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Abstract
Mathematical modelling of the evolution of the size-spectrum dynamics in aquatic
ecosystems was discovered to be a powerful tool to have a deeper insight into impacts
of human- and environmental driven changes on the marine ecosystem. In this article
we propose to investigate such dynamics by formulating and investigating a suitable
model. Theunderlyingprocess for these dynamics is givenbypredation events, causing
both growth and death of individuals, while keeping the total biomass within the
ecosystem constant. The main governing equation investigated is deterministic and
non-local of quadratic type, coming from binary interactions. Predation is assumed to
strongly dependon the ratio between a predator and its prey,which is distributed around
a preferred feeding preference value. Existence of solutions is shown in dependence
of the choice of the feeding preference function as well as the choice of the search
exponent, a constant influencing the average volume in water an individual has to
search until it finds prey. The equation admits a trivial steady state representing a
died out ecosystem, as well as—depending on the parameter-regime—steady states
with gaps in the size spectrum, giving evidence to the well known cascade effect.
The question of stability of these equilibria is considered, showing convergence to the
trivial steady state in a certain range of parameters. These analytical observations are
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underlined by numerical simulations, with additionally exhibiting convergence to the
non-trivial equilibrium for specific ranges of parameters.

Keywords Aquatic ecosystem · Size-spectrum model · Predator–prey · Convergence
to equilibrium · Cascade-effect

Mathematics Subject Classification 92D40 · 45K05 · 92C15

1 Introduction

Understanding the size-spectrum dynamics in aquatic ecosystems is an active field of
ecology. For that purpose, several types of models have been proposed to describe
the underlying processes based on predation events. These lead to equations depicting
growth and decay of interacting populations structured by the average size of individu-
als.Wemodify one of themost popular and recent models (Datta et al. 2010) to include
the production of individuals of ‘small’ sizes so as to keep the total biomass constant.
The resulting model, which we aim to investigate within this work, describes the
time-evolution of the distribution function f (w, t), encoding the abundance of indi-
viduals with body size/weight w ∈ R+ = (0,∞) at time t ≥ 0 in the ecosystem.
The model is of kinetic collisional-type, spatially homogeneous, structurally similar
to kinetic equations for coalescing particles (Smoluchowski 1916) and the underlying
individual-based dynamics are given by binary predation events modelled by the fol-
lowing process: A predator feeds on a prey, resulting instantaneously in growth of the
predator as well as occurrence of a certain amount of small individuals (’offspring’).
Main matter of investigation will be an equation of the form

∂t f (w) =
∫ w

K

0
k(w − Kw′, w′) f (w − Kw′) f (w′) dw′

+ 1 − K

K ′2

∫ ∞

0
k

(
w′, w

K ′
)
f
( w

K ′
)
f (w′) dw′

−
∫ ∞

0

(
k(w,w′) + k(w′, w)

)
f (w′) f (w) dw′,

(1)

being a special case of a class of such models, more precisely introduced in Sect. 2.
The frequency of predation events described by (1) is quantified by the feeding kernel
k(·, ·), where the first variable stands for the predator weight, while the second always
holds the prey weight. Following (Benoît and Rochet 2004), typical feeding kernels
strongly depend on the ratio between the weights of predator and prey and are of the
form

k(w,w′) = Awαs
( w

w′
)

. (2)

The quantity Awα describes the volume searched per unit time by an individual with
sizew, which is modelled as an allometric function of the animal weight (Brown et al.
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2004;Kleiber 1932;Ware 1978). Hence, the constant A > 0 denotes the search volume
per unit mass−α and per unit time, while α > 0 encodes the search exponent. The first
can be seen as a time-scaling with little impact on the qualitative dynamics when of
order 1, which makes it reasonable to set A = 1. The function s : R+ → R+ is the so-
called feeding preference function, encoding the preferred prey size proportional to the
predator bodyweight. After such a predation event the predating individual assimilates
a certain, usually very small, fraction of its prey weight, given by the assimilation
constant K > 0, in literature also known as Lindeman efficiency (Brown et al. 2004).
At the same time a certain amount of ’offspring’ is produced, i.e. individuals having
a fraction K ′, with K ′ � 1, of the prey weight. The main novelty of our proposed
equation compared to the model introduced in Datta et al. (2010) is the second term
on the right-hand-side of (1), being responsible for the gain of very small individuals,
as side product of a predation, which causes an inflow close to zero. Moreover, the
dynamics of this model will not cause the ecosystem to die out due to a decreasing pool
of possible prey. Having in mind the modelling of rather small, closed-up ecosystems,
this further goes along with the biologically reasonable assumption of conservation of
total biomass of the whole system.

Trophic interactions between animals in the ocean have been a matter of interest
since the ’60 s with the first size-measurements of individuals taken and investigated
by Paloheimo and Dickie (1966), Hairston et al. (1960), Sheldon et al. (1977) and
Sheldon et al. (1972). The individual body size was discovered to be the ‘master
trait’ in food webs of animals (Elton 1927), giving rise to emergent distributions of
biomass, abundance and production of organisms. In fact, in marine and freshwater
ecosystems it was conjectured (Boudreau and Dickie 1992; Sheldon et al. 1972, 1977)
that by treating individuals as particles with states given by their size, equal intervals
of biomass (i.e. body weight × abundance)

M(w) = w f (w)

in logarithmic intervals of the organism body weight are observed to approximately
contain equal amounts of biomass per unit volume.This phenomenon is todayknownas
the Sheldon conjecture (Sheldon et al. 1972) and is equivalent to the biomass function
M having slope -1 in logarithmic scales. Mathematically speaking, for biomass in
weight range [w1, w2], the following should hold true

ln

(
w2

w1

)
=

∫ w2

w1

M(w) dw,

or equivalently by denoting x := ln(w),

ln (M(ex )) = −x .

Hence, biomass density decreases approximately as the inverse of body mass. While
this power-law relation seems to be a good approximation for large ecosystems includ-
ing a huge range of trophic levels in a wide geographic area (Sheldon et al. 1972),
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different studies dedicated to smaller scaled ecosystems very often reveal the occur-
rence of dome-patterns (Estes et al. 2011; Hairston et al. 1960; Rossberg et al. 2019).
These phenomena, also known as cascade effects, describes the suppression of spe-
cific trophic levels in the ecosystem as result of an indirect influence from one trophic
level to the second next lower or higher. The graph of the corresponding size spectrum
function will then have intervals in which it is zero, with each such gap indicating the
absence of specific trophic levels.

Based on this important observations from the ’60 s and ’70s, size-based ecosystem
modelling was discovered as a powerful tool to have a deeper insight into impacts of
human- and environment-driven changes on the marine ecosystem, giving rise to a
variety of models to capture this phenomenon. While these proposed mathematical
models describingmass spectra at large scales in aquatic ecosystems seemvery simple,
in fact they pose deep mathematical questions, which reflects the high computational
cost to solve them numerically and the complex patterns of solutions which may
confirm hypotheses by ecologists.

