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Abstract
Diagnostic delay for TB infected individuals and the lack of TB vaccines for adults
are the main challenges to achieve the goals of WHO by 2050. In order to evaluate
the impacts of diagnostic delay and vaccination for adults on prevalence of TB, we
propose an age-structured model with latent age and infection age, and we incorporate
Mycobacterium TB in the environment and vaccination into the model. Diagnostic
delay is indicated by the age of infection before receiving treatment. The threshold
dynamics are established in terms of the basic reproduction numberR0.WhenR0 < 1,
the disease-free equilibrium is globally asymptotically stable, which means that TB
epidemicwill die out;WhenR0 = 1, the disease-free equilibrium is globally attractive;
there exists a unique endemic equilibrium and the endemic equilibrium is globally
attractive whenR0 > 1. We estimate that the basic reproduction numberR0 = 0.5320
(95% CI (0.3060, 0.7556)) in Jiangsu Province, which means that TB epidemic will
die out. However, we find that the annual number of new TB cases by 2050 is 1,151
(95%CI: (138, 8,014)), which means that it is challenging to achieve the goal of WHO
by 2050. To this end, we evaluate the possibility of achieving the goals of WHO if we
start vaccinating adults and reduce diagnostic delay in 2025. Our results demonstrate
that when the diagnostic delay is reduced from longer than fourmonths to fourmonths,
or 20% adults are vaccinated, the goal of WHO in 2050 can be achieved, and 73,137
(95%CI: (23,906, 234,086)) and 54,828 (95%CI: (15,811, 206,468)) individuals will
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be prevented from being infected from 2025 to 2050, respectively. The modeling
approaches and simulation results used in this work can help policymakers design
control measures to reduce the prevalence of TB.

Keywords Age-structured model · Latent age · Infection age · Parameter estimation ·
Sensitivity analysis

Mathematics Subject Classification 37N25 · 92D30 · 35A35

1 Introduction

Tuberculosis (TB) is a chronic infectious disease caused by infection with Mycobac-
terium TB (Wikipedia 2022). In 2020, approximately ten million people worldwide
developed TB, including 5.6 millionmen, 3.3 million women and 1.1million children,
and 1.5 million people died from TB. Globally, TB ranks the 13th among all leading
causes of deaths, and becomes the second leading infectious killer among all infec-
tious diseases since COVID-19 (World Health Organization 2022b). In recent two
decades, China has made great progress in the prevention and mitigation of TB (Wang
et al. 2014). During this period, the incidence rate of TB is reduced by 42%, and the
mortality rate of TB is reduced by more than 90%. However, China still had 833,000
TB infections and 38,800 TB deaths in 2019 (World Health Organization 2022a).
Globally, the incidence rate of TB reduced about 2% per year and the cumulative
reduction between 2015 and 2020 was 11%, which is more than half of 20% reduction
milestone of the TB Eradication Strategy (World Health Organization 2022b). How-
ever, the speed is not fast enough to achieve the goals of World Health Organization
(WHO), which is to reduce the incidence rate of TB by 50%, 80%, and 90% in 2025,
2030, and 2035, respectively, compared with that in 2015, and there will be less than
one case per million individuals per year in 2050 in China (Dye and Williams 2008;
Harris et al. 2019, 2020; Houben et al. 2016; Huynh et al. 2015; Lin et al. 2015; Xu
et al. 2017).

According to the current findings and predictions through mathematical models
(Abu-Raddad et al. 2009; Feng et al. 2001, 2002; Guo et al. 2021; Harris et al. 2019,
2020; Sreeramareddy et al. 2009), the effectiveness of TB control strategies depends
on several factors. First, many symptoms of TB are similar to those of other diseases.
Hence, it is easy to diagnose TB as other diseases by mistakes so that diagnostic delay
occurs. Diagnostic delaymay increase the risk of deaths and facilitate the transmission
of TB in the community (Sreeramareddy et al. 2009). The incidence data in Jiangsu
Province show that the average diagnostic delay is 44 days (see Fig. 2A).Consequently,
the age of infection (the time frombeing infected to being treated) is an important factor
in disease progression (Fenget al. 2002). Second, there are no effective vaccines against
TB for adults except the bacille Calmette-Guérin (BCG) vaccine. In the past few years,
the development of new TB vaccines is rapid, with 14 candidates entering clinical
trials, including four in phase 2B/3 (Harris et al. 2019, 2020). Therefore, vaccination
strategy is essential in disease progression when adult vaccines are introduced. Third,
Mycobacterium TB is resistant to dry, cold, acidic and alkaline environments. In
particular, Mycobacterium TB adheres to dust and remains infectious for 8-10 days,
can survive for 6-8 months in dry sputum, and can survive for 4-5 years when the
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temperature is minus 6◦C or above, indicating that Mycobacterium TB can widely
spread through the air, and everyone who is exposed to the air with Mycobacterium
TB may be infected (Chinese Center for Disease Control and Prevention 2022). Thus,
Mycobacterium TB in the environment is non-neglectable in TB transmission.

During the spread of TB, approximately 5% to 10% of people infected with
MycobacteriumTBwill develop active TB during their lifetime (WorldHealthOrgani-
zation 2022a). Some of these people develop TB very soon (within a few weeks) after
being infected, while others may get sick several years later (Guo et al. 2021). In addi-
tion, the timings of diagnostic delays vary among countries, regions, and TB patients.
The average diagnostic delays in high-income countries and low-income countries
are 47 days and 60 days (Sreeramareddy et al. 2009), respectively. The durations of
diagnostic delay reach hundreds of days (see Fig. 2A). Age structure is essential when
modeling long-term disease (Magal et al. 2010; Qiu and Feng 2010; Shen et al. 2017;
Wu and Zhao 2021; Yang and Wang 2019; Zhang and Liu 2020; Zou et al. 2010),
because the time it takes for latent individuals to become infectious differs and the
chances of receiving treatment for infectious individuals varies considerably (Iannelli
and Milner 2017).

Many mathematical models have been used to study the dynamics of TB, including
ordinary differential equation (ODE) models (Cai et al. 2021; Choi and Jung 2014;
Huo andZou 2016; Liu et al. 2010; Song et al. 2002), delay differential equation (DDE)
models (Feng et al. 2001, 2007; Okuonghae 2015), age-structured models (Ainseba
et al. 2017; Castillo-Chavez and Feng 1998; Feng et al. 2002; Guo et al. 2021; Har-
ris et al. 2019, 2020; Liu et al. 2022; Li et al. 2020; Mu et al. 2022; Wang et al.
2017; Xue et al. 2022; Xu et al. 2019; Yang et al. 2011), and reaction-diffusion mod-
els (Català et al. 2020; Wang et al. 2022; Zhang et al. 2021). Motivated by the above
work, we propose an age-structuredmodelwith latent age and infection age.Mycobac-
terium TB can survive in dry, cold, acidic, and alkaline environments (Chinese Center
for Disease Control and Prevention 2022), especially in some special environments,
Mycobacterium TB can survive for several years, which means that Mycobacterium
TB can spread widely through air. Therefore, we incorporate Mycobacterium TB in
the environment into our model. Since the vaccines for adults are under development
and will be applied once they are available, we include vaccination for adults in the
model, besides BCG-vaccination for children. In addition, we also consider the age of
infection before receiving treatment to represent diagnostic delay, and the treated class
is also introduced into the model. Our goals are to study the dynamic properties of the
model, calibrate the transmission model according to the demographic and epidemio-
logical data classified by the age of infection, as well as to evaluate the possibility of
achieving the goals of WHO in Jiangsu Province, China.

The remaining sections of our work are structured as follows. In Sect. 2, we propose
a TB model that takes into account various factors such as latent age, infection age,
vaccination, treatment, and both indirect anddirect transmission.Weanalyze themodel
to derive the basic reproduction number, R0, and study the boundedness and uniform
persistence of themodel, as well as the existence and stability of equilibrium solutions.
In Sect. 3, we employ Markov Chain Monte Carlo (MCMC) to estimate the unknown
parameters and initial values of the model. Through this estimation, we can also
determine the value of the basic reproduction number, R0. In Sect. 4, we utilize Latin
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Hypercube Sampling (LHS) and the Partial Rank Correlation Coefficient (PRCC) to
explore the uncertainty and sensitivity of the parameters. Additionally, we evaluate
the possibility of achieving the goals of WHO in Jiangsu Province, China. In Sect. 5,
we summarize and discuss the findings of our research.

2 The TBmodel with latent age and infection age

The total population is divided into six classes, namely, susceptible, vaccinated, latent,
infected, treated, and recovered individuals. S(t), V (t), T (t), and R(t) represent the
number of susceptible, vaccinated, treated, and recovered individuals, respectively.
e(t, b) represents the density of latent individuals with latent age b. i(t, a) represents
the density of infected individuals with infection age a. W (t) represents the density
of Mycobacterium TB in environment, such as door handles, towels, handkerchiefs,
toys, utensils, and beds, etc. The total population at time t is denoted by

N (t) = S(t) + V (t) + T (t) + R(t) +
∫ +∞

0
e(t, b)db +

∫ +∞

0
i(t, a)da.

The total population, N (t), is born and dies at the rates Λ and dN (t), respectively,
where d represents the natural mortality rate. The baseline infection probability of
susceptible and vaccinated individuals is defined as

λ(t) =
∫ +∞

0
β1(a)i(t, a)da + β2T (t) + g(W (t)), (1)

where β1(a) denotes the direct transmission rate of infected individuals at stage a; β2
denotes the direct transmission rate of treated individuals. The function g(W (t)) rep-
resents the probability that a susceptible individual becomes infected through indirect
contact with Mycobacterium TB in the environment. Obviously, higher Mycobac-
terium TB density increases the chance that a susceptible individual becomes infected.
Thus, the transmittability of the disease, g(W (t)), is an increasing function of W (t)
(Kong et al. 2014a, b; Posny and Wang 2014). In general, we assume that the function
g(W (t)) satisfies the following conditions for all t ≥ 0:

g(0) = 0, g′(W ) > 0, and g′′(W ) ≤ 0, for W ≥ 0.

Susceptible individuals become exposed and active TB at the rates (1 − q)λ(t)S(t)
and qλ(t)S(t), respectively, where q denotes the proportion of new infections that
directly develop into active TB. Similarly, Vaccinated individuals become exposed
and active TB at the rates (1−q)ηλ(t)V (t) and qηλ(t)V (t), respectively, where 1−η

denotes the reduction in susceptibility to infection due to vaccination. Susceptible
individuals, including children and adults who transfer to the vaccinated class at the
rate αS(t), where α is the vaccination rate. Once the vaccine protection is lost, the
vaccinated individuals transfer to the susceptible class at the rate τV (t), where 1/τ
denotes the duration of vaccine protection. Exposed individuals can become infected
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at the rate ρ
∫ +∞
0 σ(b)e(t, b)db, where σ(b) denotes the progression rate of the latent

individuals at stage b, and ρ denotes the proportion of new infections that develop
into active TB from latent individuals. Infected individuals can be treated at the rate∫ +∞
0 θ(a)i(t, a)da, where θ(a) denotes the diagnostic rate of the infected individuals
at stage a. All cases in T (t) will either recover or die at the rates γ T (t) and dT (t),
where γ represents the recovery rate. Recovered individuals can also transfer to the
susceptible class at the rate δR(t), where δ is the rate at which a recovered individual
loses immunity (becoming susceptible again). Note that we don’t consider relapse
of the recovered individuals in this work. Eventually, ξ1(a) and ξ2 are the virions of
MycobacteriumTB released into the environment per unit time by infected individuals
with infection age a and treated individuals, respectively; and c is the rate at which
Mycobacterium TB is eliminated from the environment by any means (Li et al. 2009).
The population flow among those compartments is shown in Fig. 1. We formulate the
following system mixed with ordinary differential equations and partial differential
equations:

dS(t)

dt
= Λ + τV (t) + δR(t) − λ(t)S(t) − (α + d)S(t),

dV (t)

dt
= αS(t) − ηλ(t)V (t) − (τ + d)V (t),

dT (t)

dt
=
∫ +∞

0
θ(a)i(t, a)da − (γ + d)T (t),

dR(t)

dt
= γ T (t) − (δ + d)R(t), (2)

dW (t)

dt
=
∫ +∞

0
ξ1(a)i(t, a)da + ξ2T (t) − cW (t),

∂e(t, b)

∂t
+ ∂e(t, b)

∂b
= −(ρσ(b) + d)e(t, b),

∂i(t, a)

∂t
+ ∂i(t, a)

∂a
= −(θ(a) + d)i(t, a).

The boundary and initial conditions for System (2) is as follows

e(t, 0) = (1 − q)λ(t)
(
S(t) + ηV (t)

)
,

i(t, 0) = qλ(t)
(
S(t) + ηV (t)

) + ρ

∫ +∞

0
σ(b)e(t, b)db,

S(0) = S0, V (0) = V0, T (0) = T0, R(0) = R0,W (0) = W0,

e(0, b) = e0(b), i(0, a) = i0(a),

(3)

where e0(b), i0(a) ∈ L1+(0,+∞), and S0, V0, T0, R0,W0 ∈ R+. The definitions of
all parameters are shown in Table 1.

Throughout this work, we make the following assumptions on the coefficients of
System (2).

(A1): Λ, τ , δ, β2, β3, α, d, η, γ , ξ2, c, ρ, β1(a), θ(a), ξ1(a), σ(b) > 0;
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Fig. 1 Schematic diagram of the mathematical model

(A2): β1(a), θ(a), ξ1(a), σ(b) ∈ L∞+ (0,+∞) with essential upper bounds β̄1, θ̄ , ξ̄1,
σ̄ > 0, respectively;

(A3): β1(a), θ(a), ξ1(a), and σ(b) are Lipschitz continuous on R+, with Lipschitz
coefficients Mβ1 , Mθ , Mξ1 , and Mσ , respectively;

(A4): The stability analysis for general expressions of g(W (t)) is tedious. For simplic-
ity, we assume that g(W (t)) = β3W (t), where β3 is the indirect transmission
rate of Mycobacterium TB.

We define the phase space for System (2) by Y = R
5+ × (L1+(0,+∞))2, with the

norm

‖(x1, x2, x3, x4, x5, x6, x7)‖Y =
5∑

i=1

|xi | +
∫ +∞

0
|x6(b)|db +

∫ +∞

0
|x7(a)|da.

(4)

In the following analysis, we assume that both (A1)-(A4) are valid.
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2.1 Well-posedness

The continuous solution semiflow Φ : R+ × Y → Y is defined as

Φ(t, x0) := (S(t), V (t), T (t), R(t),W (t), e(t, ·), i(t, ·)), t ∈ R+, x0 ∈ Y,

where Φ(t, x0) is the solution to System (2) with Φ(0, x0) = x0.
For a, b ≥ 0, let

k1(b) = e− ∫ b
0 (ρσ(s)+d)ds, k2(a) = e− ∫ a

0 (θ(s)+d)ds,

K1 =
∫ +∞

0
σ(b)k1(b)db, K2 =

∫ +∞

0
β1(a)k2(a)da,

K3 =
∫ +∞

0
θ(a)k2(a)da, K4 =

∫ +∞

0
ξ1(a)k2(a)da.

Integrating the equations for e(t, b) and i(t, a) in System (2) along the characteristic
lines, t − b = const and t − a = const, respectively, we obtain

e(t, b) =
⎧⎨
⎩
e(t − b, 0)k1(b), 0 ≤ b ≤ t,

e0(b − t)
k1(b)

k1(b − t)
, 0 ≤ t ≤ b,

i(t, a) =
⎧⎨
⎩
i(t − a, 0)k2(a), 0 ≤ a ≤ t,

i0(a − t)
k2(a)

k2(a − t)
, 0 ≤ t ≤ a.

(5)

In what follows, we prove that the solution of System (2) is bounded.

Theorem 1 The solution of System (2) is bounded, that is,

N (t) ≤ max
{
N0,

Λ

d

}
, W (t) ≤ max

{
W0,

Λ(ξ̄1 + ξ2)

dc

}
, for t ∈ R+.

Moreover, the upper bounds are eventually uniform,

lim sup
t→∞

N (t) ≤ Λ

d
, lim sup

t→∞
W (t) ≤ Λ(ξ̄1 + ξ2)

dc
.

Proof See “Appendix A”. 
�

Hence, the trajectories of System (2) are ultimately bounded. Then we have the
following proposition.

123



Global analysis of an age-structured tuberculosis model with… Page 9 of 57 52

Proposition 1 Define

D =
{
(S(t), V (t), T (t), R(t),W (t), e(t, b), i(t, a)) ∈ Y : 0 ≤ N (t) ≤ Λ

d
,

0 ≤ W (t) ≤ Λ(ξ̄1 + ξ2)

dc

} (6)

is positively invariant for System (2).

