
the population level (Detto and Muller-Landau 2016). This mechanism stabilizes the
community, as a high intra-to-interspecific interaction strength ratio makes a species
control its abundance more than it controls the abundance of other species, which is
associated with coexistence in theoretical models (Levine and HilleRisLambers 2009;
Barabás et al. 2017) and often observed in the field at the population level (Adler et al.
2018; Picoche and Barraquand 2020). Therefore, the microscale spatial distribution
of individuals likely affects the interaction structure within a community, and may
sustain diversity (Haegeman and Rapaport 2008).

Existing models of phytoplankton populations near the Kolmogorov scale—
between 1mm and 1cm in an oceanic environment (Barton et al. 2014)—focus on
a single species and the clustering of its individuals (Young et al. 2001; Birch and
Young 2006; Bouderbala et al. 2018; Breier et al. 2018). These models share similari-
ties to dynamic point process models (Law et al. 2003; Bolker and Pacala 1999; Plank
and Law 2015) developed initially with larger organisms in mind. When phytoplank-
ton individual-based models consider multiple types of organisms, they focus for now
on how organisms with opposite characteristics (e.g., increase versus decrease in den-
sity with turbulence in Borgnino et al. 2019; Arrieta et al. 2020) segregate spatially, or
on coexistence of species that have contrasting trait values (e.g., size in Benczik et al.
2006). Such models are useful as an explanation of how species with marked differ-
ences might coexist. The difficulty of the coexistence problem, however, is that we
also have to explain how closely related species or genera (e.g., within diatoms), many
of whom have similar size, buoyancy, chemical composition, etc., manage to coexist
within a single trophic level. This requires modelling similar species in a spatially
realistic environment and objectively quantifying whether they aggregate or segregate
in space.

To do so, we build a multispecies version of the Brownian Bug Model (BBM) of
Young et al. (2001), an individual-based model which includes an advection process
mimicking a turbulent fluid flow, passive diffusion of organisms, as well as stochastic
birth and death processes. The initial version of this model (Young et al. 2001) coupled
limited dispersal and local reproduction with ocean-like microscale hydrodynamics,
and showed spatial clusters of individuals of the same species. The original BBMwas
limited to a single species and was illustrated with two-dimensional simulations. The
model was not strongly quantitative (Picoche et al. 2022) in the sense that parameters
were not informed by current knowledge on phytoplankton biology (numbers of cells
per liter, diffusion characteristics, etc.). As phytoplankton organisms live in a three-
dimensional environment, informing themodelwithmore realistic parameters requires
us to shift to three dimensions. We also extend the model to multiple species, and
consider two size classes for our phytoplankton communities, which are eithermade of
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nanophytoplankton (3 µm diameter, ≈ 106 cells L−1) or microphytoplankton (50 µm,
≈ 104 cells L−1). We populate each community with 3 to 10 different species.

The Brownian BugModel (in its original single-species form as in the multispecies
version considered here) is related to spatial branching processes. Without advec-
tion, it combines a continuous-time, discrete-state model for population growth and a
continuous-time, continuous-space Brownian motion for particle diffusion (Birch and
Young 2006). It is further complexified by a turbulent flow in Young et al. (2001);
Picoche et al. (2022) as well as here. In spite of this complexity, it remains possible
to derive the dynamics of pair density functions, which quantify the degree of intra-
and interspecific clustering of organisms, via correlations between positions of organ-
isms (see next section). Thus we can understand emergent spatial structures in analytic
detail and compare these predictions to the results from three-dimensional simulations.
Furthermore, because we do not consider direct interactions between organisms, the
multispecies spatial point process that represents the stable state of the BBM is a
random superposition of spatial point processes for each species (Illian et al. 2008).
This enables us to derive, in addition to pair correlation functions, analytical formulas
for the species composition in the neighbourhood of an individual, which are more
readily ecologically interpreted than pair density or correlation functions.

2 Model and spatial statistics

2.1 Brownian BugModel

The Brownian BugModel (BBM) describes the dynamics of individuals in a turbulent
and viscous environment, including demographic processes. The model is continuous
in space and time. Here we extend the mostly two-dimensional, monospecific version
in Young et al. (2001), to three dimensions and S species.

Each individual is characterized by its species identity i and its position
xT = (x, y, z). The population dynamics aremodelled by a linear birth-death process
with birth rate λi and death rateμi . Each individual independently follows a Brownian
motion with diffusivity Di , and is advected by a common stochastic and chaotic flow
modelling turbulence. The model applies in the Batchelor regime, which means that
the separation s(t) between two individuals k and l grows exponentially with time
with stretching parameter γ , i.e., s(t) = ln (|xk − xl |(t)) ∝ 3γ t (Kraichnan 1974;
Young et al. 2001).

Within a given community (the set of all individuals of the S species), all species
share the same parameters: λi , μi and Di values can change between communities, as
we later consider small and large phytoplankton, but are set to common values within
a community. On the contrary, γ describes the environment and is not community-
specific, i.e., all individuals are displaced by the same turbulent stirring. For numerical
simulations, time needs to be discretized (this is required for diffusion and advection
modelling). The approximated model advances through time in small steps of duration
τ . During each interval, events unroll as follows:
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1. Demography: each individual can either reproduce with probability pi = λiτ

(forming a new individual of the same species i at the same position x as the
parent), die with probability qi = μiτ , or remain unchanged with probability
1 − pi − qi .