Size-spectrum models (SSMs) have been developed starting with Silvert and Platt
(1978), Silvert and Platt (1980), followed by Benoît and Rochet (2004), Andersen and
Beyer (2006), Andersen and Beyer (2015), Capitán and Delius (2010), Datta et al.
(2010), Datta et al. (2011) and Cuesta et al. (2018). A common feature is that the
body weights change due to interactions between organisms at different sizes. Indi-
viduals grow by feeding on and killing smaller organisms, thus connecting the two
opposing effects of predation: death of the prey, and body growth of the predator. A
common feature of these models is the allometric scaling of the rates of the differ-
ent processes. This scales back to observations in the ’30 s by Huxley (1932), who
stated that most size-related variations of individual characteristics can be expressed
as power-law functions of the body mass. Especially, shown by Kleiber (1932), the
metabolic rate follows such a power-law with exponent 3/4, see also (Brown et al.
2004). For a broad overview of size-spectrum models developed so far we refer the
reader to (Blanchard et al. 2017), giving an historical scope over the evolution in
this field including a wide range of existing models as well as their connections. On
the mathematical level, these dynamics are expressed in terms of partial differential
equations (PDEs), whose structures are similar to several equations recently used in
mathematical biology (Perthame 2006). In Silvert and Platt (1978, 1980) the authors
propose such aMcKendrick-von Foerster equation (McKendrick 1926) as model with
growth andmortality to be functions of bodymass, coupled by the aforementioned pre-
dation events. This was specified in later works, in which the predation was restricted
to organisms of smaller size (Capitán and Delius 2010) before in Benoît and Rochet
(2004) the authors introduced the feeding kernel giving a more precise description of
the feeding behaviour within the ecosystem. In more recent models (Datta et al. 2010,
2011) the authors aim to overcome the discrepancy that the evolution of an organism
body weight does not follow the same rules as ageing of individuals. Indeed, growth
in size is heavily influenced by interaction with other individuals (i.e. by predation),
while ageing happens uniformly in the population without necessity of interactions.
The authors hence proposed a jump-growth model encoding these predation events
within integral terms of quadratic order, where the aforementioned age-structured
McKendrick-von Foerster equation can be recovered as a first order approximation
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in a specific parameter-regime involving a very small biomass assimilation constant.
Numerical experiments in Benoît and Rochet (2004) as well as in Datta et al. (2010)
were performed. In both cases the dynamics within individuals below (e.g. phyto-
plankton and lower) and above (e.g. top carnivores) certain weight thresholds are
assumed to be governed by simpler dynamics, as, for example, relaxation equations
with an equilibrium reservoir of organisms in this trophic level. This is especially nec-
essary to overcome the lack of inflow of mass, since predation just results in growth
of one species, while a huge amount of the prey mass is lost. Simulations showed the
occurrence of travelling waves and oscillatory solutions, indicating already the high
instability and hence sensitivity of the power-law steady state to perturbations. More-
over, in Datta et al. (2011) the stability of the power-law equilibrium was analytically
investigated using tools from spectral analysis in the case of theMcKendrick-von Foer-
ster equation, the jump-growth model introduced in Datta et al. (2010) as well as the
McKendrick-von Foerster type equationswith an additional diffusion-term, giving evi-
dence to its instability in almost all reasonable parameter-regimes. Indeed, especially
on smaller scaled ecosystems, rather dome patterns in the size-spectrum function can
be observed (Rossberg et al. 2019), giving evidence to the so-called cascade-effect
(Estes et al. 2011; Hairston et al. 1960) within ecosystems.

Therefore, we propose a model with the biologically very reasonable assumption
of conservation of the total biomass of the ecosystem under investigation. This is
realised by a gain of small individuals as byproduct of each predation event. This
conserved quantity, mathematically interpreted as the first moment of the distribution
function f , gives additional structure needed for rigorous analytical investigation of
the proposed equation. Moreover we are able to capture the widely observed cascade
effect by carefully chosen feeding interaction functions, indicating its occurrence or
absence of specific trophic levels in the ecosystem.

The underlying microscopic dynamics of (1) are given by binary, instantaneous
interactions, which bears some resemblancewith a variety of binary collisionalmodels
in the field of kinetic theory, starting with the Boltzmann equation as the most famous
example (Cercignani et al. 1994;Villani 2002). Predation, the type of binary interaction
considered in our model, can be interpreted as coagulation with loss of mass in the
context of coalescing particles. Structural similarity to the Smoluchowski coagulation
equation (Smoluchowski 1916) as well as to further coagulation equations, matter
of recent studies (Brilliantov et al. 2015; Cheng and Redner 1990; Escobedo et al.
2004; Ernst and Pagonabarraga 2007; Giri and Laurençot 2021a, b; Niethammer and
Velázquez 2013; Srivastava 1978), follows naturally. We shall make use of some
techniques arising from these fields of research when deriving analytical properties of
the models: in particular control over characteristic moments, fixed-point combined
with compactness arguments as well as entropy-and entropy dissipation techniques,
especially characteristic for such structured equations in mathematical biology and
physics (Perthame 2006; Rezakhanlou and Villani 2007).

The article is organised as follows: In Sect. 2 we introduce and motivate our general
size-spectrum model for aquatic ecosystems, while embedding in existing literature,
showing similarities and crucial differences. Moreover, for a certain case, main focus
of our analysis, formal properties regarding control of moments are derived. The ques-
tion of existence and uniqueness is investigated in the subsequent Sect. 3. Section4
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is dedicated to the study of existence and admissibility of steady states, as well as
convergence towards them regarding the parameter-regime. Finally in Sect. 5 we give
evidence to these analytical observations by providing numerical simulations under-
lying results and conjectures stated in the previous Sect. 4.

2 A jump-growthmodel for size-spectrum in aquatic ecosystems

We introduce a new class ofmodels for aquatic ecosystems, which contains production
of small individuals (’offspring’) and, hence, conserves the total biomass. Following
(Datta et al. 2010) we assume that the underlying individual-based mechanism is
given by a Markov process, describing binary predation events of single organisms
in the ecosystem, which are modelled in the following way: Predation is assumed
to happen in an instant, followed by jumps in the size of the predator and, different
to the model in Datta et al. (2010), production of a certain amount of very small
sized organisms, for simplicity called ’offspring’ throughout this article, which are
nourishing the ecosystem at the smallest size class. This modelling choice aims to
capture the phenomenon observed in ecosystems, especially in rather closed-up and,
hence, self-contained environments, in which all the available materials are re-utilised
through the establishment of continuous cycles. To be more precise, a predator with
body-weight w ∈ R+ feeds on a prey with weight w′ ∈ R+. The predator is able to
assimilate a fraction Kw′ of the body mass of its prey. This implies that the predator
post-feeding state is given by w + Kw′. The assimilation constant K is assumed to
be small, i.e. 0 < K < 1, inspired by insights regarding metabolic theory of ecology
(Andersen and Beyer 2006, 2015; Brown et al. 2004), widely used by ecologists.
Furthermore, we assume that the body mass of the prey, which cannot be assimilated
by the predator, will produce a certain amount P > 0 of ’offspring’. Therefore, we
introduce the waste-to-nutrient density p(w,w′), which encodes the probability that
within a predation event, where an individual with weight w′ is eaten, ’offspring’ of
size w is produced. We assume that p(w, ·) is a probability density function, i.e.

∫ ∞

0
p(w,w′) dw′ = 1, ∀w ∈ [0,∞).

A predation event is assumed to happen with a certain rate given by the feeding kernel
k(·, ·) depending on the prey and predator weights (2), naturally asymmetric in its two
arguments.

The associated evolution equation for the distribution function f (w, t), w ∈
R+, t ≥ 0 of the individuals in the ecosystem, is of collisional-type, spatially homo-
geneous and reads as

∂t f (w) =
∫ w

K

0
k(w − Kw′, w′) f (w − Kw′) f (w′) dw′

+ P
∫ ∞

0

∫ ∞

0
p(w,w′′)k(w′, w′′) f (w′′) f (w′) dw′′ dw′

−
∫ ∞

0

(
k(w,w′) + k(w′, w)

)
f (w′) f (w) dw′.

(3)
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The two loss terms on the right-hand-side encode that within a predation event in the
ecosystem two individuals are lost and enter the dynamics again with post-predation
states, given by the two gain terms. The first gain term encodes the addition of an
individual which grew after eating its prey. The second gain term on the other hand
describes the gain of ’offspring’ as a side-product induced by the remaining bodymass,
which could not be assimilated by the predating organism. We want to point out that
the appearance of the two loss terms comes from the asymmetry of the feeding kernel.
Equation (3) bears some strong structural similarity to the collision-induced breakage
equation, which is used to model formation of raindrops as well as planetesimals.
Several important contributions to the understanding to such types of equations can be
found over the last four decades from a physical point of view starting with (Srivastava
1978), for a model describing the size-distribution of raindrops, followed by Cheng
and Redner (1990) for a general model for irreversible fragmentation and Brilliantov
et al. (2015) with a study of size distribution of particles in Saturn’s rings, which is
also governed by coagulation and fragmentation processes. Moreover, see Ernst and
Pagonabarraga (2007), Giri and Laurençot (2021a), Giri and Laurençot (2021b) for
more recent theoretical findings regarding this type of equation.

The weak formulation of (3) obtained by multiplication by a suitable test-function
ϕ : R+ → R+ before integrating over the state space R+ is given by

d

dt

∫ ∞

0
f (w)ϕ(w) dw

=
∫ ∞

0

∫ ∞

0

(
ϕ

(
w + Kw′) + P

∫ ∞

0
ϕ(w′′)p(w′′, w′) dw′′ − ϕ(w) − ϕ(w′)

)

k(w,w′) f (w) f (w′) dw′ dw.

(4)

For having a rigorous justification for the derivation of the equation for evolution of the
distribution function for the microscopic dynamics, we again refer the reader to Datta
et al. (2010), where this topic was discussed for their model with very similar structure.
Moreover, we would like to point out more precisely the structural similarity to the
collision-induced breakage equation investigated in Giri and Laurençot (2021a). The
differences lie, on the one hand, in the asymmetry of the feeding kernel k(·, ·), which is
assumed to be symmetric in the collision-induced breakage setting. On the other hand,
the equation in Giri and Laurençot (2021a) features the possibility of aggregation as
well as breakup induced by a collision of two particles, while the model (3) just allows
for the latter, since after each predation an amount of ’offspring’ is produced. Further,
different to the equation in Giri and Laurençot (2021a), the function describing the
daughter distribution after the breakup is symmetric,while thiswouldnot be reasonable
in the context of predation behaviour.