2.2 Equilibria and the basic reproduction number

Weassume that (S0, V 0, T 0, R0,W 0, e0(·), i0(·)) is disease-free equilibrium.We take
T 0 = R0 = W 0 = e0(0) = i0(0) = 0, then e0(b) = 0 and i0(a) = 0 can be
obtained by e0(b) = e0(0)k1(b) and i0(a) = i0(0)k2(a), respectively, where 0 ∈
L1+(0,+∞) is the zero function. Let the disease-free equilibrium be given by P0 =
(S0, V 0, 0, 0, 0, 0L1(0,+∞), 0L1(0,+∞)). Using

dS(t)
dt = dV (t)

dt = 0, we obtain

P0 =
(

Λ(τ + d)

d(α + τ + d)
,

Λα

d(α + τ + d)
, 0, 0, 0, 0L1(0,+∞), 0L1(0,+∞)

)
.

In order to derive endemic equilibria, we first determine the basic reproduction num-
ber R0 using the next generation operator approach (Diekmann et al. 1990; Van den
Driessche and Watmough 2002). We obtain

R0 = (
S0 + ηV 0)(K2 + β2K3

γ + d
+ β3[(γ + d)K4 + ξ2K3]

c(γ + d)

)
[q + ρ(1 − q)K1]

= Λ(ηα + τ + d)

d(α + τ + d)

(
K2 + β2K3

γ + d
+ β3[(γ + d)K4 + ξ2K3]

c(γ + d)

)
[q + ρ(1 − q)K1].

(7)

An endemic equilibrium P∗ = (
S∗, V ∗, T ∗, R∗,W ∗, e∗(b), i∗(a)

)
satisfies the fol-

lowing equations:

Λ + τV ∗ + δR∗ − λ∗S∗ − (α + d)S∗ = 0,

αS∗ − ηλ∗V ∗ − (τ + d)V ∗ = 0,∫ +∞

0
θ(a)i∗(a)da − (γ + d)T ∗ = 0,

γ T ∗ − (δ + d)R∗ = 0,∫ +∞

0
ξ1(a)i∗(a)da + ξ2T

∗ − cW ∗ = 0, (8)

e∗(b) = e∗(0)k1(b),
i∗(a) = i∗(0)k2(a),

e∗(0) = (1 − q)λ∗(S∗ + ηV ∗),
123
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i∗(0) = qλ∗(S∗ + ηV ∗) + ρ

∫ +∞

0
σ(b)e∗(b)db,

where

λ∗ =
∫ +∞

0
β1(a)i∗(a)da + β2T

∗ + β3W
∗. (9)

From Eq. (8), we have

T ∗ = i∗(0)K3

γ + d
, (10)

R∗ = i∗(0)γK3

(δ + d)(γ + d)
, (11)

W ∗ = i∗(0)[(γ + d)K4 + ξ2K3]
c(γ + d)

, (12)

λ∗ = i∗(0)K2 + β2i∗(0)K3

γ + d
+ β3i∗(0)[(γ + d)K4 + ξ2K3]

c(γ + d)
, (13)

V ∗ = α[Λ(δ + d)(γ + d) + i∗(0)δγK3]
(δ + d)(γ + d)[(λ∗ + d)(ηλ∗ + τ + d) + α(ηλ∗ + d)] , (14)

S∗ = (ηλ∗ + τ + d)[Λ(δ + d)(γ + d) + i∗(0)δγK3]
(δ + d)(γ + d)[(λ∗ + d)(ηλ∗ + τ + d) + α(ηλ∗ + d)] . (15)

Substituting Eqs.(10)–(15) into the last two equations of Eq. (8) gives

i∗(0) = (
S∗ + ηV ∗){i∗(0)K2 + β2i∗(0)K3

γ + d
+ β3i∗(0)[(γ + d)K4 + ξ2K3]

c(γ + d)

}

×
[
q + ρ(1 − q)K1

]
.

By calculation, we obtain the following equation satisfied by the endemic equilibrium

(
S∗ + ηV ∗){K2 + β2K3

γ + d
+ β3[(γ + d)K4 + ξ2K3]

c(γ + d)

}
[q+ρ(1 − q)K1] − 1=0.

(16)

The above equation can be expressed as

a2(i
∗(0))2 + a1i

∗(0) + a0 = 0, (17)

where

a2 = η

(
K2 + β2K3

γ + d
+ β3[(γ + d)K4 + ξ2K3]

c(γ + d)

)2{
[q + ρ(1 − q)K1]K3δγ

−(δ + d)(γ + d)
}
,
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a1 =
(
K2 + β2K3

γ + d
+ β3[(γ + d)K4 + ξ2K3]

c(γ + d)

){
Λη(δ + d)(γ + d)

×
(
K2 + β2K3

γ + d
+ β3[(γ + d)K4 + ξ2K3]

c(γ + d)

)
[q + ρ(1 − q)K1]

+[q + ρ(1 − q)K1]K3δγ (d + τ + αη) − (δ + d)(γ + d)(ηd + d + τ + αη)

}
,

a0 = (δ + d)(γ + d)(R0 − 1).

Note that K1 ≤ σ̄
ρσ̄+d and K3 ≤ θ̄

θ̄+d
< 1. Thus, we have

a2 = η

(
K2 + β2K3

γ + d
+ β3[(γ + d)K4 + ξ2K3]

c(γ + d)

)2{
[q + ρ(1 − q)K1]K3δγ

−(δ + d)(γ + d)
}

< η

(
K2 + β2K3

γ + d
+ β3[(γ + d)K4 + ξ2K3]

c(γ + d)

)2[
δγ − (δ + d)(γ + d)

]

< 0.

According to the basic properties of the quadratic equation, Eq. (17) has a unique
positive root if R0 > 1. Then, System (2) has a unique positive endemic equilibrium
P∗. When R0 < 1, according to Eqs. (7) and (16), we notice that

S∗ + ηV ∗

S0 + ηV 0 = 1

R0
> 1,

which contradicts with S∗ + ηV ∗ ≤ S0 + ηV 0. Hence, when R0 < 1, the endemic
equilibrium of System (2) does not exist.

2.3 Local stability of the disease-free equilibrium

In this section, we prove the local stability of the equilibria of System (2). We consider
the linearized systemofSystem (2) at an equilibrium P̃ = (

S̃, Ṽ , T̃ , R̃, W̃ , ẽ(b), ĩ(a)
)
.

Let

S̄(t) = S(t) − S̃, V̄ (t) = V (t) − Ṽ , T̄ (t) = T (t) − T̃ , R̄(t) = R(t) − R̃,

W̄ (t) = W (t) − W̃ , ē(t, b) = e(t, b) − ẽ(b), ī(t, a) = i(t, a) − ĩ(a),

we then drop “−” of S̄(t), V̄ (t), T̄ (t), R̄(t), W̄ (t), ē(t, b), and ī(t, a) for simplicity,
the linearized system becomes

dS(t)

dt
= τV (t) + δR(t) − λ̃S(t) − λ(t)S̃ − (α + d)S(t),

dV (t)

dt
= αS(t) − η̃λV (t) − ηλ(t)Ṽ − (τ + d)V (t),
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dT (t)

dt
=
∫ +∞

0
θ(a)i(t, a)da − (γ + d)T (t),

dR(t)

dt
= γ T (t) − (δ + d)R(t), (18)

dW (t)

dt
=
∫ +∞

0
ξ1(a)i(t, a)da + ξ2T (t) − cW (t),

∂e(t, b)

∂t
+ ∂e(t, b)

∂b
= −(ρσ(b) + d)e(t, b),

∂i(t, a)

∂t
+ ∂i(t, a)

∂a
= −(θ(a) + d)i(t, a),

where

λ̃ =
∫ +∞

0
β1(a)̃i(a)da + β2T̃ + β3W̃ , (19)

and λ(t) is given by Eq. (1). System (18) with boundary and initial conditions is as
follows

e(t, 0) = (1 − q )̃λ
(
S(t) + ηV (t)

) + (1 − q)λ(t)
(
S̃ + ηṼ

)
,

i(t, 0) = qλ̃
(
S(t) + ηV (t)

) + qλ(t)
(
S̃ + ηṼ

) + ρ

∫ +∞

0
σ(b)e(t, b)db,

S(0) = S0, V (0) = V0, T (0) = T0, R(0) = R0,W (0) = W0,

e(0, b) = e0(b), i(0, a) = i0(a).

(20)

To study System (18), we seek the solutions in the form

S(t) = Ŝeιt , V (t) = V̂ eιt , T (t) = T̂ eιt , R(t) = R̂eιt ,

W (t) = Ŵeιt , e(t, b) = ê(b)eιt , i(t, a) = î(a)eιt ,

where Ŝ, V̂ , T̂ , R̂, Ŵ , ê(b), î(a), and ι have to be determined in such a way that Ŝ, V̂ ,
T̂ , R̂, Ŵ , ê(b), î(a) are not all zeros. Substituting the constitutive form of the solutions
into System (18), we obtain

ιŜ = τ V̂ + δ R̂ − λ̃Ŝ − λ̂S̃ − (α + d)Ŝ,

ιV̂ = α Ŝ − η̃λV̂ − η̂λṼ − (τ + d)V̂ ,

ιT̂ =
∫ +∞

0
θ(a)̂i(a)da − (γ + d)T̂ ,

ιR̂ = γ T̂ − (δ + d)R̂, (21)

ιŴ =
∫ +∞

0
ξ1(a)̂i(a)da + ξ2T̂ − cŴ ,

d̂e(b)

db
= −(ρσ(b) + d + ι)̂e(b),
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d̂i(a)

da
= −(θ(a) + d + ι)̂i(a),

where λ̂ = ∫ +∞
0 β1(a)̂i(a)da + β2T̂ + β3Ŵ and λ̃ is given by Eq. (19). The initial

conditions of System (21) are as follows

ê(0) = (1 − q )̃λ
(
Ŝ + ηV̂

) + (1 − q )̂λ
(
S̃ + ηṼ

)
,

î(0) = qλ̃
(
Ŝ + ηV̂

) + qλ̂
(
S̃ + ηṼ

) + ρ

∫ +∞

0
σ(b)̂e(b)db.

(22)

Let

H1(ι) =
∫ +∞

0
σ(b)k1(b)e

−ιbdb, H2(ι) =
∫ +∞

0
β1(a)k2(a)e−ιada,

H3(ι) =
∫ +∞

0
θ(a)k2(a)e−ιada, H4(ι) =

∫ +∞

0
ξ1(a)k2(a)e−ιada.

(23)

According to Systems (21) and (22), we have

λ̂(ι) = î(0)

{
H2(ι) + β2H3(ι)

ι + γ + d
+ β3[(ι + γ + d)H4(ι) + ξ2H3(ι)]

(ι + c)(ι + γ + d)

}
:= î(0)̂λ1(ι), (24)

Ŝ =
î(0)

{
δγH3(ι)(ι + η̃λ + τ + d) − λ̂1(ι)(ι + δ + d)(ι + γ + d)

× [
τηṼ + (ι + η̃λ + τ + d)S̃

]
}

(ι + δ + d)(ι + γ + d)[(ι + λ̃ + d)(ι + η̃λ + τ + d) + α(ι + η̃λ + d)] ,

V̂ =
î(0)

{
αδγH3(ι) − λ̂1(ι)(ι + δ + d)(ι + γ + d)

[
α S̃ + η(ι + λ̃ + α + d)Ṽ

]}

(ι + δ + d)(ι + γ + d)[(ι + λ̃ + d)(ι + η̃λ + τ + d) + α(ι + η̃λ + d)] ,

and

î(0) =
[̃
λ
(
Ŝ + ηV̂

) + λ̂
(
S̃ + ηṼ

)][
q + ρ(1 − q)H1(ι)

]
.

By calculation, we obtain the characteristic equation at an equilibrium P̃, which is

G(ι) = G1(ι)
[
q + ρ(1 − q)H1(ι)

]
G2(ι)

+ λ̂1(ι)
(
S̃ + ηṼ

)[
q + ρ(1 − q)H1(ι)

] − 1,

(25)

where

G1(ι) = λ̃δγH3(ι)(ι + η̃λ + τ + d + ηα) − λ̃̂λ1(ι)(ι + δ + d)(ι + γ + d)

× [
τηṼ + η2Ṽ (ι + λ̃ + α + d) + S̃(ι + η̃λ + τ + d + ηα)

]
,

G2(ι) = (ι + δ + d)(ι + γ + d)[(ι + λ̃ + d)(ι + η̃λ + τ + d) + α(ι + η̃λ + d)].

Thus, we establish the following result.
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Theorem 2 If R0 < 1, then the disease-free equilibrium P0 of System (2) is locally
asymptotically stable. If R0 > 1, it is unstable.

Proof The local asymptotic stability ofP0 is determined by the sign of the eigenvalues.
More details can be found in “Appendix B”. 
�

2.4 Asymptotic smoothness

Lemma 1 (see Theorem 2.46 in Smith and Thieme 2011) The semiflow Φ is asymp-
totically smooth if there are maps Ψ , � : R+ × Y → Y such that

Φ(t, x) = �(t, x) + Ψ (t, x)

and the followingproperties hold for any bounded closed setB that is forward invariant
under Φ :
(i) lim

t→∞ diam �(t,B) = 0;

(ii) there exists tB ∈ R+ such that Ψ (t,B) has a compact closure for all t ∈ R+, t ≥
tB.

Lemma 2 (see Theorem B.2 in Smith and Thieme 2011) Let A be a subset of
L1+(0,∞). Then A has a compact closure if and only if the following four condi-
tions hold:

(i) sup
f ∈A

∫∞
0 | f (s)|ds < ∞;

(ii) lim
h→∞

∫∞
h | f (s)|ds → 0 uniformly in f ∈ A;

(iii) lim
h→0+

∫∞
0 | f (s + h) − f (s)|ds → 0 uniformly in f ∈ A;

(iv) lim
h→0+

∫ h
0 | f (s)|ds → 0 uniformly in f ∈ A.

We now prove that the semiflow {Φ(t, ·)}t≥0 generated by System (2) is asymptot-
ically smooth.

Theorem 3 The semiflow {Φ(t, ·)}t≥0 generated by System (2) is asymptotically
smooth.

Proof According to Lemmas 1 and 2, we prove that each forward invariant bounded
closed set under {Φ(t, ·)}t≥0 is attracted by a non-empty compact set. More details
can be found in “Appendix C”. 
�

According to Theorem 2.6 in Magal and Zhao (2005) and Theorem 2.4 in D’Agata
et al. (2006), {Φ(t, ·)}t≥0 has a global attractor.

2.5 Uniform persistence

In this section, we demonstrate that System (2) is uniformly persistent when R0 > 1.
To this end, we define the following symbols.

D0 =
{
(x1, x2, x3, x4, x5, x6, x7) ∈ Y : x3 + x5 +

∫ +∞

0
x6(b)db +

∫ +∞

0
x7(a)da > 0

}
,
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and ∂D0 = Y\D0.

Theorem 4 The sets D0 and ∂D0 are positively invariant under the semiflow
{Φ(t, ·)}t≥0. Besides, the disease-free equilibriumP0 of System (2) is globally asymp-
totically stable for the semiflow {Φ(t, ·)}t≥0 restricted to ∂D0.

Proof Weuse the comparison principle to prove that the setsD0 and ∂D0 are positively
invariant under the semiflow {Φ(t, ·)}t≥0. For the global asymptotic stability of P0,
we first prove the local asymptotic stability of P0, then prove the global attractivity of
P0. More details can be found in “Appendix D”. 
�

By applying the results in Hale and Waltman (1989) and Magal and Zhao (2005),
we obtain the following theorem.

Theorem 5 If R0 > 1, the semiflow {Φ(t, ·)}t≥0 is uniformly persistent with respect
to (D0, ∂D0); that is, there exists ν > 0 such that

lim inf
t→+∞ d(Φ(t, x), ∂D0) ≥ ν for any x ∈ D0.

Proof Since the disease-free equilibriumP0 is globally asymptotically stable restricted
to ∂D0. Applying Theorem 4.2 in Hale andWaltman (1989), the semiflow {Φ(t, ·)}t≥0
is uniformly persistent if and only if

Ws(P0) ∩ D0 = ∅, (26)

where Ws(P0) =
{
x ∈ Y : lim

t→+∞Φ(t, x) = P0
}
. More details can be found

in “Appendix E”. 
�

2.6 Global stablility of the disease-free equilibrium

In this section, we prove the global asymptotic stability of the disease-free equilibrium
P0 when δ = 0.

Theorem 6 If R0 < 1, then the disease-free equilibrium P0 of System (2) is globally
asymptotically stable, and if R0 = 1, then the disease-free equilibrium P0 of System
(2) is globally attractive.

Proof We prove Theorem 6 by constructing the Lyapunov function (see “Appendix
F”). 
�
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2.7 Global attractivity of the endemic equilibrium

According to Eq. (25), the characteristic equation corresponding to P∗ is

G(ι) = G∗
1(ι)

[
q+ρ(1−q)H1(ι)

]
G∗
2(ι)

+ λ̂1(ι)
(
S∗ + ηV ∗)[q + ρ(1 − q)H1(ι)

] − 1, (27)

where

G∗
1(ι) = λ∗δγH3(ι)(ι + ηλ∗ + τ + d + ηα) − λ∗̂λ1(ι)(ι + δ + d)(ι + γ + d)

× [
τηV ∗ + η2V ∗(ι + λ∗ + α + d) + S∗(ι + ηλ∗ + τ + d + ηα)

]
,

G∗
2(ι) = (ι + δ + d)(ι + γ + d)[(ι + λ∗ + d)(ι + ηλ∗ + τ + d) + α(ι + ηλ∗ + d)],

λ∗ and λ̂1(ι) are given by Eqs. (9) and (24), respectively. We only need to prove that
all the eigenvalues of the characteristic equation (27) have negative real parts when
R0 > 1. However, it is difficult to confirm it. In the following, we only prove that the
endemic equilibrium P∗ is globally attractive when δ = 0.