2. Diffusion: each individual moves to a new position x(t ′) = x(t) + δx(t), with
t < t ′ < t + τ . The random displacement δx(t) is drawn from a Gaussian distri-
bution N (0,�2

i ) with Di = �2
i /2τ the diffusivity. This diffusive step separates

the initially coincident pairs produced by reproduction in step 1 above.
3. Turbulence: each individual is displaced by a turbulent flow, modelled with the

Pierrehumbert map (Pierrehumbert 1994), adapted to three dimensions following
Ngan and Vanneste (2011). Thus given the position at time t ′ the updated position
at time t + τ is

x(t + τ) = x(t ′) + Uτ

3
cos

(
ky(t ′) + φ(t)

)

y(t + τ) = y(t ′) + Uτ

3
cos

(
kz(t ′) + θ(t)

)

z(t + τ) = z(t ′) + Uτ

3
cos (kx(t + τ) + ψ(t)) . (1)

Above, U is the velocity of the flow, k = 2π/Ls is the wavenumber for the flow at
the length scale Ls (see below) and φ(t), θ(t), ψ(t) are random phases drawn from
a uniform distribution between 0 and 2π ; these phases remain constant during the
interval between t and t + τ . The shift from continuous to discrete-time turbulence
modelling is described in Section S1 in the Supplementary Information. The velocity
U is related to γ . As the separation between two points grows exponentially with
parameter 3γ due to turbulence, the exponent γ can be estimated as the slope of
1/3 〈ln(s(t))〉 = f (t) in the absence of diffusion and demography (Young et al. 2001;
Picoche et al. 2022).

Individuals are distributed in a cube of side length L , with periodic boundary con-
ditions. The cube dimensions are determined to balance computing costs and realistic
concentrations of individuals; they represent the accumulation of a few volumes of
scale Ls .

2.2 Characterization of the spatial distribution

Let W be the observation window (in our case, the whole cube, which we never
subsample hereafter). The state of the system at time t can be described as a collec-
tion of S populations, where the population of species i is made of ni individuals
randomly distributed in W , with positions X i (t) = [x1,i (t), x2,i (t), ..., xni ,i (t)].
X(t) = [X1(t), . . . , X S(t)] arises from a stochastic and spatial individual-based
model changing through time, but can also be analyzed as a spatial point process at
time t . We note that the point distributions remain the same for all spatial translations
ξ (i.e., the point process described by the set X = [x1, x2, ..., xk] is the same as
Xξ = [x1 + ξ , x2 + ξ , ..., xk + ξ ]): the process is stationary.

123



68 Page 6 of 27 C. Picoche et al.

Auseful method to characterize a spatial point process is the use of spatial moments
(illustrated in Section S2 of the SI for simple spatial point processes). These can be
theoretically derived and used to check simulations. The spatial moments of a process
are, however, merely statistical indicators which then need to be related to more easily
ecologically interpretable quantities. This is the role of the dominance index, which
we present below.

2.2.1 Spatial moments

Thefirst-ordermoment is the intensity of the process, ormean concentration of individ-

uals, whose empirical estimate is Ci = ̂Ni (W )
V (W )

, where ̂Ni (W ) is the empirical number

of individuals of species i in the cube W and V (W ) = L3 is the volume of the cube;
it does not give any information regarding the spatial distribution of individuals, and
their spatial correlations.

The second-order product density, or pair density G(r , t), is the expected density
of pairs of points separated by a distance r (Law et al. 2003). A similar statistic can be
used for marked spatial point process. In our case, the marks are the species’ identities,
and we can define Gi j (r , t), so that Gi j (r , t)dxAdxB is the probability of finding an
individual of species i in volume dxA and an individual of species j in volume dxB ,
with the distance between the centers of dxA and dxB equal to r (pages 219 and 325
in Illian et al. 2008). We define ξ as the vector connecting the center of dxA to the
center of dxB , while r = |ξ | is the radial distance. We show in Picoche et al. (2022)
that the intraspecific pair density Gii (r , t), in three dimensions, is a solution of

∂Gii

∂t
(r , t) = 2Di

r2
∂

∂r

(
r2

∂Gii

∂r

)
+ γ

r2
∂

∂r

(
r4

∂Gii

∂r

)
+ 2(λi − μi )Gii + 2λiCiδ(ξ).

(2)

The pair correlation function gi j (r , t), or pcf, can be derived from the pair density and
is defined as

gi j (r , t) = Gi j (r , t)

CiC j
. (3)

The pcf is equal to one when the spatial distribution of species i individuals is random
relative to species j individuals. To compute the intraspecific pcf gii (r , t) at steady
state, considering a population at equilibrium, we integrate Eq. 2 (see Appendices,
Eqs. 19-30) with λi = μi and obtain

gii (r) = 1 + λi

4πDiCi�B,i

(
�B,i

r
+ arctan

(
r

�B,i

)
− π

2

)
, (4)

where �B,i = √
2Di/γ approximates the Batchelor scale for species i .