We aim to model an ecosystem where the total biomass of the ecosystem

M :=
∫ ∞

0
w f (w, t) dw (5)
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is formally conserved. This asks for conservation of biomass within each predation
event, which results in the restriction to choose P and p, fulfilling the relation

P
∫ ∞

0
w′′ p(w′′, w′) dw′′ = (1 − K )w′, ∀w′ ∈ [0,∞),

which can be seen by the weak formulation (4) with the choice ϕ(w) = w. It is,
however, well-investigated that for equations similar to the Smoluchowski coagulation
equation (Smoluchowski 1916) a phenomenon known as gelation can occur, which
describes the loss ofmass at finite time, associatedwith the blow-upof thefirstmoment,
indicating formation of an infinite cluster of particles. This will be further discussed
in Sect. 2.2.

Remark 1 The quantity

mp(w
′) :=

∫ ∞

0
w′′ p(w′′, w′) dw′′

describes the mean ’offspring’-size, which appears after an individual of weight w′ is
eaten. We make the reasonable assumption that mp(w

′)
w′ = 1−K

P w′ � 1, hence P 	 1
has to hold for all w′ ∈ (0,∞).

2.1 Deterministic jump-growthmodel with offspring-production

A very specific choice for the waste-to-nutrient density p(·, ·) would be

p(w,w′) = δ w
K ′ (w

′) = K ′δK ′w′(w),

for positive very small constant 0 < K ′ � 1, which means that after each predation
event the ecosystem is nourished with particles, whose size is given by a very small
fraction of the size of the consumed prey. Hence, the stochasticity in the dynamics on
the level of the distribution function is completely lost, leaving a purely deterministic
model on which we will focus in the following. Moreover, in that case we are able
to determine the constant P explicitly, namely P = 1−K

K ′2 . A visualisation of the
underlying jump-growth process can be found in Fig. 1.

Under these considerations and additionally assuming that the feeding kernel is of
the form (2) the model becomes

∂t f (w) = Q( f , f ) = G1( f , f ) + G2( f , f ) − L1( f , f ) − L2( f , f )

:=
∫ w

K

0

(
w − Kw′)α

s

(
w − Kw′

w′

)
f (w − Kw′) f (w′) dw′

+ 1 − K

K ′2

∫ ∞

0
w′αs

(
w′K ′

w

)
f
( w

K ′
)
f (w′) dw′

−
∫ ∞

0

(
wαs

( w

w′
)

+ w′αs
(

w′

w

))
f (w′) f (w) dw′, (6)
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Fig. 1 Visualisation of the underlying individual based interaction rules, governing the dynamics encoded
by Eq. (6). A predator with weight w grows and jumps to state w + Kw′, where w′ is the prey weight,
while producing an amount 1−K

K ′ of ’offspring’ of size K ′w′ as a side-product of the biomass, which could
not be assimilated by the predator

which equipped with initial conditions

f (w, 0) = f0(w), w ∈ R+ (7)

is the matter of investigation in the remainder of this article.
Inspired by the choice of s(·) we perform the coordinate change w′ → r :=

wpredator/wprey in every term of (6) to obtain

∂t f (w) = wα+1
∫ ∞

0
s(r)

[
rα(r + K )−α−2 f

(
wr

r + K

)
f

(
w

r + K

)

+rα(1 − K )K ′−3−α f
( w

K ′
)
f
(wr

K ′
)

− r−2 f (w) f
(w

r

)
− rα f (w) f (rw)

]
dr

(8)

which allows a clearer vision of the influence of the feeding ratio r ∈ [0,∞) on the
dynamics.

The Choice of the feeding preference function: Since, in this model approach, the
evolution of the aquatic system is only driven by predation with the body size being
the decisive trait, the choice of the feeding preference function s : R+ → R+ has
essential influence on the dynamics in the ecosystem. In this article we consider two
possibilities. On the one hand, we assume that the feeding ratio r of predator and prey
is drawn by a Gaußian distribution

s(r) := 1

σ
√
2π

exp

(
− (r − B)2

2σ 2

)
, (9)

already used in a similar manner in existing models as in Benoît and Rochet (2004);
Datta et al. (2010, 2011). On the other hand, we work with

s(r) := 1

σ 2 exp

( −σ 2

σ 2 − (r − B)2

)
1[B−σ,B+σ ](r). (10)
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Fig. 2 Both choices of the feeding preference function s(·) plotted against predator–prey ratio r . On the
left, the Gaußian feeding preference (9). On the right the feeding preference with compact support (10).
The parameters B = 1.5 and σ = 0.3 were chosen

Although of similar shape, as depicted in Fig. 2, the crucial difference compared to (9)
is its compact support. Throughout the analysis-part of this article we focus on choice
(10) out of convenience. Doing so, we will not neglect to point out the main analyti-
cal differences and, most importantly, the biological significance of these modelling
choices, supported by numerical simulations in Sect. 5.

In both cases, the constant B > 0 describes the preferred feeding ratio between
predator and its prey, while the parameter σ > 0 denotes the variance from this feeding
preference B. We specially observe that for both choices (9) and (10) s ∈ C∞([0,∞))

hold and that both functions are bounded from above respectively by 1
σ
√
2π

and 1
eσ 2 ,

their respective maximal values when r reaches the preferred feeding ratio B.
The main difference being that in the first modelling choice (9) all feeding ratios

between predator and prey are possible, althoughmost of them, depending on thewidth
σ of the Gaußian, with quite low probability. Especially, these dynamics also include
the biologically not applicable situations of predating organisms with arbitrary small
size as well as preys of arbitrary big size. The second feeding preference function (10)
just admits a varianceσ around the preferred feeding ratio,while predation interactions
between individuals with weights such that wpredator/wprey /∈ [B − σ, B + σ ] are
not admitted. As it can be seen in Sect. 4, supported by simulations in Sect. 5, this will
be the crucial property, which admits non-zero quasi-stationary solutions of (6)–(7)
with gaps in the size-spectrum, while this cannot be the case for the Gaußian feeding
preference function.

We point out that both feeding preference functions a-priori admit predation events
where predators are of smaller size than their prey. Since these predation events are
under-represented in aquatic food-webs a reasonable choice of parameters B and σ

would include B − σ ≥ 1. In that case the probability of a predator feeding on prey
bigger than itself is very unlikely in case of (9), while it is completely impossible with
the choice (10).
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Table 1 Relevant model parameters and their ecological meaning as well as reasonable parameter-ranges

Parameter Parameter-range considered Definition

K 0.1−0.6 Assimilation constant

K ′ 0.001−0.1 ‘Offspring’ production constant

α 0.5−1.5 Search volume exponent

A 1 Volume searched per mass−α

B ≥ 1 Preferred ratio of predator/prey size

σ ≤ 0.5 Diet breadth (Variance from B)

In the limit-case σ → 0 the feeding preference function degenerates in both cases
to

s(r) = δB(r),

implying that a predator exclusively feeds on prey with size given by a fraction 1/B of
its own size, which is inspired by Silvert and Platt (1978). The corresponding model
(6)–(7) then simplifies to the following ordinary differential equation

∂t f (w) = Bαwα+1

(K + B)α+2 f

(
w

B + K

)
f

(
Bw

B + K

)

+ Bα(1 − K )wα+1

K ′α+3 f
( w

K ′
)
f

(
Bw

K ′

)

− wα+1

B2 f (w) f
(w

B

)
− Bαwα+1 f (w) f (Bw),

f (w, 0) = f0, (11)

for w ∈ [0,∞).

Assumptions ondependencies:The parameters and quantitiesmodel (6)–(7) depends
on are broad features of an ecosystem and cannot bemeasured for a general community
explicitly. Rather, we summarize our assumptions on the aforementioned, see Table 1,
and discuss their meaning, considering biological relevance and comparing to existing
literature on aquatic organisms and food webs.

Throughout this article, we investigate the parameters’ influence on the dynamics
on the ecosystem by varying them within their parameter-ranges given in the table
above, while also making use of the underlying mathematical structure given by spe-
cific values. The reference values are taken from previous works, close to biological
measurements (Benoît and Rochet 2004; Datta et al. 2010; Paloheimo and Dickie
1966; Ware 1978).