Theorem 7 The endemic equilibriumP∗ of System (2) is globally attractive ifR0 > 1.

Proof Wealso proveTheorem7byconstructing theLyapunov function (see “Appendix
G”). 
�

3 Fitting themodel to the TB data of Jiangsu Province

In this section, we estimate the unknown parameters and initial values of System (2)
using the number of new TB cases with infection age from 2009 to 2018 in Jiangsu
Province, and we obtain the mean value and confidence interval of the basic repro-
duction number, R0.

3.1 Data collection

To parameterize the mathematical model for the transmission dynamics of TB in
Jiangsu Province, we collect 351,401 data points from January 2009 to December
2018 in Jiangsu Province. The data was collected from the Jiangsu Provincial Center
for Disease Control and Prevention, including symptom-onset date, confirmed date,
and diagnostic result, etc. (see Table 2). We set the age of infection as the difference
between the symptom-onset date and confirmed date (see Fig. 2A). The number of
new TB cases varying with infection age and time is shown in Fig. 2B.

It can be seen from Fig. 2A that the mean age of infection is 44.3 days, ranging
from 0 to 24,726 days. We find 220,399 infected individuals with an infection age of
less than one month, accounting for 66% of the total infected individuals, and 10,532
infected individuals with an infection age of more than six months, accounting for 3%
of the total infected individuals.
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Table 2 The incidence data of TB in Jiangsu Province from January 2009 to December 2018

Symptom-onset date Confirmed date Diagnostic result

2008-12-23 2009-07-09 Positive

2008-11-26 2009-01-02 Positive

2009-02-08 2009-02-13 Positive

2009-01-21 2009-02-01 Positive

2009-01-21 2009-02-01 Positive

2008-12-11 2009-02-01 Negative

2009-01-14 2009-02-01 Positive

2009-01-15 2009-01-24 Negative

2009-01-24 2009-01-24 Positive

2009-01-24 2009-01-24 Positive

.

.

.
.
.
.

.

.

.

Fig. 2 A Frequency distribution of delay time. B The number of new TB cases in Jiangsu Province from
January 2009 to December 2018 changing with infection age and time

3.2 Parameter estimation

To simulate the number of new TB cases in Jiangsu Province, the feasibility of the
model is verified by the actual number of newly infected cases. System (2) is solved
numerically using the forward/backward finite difference method for time and age
(see “Appendix H”) (implemented by the Python Programming Language). Next, we
estimate all the parameters and initial values of System (2).

(I) The recruitment rate of the population (i.e., Λ): According to the statistics of
the Jiangsu Statistical Yearbook (2022), we obtain that the annual numbers
of births from 2009 to 2018 was 743600, 763100, 756100, 746700, 748600,
751300, 721100, 779600, 778200, and 749300, respectively. Therefore, we
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can obtain that the monthly average number of newborns of Jiangsu Province
is about 62,813, that is, Λ = 62813 number/month.

(II) The natural mortality rate (i.e., d): According to the statistics of the National
Bureau of Statistics of China (2022), we conclude that the monthly natural
mortality rate of the population in Jiangsu Province in 2020 is approximately
d = 1/(79 × 12) per month, where the constant 79 represents the average life
expectancy of the population in Jiangsu Province.

(III) The proportion of new infections that develop into active TB (i.e., q): Since
approximately 10% of infected individuals will develop active TB during their
lifetime (World Health Organization 2022b), and around 5% of these infected
individuals will develop active TB during the first two years of infection (Ziv
et al. 2001). Therefore, we choose q = 0.05.

(IV) The proportion of new infections that develop into active TB from latent indi-
viduals (i.e.,ρ): According to the statement in (III), we know that approximately
10% of infected individuals will develop active TB during their lifetime. Hence,
we estimate the parameter ρ to be 0.1.

(V) The recovery rate (i.e., γ ): TB patients can be cured after six months of
drug treatment (World Health Organization 2022b). Thus, we choose γ =
1/6 per month.

(VI) The rate at which a recovered individual loses immunity (i.e., δ): Since TB
antibodies in the human body last for more than ten years (Aronson et al.
2004). Therefore, we choose δ = 1/(12 × 10) per month.

(VII) The clearance rate of the Mycobacterium TB in the environments (i.e., c):
MycobacteriumTBcan survive for severalmonths or years in dry environments.
Thus, we assume that the average survival time of TB is six months, then
c = 1/6 per month.

(VIII) The vaccination rate of the susceptible individuals (i.e., α): In addition to BCG
vaccine, there are no effective vaccines against TB for adults. Therefore, we
only consider the scenario of BCG vaccination. According to the statistics of
the Jiangsu Statistical Yearbook (2022), we obtain that the proportion of people
under ten years old is 0.084 in Jiangsu Province, then we let V (t)/(S(t)+V (t))
approximately equal to 0.084 by changing the parameter α when the disease
becomes extinct. At this time, we have α = 0.00086.

(IX) The level of protection for vaccinated individuals due to immunity (i.e., 1−η):
BCG has 60%-80% protective efficacy against severe forms of TB in children
(Roy et al. 2014). Thus, we assume 1 − η = 0.8.

(X) The duration of vaccine protection (i.e., 1/τ ): As part of the childhood immu-
nization program, BCG vaccine has a high protection rate and remains effective
for about ten years (Aronson et al. 2004; Xue et al. 2022). Therefore, we choose
τ = 1/(12 × 10) per month.

(XI) The progression rate of the latent individuals at stage b (i.e., σ(b)): According to
the estimates fromprevious literature (Borgdorff et al. 2011;Yan andCao2019),
we obtain that the progression rate of latent individuals gradually decreases
with the increase of latent age. Therefore, we choose exponential function
σ(b) = σ1e−σ2b as the progression rate of the latent individuals, where σ1 and
σ2 are parameters to be estimated.

123



Global analysis of an age-structured tuberculosis model with… Page 19 of 57 52

(XII) The diagnotic rate of the infected individuals at stage a (i.e., θ(a)): We
approximate the diagnotic rate of the infected individuals by Erlang-distributed
diagnostic period using the frequency distribution of delay time (Champredon
et al. 2018) (see Fig. 2A). We assume that the maximum delay time is n̂ months
and divide the infected compartment into n̂ sub-compartments. Let Â denote
the total number of cases from January 2009 to December 2018. B̂i represents
the total number of cases with delay that is no longer than i months. Then the
diagnostic rate of the infected individuals in the i-th month can be expressed
as

θ̂i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B̂i

Â
n̂
1

n̂
, i = 1,

B̂i − B̂i−1

Â − B̂i−1
n̂
1

n̂
, i > 1,

which is shown in Fig. 3A. The diagnotic rate of the infected individuals is a
decreasing function.Hence,wechoose the exponential function θ(a) = θ1e−θ2a

to approximate the discretized data (θ̂i ), where θ1 and θ2 are parameters to be
estimated. The fitting result of the diagnotic rate of the infected individuals is
shown in Fig. 3A.

(XIII) The transmission rate of infected individuals at stage a (i.e., β1(a)): Since it is
difficult to characterize the transmission rate that depends on the age of infection
(Ainseba et al. 2017; Feng et al. 2002), we assume that β1(a) is a constant, that
is, β1(a) ≡ β1, where β1 is derived by fitting the actual incidence.

(XIV) The transmission rate of treated individuals (i.e., β2): TB patients have reduced
transmission rates due to treatment, andwe assumeβ2 = ωβ1, whereω ∈ (0, 1)
is the coefficient that reduces the transmission rate due to treatment. According
to the estimation of Guo et al. (2021), we choose ω = 0.4387.

(XV) The Mycobacterium TB shedding rates from infected and treated individuals
at stage a (i.e., ξ1(a) and ξ2): In order to reduce the complexity of estimating
parameters, we assume that ξ1(a) is a constant, that is, ξ1(a) ≡ ξ1. Since the
W (t) variable is of a different order of magnitude compared with the popula-
tion variable, we let ξ1 = 1, which means that an infected individual releases
one unit of Mycobacterium TB per month (Cai et al. 2021). In general, the
Mycobacterium TB shedding rate from treated individuals at stage a is ξ2 ≤ ξ1
due to treatment.

(XVI) The initial values of System (2): According to the relevant data reported by
the Jiangsu Statistical Yearbook (2022), we choose the initial value of the total
population as N (0) = 85,000,000.We also obtain that the proportion of people
under ten years old is 0.084 in Jiangsu Province, then V (0) = 0.084N (0) =
7,140,000. According to recent estimation, approximately 350 million people
are infectedwithMycobacteriumTB inChina (Cui et al. 2020), we approximate
that the initial value of the latent individuals is

∫ +∞

0
e(0, b)db = 3.5

14
× N (0) = 21250000,
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where 14 means that average total population is 1.4 billion in China. Hence,
we choose

e(0, b) = 21250000ζ1e
−ζ1b

to satisfy
∫ +∞
0 e(0, b)db = 21,250,000, where ζ1 is the parameter to be esti-

mated. The initial value i(0, a) of the density of the infected individuals, the
initial value of treated individuals T (0), the initial value of recovered individ-
uals R(0), and the initial value of the density of Mycobacterium TB in the
environment W (0) are obtained by fitting the data. For the functional form of
i(0, a), we choose i(0, a) as an exponential function through Fig. 2B, that is,
i(0, a) = �1e−�2a , where �1 and �2 are parameters to be estimated. The
initial value of susceptible individuals is estimated as

S(0) = N (0) − V (0) −
∫ +∞

0
e(0, b)db −

∫ +∞

0
i(0, a)da − T (0) − R(0).

The set of unknown parameters and initial values is

χ̂ = (
σ1, σ2, β1, β3, ξ2, ζ1, T (0), R(0),W (0)

)
.

The density of new TB cases with infection age a at time t is

Z1(t, a) = θ(a)i(t, a),

where the time step and age step are 0.5 and 1 in the simulation, respectively. We
choose the maximum time, maximum latent age and maximum infection age in the
simulation to be 120, 120 and 24 months, respectively. Since the monthly number of
new TB cases shows seasonality, we fit the model using the annual number of new TB
cases. The annual number of new TB cases is an annual integral in the form

Z2( j, a) =
∫
year j

θ(a)i(t, a)dt .

In order to simplify our simulation, we first use MCMC method to fit Z1(0, a) to
the TB data at the initial time, which allows us to estimate the parameters �1 and �2,
as shown in Fig. 3B. Z1(0, a) is represented as follows

Z1(0, a) = θ(a)i(0, a) = θ1e
−θ2a�1e

−�2a .

We then use the MCMC method (Haario et al. 2006) to fit System (2) for 200,000
iterations with a burn-in of 180,000 iterations. We estimate the unknown parameters
and initial conditions for System (2), using the MCMC package provided by Miles
(2019). More details on MCMC method can be found in “Appendix I”.

The mean and standard deviation of the parameters, and initial values are shown
in Table 3. Figure 4A shows the 3D graph of the fitting results of the annual number
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Fig. 3 A The fitting result of the diagnotic rate of the infected individuals. B The fitting result of initial
reported data. The solid red lines denote simulation median. Black circles represent actual data. The 95%
confidence and prediction intervals are shown in light green and blue, respectively

of new TB cases from 2009 to 2018. Figure 4B shows the fitting results of the annual
number of new TB cases accumulated by age of infection from 2009 to 2018. The
simulated data is quite similar to the corresponding reported TB data.

4 Results

In this section, we aim to explore the possibility of achieving the goals of WHO
if we start diagnostic strategies and vaccinations for adults in 2025, as well as the
significance of incorporating age into the model.

4.1 Basic reproduction number and sensitivity analysis

Based on the estimated parameter values in the previous section, we calculate themean
values of the basic reproduction number, R0, is 0.5320 (95% CI (0.3060, 0.7556)).
SinceR0 < 1, the disease-free equilibriumP0 of System (2) is globally asymptotically
stable, which indicates that TB will die out in Jiangsu Province. However, according
to the fitting results, we find that the annual number of new TB cases by 2050 will
be 1,151 (95%CI: (138, 8,014)), which means that it is challenging to achieve the
goal of WHO by 2050. Next, to investigate how the parameters affect the dynamics of
System (2), we use the PRCC (Marino et al. 2008) to evaluate the impact of ten main
parameters on the basic reproduction number (R0). The input parameters are θ1, θ2,
β1, β2, β3, ξ1, ξ2, α, η, and c, and the output is the basic reproduction number (R0).
We take 2000 samples for each parameter to conduct sensitivity analysis, and repeat
1000 times to get 1000 sets of PRCCs for each parameter, then take the average. All
input parameters are normally distributed, with the mean and standard deviation of θ1,
θ2, β1, β3, and ξ2 given in Table 3, and the mean and standard deviation of β2 and ξ1
are consistent with β1 and ξ2. We also assume that the mean values of α, η, and c are
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Fig. 4 A 3D graph of the fitting results of the annual numbers of new TB cases from 2009 to 2018. The
colored surface represents the simulation median. The black plus signs represent actual data. B The fitting
result of the annual number of new TB cases. The solid red lines denote the simulation median. Black
circles represent actual data. The 95% confidence and prediction intervals are shown in light green and
blue, respectively

Table 4 The PRCCs of the parameters with respect to the basic reproduction number (R0)

Parameters PRCC p value Parameters PRCC p value

θ1 − 0.11 p < 0.01 ξ1 0.26 p < 0.01

θ2 0.20 p < 0.01 ξ2 0.10 p < 0.01

β1 0.94 p < 0.01 α − 0.11 p < 0.01

β2 0.62 p < 0.01 η 0.03 p = 0.30

β3 0.93 p < 0.01 c − 0.57 p < 0.01

0.00086, 0.2 and 1/6, respectively, and their standard deviations are 1/5 times of the
means. The results of the sensitivity analysis of parameters are shown in Table 4.

Table 4 shows the sensitivity of the parameters θ1, θ2, β1, β2, β3, ξ1, ξ2, α, η, and c
with respect to the basic reproduction number (R0). Firstly, our results show that the
direct transmission rate of infected and treated individuals (β1 and β2) and the indirect
transmission rate of Mycobacterium TB (β3) are highly positively correlated with the
basic reproduction number (R0). In particular, the correlation coefficient between the
indirect transmission rate of Mycobacterium TB (β3) and the basic reproduction num-
ber (R0) is greater than 0.9, which means that Mycobacterium TB in the environment
has a great influence on the TB epidemic. Next, we find that both parameters θ2 and ξ1
are moderately positively correlated with the basic reproduction number (R0), which
indicates that the diagnotic rate of the infected individuals and the Mycobacterium
TB shedding rate from infected individuals also have an impact on the TB epidemic.
Moreover, the clearance rate of the Mycobacterium TB in the environments (c) is
highly negatively correlated with the basic reproduction number (R0). In particular,
α has a lower correlation with the basic reproduction number (R0) than β1, β2, β3,
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c, θ2, and ξ1, but improving the vaccination rate will also effectively control the TB
epidemic.

4.2 The impact of diagnostic strategies

Diagnostic delay of TB results in increasing cases, mortality, infection time and trans-
mission (Sreeramareddy et al. 2009). In order to shorten the duration of infectiousness
to decrease the annual number of new TB cases. We reduce the annual number of new
TB cases by decreasing the diagnostic delay. To this end, we redefine the diagnostic
rate as

θ(a) =
{

θ1e
−θ2a, a ≤ Ta,

θ1e
−θ2Ta , a > Ta .

The above equation indicates that when the diagnostic delay time is greater than Ta ,
the diagnotic rate of infected individuals remains consistent with the diagnotic rate
at Ta , which means that the diagnotic rate has been increased. We set Ta to 5 and 4
to estimate the annual number of new TB cases, respectively. Using these estimated
parameters, our simulations show that the annual number of new TB cases will be
274 (95% CI (22, 3000)) and 52 (95% CI (2, 932)) by 2050, respectively, which
means that the goal of WHO in 2050 can be achieved when Ta = 4. In particular,
we find that setting Ta to 5 and 4 can reduce the annual number of new TB cases
by 74.88% (95% CI (47.42%, 86.77%)) and 95.28% (95% CI (77.55%, 98.79%)) by
2050, respectively (see Fig. 5A), and can prevent 45,351 (95%CI: (13,997, 150,655))
and 73,137 (95%CI: (23,906, 234,086)) individuals from being infected from 2025 to
2050, respectively (see Fig. 5B), which indicates that reducing the diagnostic delay
can shorten the duration of infection, thereby reducing the number of new TB cases.