The system converges rapidly to the solution in Eq. 4 in the presence of advection.
However, when there is no turbulent advection, convergence is much slower, to the
point that an equilibrium assumption requires unrealistically long timeframes (see
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Section S3 in the SI). We therefore need a time-dependent formula for the pcf in the
absence of advection, which can be obtained in the case where γ = 0 using a Green’s
function (see derivation in the Appendices, Eqs. 31-37),

gii (r , t) = 1 + λi

4πr DiCi

{
1 − erf

(
r√
8Di t

)}
. (5)

The above equations match when γ → 0 and t → +∞.
As populations of different species do not directly interact, each population is an

independent realization of a point process, which means that the distribution of all
individuals within the community at time t is a random superposition of stationary
point processes and thus gi j (r , t) = 1 if i 
= j (Illian et al. 2008, p. 326, eq. 5.3.13).

Related to the pair correlation function is Ripley’s K -function K (r). Using its
marked version, C j Ki j (r) is the average number of points of species j surrounding
an individual of species i within a sphere of radius r (Illian et al. 2008), i.e.,

∀r ≥ 0, Ki j (r) = 1

C j
Ei

(
N j (b(o, r)\{o})

)
, (6)

whereEi is the expectationwith respect to individuals of species i and N j (b(o, r)\{o})
is the number of individuals of species j in the sphere of radius r centered on individual
o, not counting individual o itself. Ki j (r) is related to gi j (r) as

gi j (r) = K ′
i j (r)

4πr2
. (7)

Combining Eq. 7 and, whenU > 0, Eq. 4, we can show that (see Appendices, Eqs. 38-
44)

Kii (r) = 4

3
πr3 + λi r3

3DiCi�B,i

⎛

⎜
⎜
⎝

�B,i

r
+

�3B,i log

(
r2

�2B,i
+ 1

)

2r3
+ arctan

(
r

�B,i

)
− π

2

⎞

⎟
⎟
⎠ . (8)

When U = 0, we need a time-dependent solution corresponding to our simulation
duration, i.e. (see Appendices, Eqs. 46–51)

Kii (r , t) = 4

3
πr3 + λi r2

Ci Di

(
1

2
− 1

2
erf

(
r√
8Di t

) (
1 − 4Di

r2
t

)
−

√
2Di t√
πr

e
− r2

8Di t

)
. (9)

For random superposition of stationary point processes, Ki j (r , t) = 4
3πr

3 if i 
= j
(Illian et al. 2008, p. 324, eq. 5.3.5).
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2.2.2 Dominance index

The dominance index (defined in Table S1 in the Supporting Information of Wie-
gand et al. 2007) is the ratio between the number of conspecifics and the number of
individuals of all species surrounding a given individual.

Let Mi j (r) be the average number of individuals of species j within a circle of
radius r around an individual of species i , which can also be written with Ripley’s K -
function asMi j (r) = C j Ki j (r).Mii (r) corresponds to the conspecific neighbourhood
and Mio(r) = ∑S

j=1, j 
=i Mi j (r) corresponds to individuals of all other species. We
can then define Di as

Di (r) = Mii (r)
Mii (r)+Mio(r)

= Ci Kii (r)∑S
j=1 C j Ki j (r)

.
(10)

When individuals of the same species i tend to cluster, Di (r) tends to 1 while it
tends to the proportion of individuals of species i in the whole community when the
distribution is uniform (Section S2 of the SI).

Using Eqs. 8 and 10, we obtain the formula for the dominance index in the presence
of advection as

Di (r) =

λi
3Di �B,i

⎛

⎜⎜
⎝

�B,i
r +

�3B,i log

(
r2

�2B,i
+1

)

2r3
+ arctan

(
r

�B,i

)
− π

2

⎞

⎟⎟
⎠ + 4

3πCi

λi
3Di �B,i

⎛

⎜⎜
⎝

�B,i
r +

�3B,i log

(
r2

�2B,i
+1

)

2r3
+ arctan

(
r

�B,i

)
− π

2

⎞

⎟⎟
⎠ + ∑S

j=1
4
3πC j

.

(11)

In the absence of advection (U = 0, γ = 0), we use the time-dependent dominance
index, computed similarly:

Di (r , t) =
λi
Di r

(
1
2 − 1

2 erf
(

r√
8Di t

) (
1 − 4Di

r2
t
)

−
√
2Di t√
πr

e
− r2

8Di t

)
+ 4

3πCi

λi
Di r

(
1
2 − 1

2 erf
(

r√
8Di t

) (
1 − 4Di

r2
t
)

−
√
2Di t√
πr

e
− r2

8Di t

)
+ ∑S

j=1
4
3πC j

.

(12)

2.3 Parameters

Wemodel two types of organisms:microphytoplankton (definedby adiameter between
20 and 200 µm, here 50 µm) and nanophytoplankton (defined by a diameter between
2 and 20 µm, here 3 µm). These two groups are characterized respectively by a low
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diffusivity, slow growth and lower concentration vs. high diffusivity, fast growth and
higher concentration. Organisms are displaced by a turbulent fluid whose velocity
defines the time scale of the discretized model: we give here the reasoning behind
parameter values, keeping in mind that our model parameters are only approximate.
Main parameter definitions and values are given in Table 1.