2.2 Formal properties

The weak formulation (4) in the setting of the deterministic jump-growth model with
’offspring’ production can be written as
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d

dt

∫ ∞

0
f (w)ϕ(w) dw

=
∫ ∞

0

∫ ∞

0

(
ϕ

(
w + Kw′) + 1 − K

K ′ ϕ
(
K ′w′) − ϕ(w) − ϕ(w′)

)

wαs
( w

w′
)
f (w) f (w′) dw′ dw, (12)

where again ϕ : R+ → R+ describes a suitable test-function and s(·) can either be of
the form (9) or (10) at that stage. Formal conservation of total biomass of the system
(5) becomes clear with the choice ϕ(w) = w in (12), since the expression under the
brackets within the integrand vanishes:

d

dt

∫ ∞

0
w f (w) dw =

∫ ∞

0

∫ ∞

0

(
(w + w′) − (w + w′)

)
wαs

( w

w′
)
f (w) f (w′) dw′ dw .

(13)

It is important to state that at that stage, the first moment is just a formally conserved
quantity of the system, induced by the modelled post-predatory weight distribution on
an individual based scale. The right-hand-side is indeed equal to zero provided that

∫ ∞

0

∫ ∞

0
(w + w′)wαs

( w

w′
)
f (w, t) f (w′, t) dw′ dw < ∞, ∀t > 0.

However, a blow-up of the of total biomass can happen in finite time if the above
condition fails to hold. This relates to the gelation phenomenon, which is by now well
understood in the framework of coagulation equations (see Escobedo et al. 2002; Ernst
and Pagonabarraga 2007; Giri and Laurençot 2021a, b and references therein).

Further, the choice ϕ ≡ 1 for the test-function gives insights over the dynamics of
the total number of organisms in the ecosystem

N (t) :=
∫ ∞

0
f (w, t) dw. (14)

We obtain from (12) with ϕ ≡ 1

Ṅ (t) = 1 − K − K ′

K ′

∫ ∞

0

∫ ∞

0
wαs

( w

w′
)
f (w) f (w′) dw′ dw,

hence, increase of the number of individuals in time due to the production of a huge
amount of small-sized organisms as a by-product of a predation event. Moreover,
although not directly relevant for our model assumptions, the case s ≡ s̄ and α = 0
gives the following differential relation:

Ṅ (t) = s̄
1 − K − K ′

K ′ N 2(t) .

Thus, N (t) blows-up in finite time tmax = K ′
s̄(1−K−K ′)N0

.
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Remark 2 The above observations already indicate that attention should be paid to a
possible blow-up of moments in finite time. Indeed, from the formulations above it is
not clear if the quantitiesM(t) andN (t) stay finite in finite time. However, if one can
control the α-th moment with respect to t , i.e.

Mα(t) :=
∫ ∞

0
wα f (w) dw < ∞, ∀t > 0,

it is easily seen that further N (t) is controlled due to the boundedness of the feeding
preference function s(r) ≤ s̄, for all r ∈ R+. Indeed, in that case we can estimate

Ṅ (t) ≤ 1 − K − K ′

K ′ s̄Mα(t)N (t),

and hence, by the virtue of Grönwall inequality,

N (t) ≤ N (0) exp

(
1 − K − K ′

K ′ s̄
∫ t

0
Mα(s) ds

)
< ∞, ∀t > 0.

Moreover, the integrals on the right-hand-side of (13) are finite, hence the total biomass
is conserved, provided that the Mα(t) is finite and the feeding preference function
s(·) has compact support, as in (10). This can be seen by the following estimate

∫ ∞

0

∫ ∞

0
(w + w′)wαs

( w

w′
)
f (w) f (w′) dw′ dw ≤ s̄C(σ, B)Mα(t)M,

where we used that due to the boundedness of the support of s(·) one can always
estimate the prey weight with the predator weight and vice versa.

Moment-Control: We generalise the formal observations about the zeroth and the
first moment, to the question which moments

Mm[ f ](t) :=
∫ ∞

0
wm f (w, t) dw (15)

of the distribution f (·, t) are expected to be controlled over time t > 0. Starting again
from the weak formulation (12) and the choice ϕ(w) := wm , we first aim to identify
the sign of the right-hand-side with respect to the power m > 0. We obtain

Ṁm[ f ](t) =
∫ ∞

0

∫ ∞

0

((
w + Kw′)m + 1 − K

K ′
(
K ′w′)m − wm − w′m

)

wαs
( w

w′
)
f (w) f (w′) dw′ dw

=
∫ ∞

0

∫ ∞

0

(( w

w′ + K
)m + (1 − K )K ′m−1 −

( w

w′
)m − 1

)
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wαw′ms
( w

w′
)
f (w) f (w′) dw′ dw

=
∫ ∞

0

∫ ∞

0

(
(r + K )m + (1 − K )K ′m−1 − rm − 1

)

wα+m+1r−m−2s(r) f
(w

r

)
f (w) dw dr , (16)

where similar to (8) the last equality was due to the coordinate change w′ → r , via
w
w′ = r . Negativity of the expression between the brackets indicates decay of the
corresponding moment, provided the involved integrals are finite. Hence, we aim to
characterize under which choice of parameters the expression between the brackets is
negative for a.e. (r ,m) ∈ (0,∞) × (0,∞). Therefore, we define the quantity

F(m, r) := (r + K )m + (1 − K )K ′m−1 − rm − 1, (17)

and investigate the behaviour of the function for parameters K , K ′ � 1 and (m, r) ∈
R+×R+. First, one notices that form = 0,which corresponds to (14), F is independent
of r and has value

F(0, r) = 1 − K − K ′

K ′ > 0, ∀r ∈ [0,∞),

which increases as the ’offspring’ production constant K ′ decreases. Obviously, F
vanishes for m = 1 for all r ∈ [0,∞), which coincides with formal conservation of
total biomass (13). Second, one easily calculates

∂mF(m, r) = ln (r + K ) (r + K )m + (1 − K ) ln (K ′)K ′m−1 − ln(r)rm,

thus, the derivative of F(·, r) at m = 1 is given by

∂mF(1, r) = ln (r + K ) (r + K ) + (1 − K ) ln (K ′) − ln(r)r .

Its sign decides if we have decay of moments and whether they are greater or less than
1. By a simple reformulation of the above, one obtains the condition

∂mF(1, r) ≶ 0 ⇔ (r + K )r+K K ′1−K ≶ rr . (18)

These observations lead to the following result.

Lemma 1 Let r ∈ [a, b] such that 0 < a < b. Then for K < 1 given and K ′ chosen
accordingly small enough, there exist constants 0 < m̃ < 1 and 1 < m∗ < ∞ such
that we have

F(m, r) > 0, ∀m ∈ (m̃, 1), ∀r ∈ [a, b],

and

F(m, r) < 0, ∀m ∈ (1,m∗), ∀r ∈ [a, b].
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Fig. 3 Function F (17) plotted against moments m with various values r ∈ supp (s), with s(·) as (10),
B = 1.5, σ = 0.3, K = 0.3 and K ′ = 0.1

Proof Starting from condition (18), we can observe that one can find sufficiently small
K ′ such that (r + K )r+K K ′1−K < rr being equivalent to

(
1 + K

r

)r

(r + K )K K ′1−K < 1

holds for all 0 < B − σ < r < B + σ . This ensures the existence of an interval
[1,m∗], m∗ > 1, such that F(m, r) ≤ 0 for all m ∈ [1,m∗] and r ∈ [B − σ, B + σ ],
from which claim (20) follows.

Moreover, from the strict inequality in condition (18) one can deduce that, under the
same parameter regime for sufficiently small K ′, there has to exist an interval [m̃, 1],
m̃ < 1, of small powers such that F(m, r) > 0 for allm ∈ [m̃, 1], r ∈ [B −σ, B +σ ]
and, hence, growth in time of the moments smaller than 1 (19). ��

Remark 3 • Theabove results indicate growth anddecayof themoments of a solution
f : R+ × R+ → R+ to (6)–(7). Indeed, if the feeding preference function
s : R+ → R+ is given as (10) such that inf supp (s) = B − σ > 0. Then for K
and K ′ small enough, we have

Ṁm[ f ](t) ≥ 0, ∀m ∈ (m̃, 1), (19)

and

Ṁm[ f ](t) ≤ 0, ∀m ∈ (1,m∗), (20)
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provided, that we do not deal with infinite integrals on the right-hand-side of (16).
This is the case for α ∈ (1,m∗) with Mα(0) < ∞, from which we can deduce
that the momentMα(t) is non-increasing. This further implies the uniform upper-
bound

Mm[ f ](t) ≤ Mm(0) :=
∫ ∞

0
wm f0(w) dw, ∀t > 0, m ∈ (1,m∗).