4.3 The impact of vaccinations for adults

Currently, there are no effective vaccines against TB for adults. In the simulations, we
assume that TB vaccinations for adults will start in 2025. We assume that the level and
duration of TB vaccine protection for adults vaccines and BCG vaccines are the same,
that is, we set the level of vaccine protection to be 80% (i.e., 1 − η = 0.8) and the
duration of vaccine protection to be ten years (i.e., 1/τ = 10×12), and assume that the
vaccine coverage of susceptible individuals is V /(S+V ) by changing the vaccination
rate α. We set the vaccine coverage of susceptible individuals over ten years old to
10% and 20% to estimate the annual number of new TB cases, respectively. Using
these estimated parameters, our simulations find that the annual number of new TB
cases will be 262 (95% CI (25, 2602)) and 46 (95% CI (3, 590)) by 2050, respectively,
which means that the goal of WHO in 2050 can be achieved when vaccine coverage is
20%. In particular, we further predict that increasing vaccine coverage of susceptible
individuals over ten years old to 10%and 20%can reduce the annual number of newTB
cases by 77.34% (95%CI (67.42%, 83.36%)) and 95.97% (95%CI (91.58%, 97.88%))
by 2050, respectively (see Fig. 6A), and can prevent 33,931 (95%CI: (9,140, 130,171))
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Fig. 5 A The impact of improved diagnostic strategies starting from 2025 on the annual number of new TB
cases by year up to 2050. B The number of TB cases averted per year under improved diagnostic strategies

Fig. 6 A The impact of adult vaccinations starting from 2025 on the annual number of new TB cases by
year up to 2050. B The number of TB cases averted per year when adults are vaccinated

and 54,828 (95 infected from 2025 to 2050, respectively (see Fig. 6B), which indicates
that vaccinating susceptible individuals over ten years old can effectively reduce the
annual number of new TB cases.
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4.4 The significance of incorporating age into themodel

The class-age is an important factor in the prevention and control of infectious diseases
when modeling long-term diseases (Iannelli and Milner 2017). Firstly, the symptoms
of TB are atypical, that is, the early symptoms of TB are not obvious and can resemble
other illnesses such as colds and pneumonia, leading to missed diagnotic and misdi-
agnotic (Sreeramareddy et al. 2009). Especially in Jiangsu Province, the duration of
diagnotic delay range froma fewdays to several hundred days. Therefore, the diagnotic
rate of TB individuals varies from person to person, and this phenomenon can be char-
acterized by an age structure model. Secondly, the duration of the latent period of TB
varies greatly depending on the individual physical condition, immune response, the
route and level of exposure to Mycobacterium TB. Some of these people can remain
in a latent state after infection for their entire lives and may never develop active
disease, while others may develop TB disease shortly after infection, which means
that progression rate of the latent individuals depends on the latent age (Wikipedia
2022). During modeling, we captured the age of infection before receiving treatment
and latent age. Our model is very consistent with the TB data in Jiangsu Province,
which varies with the infection age and time (see Fig. 4A). In Sect. 4.2, we evaluate
the possibility of achieving the goals of WHO in Jiangsu Province by changing the
diagnostic rate function (θ(a)), which can not be studied with a standard model that
has no diagnostic delay. Our model not only allows more detailed grouping of latent
individuals and infected individuals to obtain more accurate transmission models, but
also introduces the class-age in the modeling process to predict the trend of epidemics
at different infection ages, providing guidance for formulating prevention and control
policies.

5 Discussion

The effectiveness of TB control strategies depends on many factors, of which the
most important ones are diagnostic delay, adult vaccination, and the survival time of
Mycobacterium TB in the environment, etc., (Chinese Center for Disease Control and
Prevention 2022; Harris et al. 2019, 2020; Sreeramareddy et al. 2009), which presents
a challenge for achieving the goal of WHO by 2050. In this work, we propose an age-
structuredmodel with latent age and infection age, andwe incorporateMycobacterium
TB in the environment into the model. Since the development of new TB vaccines is
rapid, we also introduce vaccination into the model. In particular, we consider the age
of infection before receiving treatment to represent diagnostic delay. To start with, we
derive the basic reproduction number (R0) of the System (2), which is a very important
threshold parameter for the persistence and extinction of the disease. Using the theories
of infinite-dimensional systems and Lyapunov functions, we have obtained a threshold
for the global stability of the System (2) with respect to R0, that is, when R0 is less
than 1, the disease-free equilibrium is globally asymptotically stable and the disease
eventually dies out; when R0 is equal to 1, the disease-free equilibrium is globally
attractive; there exists a unique endemic equilibrium and the endemic equilibrium is
globally attractive when R0 is greater than 1. Besides, we conduct a case study based
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on the epidemiological data stratified by the age of infection in Jiangsu Province and
evaluate the possibility of achieving the goals of WHO in Jiangsu Province.

The study consists of 351,401 TB cases from January 2009 to December 2018 in
Jiangsu Province. The data include symptom-onset date, confirmed date, and diagnos-
tic result, etc. We set the age of infection as the difference between the symptom-onset
date and confirmed date, allowing us to obtain the epidemiological data classified by
the age of infection. We also find an average delay of 44 (95% CI (1, 189)) days in
Jiangsu Province, which means that the risk of TB transmission in the community is
high.

According to the estimated parameter values, we calculate that the basic reproduc-
tion number,R0, is estimated to be 0.5320 (95%CI (0.3060, 0.7556)), which indicates
that TB will die out in Jiangsu Province. Regrettably, we obtain that the annual num-
ber of new TB cases by 2050 is 1,151 (95%CI: (138, 8,014)), which means that it is
challenging to achieve the goal of WHO by 2050. Our sensitivity analysis indicates
that the parameter θ2 is moderately positively correlated with the basic reproduction
number (R0), which indicates that the diagnotic rate of the infected individuals also
has an impact on the TB epidemic, and the parameter α has a lower correlation with
the basic reproduction number (R0) than β1, β2, β3, c, θ2, and ξ1, but improving the
vaccination rate will also effectively control the TB epidemic. According to the results
of sensitivity analysis, we find that the correlation between the diagnotic rate or vac-
cination rate and the basic reproduction number (R0) is not the highest. Because other
non-pharmaceutical interventions other than surgery are not feasible for TB, we can
only mitigate TB transmission by varying diagnostic rate and vaccination coverage
(NEWTON 1912; Riquelme-Miralles et al. 2019).

Furthermore, we also evaluate the possibility of achieving the goals of WHO if
we start diagnostic strategies and adult vaccinations in 2025. We find that when the
diagnostic delay is reduced from longer than four months to four months, the annual
number of new TB cases will be 52 (95% CI (2, 932)) by 2050, and 73,137 (95%CI:
(23,906, 234,086)) individuals will be prevented from being infected from 2025 to
2050, which means that the goal of WHO by 2050 can be achieved. In addition, we
also find that the goal of WHO in 2050 can be achieved and 54,828 (95%CI: (15,811,
206,468)) individuals will be prevented from being infected from 2025 to 2050 when
20% adults are vaccinated.

Our work provides a framework for determining how to quickly diagnose popu-
lations with prolonged infections and better vaccinate adults when more advanced
diagnostic strategies and more effective vaccines for adults are available. Our research
results utilize a wide range of datasets. Specifically, we extract the diagnostic rate
from the dataset and fit the diagnostic rate function, which provided convenience for
us to study the impact of diagnostic strategies in Jiangsu Province. We discuss the
effectiveness of the diagnostic strategies and vaccinations for adults on the prevalence
of TB. Both the diagnotic strategy and vaccination for adults are likely to achieve
the goal of WHO in Jiangsu Province. In summary, reducing the delayed diagnotic
time can shorten the infection time of infected individuals, and vaccinating adults can
protect susceptible individuals from infection, thereby reducing the number of new
TB cases, which is of great significance for reducing the prevalence of TB.
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Our study still has several limitations. First, in the modeling, we don’t consider
relapses in recovered individuals in order to obtain the completed mathematical the-
oretical results. Second, we assume that the global attractivity of the equilibria are
obtained when the average period of immunity δ = 0. Third, since there is not enough
data to fit the progression rate of the latent individuals (σ(b)), we assume the pro-
gression rate of the latent individuals to be σ(b) = σ1e−σ2b, which will be studied in
future work when relevant data become publicly available.
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Appendix A: Proof of Theorem 1

Note that the total population size N (t) satisfies

dN (t)

dt
= dS(t)

dt
+ dV (t)

dt
+ dT (t)

dt
+ dR(t)

dt
+ d

dt

∫ +∞

0
e(t, b)db

+ d

dt

∫ +∞

0
i(t, a)da.

(28)

According to Eq. (5), we have

∫ +∞

0
e(t, b)db =

∫ t

0
e(t − b, 0)k1(b)db +

∫ +∞

t
e0(b − t)

k1(b)

k1(b − t)
db

=
∫ t

0
e(τ1, 0)k1(t − τ1)dτ1 +

∫ +∞

0
e0(τ2)

k1(t + τ2)

k1(τ2)
dτ2.

Then

d

dt

∫ +∞

0
e(t, b)db = d

dt

∫ t

0
e(τ1, 0)k1(t − τ1)dτ1 + d

dt

∫ +∞

0
e0(τ2)

k1(t + τ2)

k1(τ2)
dτ2

= e(t, 0)k1(0) +
∫ t

0
e(τ1, 0)

d

dt
k1(t − τ1)dτ1

+
∫ +∞

0

e0(τ2)

k1(τ2)

d

dt
k1(t + τ2)dτ2.
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Note that k1(0) = 1 and d
db k1(b) = −(ρσ(b) + d)k1(b) for almost all b ≥ 0. Thus,

we have

d

dt

∫ +∞

0
e(t, b)db = e(t, 0) −

∫ t

0
e(τ1, 0)(ρσ(t − τ1) + d)k1(t − τ1)dτ1

−
∫ +∞

0

e0(τ2)

k1(τ2)
(ρσ(t + τ2) + d)k1(t + τ2)dτ2

= e(t, 0) −
∫ +∞

0
(ρσ(b) + d)e(t, b)db.

Similarly, we obtain

d

dt

∫ +∞

0
i(t, a)da = i(t, 0) −

∫ +∞

0
(θ(a) + d)i(t, a)da.

We deduce that N (t) satisfies the following equation

dN (t)

dt
= Λ − dN (t).

Solving the above equation,we have N (t) = Λ
d −e−dt (Λ

d −N0) and lim sup
t→∞

N (t) ≤ Λ
d

for t ∈ R+, where N0 represents the total population at time t = 0.
Through the fifth equation of System (2), we obtain

dW (t)

dt
=
∫ +∞

0
ξ1(a)i(t, a)da + ξ2T (t) − cW (t) ≤ Λ(ξ̄1 + ξ2)

d
− cW (t).

Solving the above equation, we have that W (t) = Λ(ξ̄1+ξ2)
dc − e−ct

(
Λ(ξ̄1+ξ2)

dc − W0

)

and lim sup
t→∞

W (t) ≤ Λ(ξ̄1+ξ2)
dc for t ∈ R+, whereW0 indicates the density ofMycobac-

terium TB at time t = 0. This completes the proof. �

Appendix B: Proof of Theorem 2

The characteristic equation corresponding to P0 is

G(ι) = (
S0 + ηV 0){H2(ι) + β2H3(ι)

ι + γ + d
+ β3[(ι + γ + d)H4(ι) + ξ2H3(ι)]

(ι + c)(ι + γ + d)

}

[
q + ρ(1 − q)H1(ι)

] − 1.

When ι is real, we can acquire some basic properties of G(ι) as follows

G(0) = R0 − 1, G ′(ι) < 0, lim
ι→−∞G(ι) = +∞, lim

ι→+∞G(ι) = −1.
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Hence, when R0 > 1, the characteristic equation G(ι) = 0 has a real positive root.
Then, the disease-free equilibrium is unstable. When R0 < 1, the characteristic equa-
tionG(ι) = 0does not have a solutionwith non-negative real part.Otherwise,G(ι) = 0
has at least one root ι0 = α0 + iβ0 satisfying α0 ≥ 0. Then, we have

0 = |G(ι0)| ≤ R0 − 1,

which contradicts with R0 < 1. Hence, when R0 < 1, the disease-free equilibrium is
locally asymptotically stable. This completes the proof. 
�

Appendix C: Proof of Theorem 3

For t ≥ 0, let

Ψ (t, x) = (S(t), V (t), T (t), R(t),W (t), ẽ(t, ·), ĩ(t, ·)),

and

�(t, x) = (0, 0, 0, 0, 0, ϕe(t, ·), ϕi (t, ·)),

where

ẽ(t, b) =
{
e(t − b, 0)k1(b), 0 ≤ b ≤ t,
0, 0 ≤ t ≤ b,

ĩ(t, a) =
{
i(t − a, 0)k2(a), 0 ≤ a ≤ t,
0, 0 ≤ t ≤ a,

ϕe(t, b) =
{
0, 0 ≤ b ≤ t,
e0(b − t) k1(b)

k1(b−t) , 0 ≤ t ≤ b,
ϕi (t, a) =

{
0, 0 ≤ a ≤ t,
i0(a − t) k2(a)

k2(a−t) , 0 ≤ t ≤ a,

for x = (S(0), V (0), T (0), R(0),W (0), e0(b), i0(a)). Clearly, we have Φ(t, x) =
�(t, x) + Ψ (t, x). Let B be a bounded subset of Y, M is constants greater than

max
{
N0,

Λ
d ,W0,

Λ(ξ̄1+ξ2)
dc

}
, for each x ∈ B. Hence, we can derive

‖�(t, x)‖Y =
∫ +∞

t
e0(b − t)

k1(b)

k1(b − t)
db +

∫ +∞

t
i0(a − t)

k2(a)

k2(a − t)
da

=
∫ +∞

0
e0(τ1)

k1(τ1 + t)

k1(τ1)
dτ1 +

∫ +∞

0
i0(τ1)

k2(τ1 + t)

k2(τ1)
dτ1

=
∫ +∞

0
e0(τ1)e

− ∫ τ1+t
τ1

(ρσ(s)+d)dsdτ1 +
∫ +∞

0
i0(τ1)e

− ∫ τ1+t
τ1

(θ(s)+d)dsdτ1

≤ e−dt
(∫ +∞

0
e0(τ1)dτ1 +

∫ +∞

0
i0(τ1)dτ1

)
≤ Me−dt .

This implies lim
t→∞ diam �(t,B) = 0. In the following, we will show that Ψ (t, x) has

a compact closure for each t ≥ 0. We know that S(t), V (t), T (t), R(t), and W (t)
remain in the compact set [0,M] for all t ≥ 0. Thus, we only need to prove that ẽ(t, b)
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and ĩ(t, a) remain in a pre-compact subset of L1+(0,+∞), which is independent of
x ∈ B. According to

0 ≤ ẽ(t, b) =
{
e(t − b, 0)k1(b), 0 ≤ b ≤ t,
0, 0 ≤ t ≤ b,

and assumption (A2), it is easy to show that

0 ≤ ẽ(t, b) ≤ (1 − q)(1 + η)(β̄1 + β2 + β3)M2e−db.

Therefore, the conditions (i), (ii) and (iv) of Lemma 2 are satisfied. Next, we verify
that condition (iii) of Lemma 2 is satisfied.

∫ +∞

0
|ẽ(t, b + h) − ẽ(t, b)|db =

∫ t−h

0
|ẽ(t, b + h) − ẽ(t, b)|db +

∫ t

t−h
|ẽ(t, b)|db

≤
∫ t−h

0
|e(t − b − h, 0)||k1(b + h) − k1(b)|db

+
∫ t−h

0
|e(t − b − h, 0) − e(t − b, 0)||k1(b)|db

+ (1 − q)(1 + η)(β̄1 + β2 + β3)M2h,

where

∫ t−h

0
|e(t − b − h, 0)||k1(b + h) − k1(b)|db

≤ (1 − q)(1 + η)(β̄1 + β2 + β3)M2
(∫ t−h

0
k1(b)db −

∫ t−h

0
k1(b + h)db

)

= (1 − q)(1 + η)(β̄1 + β2 + β3)M2
(∫ h

0
k1(b)db −

∫ h

t−h
k1(b)db −

∫ t

h
k1(s)ds

)

= (1 − q)(1 + η)(β̄1 + β2 + β3)M2
(∫ h

0
k1(b)db −

∫ t

t−h
k1(s)ds

)

≤ (1 − q)(1 + η)(β̄1 + β2 + β3)M2h.

According to System (2), the following inequalities,

∣∣∣dS(t)

dt

∣∣∣ ≤ Λ + [
τ + δ + α + d + (β̄1 + β2 + β3)M

]
M,

∣∣∣dV (t)

dt

∣∣∣ ≤ [
α + η(β̄1 + β2 + β3)M + τ + d

]
M,

∣∣∣dT (t)

dt

∣∣∣ ≤ (θ̄ + γ + d)M,

∣∣∣dR(t)

dt

∣∣∣ ≤ (γ + δ + d)M,
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∣∣∣dW (t)

dt

∣∣∣ ≤ (ξ̄1 + ξ2 + c)M,

can be obtained. Next, we prove that
∫ +∞
0 β1(a)i(t, a)da is Lipschitz continuous.