2.3.1 Advection

We first consider the advection process, due to the turbulence of the environment.
We only consider the Batchelor-Kolmogorov regime, i.e., LS is below the size of the
smallest eddy, but above the smallest length scale of fluctuations in nutrient concen-
trations. The defining scale of the environment therefore corresponds to a Reynolds
number

Re = U

kν
≈ 1 (13)

where ν = 10−6 m2 s−1 is the kinematic viscosity forwater. The smallest wavenumber
k corresponds to the largest length scale Ls (Kolmogorov scale), i.e., k = 2π/Ls,with
Ls ≈ 1 cm in the ocean (Barton et al. 2014). The definition of the Reynolds number
leads to

1 ≈ ULs
2πν

⇔ U ≈ 2πν
Ls

.
(14)

This means thatU = 6.3×10−4 m s−1 = 5.4×103 cm d−1. UsingUτ/3 = 0.5 cm
as in Young et al. (2001), we have τ = 2.8 × 10−4 d = 24 s. When Uτ/3 = 0, the
environment is only diffusive, we keep the same value for τ . For Uτ/3 = 0.5 cm, we
estimate γ = 1231 d−1.

2.3.2 Diffusion

If we use the Stokes–Einstein equations (Einstein 1905, cited from Dusenbery 2009),
diffusivity can be computed with

Di = RT

NA

1

6πηai
(15)

where R = 8.314 JK−1 mol−1 is themolar gas constant,T = 293K is the temperature,
NA = 6.0225 × 1023 is Avogadro’s number, η = 10−3 m−1 kg s−1 is the dynamic
viscosity of water and ai is the radius of the organism considered.

Using Di = �2
i

2τ , we find that

�i = √
2τDi

⇔ �i =
√

RT
NA

τ
3πηai

.
(16)
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Table 1 Definitions and values of the main parameters used in the three-dimensional BBM, assuming the
duration of a time step τ is 24 s

Parameter Definition Value

pm , qm Probability of reproducing/dying for microphytoplankton 2.8 × 10−4

pn , qn Probability of reproducing/dying for nanophytoplankton 6.9 × 10−4

U Turbulent advection speed {0, 0.06} cms−1

�m Diffusion parameter for microphytoplankton 6.4 × 10−5 cm

�n Diffusion parameter for nanophytoplankton 2.6 × 10−4 cm

We consider an = 1.5 µm for nanophytoplankton individuals and am = 25 µm for
microphytoplankton individuals, which allows us to compute �n and �m (see Table
1).

2.3.3 Ecological processes

We study the community at equilibrium, with the birth rate equal to the death rate,
i.e., pi = qi ∀i . We use a microphytoplankton doubling rate of 1 d−1 (Bissinger et al.
2008) and consider the fastest-growing nanophytoplankton species, corresponding to
a diameter of 3 µm (Bec et al. 2008), for which the doubling rate is between 2 and 3
d−1 (set to 2.5 d−1 here).

2.3.4 Range of interaction

Aswe examine individual aggregation and its potential effects on interactions between
species, we have to ascertain the volume in which an individual can be affected by
the presence of other individuals, or affect other individuals. We only consider here
interactions due to competition for nutrients, and therefore need to define a nutri-
ent depletion volume. We approximate this volume as the sphere of radius r where
C(r) ≤ 90%C∞ withC∞ the background concentration of the nutrient andC(ai ) = 0
(perfect absorption at the cell surface). The radius of this nutrient depletion volume is
maximized when the individual is in stagnant water so that diffusion is the only hydro-
dynamic process. In this case, the depletion radius corresponds to 10 times the radius
of the individual (Jumars et al. 1993; Karp-Boss et al. 1996). We define the maximum
distance which allows for potential interactions (due to competition for resources)
between two individuals of radius ai and a j as dthreshold, and the corresponding vol-
ume of potential interactions around an organism as Vint = 4/3πd3threshold with

dthreshold = 10ai + 10a j . (17)

We consider this maximum value as our baseline, keeping in mind that turbulence
reduces the size of the nutrient depletion volume and increases the nutrient flux to the
cell (Arnott et al. 2021). We caution that determination of the shape of the nutrient
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depletion volume in the presence of turbulence is too complex to be addressed here
(Karp-Boss et al. 1996).

We consider a total volume of 1000cm3 for microphytoplankton and 10cm3 for
nanophytoplankton (volumes are adapted to balance realistic concentrations and com-
putation time)with periodic boundary conditions. Individuals are uniformlydistributed
in the cube at the beginning of the simulation. We run an idealized simulation with
3 species with an even abundance distribution of about 104 cells L−1 for microphy-
toplankton (Picoche and Barraquand 2020) and 106 cells L−1 for nanophytoplankton
individuals (Edwards 2019). We then model a more realistic community with 10
species having a skewed abundance distribution (between 55,000 and 400 cells L−1

for microphytoplankton, according to observations of field abundance distributions
in Picoche and Barraquand (2020), and multiplied by 102 for nanophytoplankton).
All simulations are run for 1000 time steps of duration τ (corresponding to approx-
imately 6h40 of phytoplankton time—note that runtimes can be much longer). The
computation of g and K for simulated distributions is explained in Section S4 of
the SI. The code for all simulations and analyses can be found at https://github.com/
CoraliePicoche/brownian_bug_3D/.

3 Results

We show an example of nanophytoplankton spatial distributions with and without
advection at the end of a simulation in Fig. 1: clustering is not visible to the naked eye,
even when zooming in on the observation volume, in the presence of advection, but
removing turbulence helps visualising small aggregates of conspecifics. Microphyto-
plankton distributions are not straightforward to interpret as no clusters can be detected
visually (although they may actually be present), whether advection is included or not
(Section S5 of the SI). Statistics are therefore needed to go further in detecting patterns
of aggregation.