• The constantsm∗ and m̃, borders of the intervals, where we can associate a defini-
tive sign to F , depend only on the interval of the feeding ratio r as well as on the
small parameters K and K ′. Hence, K , K ′ and the shape of s(·) (10) via its param-
eters σ and B define themoments which are growing andwhich are decaying. As is
customary for this class of problems a tractable, explicit formula for the solution is
a-priori completely out of reach. However, our analysis of the qualitative features
of the model does not require such an explicit solution.
In Fig. 3 the function F (17) was plotted for m ∈ [0.7, 2.5] and various values for
r ∈ [B − σ, B + σ ], where B = 1.5 and σ = 0.3 was chosen. One can see that
m∗ ≈ 1.75 is defined by F(m∗, B − σ) = 0, while m̃ is clearly negative, hence
F(m, r) > 0 for all m ∈ [0, 1), r ∈ [B − σ, B + σ ].

3 Existence of solutions

The existence results presented rely on fixed-point arguments of the integral operator
on the right-hand-side of (6). Due to the formal conservation of the first moment (13)
we expect the space

L1(R+, w) :=
{
f : R+ → R+ : w f (w) ∈ L1(R+)

}

to be the right setting. Model-specific properties of the feeding kernel (2) are highly
relevant: Compactness of the support of the feeding preference s(·) is needed. More-
over, the previously established control of the αth moment in Sect. 2.2, which just
holds for α ∈ (1,m∗), indicates how crucial its parameter range is to the type of exis-
tence result we obtain. Indeed, it is already well known (see, e.g. Escobedo et al. 2002;
Ernst and Pagonabarraga 2007; Giri and Laurençot 2021a, b) that due to a possible
blow-up of the solution in specific parameter regimes of the exponent one can expect
global or just local in time existence of a solution.

Theorem 2 Let the feeding preference function s : R+ → R+ be given as (10) such
that inf supp (s) = B − σ > 0 and K and K ′ small enough. We further assume that
for the search-volume exponent it holds α ∈ (1,m∗) and f0 ∈ L1+(R+, w) such that

M0
α :=

∫ ∞

0
wα f0(w) dw < ∞.
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Then there exists a unique solution f ∈ C1
([0,∞), L1+(R+, w)

)
to (6)–(7) and

Mα(t) := ∫ ∞
0 wα f (w, t) dw ≤ M0

α .

Proof We aim to prove a Lipschitz-property of the right-hand-side of (6). Let therefore
f 1, f 2 ∈ L1+(R+, w) with

‖wα−1 f 1‖L1+(R+,w), ‖wα−1 f 2‖L1+(R+,w) ≤ M0
α.

The four terms on the right-hand-side of (6) will be dealt with separately, where always
the trivial algebraic identity f 1 f 1

′ − f 2 f 2
′ = f 1( f 1

′ − f 2
′
)+ f 2

′
( f 1 − f 2) is used.

For the first gain term G1 we obtain

∥∥G1( f
1, f 1) − G1( f

2, f 2)
∥∥
L1(R+,w)

=
∥∥∥∥∥
∫ w

K

0

(
w − Kw′)α

s

(
w − Kw′

w′

) (
f 1(w − Kw′) f 1(w′) − f 2(w − Kw′) f 2(w′)

)
dw′

∥∥∥∥∥
L1(R+,w)

≤
∫ ∞

0

∫ ∞

0
w

(
w − Kw′)α

+ s

(
w − Kw′

w′

) ∣∣ f 1(w − Kw′)
∣∣ ∣∣ f 1(w′) − f 2(w′)

∣∣ dw′ dw

+
∫ ∞

0

∫ ∞

0
w

(
w − Kw′)α

+ s

(
w − Kw′

w′

) ∣∣ f 2(w′)
∣∣ ∣∣ f 1(w − Kw′) − f 2(w − Kw′)

∣∣ dw′ dw

= 1

K

∫ ∞

0

∫ ∞

0
w

(
w − w′)α

+ s

(
K

w − w′

w′

)
| f 1(w − w′)|

∣∣∣∣ f 1
(

w′

K

)
− f 2

(
w′

K

)∣∣∣∣ dw′ dw

+ 1

K

∫ ∞

0

∫ ∞

0
w

(
w − w′)α

+ s

(
K

w − w′

w′

) ∣∣∣∣ f 2
(

w′

K

)∣∣∣∣ | f 1(w − w′) − f 2(w − w′)| dw′ dw.

Next, we use the boundedness of the feeding preference function s(·) (10) as well as
its compact support, so that we can always estimate the predator weight with the prey
and vice versa. The to these estimates corresponding multiplicative constants will not
be written explicitly and we notice that they have different forms depending on the
term of the collision operator which is estimated. Starting with the first gain term we
obtain

∥∥∥G1( f
1, f 1) − G1( f

2, f 2)
∥∥∥
L1(R+,w)

≤ C1(B, σ, K )

K

∫ ∞

0

∫ ∞

0
w′ (w − w′)α

+
∣∣∣ f 1(w − w′)

∣∣∣
∣∣∣∣ f 1

(
w′

K

)
− f 2

(
w′

K

)∣∣∣∣ dw′ dw

+ C2(B, σ, K )

K

∫ ∞

0

∫ ∞

0
w′α (

w − w′)
+

∣∣∣ f 2(w′)
∣∣∣
∣∣∣ f 1(w − w′) − f 2(w − w′)

∣∣∣ dw′ dw

≤ KC1(B, σ, K )M0
α‖ f 1 − f 2‖L1(R+,w) + C2(B, σ, K )

K
M0

α‖ f 1 − f 2‖L1(R+,w)

≤ C̃(B, σ, K )M0
α‖ f 1 − f 2‖L1(R+,w) ,

where C̃(B, σ, K ) = max {C1(B, σ, K ),C2(B, σ, K )}. Similarly we proceed with
the remaining three terms:

∥∥G2( f
1, f 1) − G2( f

2, f 2)
∥∥
L1(R+,w)
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= 1 − K

K ′2

∥∥∥∥
∫ ∞

0
w′αs

(
w′K ′

w

) (
f 1

( w

K ′
)
f 1(w′) − f 2

( w

K ′
)
f 2(w′)

)
dw′

∥∥∥∥
L1(R+,w)

≤ C3(B, σ, K ′)(1 − K )K ′α−1
∫ ∞

0

∫ ∞

0
wαw′ ∣∣ f 1 (w)

∣∣ ∣∣ f 1(w′) − f 2(w′)
∣∣ dw′ dw

+ C4(B, σ )(1 − K )K ′α−1
∫ ∞

0

∫ ∞

0
ww′α ∣∣ f 2 (

w′)∣∣ ∣∣ f 1 (w) − f 2 (w)
∣∣ dw′ dw

= Ĉ(B, σ, K ′)M0
α‖ f 1 − f 2‖L1(R+,w),

where again Ĉ(B, σ, K ′) describes themaximumover the twomultiplicative constants
before. The loss terms are due to the lack of convolution of a simpler structure:

∥∥∥L1( f
1, f 1) − L1( f

2, f 2)
∥∥∥
L1(R+,w)

=
∥∥∥∥
∫ ∞

0
wαs

( w

w′
) (

f 1(w) f 1(w′) − f 2(w) f 2(w′)
)

dw′
∥∥∥∥
L1(R+,w)

≤ C4(B, σ )

∫ ∞

0

∫ ∞

0
wαw′

∣∣∣ f 1(w)

∣∣∣
∣∣∣ f 1(w′) − f 2(w′)

∣∣∣ dw′ dw

+ C4(B, σ )

∫ ∞

0

∫ ∞

0
ww′α

∣∣∣ f 2 (
w′)∣∣∣

∣∣∣ f 1(w) − f 2(w)

∣∣∣ dw′ dw

= 2C4(B, σ )M0
α‖ f 1 − f 2‖L1(R+,w),

and
∥∥∥L2( f

1, f 1) − L2( f
2, f 2)

∥∥∥
L1(R+,w)

=
∥∥∥∥
∫ ∞

0
w′αs

(
w′

w

) (
f 1(w) f 1(w′) − f 2(w) f 2(w′)

)
dw′

∥∥∥∥
L1(R+,w)

≤ 2C4(B, σ )M0
α‖ f 1 − f 2‖L1(R+,w).

Unifying the above estimates, we obtain

‖Q( f 1, f 1) − Q( f 2, f 2)‖L1+(R+,w) ≤ C(B, σ, K , K ′)M0
α‖ f 1 − f 2‖L1(R+,w) .