∣∣∣∣
∫ +∞

0
β1(a)i(t + h, a)da −

∫ +∞

0
β1(a)i(t, a)da

∣∣∣∣
=
∣∣∣∣
∫ h

0
β1(a)i(t + h, a)da +

∫ +∞

h
β1(a)i(t + h, a)da −

∫ +∞

0
β1(a)i(t, a)da

∣∣∣∣
=
∣∣∣∣
∫ h

0
β1(a)i(t + h − a, 0)k2(a)da +

∫ +∞

h
β1(a)i(t + h, a)da −

∫ +∞

0
β1(a)i(t, a)da

∣∣∣∣
≤
[
q(1 + η)(β̄1 + β2 + β3)M + ρσ̄

]
β̄1Mh

+
∣∣∣∣
∫ +∞

0
β1(τ1 + h)i(t + h, τ1 + h)dτ1 −

∫ +∞

0
β1(a)i(t, a)da

∣∣∣∣
=
[
q(1 + η)(β̄1 + β2 + β3)M + ρσ̄

]
β̄1Mh

+
∣∣∣∣
∫ +∞

0
β1(τ1 + h)i(t, τ1)

k2(τ1 + h)

k2(τ1)
dτ1 −

∫ +∞

0
β1(a)i(t, a)da

∣∣∣∣.

According to assumption (A3), we note that

∣∣∣∣
∫ +∞

0
β1(a + h)i(t, a)

k2(a + h)

k2(a)
da −

∫ +∞

0
β1(a)i(t, a)da

∣∣∣∣
=
∣∣∣∣
∫ +∞

0

(
β1(a + h)

k2(a + h)

k2(a)
− β1(a)

)
i(t, a)da

∣∣∣∣
=
∣∣∣∣
∫ +∞

0
β1(a + h)i(t, a)

(k2(a + h)

k2(a)
− 1

)
da

+
∫ +∞

0
(β1(a + h) − β1(a))i(t, a)da

∣∣∣∣
=
∣∣∣∣
∫ +∞

0
β1(a + h)i(t, a)

(
e− ∫ a+h

a (θ(s)+d)ds − 1
)
da

+
∫ +∞

0
(β1(a + h) − β1(a))i(t, a)da

∣∣∣∣
≤ β̄1(θ̄ + d)Mh +

∣∣∣∣
∫ +∞

0
(β1(a + h) − β1(a))i(t, a)da

∣∣∣∣
≤ β̄1(θ̄ + d)Mh +

∫ +∞

0

∣∣β1(a + h) − β1(a)
∣∣∣∣i(t, a)

∣∣da
≤ [

β̄1(θ̄ + d) + Mβ1

]
Mh.

Hence, we obtain
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∣∣∣∣
∫ +∞

0
β1(a)i(t + h, a)da −

∫ +∞

0
β1(a)i(t, a)da

∣∣∣∣
≤
{[

q(1 + η)(β̄1 + β2 + β3)M + ρσ̄
]
β̄1 + β̄1(θ̄ + d) + Mβ1

}
Mh.

According to the above inequality, we have

∣∣e(t − b − h, 0) − e(t − b, 0)
∣∣

= (1 − q)
∣∣λ(t − b − h)

(
S(t − b − h) + ηV (t − b − h)

)
−λ(t − b)

(
S(t − b) + ηV (t − b)

)∣∣
≤ (1 − q)

(∣∣∣S(t − b − h)

∫ +∞

0
β1(a)i(t − b − h, a)da

−S(t − b)
∫ +∞

0
β1(a)i(t − b, a)da

∣∣∣
+β2

∣∣S(t − b − h)T (t − b − h) − S(t − b)T (t − b)
∣∣

+β3

∣∣∣S(t − b − h)W (t − b − h) − S(t − b)W (t − b)
∣∣∣

+η

∣∣∣V (t − b − h)

∫ +∞

0
β1(a)i(t − b − h, a)da − V (t − b)

∫ +∞

0
β1(a)i(t − b, a)da

∣∣∣
+ηβ2

∣∣V (t − b − h)T (t − b − h) − V (t − b)T (t − b)
∣∣

+ηβ3

∣∣∣V (t − b − h)W (t − b − h) − V (t − b)W (t − b)
∣∣∣
)

≤ Υ h,

where

Υ = (1 − q)M2
{[

q(1 + η)(β̄1 + β2 + β3)M + ρσ̄
]
β̄1 + β̄1(θ̄ + d) + Mβ1

}

+(1 − q)β̄1M
{
Λ + [

τ + δ + α + d + (β̄1 + β2 + β3)M
]
M

}

+(1 − q)β2M
{
Λ + [

θ̄ + γ + d + τ + δ + α + d + (β̄1 + β2 + β3)M
]
M

}

+(1 − q)β3M
{
Λ + [

ξ̄1 + ξ2 + c + τ + δ + α + d + (β̄1 + β2 + β3)M
]
M

}

+(1 − q)ηM2
{[

q(1 + η)(β̄1 + β2 + β3)M + ρσ̄
]
β̄1 + β̄1(θ̄ + d) + Mβ1

}

+(1 − q)ηβ̄1M2
{
α + η(β̄1 + β2 + β3)M + τ + d

}

+(1 − q)ηβ2M2{θ̄ + γ + d + α + η(β̄1 + β2 + β3)M + τ + d
}

+(1 − q)ηβ3M2
{
ξ̄1 + ξ2 + c + α + η(β̄1 + β2 + β3)M + τ + d

}
.

Then, we obtain

∫ t−h

0
|e(t − b − h, 0) − e(t − b, 0)||k1(b)|db ≤ Υ h

∫ t−h

0
e−dbdb ≤ Υ h

d
.
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Hence,

∫ +∞

0
|ẽ(t, b + h) − ẽ(t, b)|db ≤

[
2(1 − q)(1 + η)(β̄1 + β2 + β3)M2 + Υ

d

]
h.

We have verified that ẽ(t, b) satisfies the conditions of Lemma 2. In a similar way,
ĩ(t, a) also satisfies the conditions of Lemma2.As a result, ẽ(t, b) and ĩ(t, a) remain in
pre-compact subsetsAe

M andAi
M of L1+(0,+∞), respectively. Therefore,Ψ (t,B) ⊆

[0,M] × [0,M] × [0,M] × [0,M] × [0,M] × Ae
M × Ai

M, which has a compact
closure in Y. This implies that Ψ (t,B) has a compact closure, satisfying the second
condition of Lemma 1. Therefore, we conclude that {Φ(t, ·)}t≥0 is asymptotically
smooth. This completes the proof. �

Appendix D: Proof of Theorem 4

Let

J (t) = T (t) + W (t) +
∫ +∞

0
e(t, b)db +

∫ +∞

0
i(t, a)da. (29)

For any Φ(0, x0) ∈ D0, we have

dJ (t)

dt
= −(γ + d)T (t) +

∫ +∞

0
ξ1(a)i(t, a)da + ξ2T (t) − cW (t)

−d
∫ +∞

0
e(t, b)db + λ(t)

(
S(t) + ηV (t)

) − d
∫ +∞

0
i(t, a)da

≥ −(γ + d)T (t) − cW (t) − d
∫ +∞

0
e(t, b)db − d

∫ +∞

0
i(t, a)da

≥ −ā J (t),

where ā = max{γ + d, c}. Then, we obtain J (t) ≥ J (0)e−āt > 0. This implies that
Φ(t,D0) ∈ D0, i.e.,D0 is positively invariant under the semiflow {Φ(t, ·)}t≥0.

In addition, for any Φ(0, x0) ∈ ∂D0, we consider the following system

dT (t)

dt
=
∫ +∞

0
θ(a)i(t, a)da − (γ + d)T (t),

dW (t)

dt
=
∫ +∞

0
ξ1(a)i(t, a)da + ξ2T (t) − cW (t),

∂e(t, b)

∂t
+ ∂e(t, b)

∂b
= −(ρσ(b) + d)e(t, b),

∂i(t, a)

∂t
+ ∂i(t, a)

∂a
= −(θ(a) + d)i(t, a), (30)

e(t, 0) = (1 − q)λ(t)
(
S(t) + ηV (t)

)
,
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i(t, 0) = qλ(t)
(
S(t) + ηV (t)

) + ρ

∫ +∞

0
σ(b)e(t, b)db,

T (0) = 0,W (0) = 0, e(0, b) = e0(b), i(0, a) = i0(a),

where λ(t) is given by Eq. (1). Since S(t) + ηV (t) ≤ max
{
N0,

Λ
d

}
:= ℵ, then we

set up the following comparison system

dT (t)

dt
=
∫ +∞

0
θ(a)i(t, a)da − (γ + d)T (t),

dW (t)

dt
=
∫ +∞

0
ξ1(a)i(t, a)da + ξ2T (t) − cW (t),

∂e(t, b)

∂t
+ ∂e(t, b)

∂b
= −(ρσ(b) + d)e(t, b),

∂i(t, a)

∂t
+ ∂i(t, a)

∂a
= −(θ(a) + d)i(t, a), (31)

e(t, 0) = (1 − q)λ(t)ℵ,

i(t, 0) = qλ(t)ℵ + ρ

∫ +∞

0
σ(b)e(t, b)db,

T (0) = 0,W (0) = 0, e(0, b) = e0(b), i(0, a) = i0(a),

where λ(t) = ∫ +∞
0 β1(a)i(t, a)da + β2T (t) + β3W (t).

Integrating the equations for e(t, b) and i(t, a) in System (31) along the character-
istic lines, t − b = const and t − a = const, respectively, we obtain

e(t, b) =
{
e(t − b, 0)k1(b), 0 ≤ b ≤ t,
e0(b − t) k1(b)

k1(b−t) , 0 ≤ t ≤ b,
i(t, a) =

{
i(t − a, 0)k2(a), 0 ≤ a ≤ t,
i0(a − t) k2(a)

k2(a−t) , 0 ≤ t ≤ a.

(32)

Substituting Eq. (32) into System (31), we obtain

dT (t)

dt
=
∫ t

0
θ(a)i(t − a, 0)k2(a)da +

∫ +∞

t
θ(a)i0(a − t)

k2(a)

k2(a − t)
da − (γ + d)T (t),

dW (t)

dt
=
∫ t

0
ξ1(a)i(t − a, 0)k2(a)da +

∫ +∞

t
ξ1(a)i0(a − t)

k2(a)

k2(a − t)
da + ξ2T (t) − cW (t),

T (0) = 0,W (0) = 0. (33)

According to assumption (A2), one can obtain

∫ +∞

t
θ(a)i0(a − t)

k2(a)

k2(a − t)
da ≤ θ̄

∫ +∞

0
i0(a)da,

∫ +∞

t
ξ1(a)i0(a − t)

k2(a)

k2(a − t)
da ≤ ξ̄1

∫ +∞

0
i0(a)da,
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∫ +∞

t
σ(b)e0(b − t)

k1(b)

k1(b − t)
db ≤ σ̄

∫ +∞

0
e0(b)db,

∫ +∞

t
β1(a)i0(a − t)

k2(a)

k2(a − t)
da ≤ β̄1

∫ +∞

0
i0(a)da.

For any Φ(0, x0) ∈ ∂D0, we have

∫ +∞

t
θ(a)i0(a − t)

k2(a)

k2(a − t)
da = 0,

∫ +∞

t
ξ1(a)i0(a − t)

k2(a)

k2(a − t)
da = 0,

∫ +∞

t
σ(b)e0(b − t)

k1(b)

k1(b − t)
db = 0,

∫ +∞

t
β1(a)i0(a − t)

k2(a)

k2(a − t)
da = 0.

Let

Le(t) = e(t, 0) = (1 − q)λ(t)ℵ,

Li (t) = i(t, 0) = qλ(t)ℵ + ρ

∫ +∞

0
σ(b)e(t, b)db,

we have

Le(t) = (1 − q)

[ ∫ t

0
β1(a)Li (t − a)k2(a)da + β2T (t) + β3W (t)

]
ℵ,

Li (t) = q

[ ∫ t

0
β1(a)Li (t − a)k2(a)da + β2T (t) + β3W (t)

]
ℵ

+ρ

∫ t

0
σ(b)Le(t − b)k1(b)db.

Then, System (33) can be rewritten as

Le(t) = (1 − q)

[ ∫ t

0
β1(a)Li (t − a)k2(a)da + β2T (t) + β3W (t)

]
ℵ,

Li (t) = q

[ ∫ t

0
β1(a)Li (t − a)k2(a)da + β2T (t) + β3W (t)

]
ℵ

+ρ

∫ t

0
σ(b)Le(t − b)k1(b)db,

dT (t)

dt
=

∫ t

0
θ(a)Li (t − a)k2(a)da − (γ + d)T (t), (34)

dW (t)

dt
=

∫ t

0
ξ1(a)Li (t − a)k2(a)da + ξ2T (t) − cW (t),

Le(0) = 0, Li (0) = 0, T (0) = 0,W (0) = 0.

It is easy to show that System (34) has a unique solution Le(t) = 0, Li (t) = 0,
T (t) = 0, and W (t) = 0.

123



Global analysis of an age-structured tuberculosis model with… Page 37 of 57 52

From System (31) and Eq. (32), we obtain that e(t, t) = 0 and i(t, t) = 0 for
0 ≤ t ≤ t . Hence,

‖e(t, b)‖L1+ =
∫ +∞

t
e0(b − t)

k1(b)

k1(b − t)
db ≤ ‖e0(t̄)‖L1+ = 0.

Similarly, we can also obtain ‖i(t, a)‖L1+ = 0. Since T (t) ≤ T (t), W (t) ≤ W (t),

e(t, b) ≤ e(t, b), and i(t, a) ≤ i(t, a), we have

T (t) = 0, W (t) = 0, ‖e(t, b)‖L1+ = 0, ‖i(t, a)‖L1+ = 0.

This implies that ∂D0 is positively invariant under the semiflow {Φ(t, ·)}t≥0.
Next,we prove that the disease-free equilibriumP0 of System (2) is globally asymp-

totically stable for the semiflow {Φ(t, ·)}t≥0 restricted to ∂D0. Obviously, System (2)
can be represented as

dS(t)

dt
= Λ + τV (t) + δR(t) − (α + d)S(t),

dV (t)

dt
= αS(t) − (τ + d)V (t), (35)

dR(t)

dt
= −(δ + d)R(t).

Obviously, the unique equilibrium (S0, V 0, 0) of System (35) is locally asymptotically
stable. By solving System (35), we obtain

S(t) = − C3τ

α + τ
e−(d+δ)t + Λ(τ + d)

d(α + τ + d)
+ αδC3

(α + τ)(α − δ + τ)
e−(d+δ)t

−C1e
−(α+τ+d)t − τC1

α
e−dt ,

V (t) = C2e
−dt + C1e

−(α+τ+d)t − αδ

(α + τ)(α − δ + τ)
e−(d+δ)t

− αC3

α + τ
e−(d+δ)t + Λα

d(α + τ + d)
,

R(t) = C3e
−(d+δ)t ,

where C1,C2,C3 are constants. Thus, limt→∞ S(t) = Λ(τ+d)
d(α+τ+d)

= S0, limt→∞ V (t)

= Λα
d(α+τ+d)

= V 0, and limt→∞ R(t) = 0. Then, the disease-free equilibrium P0 is
globally asymptotically stable restricted to ∂D0. This completes the proof. �
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Appendix E: Proof of Theorem 5

We assume by contradiction that there exists x0 ∈ Ws(P0)∩D0. In this case, one can
find a sequence {xn} ∈ D0 such that

∥∥Φ(t, xn) − P0
∥∥
Y <

1

n
, t ≥ 0.

Here, Φ(t, xn) := (Sn(t), Vn(t), Tn(t), Rn(t),Wn(t), en(t, ·), in(t, ·)).
Now, we choose n > 0 large enough to ensure S0 − 1

n > 0 and V 0 − 1
n > 0. For

the above given n > 0, there exists a t1 > 0 such that for t > t1,

S0 − 1

n
< Sn(t) < S0 + 1

n
, V 0 − 1

n
< Vn(t) < V 0 + 1

n
.

Then, System (2) can be written as

dT (t)

dt
≥
∫ +∞

0
θ(a)i(t, a)da − (γ + d)T (t),

dW (t)

dt
≥
∫ +∞

0
ξ1(a)i(t, a)da + ξ2T (t) − cW (t),

∂e(t, b)

∂t
+ ∂e(t, b)

∂b
≥ −(ρσ(b) + d)e(t, b),

∂i(t, a)

∂t
+ ∂i(t, a)

∂a
≥ −(θ(a) + d)i(t, a),

e(t, 0) ≥ (1 − q)λ(t)

(
S0 − 1

n
+ η(V 0 − 1

n
)

)
,

i(t, 0) ≥ qλ(t)

(
S0 − 1

n
+ η(V 0 − 1

n
)

)
+ ρ

∫ +∞

0
σ(b)e(t, b)db,

T (0) = T0,W (0) = W0, e(0, b) = e0(b), i(0, a) = i0(a),

where λ(t) is given by Eq. (1). We consider the following auxiliary system

dT (t)

dt
=
∫ +∞

0
θ(a)i(t, a)da − (γ + d)T (t),

dW (t)

dt
=
∫ +∞

0
ξ1(a)i(t, a)da + ξ2T (t) − cW (t),

∂e(t, b)

∂t
+ ∂e(t, b)

∂b
= −(ρσ(b) + d)e(t, b),

∂i(t, a)

∂t
+ ∂i(t, a)

∂a
= −(θ(a) + d)i(t, a), (36)

e(t, 0) = (1 − q)λ(t)

(
S0 − 1

n
+ η(V 0 − 1

n
)

)
,
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i(t, 0) = qλ(t)

(
S0 − 1

n
+ η(V 0 − 1

n
)

)
+ ρ

∫ +∞

0
σ(b)e(t, b)db,

T (0) = T0,W (0) = W0, e(0, b) = e0(b), i(0, a) = i0(a),

where λ(t) = ∫ +∞
0 β1(a)i(t, a)da + β2T (t) + β3W (t). By Volterra formulation (5),

we have

e(t, b) =
⎧⎨
⎩

e(t − b, 0)k1(b), 0 ≤ b ≤ t,

e0(b − t)
k1(b)

k1(b − t)
, 0 ≤ t ≤ b,

i(t, a) =
⎧⎨
⎩

i(t − a, 0)k2(a), 0 ≤ a ≤ t,

i0(a − t)
k2(a)

k2(a − t)
, 0 ≤ t ≤ a.