Ripley’s K -functions extracted from numerical simulations match theoretical for-
mula (Fig. 2) for both types of organisms, which also indicates that dominance indices
extracted from the simulations match theoretical expectations.

Dominance indices all follow a similar pattern (Figs. 3 and 4). The dominance
index is close to 1 for small distances: there is always a scale at which an organism is
surrounded almost only by conspecifics. The index then decreases sharply to converge
at large distances (close to 1cm) to the proportion of the focus species in the whole
community, as itwould for a uniform spatial distribution. Patterns differ at intermediate
ranges of distances between organisms.

In the presence of advection, the dominance index starts decreasing for a distance
approximately 10 times smaller than when advection is absent, which indicates that
organisms are closer to heterospecifics when their environment is turbulent. A quasi-
uniform distribution is also reached for smaller distances with advection than without.
Microphytoplankton species startmixing for distances larger than for nanophytoplank-
ton species irrespective of the hydrodynamic regime surrounding them.

In a 3-species community with the same initial abundances, in the presence of
advection, microphytoplankton dominance indices are between 0.37 and 0.47 at the
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Fig. 1 Spatial distributions of a 3-species community of nanophytoplankton with and without advection
with density C = 103 cells cm−3 after 1000 time steps. Each color corresponds to a different species. On
the left-hand side, only a zoom on a 0.5× 0.5× 0.5 cm3 cube is shown, and its projection on the x-y plane
is shown on the right-hand side

distance threshold for potential interactions, while they are between 0.80 and 0.94
for nanophytoplankton species. In the absence of turbulence, dominance indices are
all above 0.98 when the distance threshold is reached (Fig. 3). Microphytoplankton
organisms are therefore as likely to share their depletion volume with conspecifics
as they are with heterospecifics, but only when turbulent advection is accounted for,
whereas nanophytoplankton organisms always have almost only conspecifics around
them.

More mixing in microphytoplankton than nanophytoplankton, and more mixing
with advection, also holds when considering a 10 species-community with a skewed
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Fig. 2 Comparison of theoretical and simulated Ripley’s K -functions as a function of distance (in cm) for
microphytoplankton (a, b) and nanophytoplankton (c, d) in a 3-species community with even abundance
distributions after 1000 timesteps, with (a, c) and without (b, d) advection. Each color represents a different
species. Intraspecific K -functions are shown with dashed (theoretical values) and solid (simulated values)
lines. Interspecific K -functions are shown with dotted lines (theoretical values) and circles (simulated
values). The black dash-dotted line corresponds to the threshold considered as the maximum distance for
nutrient-based competition

abundance distribution (Fig. 4), but dominance indices are overall lower in communi-
ties with more species and with less even abundances. In the presence of advection,
microphytoplankton dominance indices at the distance threshold are between 0.34 (for
the most abundant species) and 0.033 (for one of the least abundant species), while
they are between 0.90 and 0.85 when advection is not taken into account. Nanophy-
toplankton species, too, are more mixed than in the 3 species-community: dominance
indices vary between 0.54 and 0.2 when the depletion threshold is reached (with an
exception of 0 for one particular species which had no conspecific for distances below
10−2 cm) when organisms are displaced by turbulence, while the same quantity is
between 1 and 0.97 when they are only subject to diffusion.

Differences in spatial distributions are not only due to organism sizes, which deter-
mine their demographic and hydrodynamic properties, but also to their abundances
(here set through initial values). In the presence of turbulence, the threshold distance
at which dominance falls below 95% is smaller for more abundant species (Fig. 5a,
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Fig. 3 Dominance indices as a function of distance (in cm) formicrophytoplankton (a) and nanophytoplank-
ton (b) in a 3-species community with even abundance distributions (final proportions in the community
are indicated in the figure) after 1000 timesteps, with (circles) and without (lines) advection. Each color
represents a different species. The grey dashed curve represents the analytical solution. The black dashed
line corresponds to the threshold considered as the maximum distance for nutrient-based competition

Fig. 4 Dominance indices as a function of distance (in cm) for microphytoplankton (a) and nanophyto-
plankton (b) in a 10-species community with a skewed abundance distribution (final proportions in the
community are indicated in the figure) after 1000 timesteps, with (circles) and without (lines) advection.
Each color represents a different species. The coloured dashed curves (advection) and small stars (no advec-
tion) represent the analytical solution. The black dashed line corresponds to the threshold considered as the
maximum distance for nutrient-based competition

b). Abundant species tend to be present nearly everywhere when they are mixed in the
environment. Therefore, they are also more likely to be close to a heterospecific, but
still have more conspecifics close to them than the less abundant species (D (dthreshold)
increases with abundance, Fig. 5c, d). However, this increase is less clear for nanophy-
toplankton than for microphytoplankton (Fig. 5c, d). When turbulence is absent, the
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Fig. 5 Minimum distances (in cm) between points for dominance to drop below 95% (a and b) and dom-
inance at a distance corresponding to the threshold for competition (c and d) as a function of abundances
(note the logarithmic scale on the x-axis) for microphytoplankton and nanophytoplankton. We consider
cases with and without advection in a 10-species community with a skewed abundance distribution. These
have been obtained combining 10 sets of simulations

relationships with abundance are unclear, possibly affected by sampling effects, and
we refrain from interpreting them.