Therefore a unique local solution exists by Picard iteration, which preserves non-
negativity. Boundedness of the α-moment holds due to α ∈ (1,m∗] and (20). In
this regime, the formal conservation of biomass, i.e. of the L1(R+, w)-norm, holds
rigorously, implying global existence. This is a consequence of the boundedness of
Mα , which implies together with the boundedness and compact support of s(·) that
all integrals in (13) are finite. Hence, no finite-time blow-up phenomenon is possible.

��
The search exponent α highly depends on the trophic level the organisms are in,

but is always given by a number close to 1 and in many modelling approaches taken
equal to 1, see, e.g., (Datta et al. 2010). Suggested by Ware in ’78 (Ware 1978), for
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pelagic fish α ∈ [0.6, 0.9] is biologically reasonable. In that case, however, it can be
assumed that m̃ < α < 1, hence (19) implies growth of Mα with respect to time.
Moreover, a blow-up in finite time of Mα(t) is viable. From (16) we estimate due to
the boundedness of s(·) and F

Ṁα(t) =
∫ ∞

0

∫ ∞

0
F

(
α,

w

w′
)

wαw′αs
( w

w′
)
f (w) f (w′) dw′ dw

≤ C(B, σ, K , K ′)M2
α(t),

whereC(B, σ, K , K ′) describes amultiplicative constant depending on the parameters
in the arguments. This leads to

Mα(t) ≤ Mα(0)

1 − tC(B, σ, K , K ′)Mα(0)
. (21)

Hence, boundedness ofMα(t) can be concluded up to any time t < 1
C(B,σ,K ,K ′)Mα(0) ,

from which the following local-in-time existence result can be deduced.

Theorem 3 Let the assumptions of Theorem 2 hold, but with search volume exponent
α ∈ (m̃, 1) and assume f0 ∈ L1+(R+, w) such that

M0
α :=

∫ ∞

0
wα f0(w) dw < ∞.

Then there exists a unique solution f ∈ C1
([
0, T̄

)
, L1+(R+, w)

)
to (6)–(7), where

the upper bound for the time interval is given by

0 < T̄ := 1

M0
αC(B, σ, K , K ′)

.

Proof We start by explicitly stating the fixed-point procedure

FP t : L1+(R+, w) → L1+(R+, w) , f �→ f0 +
∫ t

0
Q( f , f ) ds , (22)

with f0 ∈ L1+(R+, w) chosen such that

‖wα−1 f0‖L1+(R+,w) = M0
α < M̄T

α < ∞.

Due to (21) we expect that the α-th momentMα(t) of a solution to (6)–(7) blows up
in finite time. Therefore, we fix an arbitrary T > 0 such that T < T̄ , ensuring that the
fraction

M0
α

1 − TC(B, σ, K , K ′)M0
α

=: M̄T
α
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is finite. It can easily beverified that for f ∈ L1+(R+, w) fulfilling‖wα−1 f0‖L1+(R+,w) =
M0

α < M̄T
α we have

∫ ∞

0
wαFP t ( f ) dw ≤ M0

α + tC(B, σ, K , K ′)(M̄T
α )2.

Hence, this property is propagated in the fixed-point procedure (22), when the time
t < T is chosen small enough such that

t <
M̄T

α − M0
α

C(B, σ, K , K ′)(M̄T
α )2

.

The finiteness of the α moment within the fixed-point procedure ensures further that
the first moment remains preserved, while positivity follows from the structure of
Q(·, ·). Following the estimates of ‖Q( f 1, f 1)− Q( f 2, f 2)‖L1(R+,w) in the proof of
Theorem 2, we see (by choosing t probably even smaller) that FP t is a contraction
on L1+(R+, w). In virtue of Banach’s fixed point theorem a unique solution f ∈
C1

(
[0, t) , L1+(R+, w)

)
exists. By Picard-iteration the time-interval can be extended

as long as t < T < T̄ ensuring Mα(t) < M̄T
α . ��

4 Steady states and long-time behaviour

In aquatic ecosystems, abundance of organisms with respect to their body-size aver-
aged over space and seasonal changes often varies rather little, suggesting that they
maybe close to a steady state.Weaim to identify the equilibria and long-timebehaviour
of solutions to our model (6)–(7), before discussing their biological interpretation and
significance.

4.1 Stationary states

Trivial steady state: By inserting one can see easily, that at the formal state

f̄0(w) = M
w

δ0(w) (23)

the right-hand-side of (6) evaluates at zero.Hence, themodel admits a trivial stationary
state, compatible with conservation of total biomass (13) via the factor M

w
before δ0,

the Dirac distribution centred at 0. This equilibrium, however, represents a completely
extinct ecosystem consisting just of an infinite amount of microorganisms.

Non-trivial steady state - gaps in the size-spectrum: In virtue of formulation (8),
a sufficient condition for f being at a non-trivial steady state is given by

0 = rα(r + K )−α−2 f

(
wr

r + K

)
f

(
w

r + K

)
+ (1 − K )K ′−3−αrα f

( w

K ′
)
f
(wr

K ′
)

− r−2 f (w) f
(w

r

)
− rα f (w) f (rw)
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M =
∫ ∞

0
w f (w) dw, (24)

for almost all r ∈ supp (s) and almost all w ∈ R+. From (24) it is easy to deduce a
sufficient condition a steady state solution has to fulfil, given by

f (w) f (rw) = 0, for a.a. r ∈ supp (s), w ∈ R+.

On the other hand, in case of supp (s) = R+, as for (9), this can only be fulfilled for a
distribution such that f (w) = 0 for almost allw �= 0,which again leads us to the trivial
steady state discussed above (23). On the other hand, if supp (s) = [B − σ, B + σ ],
as (10), an admissible steady state, given by a size spectrum function with gaps, is
possible. To be more precise, the distribution function f has to satisfy the following
condition for a w ∈ R+:

f (w) �= 0 ⇒ f (w′) = 0, for a.e. w′ ∈
[

w

B + σ
,

w

B − σ

]
. (25)

Obviously, parameters B and σ fulfilling

B − σ < 1 < B + σ

induce w ∈
[

w
B+σ

, w
B−σ

]
, thus, (24) is again only satisfied by the trivial equilibrium

(23). The condition

B − σ > 1 or B + σ < 1 (26)

ensures that w /∈
[

w
B+σ

, w
B−σ

]
, hence the existence of a non-trivial equilibrium is

possible. In an ecological context this means that an organism does not predate on
other organisms within its own trophic level or the next lower or higher ones, closest
to it. Moreover, special forms of such steady states can be computed by identifying
the gaps’ sizes with respect to the preferred feeding ratio B and the variance σ . Taking
into account the biological reasoning, we restrict ourselves to the case B − σ > 1,
implying that organisms exclusively feed on prey of smaller size. The support of a
non-trivial steady sate f̄ of (6)–(7) with s(·) given by (10) can be enclosed in the
following infinite union of intervals

supp ( f̄ ) ⊂
⋃
i∈Z

[
w̄

(B − σ)i+1(B + σ)i
,

w̄

(B − σ)i (B + σ)i

]
,

for a value w̄ > 0. The choice of the reference body size w̄ is not unique. Indeed,
feasible values are influenced by the initial conditions and model-specific parameters.
A trivial observation indicates that the lengths of the intervals

li := w̄
B − σ − 1

(B − σ)i+1(B + σ)i
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increase as i decreases. Thus, the closer the intervals lie to the degenerate state zero,
the smaller they have to be, which further leads to the conclusion that we expect a
highly oscillatory behaviour of a steady state solution to (6)–(7). A further important
observation is that the size of the intervals increases as B increases, implying that the
smaller the average prey size compared to the predator size becomes the bigger the
holes in the size spectrum we can expect.

Remark 4 Due to the quantity of the parameters included in the model as well as due
to its non-linear structure it turns out that in practice it is a highly complicated task to
predict the shape of the feasible set of such reference values w̄. We want to point this
out by investigating a specific, but biologically very reasonable case.