(37)

By direct calculation, the characteristic equation of System (36) at P0 is

(
S0 − 1

n
+ η(V 0 − 1

n
)

)

{
H2(ι) + β2H3(ι)

ι + γ + d
+ β3[(ι + γ + d)H4(ι) + ξ2H3(ι)]

(ι + c)(ι + γ + d)

}[
q + ρ(1 − q)H1(ι)

] = 1,

where H1(ι),H2(ι),H3(ι), and H4(ι) are given by Eq. (23). Let

f (ι) =
(
S0 − 1

n
+ η(V 0 − 1

n
)

){
H2(ι) + β2H3(ι)

ι + γ + d
+ β3[(ι + γ + d)H4(ι) + ξ2H3(ι)]

(ι + c)(ι + γ + d)

}

[
q + ρ(1 − q)H1(ι)

]
.

Clearly, we have f ′(ι) < 0 and lim
ι→+∞ f (ι) = 0. Furthermore, we also have f (0) > 1

for sufficiently large n. Hence, when R0 > 1, the characteristic equation of System
(36) has a real positive root. This implies that the solution (T (t),W (t), e(t, ·), i(t, ·))
of System (36) is unbounded. Since T (t) ≥ T (t), W (t) ≥ W (t), e(t, ·) ≥ e(t, ·), and
i(t, ·) ≥ i(t, ·), by comparison principle, we obtain that (T (t),W (t), e(t, ·), i(t, ·))
is unbounded, which contradicts with Proposition 1. Therefore, Ws(P0) ∩ D0 = ∅.
By Theorem 4.2 in Hale andWaltman (1989), we conclude that semiflow {Φ(t, ·)}t≥0
generated by System (2) is uniformly persistent. This completes the proof. �

Appendix F: Proof of Theorem 6

Define a Lyapunov function

L(t) = Ls(t) + Lv(t) + Le(t) + Li (t) + Lt (t) + Lw(t) (38)

where

Ls(t) = 1

2S0
(S(t) − S0)2, Lv(t) = 1

2V 0 (V (t) − V 0)2,
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Le(t) = Fb

∫ +∞

0
Fe(b)e(t, b)db, Li (t) = (

S0 + ηV 0) ∫ +∞

0
Fi (a)i(t, a)da,

Lt (t) = (
S0 + ηV 0)( β2

γ + d
+ β3ξ2

c(γ + d)

)
T (t), Lw(t) = (

S0 + ηV 0)β3

c
W (t).

The nonnegative function L(t) is defined with respect to the disease-free equilibrium
P0, which is a global minimum. We choose

Fb = (
S0 + ηV 0)(K2 + β2K3

γ + d
+ β3K4

c
+ β3ξ2K3

c(γ + d)

)
,

Fe(b) =
∫ +∞

b
ρσ(υ)e− ∫ υ

b (ρσ(�)+d)d�dυ,

Fi (a) =
∫ +∞

a

(
β1(υ) + β2θ(υ)

γ + d
+ β3ξ1(υ)

c
+ β3ξ2θ(υ)

c(γ + d)

)
e− ∫ υ

a (θ(�)+d)d�dυ.

By direct calculations, one obtains that

Fe(0) =
∫ +∞

0
ρσ(υ)e− ∫ υ

0 (ρσ(�)+d)d�dυ = ρK1,

Fi (0) =
∫ +∞

0

(
β1(υ) + β2θ(υ)

γ + d
+ β3ξ1(υ)

c
+ β3ξ2θ(υ)

c(γ + d)

)
e− ∫ υ

0 (θ(�)+d)d�dυ

= K2 + β2K3

γ + d
+ β3K4

c
+ β3ξ2K3

c(γ + d)
,

dFe(b)

db
= −ρσ(b) + (ρσ(b) + d)Fe(b),

dFi (a)

da
= −

(
β1(a) + β2θ(a)

γ + d
+ β3ξ1(a)

c
+ β3ξ2θ(a)

c(γ + d)

)
+ (θ(a) + d)Fi (a).

Calculating the derivative of Ls(t), Lv(t), Le(t), Li (t), Lt (t), and Lw(t) along
solutions of System (2), respectively. We can obtain

dLs(t)

dt
= 1

S0
(S(t) − S0)

dS(t)

dt
= 1

S0
(S(t) − S0)

(
Λ + τV (t) − λ(t)S(t) − (α + d)S(t)

)

= 1

S0
(S(t) − S0)

[
− (α + d)(S(t) − S0) + τ(V (t) − V 0) − λ(t)(S(t) − S0) − λ(t)S0

]

= −α + d

S0
(S(t) − S0)2 + τ

S0
(S(t) − S0)(V (t) − V 0)

− 1

S0
λ(t)(S(t) − S0)2 − λ(t)S(t) + λ(t)S0,

where λ(t) is given by Eq. (1).

dLv(t)

dt
= 1

V 0 (V (t) − V 0)
dV (t)

dt
= 1

V 0 (V (t) − V 0)
(
αS(t) − ηλ(t)V (t) − (τ + d)V (t)

)

= 1

V 0 (V (t) − V 0)
[
α(S(t) − S0) − (τ + d)(V (t) − V 0)
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−ηλ(t)(V (t) − V 0) − ηλ(t)V 0
]

= α

V 0 (S(t) − S0)(V (t) − V 0) − τ + d

V 0 (V (t) − V 0)2 − η

V 0 λ(t)(V (t) − V 0)2

−ηλ(t)V (t) + ηλ(t)V 0,

dLe(t)

dt
= Fb

∫ +∞

0
Fe(b)

de(t, b)

dt
db = −Fb

∫ +∞

0
Fe(b)

[
(ρσ(b) + d)e(t, b) + ∂e(t, b)

∂b

]
db

= Fb

(
−
∫ +∞

0
Fe(b)(ρσ(b) + d)e(t, b)db −

∫ +∞

0
Fe(b)de(t, b)

)

= Fb

(
−
∫ +∞

0
Fe(b)(ρσ(b) + d)e(t, b)db − Fe(b)e(t, b)

∣∣∣+∞
0

+
∫ +∞

0
e(t, b)dFe(b)

)

= Fb

(
−
∫ +∞

0
Fe(b)(ρσ(b) + d)e(t, b)db + Fe(0)e(t, 0)

+
∫ +∞

0
e(t, b)

[ − ρσ(b) + (ρσ(b) + d)Fe(b)
]
db

)

= Fb

(
Fe(0)e(t, 0) −

∫ +∞

0
ρσ(b)e(t, b)db

)

= Fb

(
ρK1e(t, 0) − ρ

∫ +∞

0
σ(b)e(t, b)db

)

= Fb

(
ρK1(1 − q)(S(t) + ηV (t))λ(t) − ρ

∫ +∞

0
σ(b)e(t, b)db

)
,

= (
S0 + ηV 0)(K2 + β2K3

γ + d
+ β3K4

c
+ β3ξ2K3

c(γ + d)

)
ρK1(1 − q)(S(t) + ηV (t))λ(t)

−(
S0 + ηV 0)(K2 + β2K3

γ + d
+ β3K4

c
+ β3ξ2K3

c(γ + d)

)
ρ

∫ +∞

0
σ(b)e(t, b)db,

dLi (t)

dt
= (

S0 + ηV 0) ∫ +∞

0
Fi (a)

di(t, a)

dt
da

= −(
S0 + ηV 0) ∫ +∞

0
Fi (a)

[
(θ(a) + d)i(t, a) + ∂i(t, a)

∂a

]
da

= (
S0 + ηV 0)( −

∫ +∞

0
Fi (a)(θ(a) + d)i(t, a)da −

∫ +∞

0
Fi (a)di(t, a)

)

= (
S0 + ηV 0)( −

∫ +∞

0
Fi (a)(θ(a) + d)i(t, a)db − Fi (a)i(t, a)

∣∣∣+∞
0

+
∫ +∞

0
i(t, a)dFi (a)

)

= (
S0 + ηV 0){ −

∫ +∞

0
Fi (a)(θ(a) + d)i(t, a)db + Fi (0)i(t, 0)

+
∫ +∞

0
i(t, a)

[
−
(

β1(a) + β2θ(a)

γ + d
+ β3ξ1(a)

c
+ β3ξ2θ(a)

c(γ + d)

)

+(θ(a) + d)Fi (a)

]
da

}

= (
S0 + ηV 0)(Fi (0)i(t, 0) −

∫ +∞

0
β1(a)i(t, a)da − β2

γ + d

∫ +∞

0
θ(a)i(t, a)da
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−β3

c

∫ +∞

0
ξ1(a)i(t, a)da − β3ξ2

c(γ + d)

∫ +∞

0
θ(a)i(t, a)da

)

= (
S0 + ηV 0)(K2 + β2K3

γ + d
+ β3K4

c
+ β3ξ2K3

c(γ + d)

)
q(S(t) + ηV (t))λ(t)

+(
S0 + ηV 0)(K2 + β2K3

γ + d
+ β3K4

c
+ β3ξ2K3

c(γ + d)

)
ρ

∫ +∞

0
σ(b)e(t, b)db

−(
S0 + ηV 0)( ∫ +∞

0
β1(a)i(t, a)da + β2

γ + d

∫ +∞

0
θ(a)i(t, a)da

+β3

c

∫ +∞

0
ξ1(a)i(t, a)da + β3ξ2

c(γ + d)

∫ +∞

0
θ(a)i(t, a)da

)
,

dLt (t)

dt
= (

S0 + ηV 0)( β2

γ + d
+ β3ξ2

c(γ + d)

)
dT (t)

dt

= (
S0 + ηV 0)( β2

γ + d
+ β3ξ2

c(γ + d)

)(∫ +∞

0
θ(a)i(t, a)da − (γ + d)T (t)

)

= (
S0 + ηV 0)( β2

γ + d
+ β3ξ2

c(γ + d)

)∫ +∞

0
θ(a)i(t, a)da

−(
S0 + ηV 0)(β2T (t) + β3ξ2

c
T (t)

)
,

dLw(t)

dt
= (

S0 + ηV 0)β3

c

dW (t)

dt

= (
S0 + ηV 0)β3

c

(∫ +∞

0
ξ1(a)i(t, a)da + ξ2T (t) − cW (t)

)

= (
S0 + ηV 0)β3

c

∫ +∞

0
ξ1(a)i(t, a)da + (

S0 + ηV 0)β3ξ2

c
T (t) − (

S0 + ηV 0)β3W (t).

Therefore,

dL(t)

dt
= −α + d

S0
(S(t) − S0)2 +

(
τ

S0
+ α

V 0

)
(S(t) − S0)(V (t) − V 0)

− τ + d

V 0 (V (t) − V 0)2 − 1

S0
λ(t)(S(t) − S0)2 − η

V 0 λ(t)(V (t) − V 0)2

−λ(t)(S(t) + ηV (t)) + λ(t)(S0 + ηV 0) + R0λ(t)(S(t) + ηV (t)) − λ(t)(S0 + ηV 0),

whereλ(t) is given byEq. (1). To confirm that dL(t)
dt is a negative semidefinite function,

we obtain

−α + d

S0
(S(t) − S0)2 +

(
τ

S0
+ α

V 0

)
(S(t) − S0)(V (t) − V 0) − τ + d

V 0 (V (t) − V 0)2

= −α + d

S0

[
(S(t) − S0)2 − τV 0 + αS0

(α + d)V 0 (S(t) − S0)(V (t) − V 0)

+ (τ + d)S0

(α + d)V 0 (V (t) − V 0)2
]

= −α + d

S0

{
(S(t) − S0)2 − τV 0 + αS0

(α + d)V 0 (S(t) − S0)(V (t) − V 0)
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+ (τV 0 + αS0)2

4(α + d)2(V 0)2
(V (t) − V 0)2 − (τV 0 + αS0)2

4(α + d)2(V 0)2
(V (t) − V 0)2

+ (τ + d)S0

(α + d)V 0 (V (t) − V 0)2
}

= −α + d

S0

{[
(S(t) − S0)2 − τV 0 + αS0

2(α + d)V 0 (V (t) − V 0)

]2

+4(τ + d)(α + d)S0V 0 − (τV 0 + αS0)2

4(α + d)2(V 0)2
(V (t) − V 0)2

}
. (39)

Substituting S0 = τ+d
α

V 0 into Eq. (39), we have

−α + d

S0

{[
(S(t) − S0)2 − τV 0 + αS0

2(α + d)V 0 (V (t) − V 0)

]2

+4(τ + d)(α + d)S0V 0 − (τV 0 + αS0)2

4(α + d)2(V 0)2
(V (t) − V 0)2

}

= −α + d

S0

{[
(S(t) − S0)2 − τV 0 + αS0

2(α + d)V 0 (V (t) − V 0)

]2

+αd(4τ + 3d) + 4d(τ + d)2

4α(α + d)2
(V (t) − V 0)2

}
≤ 0.

Hence, we obtain

dL(t)

dt
= −α + d

S0

{[
(S(t) − S0)2 − τV 0 + αS0

2(α + d)V 0 (V (t) − V 0)

]2

+αd(4τ + 3d) + 4d(τ + d)2

4α(α + d)2
(V (t) − V 0)2

}

− 1

S0
λ(t)(S(t) − S0)2 − η

V 0 λ(t)(V (t) − V 0)2 + (R0 − 1)(S(t) + ηV (t))λ(t),

where λ(t) is given by Eq. (1). Notice that if R0 ≤ 1, then dL(t)
dt ≤ 0, and the

equality holds only for S(t) = S0, V (t) = V 0, e(t, b) = 0, i(t, a) = 0, T (t) = 0,
R(t) = 0, and W (t) = 0. LaSalle’s Invariance Principle (LaSalle 1960) implies that
the bounded solutions of System (2) converges to the largest compact invariant set
of

{
(S(t), V (t), T (t), R(t),W (t), e(t, b), i(t, a)) ∈ D : dL(t)/dt = 0

}
. Since the

disease-free equilibrium P0 is the only invariant set of System (2) contained entirely
in
{
(S(t), V (t), T (t), R(t),W (t), e(t, b), i(t, a)) ∈ D : dL(t)/dt = 0

}
. Hence, the

disease-free equilibrium P0 is globally attractive. By Theorem 2, we obtain that the
disease-free equilibrium P0 is globally asymptotically stable when R0 < 1, and the
disease-free equilibrium P0 is globally attractive when R0 = 1. This completes the
proof. �
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Appendix G: Proof of Theorem 7

Let p(x) = x − 1 − ln x , note that p(x) is non-negative and continuous in (0,+∞)

with a unique root at x = 1. Define a Lyapunov function

G(t) = Gs(t) + Gv(t) + Ge(t) + Gi (t) + Gt (t) + Gw(t), (40)

where

Gs(t) = S∗p
(
S(t)

S∗

)
, Gv(t) = V ∗p

(
V (t)

V ∗

)
,

Ge(t) = (
S∗ + ηV ∗)Fa

∫ +∞

0
Fe(b)e

∗(b)p
(
e(t, b)

e∗(b)

)
db,

Gi (t) = (
S∗ + ηV ∗) ∫ +∞

0
Fi (a)i∗(a)p

(
i(t, a)

i∗(a)

)
da,

Gt (t) = (
S∗ + ηV ∗)( β2

γ + d
+ β3ξ2

c(γ + d)

)
T ∗p

(
T (t)

T ∗

)
,

Gw(t) = (
S∗ + ηV ∗)β3

c
W ∗p

(
W (t)

W ∗

)
.

The nonnegative function G(t) is defined with respect to the endemic equilibrium P∗,
which is a global minimum. We choose

Fa = K2 + β2K3

γ + d
+ β3K4

c
+ β3ξ2K3

c(γ + d)
,

Fe(b) =
∫ +∞

b
ρσ(υ)e− ∫ υ

b (ρσ(�)+d)d�dυ,

Fi (a) =
∫ +∞

a

(
β1(υ) + β2θ(υ)

γ + d
+ β3ξ1(υ)

c
+ β3ξ2θ(υ)

c(γ + d)

)
e− ∫ υ

a (θ(�)+d)d�dυ.