4 Discussion

We designed a stochastic, three-dimensional, individual-based model of the spatial
distribution of multiple species in a viscous and turbulent flow. We conducted both
mathematical analyses and numerical simulations to quantify spatial correlations in the
distribution of organisms.We focused on the pair correlation function and Ripley’s K -
function, for which numerical and theoretical analyses showed a good agreement, and
extracted a more ecologically-oriented metric from them, i.e., the dominance index.
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This statistic is the local average ratio of conspecifics, i.e., the number of organisms
of the focal species in the neighbourhood of an individual of the same species, divided
by the total number of organisms in that neighbourhood. Intraspecific clustering cor-
responds to a dominance index close to 1, which decreases when interspecific mixing
increases. The choice of this index was motivated by two reasons: (1) it is at its core
a proportion of a focal species in a certain volume, i.e. a scale-dependent, localized
metric bounded between 0 and 1 as opposed to other statistics whose values are less
directly interpreted, and (2) it is easy to relate to coexistence theory as it describes
the environment of an organism in terms of heterospecifics and conspecifics, which
can, under certain assumptions that we discuss below, be related to interspecific and
intraspecific interactions. Comparing the distributions of organisms of different sizes,
we showed that the presence of turbulence always increased mixing (results are robust
to slight modifications in the computation of advection velocity U , shown in Sec-
tion S6 of the SI). The species composition around an organism depended on its
size, which mechanically determines its hydrodynamic properties (diffusivity), and is
linked with its ecological characteristics (growth rate and density). Microphytoplank-
ters (20–200 µm), larger cells with lower diffusivity, growth rate and abundance, were
on average further away from other cells, due to their lower concentrations (Fig. S11
of the SI), than nanophytoplankters (2–20 µm). They were surrounded by more het-
erospecifics than conspecifics within a volume of potential interactions, whose radius
is defined as the maximum distance for which nutrient depletion volumes of two dif-
ferent individuals may overlap. If we consider that interactions between species (not
modelled directly here because of timescale issues, see below) could occur with equal
probability at all distances within the volume of potential interactions, we would con-
clude that microphytoplankters are more likely to interact with individuals from other
species than with individuals of their own species. This affirmation is, however, con-
ditional upon interactions at 10 cell diameters from an individual being equally likely
than at 1 diameter from an individual. If we keep in mind that interactions are more
likely or stronger at very short distances, or that the maximal radius of interaction
could be shorter than our estimation and advection velocity U lower (SI Section S6),
microphytoplankters may still experience more frequent effects of conspecifics than
heterospecifics.

To see this, let us first focus on the smallest distances between organisms. The
nearest neighbour of an organism was always an organism of the same species, and
the minimum distance between conspecifics was always lower than expected for a
uniform distribution (Section S7 of the SI). The dominance index remained close to
1 for distances below 10−2 cm or 10−3 cm for microphytoplankton and nanophy-
toplankton respectively. There was therefore always some intraspecific aggregation,
i.e., conspecifics were always closer than heterospecifics at the smallest distances.
This is due to the prevalence of demographic processes at individual scales, because
an individual acts as a source point for other organisms of the same species, and
hydrodynamic processes do not separate conspecifics fast enough to prevent aggre-
gation. This remains true if we add an initial separation distance between mother and
daughter cells upon birth (additional simulations, see code repository). If we consider
that interaction strengths are a smoothly decaying function of distance, a common
assumption in spatial coexistence models (e.g., Bolker and Pacala 1999; Law et al.
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2003), this implies that population-level intraspecific interactions could be stronger
than interspecific interactions due to intraspecific micro-scale aggregation. However,
the mechanisms of competition at this scale are poorly known, likely relying on mul-
tiple types of resources with different distributions in the environment, effects on the
cell, uptakes, etc. Rather than weighting much more heavily the potential interac-
tions with the closest neighbour(s) through an interaction kernel, we therefore chose
conservatively to define a maximum distance for two organisms to possibly affect
the concentrations of elements in the environment of each other, assuming perfect
absorption on the cell surface. We consider that, at all distances below this threshold,
interactions could happen between organisms. We continue the discussion with that
simplification in mind, and explicitly mention when it is relaxed.

Dominance indices began to decrease at distances above 10−3 cm, still below the
maximum distance for interactions. At this distance and above, the balance between
heterospecifics and conspecifics was much more sensitive to different phytoplankters’
demographic and hydrodynamic traits. The species composition of an organism’s
neighbourhood depended on its size: nanophytoplankton organisms mainly shared
their volumeof potential interactionswith conspecifics (the dominance index remained
close to 1, even near the distance threshold, i.e., the maximum distance for the over-
lap of nutrient depletion volumes) while microphytoplankton organisms could affect
both conspecifics and heterospecifics (the dominance index was often below 0.5 at
the distance threshold, i.e. an individual’s depletion zone probably overlapped with
more heterospecifics’ than conspecifics’). Microphytoplankters were therefore more
likely to share their depletion volume with heterospecifics than nanophytoplankters.
The rate of production of new microphytoplankton conspecifics was not sufficient to
compensate for the mixing induced by turbulence and diffusivity, even though the dif-
fusivity of microphytoplankters was smaller than that of nanophytoplankters. There
may therefore be different mechanisms at play at the community level for microphyto-
plankton and nanophytoplankton tomaintain coexistence. For nanophytoplankton, the
spatial structure likely leads to more interactions between conspecifics than between
heterospecifics. The spatial distribution of microphytoplankton species, on the con-
trary, encourages more interactions between heterospecifics. If we consider that local
interaction strengths are equal within the volume of potential interactions, scaling to
the population level, we would likely observe stronger intra- over interspecific interac-
tions for nanophytoplankton (a key factor in coexistence theory, Barabás et al. 2017)
but not necessarily so formicrophytoplankton. Using a timescale separation argument,
we show in Section S8 in the SI how stronger interactions at population level than
individual levelmay arise in a Lotka-Volterramodel whose spatial structure is summed
up by the dominance indices evidenced here. Stronger intra- than interspecific com-
petition may arise at population level even when assuming that all local interaction
strengths between individuals are equal, regardless of the identity of competitors.