Therefore, let the initial condition (7) be such that ‖ f0‖L1(R,w) = M < ∞,
w0 := max{supp ( f0)} < ∞ such that w0 f0(w0) > c > 0, i.e. we assume
that initially there exists a group of largest species with size w0 in the ecosystem
of consideration, which inhibit a non-negligible amount of biomass. The feeding
behaviour (10), (26) suggests that the system allows a non-trivial steady state f̄ with
w0 < w̄ := max{supp ( f̄ )} < ∞, which serves as reference value to determine the
support of f̄ as

supp ( f̄ ) ⊂
⋃
i≥0

[
w̄

(B − σ)i+1(B + σ)i
,

w̄

(B − σ)i (B + σ)i

]
. (27)

The question of existence and explicit form of w̄ is non-trivial. Indeed, by defining
wm(t) := max{supp ( f (t))} and differentiating the total biomass (13)

M =
∫ wm (t)

0
w f (w) dw

with respect to time one obtains the following time-evolution of the largest organism-
size of the ecosystem at time t > 0:

ẇm(t) = − 1

wm(t) f (wm(t), t)

∫ wm (t)

0
wQ( f , f )(w, t) dw.

wm(0) = w0,

Hence, the quantity

∫ wm (t)

0
wQ( f , f )(w, t) dw

=
∫ ∞

0

∫ ∞

0

[
(w + Kw′)1w+Kw′≤wm (t) + (1 − K )w′1K ′w′≤m(t)

−w1w≤mm (t) − w′1w′≤wm (t)
]

wαs
( w

w′
)
f (w, t) f (w′, t) dw′ dw
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can be interpreted as the flux of the system at the moving boundary wm(t), defining
its evolution in time. Due to the complexity of the expression, a steady state w̄, corre-
sponding to the maximal organism-size of the stationary distribution f̄ , can be given
only implicitly by

∫ w̄

0
wQ( f , f )(w, t) dw = 0.

Remark 5 This suppression of specific trophic levels in an ecosystem is a phenomenon
known in ecology as trophic cascades, which after being popularized in the ’60 s
(Hairston et al. 1960), was observed in a wide range of ecosystems around the world
(Estes et al. 2011; Rossberg et al. 2019). It describes the effect of indirect influence of
one trophic level to the next lower/higher after the one of their primary prey/predators,
known as top-down/bottom up trophic cascade. An example for occurrence of a top-
down cascade is given if predators in trophic level T1 show that much efficiency in
predation that the abundance of their prey in the next lower trophic level T2 decreases
immensely. Extinction of individuals in T2 can be expected,while growth of abundance
of their prey in trophic level T3 can be observed due to the release from predation
pressure. These phenomena will iterate subsequently in all trophic levels giving the
characteristic domes followed by gaps in the size spectrum.

4.2 Long-time behaviour

From (16) and Lemma 20 we remember that for a solution f to (6)–(7) with s(·)
defined as (10) and a power m ∈ (1,m∗) we have

Ṁm[ f ](t) =
∫ ∞

0

∫ B+σ

B−σ

F(m, r)wα+m+1r−m−2s(r) f
(w

r
, t

)
f (w, t) dr dw ≤ 0,

for t ≥ 0. (28)

F is defined as (17) and strictly negative for all r ∈ [B−σ, B+σ ] sincem ∈ (1,m∗).
We distinguish the following two cases:

Extinction of all species: On the one hand, for B and σ not satisfying (26) the
functional Mm[ f ](t) will decrease in time and its dissipation vanishes when f
reaches the trivial steady state (23). Together with the observation Mm[ f̄0] ≡ 0
this implies

Mm[ f ](t) → 0, for t → ∞.

Hence, Mm serves as Lyapunov-type functional, which can be made rigorous in
the setting α ∈ (1,m∗).

Lemma 4 Let f be a solution to (6) with α ∈ (1,m∗), α < 3, feeding preference
function chosen as (10) and parameters B, σ > 0 such that

0 < B − σ < 1 < B + σ.
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Further, assume initial conditions (7) satisfying

∫ ∞

0
wm f0 dw < ∞,

for m ∈ ( 1+α
2 , m∗+α

2

) ⊂ (1,m∗) with m < 2. Then, with f̄0 given by (23), f satisfies

lim
t→∞ f (t) = f̄0 in the sense of distributions. (29)

Proof First, we prove that for m ∈ ( 1+α
2 , m∗+α

2

)
it has to hold

Mm[ f ](t) → 0, for t → ∞. (30)

For this, we observe from (28) that for any n ∈ (1,m∗) one can estimate

Ṁn[ f ](t) ≤ − C(B, σ, n)

∫ b̃

ã

∫ w
B−σ

w
B+σ

wαw′ns
( w

w′
)
f (w, t) f (w′, t) dw′ dw

≤ − C(B, σ, n, ã, b̃)
∫ ã

B−σ

b̃
B+σ

∫ ã
B−σ

b̃
B+σ

wαw′n f (w, t) f (w′, t) dw′ dw,

given any integration boundaries ã < b̃ ∈ R+ fulfilling ã < b̃
B+σ

< ã
B−σ

< b̃
(possible due to the assumption 1 ∈ (B − σ, B + σ)), since under this conditions

s
(

w
w′

)
is bounded from below for (w,w′) ∈

[
ã

B−σ
, b̃
B+σ

]2
. By further estimating the

prey weight in terms of the predator weight (as in the proofs of Theorems 2 and 3),
before integration of the resulting inequality with respect to t , we obtain the following
uniform integrability condition in time

∫ t

0

(∫ b

a
w

α+n
2 f (w, s) dw

)2

ds ≤ C(σ, B, n, a, b), ∀t > 0. (31)

This now holds for any

0 < a < b close enough such that a(B + σ) > b > a > b(B − σ), (32)

which can be seen by setting a = b̃
B+σ

and b = ã
B−σ

from before. Thus, for any
interval [a, b] away from zero the upper bound (31) holds, since it can always be split
it up in sub-intervals where each of their borders fulfil (32). Moreover, since for every
m ∈ (1,m∗) one can find an ε > 0 such that ε + m < m∗ and, hence, Mε+m[ f ](t)
is bounded uniformly in time due to (28), we conclude that the function mapping
w �→ wm f (w, t) is a uniformly tight sequence w.r.t. time t . This allows us to find for
every constant δ > 0 a time t̃ > 0 and an integration boundary L > 0 such that

∫ ∞

L
wm f (w, t) dw ≤ δ, ∀t ≥ t̃ .
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To conclude by a contradicting argument let us assume that

Mm[ f ](t) → M∞ > 0, as t → ∞.

From (28) we immediately obtain that M∞ ≤ Mm(t) for all t ≥ 0 has to hold. Due
to the uniform tightness argument from before we can find an L > 0 such that

Mm[ f ](t) ≤
∫ L

0
wm f (w, t) dw + M∞

2
, ∀t ≥ t̃ .

We further estimate using the conservation of total biomass (13) as well as m > 1

∫ L

0
wm f (w, t) dw =

∫ 1/L

0
wm f (w, t) dw +

∫ L

1/L
wm f (w, t) dw ≤ L1−mM

+
∫ L

1/L
wm f (w, t) dw.

This together with the estimate from the uniform tightness yields

∫ L

1/L
wm f (w, t) dw ≥ M∞

2
− L1−mM, ∀t ≥ t̃,

where under the assumption M∞ > 0 the right-hand-side can be made positive by
choosing L big enough. This immediately contradicts the uniform bound (31) by
setting m = α+n

2 . Indeed, for m ∈ ( 1+α
2 , m∗+α

2

)
and α ∈ (1,m∗) a straightforward

calculation shows that we have n = 2m −α ∈ (1,m∗), for which estimate (31) holds.
Since the limit M∞ is non-negative, we conclude Mm[ f ](t) → 0 as t → ∞ along
every solution f to (6)-(7).

Second, we observe that for any test-function ϕ ∈ C∞
0 ([0,∞)) one can estimate

using the mean value theorem

∣∣∣∣
∫ ∞

0
w f (w, t)ϕ(w) dw − Mϕ(0)

∣∣∣∣ =
∣∣∣∣
∫ ∞

0
w f (w, t) (ϕ(w) − ϕ(0)) dw

∣∣∣∣
≤

∫ ∞

0
wm f (w, t)w1−m |ϕ(w) − ϕ(0)| dw ≤ Mm(t) sup

w∈[0,∞),w̃∈[0,w]

∣∣w2−mϕ′(w̃)
∣∣ .