Calculating the derivative of Gs(t), Gv(t), Ge(t), Gi (t), Gt (t), and Gw(t) along
solutions of System (2), respectively, we can obtain

dGs(t)

dt
=

(
1 − S∗

S(t)

)
dS(t)

dt

= Λ

(
2 − S(t)

S∗ − S∗

S(t)

)
+ τ

(
V (t) − V (t)S∗

S(t)
− V ∗S(t)

S∗ + V ∗
)

−
∫ +∞

0
β1(a)

(
S(t)i(t, a) − S∗i(t, a) − S(t)i∗(a) + S∗i∗(a)

)
da

−β2
(
T (t)S(t) − T (t)S∗ − T ∗S(t) + T ∗S∗)

−β3
(
W (t)S(t) − W (t)S∗ − W ∗S(t) + W ∗S∗). (41)

dGv(t)

dt
=

(
1 − V ∗

V (t)

)
dV (t)

dt
= α

(
S(t) − S(t)V ∗

V (t)
− S∗V (t)

V ∗ + S∗
)
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−η

∫ +∞

0
β1(a)

(
V (t)i(t, a) − V ∗i(t, a) − V (t)i∗(a) + V ∗i∗(a)

)
da

−ηβ2
(
T (t)V (t) − T (t)V ∗ − T ∗V (t) + T ∗V ∗)

−ηβ3
(
W (t)V (t) − W (t)V ∗ − W ∗V (t) + W ∗V ∗). (42)

We note that

∂

∂b
p
(
e(t, b)

e∗(b)

)
= 1

e∗(b)

(
1 − e∗(b)

e(t, b)

)(
∂e(t, b)

∂b
+ (ρσ(b) + d)e(t, b)

)
,

∂

∂a
p
(
i(t, a)

i∗(a)

)
= 1

i∗(a)

(
1 − i∗(a)

i(t, a)

)(
∂i(t, a)

∂a
+ (θ(a) + d)i(t, a)

)
.

Thus, we obtain

dGe(t)

dt
= (

S∗ + ηV ∗)Fa

∫ +∞

0
Fe(b)

(
1 − e∗(b)

e(t, b)

)
∂e(t, b)

∂t
db

= −(
S∗ + ηV ∗)Fa

∫ +∞

0
Fe(b)

(
1 − e∗(b)

e(t, b)

)(
∂e(t, b)

∂b
+ (ρσ(b) + d)e(t, b)

)
db

= −(
S∗ + ηV ∗)Fa

∫ +∞

0
Fe(b)e

∗(b) ∂

∂b
p
(
e(t, b)

e∗(b)

)
db

= (
S∗ + ηV ∗)Fa

[
Fe(0)e

∗(0)p
(
e(t, 0)

e∗(0)

)
− ρ

∫ +∞

0
σ(b)e∗(b)p

(
e(t, b)

e∗(b)

)
db

]

= (
S∗ + ηV ∗)FaρK1

[
(1 − q)(S(t) + ηV (t))

(∫ +∞

0
β1(a)i(t, a)da + β2T (t)

+β3W (t)

)
− (1 − q)(S∗ + ηV ∗)

(∫ +∞

0
β1(a)i∗(a)da + β2T

∗ + β3W
∗
)

−(1 − q)(S∗ + ηV ∗)
(∫ +∞

0
β1(a)i∗(a)da + β2T

∗ + β3W
∗
)
ln

(
e(t, 0)

e∗(0)

)]

−(
S∗ + ηV ∗)Faρ

∫ +∞

0
σ(b)e∗(b)p

(
e(t, b)

e∗(b)

)
db.

dGi (t)

dt
= (

S∗ + ηV ∗) ∫ +∞

0
Fi (a)

(
1 − i∗(a)

i(t, a)

)
∂i(t, a)

∂t
da

= −(
S∗ + ηV ∗) ∫ +∞

0
Fi (a)

(
1 − i∗(a)

i(t, a)

)(
∂i(t, a)

∂a
+ (θ(a) + d)i(t, a)

)
da

= −(
S∗ + ηV ∗) ∫ +∞

0
Fi (a)i∗(a)

∂

∂a
p
(
i(t, a)

i∗(a)

)
da

= (
S∗ + ηV ∗)[Fi (0)i

∗(0)p
(
i(t, 0)

i∗(0)

)
−
∫ +∞

0
β1(a)i∗(a)p

(
i(t, a)

i∗(a)

)
da

−
(

β2

γ + d
+ β3ξ2

c(γ + d)

)∫ +∞

0
θ(a)i∗(a)p

(
i(t, a)

i∗(a)

)
da

−β3

c

∫ +∞

0
ξ1(a)i∗(a)p

(
i(t, a)

i∗(a)

)
da

]

= (
S∗ + ηV ∗)Fa

{
q(S(t) + ηV (t))

(∫ +∞

0
β1(a)i(t, a)da + β2T (t) + β3W (t)

)
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+ρ

∫ +∞

0
σ(b)e(t, b)db −

[
q(S∗ + ηV ∗)

(∫ +∞

0
β1(a)i∗(a)da + β2T

∗ + β3W
∗
)

+ρ

∫ +∞

0
σ(b)e∗(b)db

]
−
[
q(S∗ + ηV ∗)

(∫ +∞

0
β1(a)i∗(a)da + β2T

∗ + β3W
∗
)

+ρ

∫ +∞

0
σ(b)e∗(b)db

]
ln

(
i(t, 0)

i∗(0)

)}

−(
S∗ + ηV ∗)[ ∫ +∞

0
β1(a)i∗(a)p

(
i(t, a)

i∗(a)

)
da

+
(

β2

γ + d
+ β3ξ2

c(γ + d)

)∫ +∞

0
θ(a)i∗(a)p

(
i(t, a)

i∗(a)

)
da

+β3

c

∫ +∞

0
ξ1(a)i∗(a)p

(
i(t, a)

i∗(a)

)
da

]
,

dGt (t)

dt
= (

S∗ + ηV ∗)( β2

γ + d
+ β3ξ2

c(γ + d)

)(
1 − T ∗

T (t)

)
dT (t)

dt

= (
S∗ + ηV ∗)( β2

γ + d
+ β3ξ2

c(γ + d)

)∫ +∞

0
θ(a)i∗(a)

[
i(t, a)

i∗(a)
− T (t)

T ∗ − T ∗i(t, a)

T (t)i∗(a)
+ 1

]
da

= (
S∗ + ηV ∗)( β2

γ + d
+ β3ξ2

c(γ + d)

)∫ +∞

0
θ(a)i∗(a)

[
p
(
i(t, a)

i∗(a)

)
− p

(
T ∗i(t, a)

T (t)i∗(a)

)]
da

−(
S∗ + ηV ∗)β2T

∗p
(
T (t)

T ∗

)
− (

S∗ + ηV ∗)β3ξ2

c
T ∗p

(
T (t)

T ∗

)
,

dGw(t)

dt
= (

S∗ + ηV ∗)β3

c

(
1 − W ∗

W (t)

)
dW (t)

dt

= (
S∗ + ηV ∗)β3

c

∫ +∞

0
ξ1(a)i∗(a)

[
i(t, a)

i∗(a)
− W (t)

W ∗ − W ∗i(t, a)

W (t)i∗(a)
+ 1

]
da

+(
S∗ + ηV ∗)β3ξ2

c

[
T (t)

T ∗ − W (t)

W ∗ − W ∗T (t)

W (t)T ∗ + 1

]

= (
S∗ + ηV ∗)β3

c

∫ +∞

0
ξ1(a)i∗(a)

[
p
(
i(t, a)

i∗(a)

)
− p

(
W ∗i(t, a)

W (t)i∗(a)

)]
da

+(
S∗ + ηV ∗)β3ξ2

c
T ∗

[
p
(
T (t)

T ∗

)
− p

(
W ∗T (t)

W (t)T ∗

)]
− (

S∗ + ηV ∗)β3W
∗p
(
W (t)

W ∗

)
.

From the first two equations of System (2) and Eq. (16), we obtain

(
S∗ + ηV ∗)Fa[q + ρ(1 − q)K1] = 1,

Λ = (S∗ + ηV ∗)
(∫ +∞

0
β1(a)i∗(a)da + β2T

∗ + β3W
∗
)

+ dS∗ + dV ∗,

α =
ηV ∗

( ∫ +∞
0 β1(a)i∗(a)da + β2T ∗ + β3W ∗

)
+ (τ + d)V ∗

S∗ .
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Substituting the expressions of Λ and α into Eqs. (41) and (42), respectively, we have

dG(t)

dt
= dGs(t)

dt
+ dGv(t)

dt
+ dGe(t)

dt
+ dGi (t)

dt
+ dGt (t)

dt
+ dGw(t)

dt

= τV ∗
(
2 − S∗V (t)

S(t)V ∗ − S(t)V ∗

S∗V (t)

)
+ dV ∗

(
3 − S∗

S(t)
− V (t)

V ∗ − S(t)V ∗

S∗V (t)

)

+dS∗
(
2 − S(t)

S∗ − S∗

S(t)

)
+ (S∗ + ηV ∗)

(∫ +∞

0
β1(a)i(t, a)da + β2T (t) + β3W (t)

)

−
(
S∗S∗

S(t)
+ η

S∗V ∗

S(t)

)(∫ +∞

0
β1(a)i∗(a)da + β2T

∗ + β3W
∗
)

+η

(
V ∗ − S(t)V ∗V ∗

S∗V (t)

)(∫ +∞

0
β1(a)i∗(a)da + β2T

∗ + β3W
∗
)

−(S∗ + ηV ∗)
[
FaρK1(1 − q) ln

(
e(t, 0)

e∗(0)

)
+ Faq ln

(
i(t, 0)

i∗(0)

)]

×(S∗ + ηV ∗)
(∫ +∞

0
β1(a)i∗(a)da + β2T

∗ + β3W
∗
)

−(
S∗ + ηV ∗)Faρ

∫ +∞

0
σ(b)e∗(b)p

(
e(t, b)

e∗(b)

)
db + (

S∗ + ηV ∗)Faρ

×
[ ∫ +∞

0
σ(b)e(t, b)db −

∫ +∞

0
σ(b)e∗(b)db −

∫ +∞

0
σ(b)e∗(b)db ln

(
i(t, 0)

i∗(0)

)]

−(
S∗ + ηV ∗)[ ∫ +∞

0
β1(a)i∗(a)p

(
i(t, a)

i∗(a)

)
da + β3

c

∫ +∞

0
ξ1(a)i∗(a)p

(
i(t, a)

i∗(a)

)
da

+
(

β2

γ + d
+ β3ξ2

c(γ + d)

)∫ +∞

0
θ(a)i∗(a)p

(
i(t, a)

i∗(a)

)
da

]

+(
S∗ + ηV ∗)( β2

γ + d
+ β3ξ2

c(γ + d)

)∫ +∞

0
θ(a)i∗(a)

[
p
(
i(t, a)

i∗(a)

)
− p

(
T ∗i(t, a)

T (t)i∗(a)

)]
da

−(
S∗ + ηV ∗)β2T

∗p
(
T (t)

T ∗

)
− (

S∗ + ηV ∗)β3ξ2

c
T ∗p

(
T (t)

T ∗

)

+(
S∗ + ηV ∗)β3

c

∫ +∞

0
ξ1(a)i∗(a)

[
p
(
i(t, a)

i∗(a)

)
− p

(
W ∗i(t, a)

W (t)i∗(a)

)]
da

+(
S∗ + ηV ∗)β3ξ2

c
T ∗

[
p
(
T (t)

T ∗

)
− p

(
W ∗T (t)

W (t)T ∗

)]
− (

S∗ + ηV ∗)β3W
∗p
(
W (t)

W ∗

)
.

For simplicity, we let

dG(t)

dt
= dGs(t)

dt
+ dGv(t)

dt
+ dGe(t)

dt
+ dGi (t)

dt
+ dGt (t)

dt
+ dGw(t)

dt
= G1 + G2 + G3 + G4 + G5 + G6,

where

G1 = τV ∗
(
2 − S∗V (t)

S(t)V ∗ − S(t)V ∗

S∗V (t)

)
+ dV ∗

(
3 − S∗

S(t)
− V (t)

V ∗ − S(t)V ∗

S∗V (t)

)
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+dS∗
(
2 − S(t)

S∗ − S∗

S(t)

)
≤ 0,

G2 = (S∗ + ηV ∗)Faq

{∫ +∞

0
β1(a)S∗i∗(a)

[
i(t, a)

i∗(a)
− S∗

S(t)
− ln

(
i(t, 0)

i∗(0)

)]
da

+β2S
∗T ∗

[
T (t)

T ∗ − S∗

S(t)
− ln

(
i(t, 0)

i∗(0)

)]
+ β3S

∗W ∗
[
W (t)

W ∗ − S∗

S(t)
− ln

(
i(t, 0)

i∗(0)

)]

+η

∫ +∞

0
β1(a)V ∗i∗(a)

[
i(t, a)

i∗(a)
− V ∗

V (t)
− ln

(
i(t, 0)

i∗(0)

)]
da

+ηβ2V
∗T ∗

[
T (t)

T ∗ − V ∗

V (t)
− ln

(
i(t, 0)

i∗(0)

)]
+ ηβ3V

∗W ∗
[
W (t)

W ∗ − V ∗

V (t)
− ln

(
i(t, 0)

i∗(0)

)]}

= (S∗ + ηV ∗)Faq

{∫ +∞

0
β1(a)S∗i∗(a)

[
p
(
i(t, a)

i∗(a)

)
− p

(
S∗

S(t)

)

−p
(
S(t)i(t, a)i∗(0)
S∗i∗(a)i(t, 0)

)]
da

+β2S
∗T ∗

[
p
(
T (t)

T ∗

)
− p

(
S∗

S(t)

)
− p

(
S(t)T (t)i∗(0)
S∗T ∗i(t, 0)

)]

+β3S
∗W ∗

[
p
(
W (t)

W ∗

)
− p

(
S∗

S(t)

)
− p

(
S(t)W (t)i∗(0)
S∗W ∗i(t, 0)

)]

+η

∫ +∞

0
β1(a)V ∗i∗(a)

[
p
(
i(t, a)

i∗(a)

)
− p

(
V ∗

V (t)

)
− p

(
V (t)i(t, a)i∗(0)
V ∗i∗(a)i(t, 0)

)]
da

+ηβ2V
∗T ∗

[
p
(
T (t)

T ∗

)
− p

(
V ∗

V (t)

)
− p

(
V (t)T (t)i∗(0)
V ∗T ∗i(t, 0)

)]

+ηβ3V
∗W ∗

[
p
(
W (t)

W ∗

)
− p

(
V ∗

V (t)

)
− p

(
V (t)W (t)i∗(0)
V ∗W ∗i(t, 0)

)]}

+(S∗ + ηV ∗)Faρ

∫ +∞

0
σ(b)e∗(b)db − (S∗ + ηV ∗)Faρ

i∗(0)
i(t, 0)

∫ +∞

0
σ(b)e(t, b)db,

G3 = (S∗ + ηV ∗)Faρ(1 − q)K1

{∫ +∞

0
β1(a)S∗i∗(a)

[
i(t, a)

i∗(a)
− S∗

S(t)
− ln

(
e(t, 0)

e∗(0)

)]
da

+β2S
∗T ∗

[
T (t)

T ∗ − S∗

S(t)
− ln

(
e(t, 0)

e∗(0)

)]
+ β3S

∗W ∗
[
W (t)

W ∗ − S∗

S(t)
− ln

(
e(t, 0)

e∗(0)

)]

+η

∫ +∞

0
β1(a)V ∗i∗(a)

[
i(t, a)

i∗(a)
− V ∗

V (t)
− ln

(
e(t, 0)

e∗(0)

)]
da

+ηβ2V
∗T ∗

[
T (t)

T ∗ − V ∗

V (t)
− ln

(
e(t, 0)

e∗(0)

)]

+ηβ3V
∗W ∗

[
W (t)

W ∗ − V ∗

V (t)
− ln

(
e(t, 0)

e∗(0)

)]}

= (S∗ + ηV ∗)Faρ(1 − q)K1

{∫ +∞

0
β1(a)S∗i∗(a)

[
p
(
i(t, a)

i∗(a)

)
− p

(
S∗

S(t)

)

−p
(
S(t)i(t, a)e∗(0)
S∗i∗(a)e(t, 0)

)]
da + β2S

∗T ∗
[
p
(
T (t)

T ∗

)
− p

(
S∗

S(t)

)
− p

(
S(t)T (t)e∗(0)
S∗T ∗e(t, 0)

)]

+β3S
∗W ∗

[
p
(
W (t)

W ∗

)
− p

(
S∗

S(t)

)
− p

(
S(t)W (t)e∗(0)
S∗W ∗e(t, 0)

)]
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+η

∫ +∞

0
β1(a)V ∗i∗(a)

[
p
(
i(t, a)

i∗(a)

)
− p

(
V ∗

V (t)

)
− p

(
V (t)i(t, a)e∗(0)
V ∗i∗(a)e(t, 0)

)]
da

+ηβ2V
∗T ∗

[
p
(
T (t)

T ∗

)
− p

(
V ∗

V (t)

)
− p

(
V (t)T (t)e∗(0)
V ∗T ∗e(t, 0)

)]

+ηβ3V
∗W ∗

[
p
(
W (t)

W ∗

)
− p

(
V ∗

V (t)

)
− p

(
V (t)W (t)e∗(0)
V ∗W ∗e(t, 0)

)]}
,

G4 = η

(
1 + V ∗

V (t)
− S∗

S(t)
− S(t)V ∗

S∗V (t)

)(∫ +∞

0
β1(a)V ∗i∗(a)da + β2V

∗T ∗ + β3V
∗W ∗

)

= η

[
p
(

V ∗

V (t)

)
− p

(
S∗

S(t)

)
− p

(
S(t)V ∗

S∗V (t)

)]

(∫ +∞

0
β1(a)V ∗i∗(a)da + β2V

∗T ∗ + β3V
∗W ∗

)
,

G5 = (
S∗ + ηV ∗)Faρ

[ ∫ +∞

0
σ(b)e(t, b)db −

∫ +∞

0
σ(b)e∗(b)p

(
e(t, b)

e∗(b)

)
db

−
∫ +∞

0
σ(b)e∗(b)db −

∫ +∞

0
σ(b)e∗(b)db ln

(
i(t, 0)

i∗(0)

)]

−(
S∗ + ηV ∗)[ ∫ +∞

0
β1(a)i∗(a)p

(
i(t, a)

i∗(a)

)
da + β3

c

∫ +∞

0
ξ1(a)i∗(a)p

(
i(t, a)

i∗(a)

)
da

+
(

β2

γ + d
+ β3ξ2

c(γ + d)

)∫ +∞

0
θ(a)i∗(a)p

(
i(t, a)

i∗(a)

)
da

]
,

G6 = (
S∗ + ηV ∗)( β2

γ + d
+ β3ξ2

c(γ + d)

)∫ +∞

0
θ(a)i∗(a)

[
p
(
i(t, a)

i∗(a)

)
− p

(
T ∗i(t, a)

T (t)i∗(a)

)]
da

−(
S∗ + ηV ∗)β2T

∗p
(
T (t)

T ∗

)
− (

S∗ + ηV ∗)β3ξ2

c
T ∗p

(
T (t)

T ∗

)

+(
S∗ + ηV ∗)β3

c

∫ +∞

0
ξ1(a)i∗(a)

[
p
(
i(t, a)

i∗(a)

)
− p

(
W ∗i(t, a)

W (t)i∗(a)

)]
da

+(
S∗ + ηV ∗)β3ξ2

c
T ∗

[
p
(
T (t)

T ∗

)
− p

(
W ∗T (t)

W (t)T ∗

)]
− (

S∗ + ηV ∗)β3W
∗p
(
W (t)

W ∗

)
.