All of the above discussion is based on amicrophytoplankter’s neighbourhood in its
nutrient depletion volume. To simplify the computation, we used maximum volumes
of potential interactions, corresponding to a diffusive-only flow of nutrient particles.
But when fluid turbulence increases, nutrient uptake increases, and the size of the
depletion zone decreases (Karp-Boss et al. 1996). The proportion of change in the
depletion volume increases with the size of organisms: a 10 µm-diameter organism
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might not experience any change, while the uptake of a 100 µm-diameter organism
would increase by at least 50% (Karp-Boss et al. 1996). Therefore the volume of
potential interactions shrinks in the presence of turbulence formicrophytoplankton, but
not necessarily for nanophytoplankton. An additional reason whymicrophytoplankers
might still be surrounded by conspecifics at ecologically meaningful distances and
interacting more frequently with them is imperfect absorption of nutrients: if nutrient
concentration at the cell surface is not zero but C0, then the radius of interaction is
10ai (1 − C0/C∞).

Up to now, we have only focused on the dominance index, a localized proportion of
conspecifics. However, interactions also depend on the absolute densities of individu-
als.Mechanically, when density decreases, the distances between neighbours increase,
which explains that the distances between the low-abundance microphytoplankters
tended to be greater than distances between the more abundant nanophytoplankters
(Section S7 of the SI). Explicit mathematical models using pair densities to express
interaction rates (e.g. Law et al. 2003; Plank and Law 2015) may be able to incorporate
those effects; however, as we highlight below, the timescales and spatial correlations
that are seen in such models may not necessarily represent faithfully phytoplankton
community dynamics.

Contrary to other similar models (e.g., Birch and Young 2006; Bouderbala et al.
2018), we did not consider explicit effects of local density on survival and fertility
rates. Outside of simply maintaining analytical tractability, we had another, more bio-
logical reason to do so: we cannot be sure that these local density-dependencies make
sense in our phytoplankton context. To understand why, consider that even if a species
abundance is locally tripled, competition might not directly ensue at the time scales
covered by ourmodel (≈ 7 h), if nutrient depletion has not had time to set in yet. Even if
we considered longer time frames, we would need lagged local density-dependencies,
which are to our knowledge not leading to tractable spatial branching or dynamic point
processes. We could, of course, directly model nutrients, perhaps as resource “points”
with a dynamics of their own (Murrell 2005; North and Ovaskainen 2007), which
in turn change the reproduction or death rate of individuals. If the resource points
risk being depleted, this entails a negative spatial correlation between organisms and
their resources (Murrell 2005; Barraquand and Murrell 2012). And that is where such
models might be inadequate. The phycosphere, a micro-environment at the periphery
of a phytoplankton organism where communities of bacteria interact (Seymour et al.
2017), can also impact phytoplankton fitness, both positively (cross-feeding) and neg-
atively (algicidal activities of bacteria). This can sometimes lead to an accumulation
of key resources close to the phytoplankter. This will lead to positive spatial correla-
tions between consumers and their resources, and we currently do not have theoretical
models to represent this process (short of modelling precisely the spatial distribution
of these bacteria).

Our model should be viewed as a first model of spatial distributions of multiple
phytoplankton species in a realistic, three-dimensional environment at the microscale,
describing only basic hydrodynamic and demographic processes. Using this model,
we were able to predict whether phytoplankters could be in contact with individuals of
their own or other species, and form reasonable conjectures regarding potential intra
vs interspecific interactions between species, emerging at the population level through
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spatial distributions (Detto andMuller-Landau 2016). It is worthwhile to keep in mind
that there are many remaining features of phytoplankton physiology and life histories
which we do not address here, but which may affect spatial distributions. Many phy-
toplankters are able to move actively in three dimensions, which can favour cluster
formation (Breier et al. 2018). Even those who are believed to move passively actu-
ally often move along the vertical dimension by regulating their buoyancy (Reynolds
2006), and can at times aggregate to form pairs (Font-Muñoz et al. 2019). Finally,
a part of spatial structure is explained by the partially colonial nature of microphy-
toplankton (Kiørboe et al. 1990). This clearly calls for viewing our model as a null
model to which more complex mechanistic models and their spatial outputs can be
compared.

Appendices

Derivation of the spatial characteristics of the Brownian BugModel

We show here how to compute the monospecific pair correlation function and Ripley’s
K -function of the Brownian BugModel (see Young et al. 2001 and Picoche et al. 2022
for a detailed derivation from the master equation). As these formula only apply to
intraspecies pairs, we ignore species’ index in the following for the sake of clarity.
Similar formula for well-known spatial point processes are given in the Supplementary
Information, for readers who want to understand better the properties of these spatial
statistics.

Proof of Eqs. 4 and 5

In three dimensions, when the birth rate λ is the same as the mortality rate μ, the pair
density G(r) is a solution of
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Steady-state solution
We first compute the steady-state solution, i.e.
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We can then integrate Eq. 18 over a small sphere centered on an individual, with radius
ρ. Let us first note that in an isotropic environment the 3D-Dirac function relates to
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the radial one as

δ(ξ) = 1

4πr2
δ(r) (20)

with 4πr2 the surface of the sphere of radius r . Using Eqs. 19 and 20,
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We can integrate Eq. 21 between ρ and ∞. As G(∞) = C2,

C2 − G(ρ) = −λC
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ρ
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We first compute the primitive A = ∫ 1
2Dr2+γ r4

dr .
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With a change of variable u =
√

γ
2Dr , using
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du = arctan(u), we have
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where K is a constant. We can now compute B = [A]∞ρ .
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This leads to

G(ρ) = C2 + λC

2π
B (28)
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= C2 + λC
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Finally, the pair correlation function g = G/C2 is defined as
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Time-dependent solution
In the absence of advection by turbulent diffusion (U = 0, γ = 0), convergence

to the steady-state solution can be very slow (more than a week, see Section S3 in
the SI). In order to keep a realistic timeframe, we need to compute a time-dependent
solution. We can get back to Eq. 18 with γ = 0, which yields
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Assuming an isotropic environment, this means

∂G

∂t
− 2D�G = 2λCδ(ξ) (32)

where � = ∇2 is the Laplacian operator. We therefore have

LG(ξ , t) = 2λCδ(ξ) (33)

where L is the linear differential operator ∂t − 2D�. Therefore G(y) = ∫
H(y, s)

2λCδ(s)ds where H(y, s) = H(y − s) is the Green kernel (heat kernel). We can
therefore write
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A solution for the Green’s function using L = ∂t − 2D� in three dimensions is
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where erf is the error function. Using G(r , 0) = C2 and limx→+∞ erf(x) = 1 in
Eq. 35,
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⇔ C
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We can finally compute G(r , t):
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Proof of Eqs. 8 and 9

We can integrate the pcf formula to compute Ripley’s K -function, as g(r) = K ′(r)
4πr2

.
Steady-state solution
From Eq. 30,
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We define A = ∫ ρ
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We can also compute C = ∫ ρ
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( √

γ r√
2D

)
dr . We first change variable, with
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2Ddu, and obtain
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We can integrate by parts, with f = arctan(
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We then substitute v = γ u2 + 1, du = 1
2γ u dv, and have
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Going back to C, we obtain
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Combining all equations, using this time C to denote the cell concentration, we
finally obtain,
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Note that in the presence of advection, using Eq. 37, we obtain,

g(r) = λ
4πCDr + 1

⇒ K ′(r) = λr
CD + 4πr2

⇔ K (r) = λr2
2CD + 4

3πr
3.

(45)

Time-dependent solution
In the absence of advection (U = 0, γ = 0), we need to compute a time-dependent

solution. From Eq. 37,

K (ρ) =
∫ ρ

0
r

λ

DC

{
1 − erf

(
r√
8Dt

)}
+ 4πr2dr

= λ
CD

(
ρ2

2 −
∫ ρ

0
r × erf

(
r√
8Dt

)
dr

)
+ 4

3πρ3.

(46)
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We first compute the primitive for
∫ ρ

0 r × erf
(

r√
8Dt

)
dr . We define u = r√

8Dt
,

dr = √
8Dtdu, then

∫ ρ

0
r × erf

(
r√
8Dt

)
dr = 8Dt

∫ ρ/
√
8Dt

0
u × erf (u) du. (47)

We can integrate by parts, with f = erf(u) and g′ = u, and obtain

8Dt
∫ ρ/

√
8Dt

0
u × erf (u) du = 8Dt

(
ρ2

2
1

8Dt erf(
ρ√
8Dt

) − 1√
π

∫ ρ/
√
8Dt

0 u2e−u2du
)

.

(48)

We integrate by parts again, this time with f = u and g′ = ue−u2 , which leads to

∫
u2e−u2du = −ue−u2

2
+ 1

2

∫
e−u2du = −ue−u2

2
+

√
π erf(u)

4
. (49)

If we use Eq. 49 in Eq. 48,

8Dt
∫ ρ/

√
8Dt

0
u × erf (u) du = 8Dt

(
ρ2

2
1

8Dt erf(
ρ√
8Dt

) − erf( ρ√
8Dt

)

4 + 1
2
√

π

ρ√
8Dt

e− ρ2

8Dt

)

⇔
∫ ρ

0
r × erf

(
r√
8Dt

)
dr = 1

2 erf(
ρ√
8Dt

)(ρ2 − 4Dt) +
√
2Dt√
π

ρe− ρ2

8Dt .

(50)

We can now compute K (ρ):

K (ρ) = λ
CD

(
ρ2

2 − 1
2 erf(

ρ√
8Dt

)(ρ2 − 4Dt) −
√
2Dtρ√

π
e− ρ2

8Dt

)
+ 4

3πρ3. (51)
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