Note that

(
S∗ + ηV ∗)Faρ

[ ∫ +∞

0
σ(b)e(t, b)db −

∫ +∞

0
σ(b)e∗(b)p

(
e(t, b)

e∗(b)

)
db

−
∫ +∞

0
σ(b)e∗(b)db −

∫ +∞

0
σ(b)e∗(b)db ln

(
i(t, 0)

i∗(0)

)

+
∫ +∞

0
σ(b)e∗(b)db − i∗(0)

i(t, 0)

∫ +∞

0
σ(b)e(t, b)db

]

= (
S∗ + ηV ∗)Faρ

∫ +∞

0
σ(b)e∗(b)

[
− i∗(0)e(t, b)

i(t, 0)e∗(b)
+ 1 + ln

(
i∗(0)e(t, b)
i(t, 0)e∗(b)

)]
db

= −(
S∗ + ηV ∗)Faρ

∫ +∞

0
σ(b)e∗(b)p

(
i∗(0)e(t, b)
i(t, 0)e∗(b)

)
db.
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Hence, we have

6∑
i=2

Gi = −(S∗ + ηV ∗)Faq

[ ∫ +∞

0
β1(a)S∗i∗(a)p

(
S(t)i(t, a)i∗(0)
S∗i∗(a)i(t, 0)

)
da

+β2S
∗T ∗p

(
S(t)T (t)i∗(0)
S∗T ∗i(t, 0)

)
+ β3S

∗W ∗p
(
S(t)W (t)i∗(0)
S∗W ∗i(t, 0)

)

+η

∫ +∞

0
β1(a)V ∗i∗(a)p

(
V (t)i(t, a)i∗(0)
V ∗i∗(a)i(t, 0)

)
da + ηβ2V

∗T ∗p
(
V (t)T (t)i∗(0)
V ∗T ∗i(t, 0)

)

+ηβ3V
∗W ∗p

(
V (t)W (t)i∗(0)
V ∗W ∗i(t, 0)

)]
− (S∗ + ηV ∗)Faρ(1 − q)K1

×
[ ∫ +∞

0
β1(a)S∗i∗(a)p

(
S(t)i(t, a)e∗(0)
S∗i∗(a)e(t, 0)

)
da + β2S

∗T ∗p
(
S(t)T (t)e∗(0)
S∗T ∗e(t, 0)

)

+β3S
∗W ∗p

(
S(t)W (t)e∗(0)
S∗W ∗e(t, 0)

)
+ η

∫ +∞

0
β1(a)V ∗i∗(a)p

(
V (t)i(t, a)e∗(0)
V ∗i∗(a)e(t, 0)

)
da

+ηβ2V
∗T ∗p

(
V (t)T (t)e∗(0)
V ∗T ∗e(t, 0)

)
+ ηβ3V

∗W ∗p
(
V (t)W (t)e∗(0)
V ∗W ∗e(t, 0)

)]
(43)

−S∗p
(

S∗

S(t)

)(∫ +∞

0
β1(a)i∗(a)da + β2T

∗ + β3W
∗
)

−ηV ∗
[
p
(

S∗

S(t)

)
+ p

(
S(t)V ∗

S∗V (t)

)](∫ +∞

0
β1(a)i∗(a)da + β2T

∗ + β3W
∗
)

−(
S∗ + ηV ∗)[Faρ

∫ +∞

0
σ(b)e∗(b)p

(
i∗(0)e(t, b)
i(t, 0)e∗(b)

)
db

+
(

β2

γ + d
+ β3ξ2

c(γ + d)

)∫ +∞

0
θ(a)i∗(a)p

(
T ∗i(t, a)

T (t)i∗(a)

)
da

+β3

c

∫ +∞

0
ξ1(a)i∗(a)p

(
W ∗i(t, a)

W (t)i∗(a)

)
da + β3ξ2

c
T ∗p

(
W ∗T (t)

W (t)T ∗

)]
.

We find that all terms in Eq. (43) have the property of the function p(x) =
x − 1 − ln x . This means that positive-definite function G(t) has negative deriva-
tive dG(t)/dt . Furthermore, the equality dG(t)/dt = 0 holds if and only if S(t) =
S∗, V (t) = V ∗, e(t, b) = e∗(b), i(t, a) = i∗(a), T (t) = T ∗, R(t) = R∗,
and W (t) = W ∗. LaSalle’s Invariance Principle (LaSalle 1960) implies that the
bounded solutions of System (2) converge to the largest compact invariant set of{
(S(t), V (t), T (t), R(t),W (t), e(t, b), i(t, a)) ∈ D : dG(t)/dt = 0

}
. Since the

endemic equilibrium P∗ is the only invariant set of System (2) contained entirely in{
(S(t), V (t), T (t), R(t),W (t), e(t, b), i(t, a)) ∈ D : dG(t)/dt = 0

}
. Hence, every

solution of System (2) in set D\{P0} tends to the endemic equilibrium P∗, which is
globally attractive when it exists. This completes the proof. �

Appendix H: Numerical method for System (2)

To compute the numerical solution, we use the forward/backward finite difference
method for time and age to discretize System (2) (Kenne et al. 2021; Martcheva
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2015). We define the finite domain with respect to time and age as follows

D =
{
(t, a, b) : 0 ≤ t ≤ T, 0 ≤ a ≤ Ka, 0 ≤ b ≤ Kb

}
.

Todiscretize themodel, we divide the time interval (0,T) intoT subintervals (tn, tn+1)

with a time step Δt = tn+1 − tn , for n = 0, 1, 2, · · · ,T − 1. Similarly, we also
divide the latent age interval (0,Kb) and the infected age interval (0,Ka) into Kb

subintervals (bk, bk+1)with a time stepΔb = bk+1−bk and Ka subintervals (a j , a j+1)

with a time step Δa = a j+1 − a j , respectively, for k = 0, 1, 2, · · · , Kb − 1, j =
0, 1, 2, · · · , Ka − 1. We define the symbol substitution rules as follows

Sn = S(tn), Vn = V (tn), Tn = T (tn), Rn = R(tn), Wn = W (tn), i jn = i(tn, a j ),

ekn = e(tn, bk), β
j
1 = β1(a j ), θ j = θ(a j ), ξ

j
1 = ξ1(a j ), σ k = σ(bk).

Next, we use the trapezoidal rule to approximate several integral expressions in System
(2), that is,

∫ +∞

0
β1(a)i(t, a)da ≈ Δa

(
β0
1 i(t, a0) + β

Ka−1
1 i(t, aKa−1)

2

)
+ Δa

Ka−2∑
j=1

β
j
1 i(t, a j ),

∫ +∞

0
θ(a)i(t, a)da ≈ Δa

(
θ0i(t, a0) + θKa−1i(t, aKa−1)

2

)
+ Δa

Ka−2∑
j=1

θ j i(t, a j ),

∫ +∞

0
ξ1(a)i(t, a)da ≈ Δa

(
ξ01 i(t, a0) + ξ

Ka−1
1 i(t, aKa−1)

2

)
+ Δa

Ka−2∑
j=1

ξ
j
1 i(t, a j ),

∫ +∞

0
σ(b)e(t, b)db ≈ Δb

(
σ 0e(t, b0) + σ Kb−1e(t, bKb−1)

2

)
+ Δb

Kb−2∑
k=1

σ ke(t, bk).

Hence, the discrete form of System (2) can be expressed as

Sn+1 − Sn
Δt

= Λ + τVn + δRn − λn Sn − (α + d)Sn,

Vn+1 − Vn
Δt

= αSn − ηλnVn − (τ + d)Vn,

Tn+1 − Tn
Δt

= Δa

(
θ0i0n + θKa−1i Ka−1

n

2

)
+ Δa

Ka−2∑
j=1

θ j i jn − (γ + d)Tn,

Rn+1 − Rn

Δt
= γ Tn − (δ + d)Rn,

Wn+1 − Wn

Δt
= Δa

(
ξ01 i

0
n + ξ

Ka−1
1 i Ka−1

n

2

)
+ Δa

Ka−2∑
j=1

ξ
j
1 i

j
n + ξ2Tn − cWn,
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ekn+1 − ekn
Δt

+ ekn − ek−1
n

Δb
= −(ρσ k + d)ekn,

i jn+1 − i jn
Δt

+ i jn − i j−1
n

Δa
= −(θ j + d)i jn ,

e0n = (1 − q)λn
(
Sn + ηVn

)
,

i0n = qλn
(
Sn + ηVn

) + ρΔb

(
σ 0e0n + σ Kb−1eKb−1

n

2

)
+ ρΔb

Kb−2∑
k=1

σ kekn,

ek0 = e0(bk), i
j
0 = i0(a j ), (44)

where λn = Δa
(

β0
1 i

0
n+β

Ka−1
1 i Ka−1

n
2

)
+ Δa

∑Ka−2
j=1 β

j
1 i

j
n + β2Tn + β3Wn . After some

algebraic manipulation, the first seven equations of System (44) can be rewritten as

Sn+1 = Sn + Δt
[
Λ + τVn + δRn − λn Sn − (α + d)Sn

]
,

Vn+1 = Vn + Δt
[
αSn − ηλnVn − (τ + d)Vn

]
,

Tn+1 = Tn + Δt

[
Δa

(
θ0i0n + θKa−1i Ka−1

n

2

)
+ Δa

Ka−2∑
j=1

θ j i jn − (γ + d)Tn

]
,

Rn+1 = Rn + Δt
[
γ Tn − (δ + d)Rn

]
,

Wn+1 = Wn + Δt

[
Δa

(
ξ01 i

0
n + ξ

Ka−1
1 i Ka−1

n

2

)
+ Δa

Ka−2∑
j=1

ξ
j
1 i

j
n + ξ2Tn − cWn

]
,

ekn+1 =
[
1 − Δt

Δb
− Δt(ρσ k + d)

]
ekn + Δt

Δb
ek−1
n ,

i jn+1 =
[
1 − Δt

Δa
− Δt(θ j + d)

]
i jn + Δt

Δa
i j−1
n ,

i0n = qλn
(
Sn + ηVn

) + ρΔb

(
σ 0e0n + σ Kb−1eKb−1

n

2

)
+ ρΔb

Kb−2∑
k=1

σ kekn,

e0n = (1 − q)λn
(
Sn + ηVn

)
.

The explicit expressions for i0n and e0n are as follows

i0n =

⎛
⎜⎜⎜⎜⎜⎝

[
ρΔbσ 0(1 − q)(Sn + ηVn)

2
+ q(Sn + ηVn)

](
Δa

β
Ka−1
1 i Ka−1

n

2
+ Δa

Ka−2∑
j=1

β
j
1 i

j
n + β2Tn + β3Wn

)

+ ρΔb

(
σ Kb−1eKb−1

n

2
+

Kb−2∑
k=1

σ kekn

)

⎞
⎟⎟⎟⎟⎟⎠

1 − q(Sn+ηVn )Δaβ0
1

2 − ρσ 0(1−q)(Sn+ηVn )ΔaΔbβ0
1

4

,
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and

e0n = (1 − q)(Sn + ηVn)

(
Δa

β0
1 i

0
n + β

Ka−1
1 i Ka−1

n

2
+ Δa

Ka−2∑
j=1

β
j
1 i

j
n + β2Tn + β3Wn

)
.

Appendix I: MCMCmethod for parameter estimation

Let ε be the fitting error, and ε follows the additive independent Gaussian distribution
with mean zero and unknown variance ξ2, which is based on the result of the Central
Limit Theorem. Then, the observations y can be expressed as follows

y = f (x, χ̂) + ε, ε ∼ N (0, I ξ2), (45)

where f (x, χ̂) is the nonlinear model (θ(a), Z1(0, a), or Z2( j, a)); x are the inde-
pendent variables; χ̂ are the unknown parameters and initial values.

For Ψ̂ independent identically distributed observations, the likelihood function
p(y|χ̂ , ξ2) from Eq. (45) with a Gaussian error model is

p(y|χ̂ , ξ2) =
(

1√
2πξ2

)Ψ̂

exp

[−SS(χ̂)

2ξ2

]
,

where SS(χ̂) represents the sum of squares function

SS(χ̂) =
Ψ̂∑
i=1

[
(yi − f (χ̂)i )

2
]
.

For simplicity, we assume that the unknown parameters χ̂ are an independent
Gaussian prior specification, that is,

χ̂ j ∼ N (ν j , ϕ
2
j ), j = 1, . . . , M̂ .

where M̂ is the number of unknown parameters. For ξ−2, a Gamma distribution is
used as a prior, that is,

p(ξ−2) ∼ �

(
n0
2

,
n0
2
S20

)
,

where S20 and n0 are the prior mean and prior accuracy of variance ξ2, respectively.
The conditional distribution p(ξ−2|y, χ̂) can be expressed as follows

p(ξ−2|y, χ̂) ∝ (
ξ−2)− Ψ̂ +n0

2 −1 exp

[
− SS(χ̂) + n0S20

2ξ−2

]
.
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Using the conditional conjugacy property of the Gamma distribution, the conditional
distribution p(ξ−2|y, χ̂) is also a Gamma distribution with

p(ξ−2|y, χ̂) = �

(
Ψ̂ + n0

2
,
SS(χ̂) + n0S20

2

)
,

according to which we sample and update ξ−2 for other parameters within each run
of Metropolis Hastings simulations. Since we assume independent Gaussian prior
specification for parameters χ̂ , the prior sum of squares for the given parameters χ̂

can be calculated as follows

SSpri(χ̂) =
M̂∑
i=1

[
χ̂i − νi

ϕi

]2
.

Then the posterior for the unknown parameters χ̂ can be estimated as

p(χ̂ |y, ξ2) ∝ exp

[
− 1

2

(
SS(χ̂)

ξ2
+ SSpri(χ̂)

)]
.

In the simulation, we use Delayed Rejection Adaptive Metropolis (DRAM) algo-
rithm to generate efficient chains of estimated parameters (Haario et al. 2006). The
variance of measured components θ(a), Z1(0, a), and Z2( j, a) are given by inverse
gamma distribution with hyper-parameters (0.01, 0.04), where 0.01 is the initial error
variance, which is updated by inverse gamma distribution (Tang et al. 2018). Prior
information of unknown parameters is given by θ1 ∈ (0, 1000), θ2 ∈ (0, 1000),
�1 ∈ (0, 10000), �2 ∈ (0, 1000), σ1 ∈ (0, 10), σ2 ∈ (0, 1000), β1 ∈ (0, 1 × 10−7),
β3 ∈ (0, 1 × 10−7), ξ2 ∈ (0.6, 1), ζ1 ∈ (0, 1000), T (0) ∈ (10000, 50000),
R(0) ∈ (2 × 106, 1 × 107), W (0) ∈ (1 × 104, 1 × 105), and the proposal density
follows a multivariate normal distribution.
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