The result follows, from (30) and since the condition α < 3 allows to choose m close
enough to one such that 2 − m > 0, which together with ϕ ∈ C∞

0 ([0,∞)) ensures
that the second factor is bounded. ��

Cascade effect: On the other hand, if the parameters B, σ > 0 of the feeding kernel
are compatible with condition (26), then the m-th moment Mm[ f ](t) is strictly
decreasing in time along a solution f of (6)–(7) until f satisfies the sufficient equi-
librium condition (27). Due to the lack of a concrete form of non-trivial equilibria
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Fig. 4 Support of non-trivial steady state represented with solid lines, while the gaps in the size spectrum
are given by dashed black lines. For this demonstration the values B = 1.5, σ = 0.3 and the reference
weight w̄ = 17 were chosen

in case (26) and the locality of the aforementioned condition, a rigorous conver-
gence result of f to such a non-trivial steady state fulfilling (27) is not possible
and will be matter of further investigations. However, this leaves us with a strong
indication that in such regime the aquatic systemwill converge towards a non-zero
stationary size-distribution with gaps in its spectrum.
Numerical simulations in Sect. 5 give evidence to this heuristic argument. See also
Fig. 4 representing the support of such a non-trivial steady state: The solid black
lines encode the intervals in the size spectrum, inwhich extinction happened, while
the intervals coloured in purple determine the segregated trophic levels. Important
to notice here is that such non-trivial steady states for this model are caused by
the underlying mechanics of predation: In such a setting individuals no longer
feed and are no longer being fed upon, hence the biomass is stuck and immobile.
In the natural setting, it is expected that they just describe quasi-steady states,
i.e. states towards which the size-distribution converges fast due to the strong
effect of predation within the ecosystem, but as soon as they are reached, different
dynamics within the ecological environment (e.g., mutualism, starvation, natural
mortality, change of predation habits) might force the graph of the size-distribution
to converge to a different form.

4.3 Power-law equilibria

In huge marine ecosystems it is well observed (Boudreau and Dickie 1992; Shel-
don et al. 1972, 1977) that in logarithmic intervals of the organism body size the
biomass is approximately constant. This being equivalent to the biomass in logarith-
mic scales, having slope -1, while transformed into the original variables it translates
to a power-law with exponent -2. Ecological evidence, on the other hand, provides
that in local ecosystems size-distributions are rather different from a power-law, as
the aforementioned cascade effect (see Sect. 4.2), are observed (Estes et al. 2011;
Hairston et al. 1960; Rossberg et al. 2019). The finding of the aforementioned power-
law size-spectrum distribution is based on investigating a large quantity of data from
huge ecosystems (Sheldon et al. 1972), which naturally combine a variety of feeding
behaviours in different food-webs. Hence, we expect that such a power-law phe-
nomenon is difficult to capture with existing size-spectrum models.

Indeed, in Benoît and Rochet (2004), Datta et al. (2010) it was proven that for
their models such a power law stationary solution wγ exists with exponent γ close
to -2 in an appropriate parameter-regime. The local stability analysis of the power-
law equilibrium, performed in the follow-up work (Datta et al. 2011) with methods
from spectral analysis, showed that stability of the power-law state is very unlikely.
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It could only be proved in a very specific parameter-regime being characterised by a
very low predator/prey mass ratio B, a unusual high assimilation efficiency K and a
relatively large diet breadth σ . Moreover, it should be mentioned that such power-law
solutions or linear combinations of such are known to appear as equilibria solutions
to the structurally very similar coagulation-fragmentation equations, see Dubovskii
et al. (1992) for instance.

Also Eq. (6) admits such a power-law steady state, which can be seen by inserting
the ansatz f̄ (w) = wγ into the stationary equation (24). We obtain the following
condition for the exponent γ :

0 = rα+γ (r + K )−α−2−2γ + (1 − K )K ′−3−α−2γ rα+γ − r−2−γ − rα+γ

= rα+γ G(γ, r),

where we defined

G(γ, r) :=
(
(r + K )−α−2−2γ + (1 − K )K ′−3−α−2γ − r−2−2γ−α − 1

)
.

It is easily seen that G(γ, r) = 0 for all r ∈ supp (s) when

γ := −α + 3

2
.

We further observe that γ > −2 for α < 1, γ < −2 for α > 1 and γ = 2 for α = 1.

Remark 6 Coherent with our expectation of not finding such power-law distributions
for our model, we observe that the state

f̄ (w) := w− α+3
2 ,

cannot be a feasible solution of (6)–(7), since the total biomass (13) is infinite once
the system reaches this state.

5 Numerical simulations

To illustrate some of the findings of this article, we present numerical simulations of
Eq. (1).

Specifically, we chose a fixed boundW , big enough in relation to the other constants
of the system, and a finite time T and simulated the equation on [0,W ] × [0, T ].
The numerical scheme in which this equation is implemented, takes use of a semi-
discretisation of the equation, namely a discretisation in the variable w:

d f Nn
dt

= QN
(
f N , f N

)
n
, n ∈ {0, . . . , N }.
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We chose an integer N and divided the interval [0,W ] in N intervals of equal size,
producing the equidistant grid with grid-points

wn := n
W

N
, n ∈ {0, . . . , N }.

The numerical unknown is a vector

f N (t) := ( f0(t), . . . , fN (t)) ≈ ( f (w0, t), . . . , f (wN , t)),

while QN represents the integrals on the right-hand side of (1),which are approximated
by the trapezoidal rule. When needed, the value of f at a given point not on the grid
is approximated through linear interpolation of its two closest neighbours, i.e. for
w /∈ {w0, . . . , wN } we approximate

f (w, t) ≈ f̂ (w, t) := fl−1(t)(wl − w) + fl(t)(w − wl−1)

wl − wl−1
, with l s.t. w ∈ [wl−1, wl ].

This leads us to

QN
(
f N , f N

)
n

:= W

2N

∑
l: wl<

wn
K

[
k(wn − Kwl−1, wl−1) f̂ (wn − Kwl−1) fl−1

+ k(wn − Kwl , wl) f̂ (wn − Kwl ) fl
]

+ W

2N

1 − K

K ′2 f̂
(
wn/K

′) N∑
l=1

[
k

(
wl−1, wn/K

′) fl−1 + k
(
wl , wn/K

′) fl
]

− W

2N
fn

N∑
l=1

[
(k(wn, wl−1) + k(wl−1, wn)) fl−1 + (k(wn, wl ) + k(wl , wn)) fl

]
.

For the time-discretisation a time-adaptiveRunge–Kutta schemewasused.The scheme
was implemented in Python, where we used integrate.solve_ivp from the SciPy-
package. Moreover, numerical experiments were exclusively performed for the choice
(2) for the feeding kernel k(·, ·) both with feeding preference function s(·) given by
(9) and (10).

5.1 Numerical simulations for the feeding preference function with compact
support

Simulations are carried out with N = 200, fixed upper-size bound W = 10 and
final time T = 5. The initial distribution is chosen as a linear interpolation between
f0 = 10 and fN = 0.1. In the figures the solution is plotted at different time-steps
of the simulation: at starting with the initial distribution in the up-left subfigure, and
ending with the final distribution at time T in the bottom-right figure.

In Fig. 5 the simulation was performed for α = 0.9, B = 1.5 and σ = 0.3,
K = 0.1 and K ′ = 0.01, hence a parameter-regime allowing a non-trivial equilibrium
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Fig. 5 Simulations with compactly supported feeding preference function starting from linear initial con-
ditions with parameters α = 0.9, B = 1.5, σ = 0.3, K = 0.1 and K ′ = 0.01, showing convergence to a
steady-state representing the cascade-effect

(27). Although an analytical proof is not provided in Sect. 4.2 the simulations show
convergence to a solution with gaps in the size-spectrum, which remains constant after
time T = 5. It can be seen clearly that they become smaller giving evidence to the
calculations in the previous Sect. 4.1, (27). Additionally, it should be mentioned that
the upper bound W = w0 = max{supp( f0)} = 10 does not serve as reference value
w̄ for the body-size. Indeed, at the stationary state a small interval left fromw0, where
the solution takes value zero, can be observed. This is a consequence of the limits of
our simulations, which does not show growth of an individual beyond the upper bound
W .

In Fig. 6 the same effect can be observed for α = 1.1, with the other parameters
chosen the same as in Fig. 5, emphasising that for our model the choice of α does not
have significant impact on the qualitative behaviour of the solution.

With parameter values B = 1.1 and σ = 0.3 condition (26) is violated, hence
extinction of the ecosystem is to be expected due to Lemma 4, which is visualised in
Fig. 7.

In Fig. 8 the simulation was performed for α = 0.9, B = 1.5 and σ = 0.3,
K = 0.4 and K ′ = 0.01, again allowing a non-trivial equilibrium with gaps in the
size-spectrum. Different to the simulations in Fig. 5 one can observe domes with much
smaller altitude, which is related to the higher assimilation efficiency K enhancing the
growth of the predating organisms and hence enforcing a stronger drift to the right.
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Fig. 6 Simulations with compactly supported feeding preference function starting from linear initial con-
ditions with parameters α = 1.1, B = 1.5, σ = 0.3, K = 0.1 and K ′ = 0.01, showing convergence to a
steady-state representing the cascade-effect

Fig. 7 Simulations with compactly supported feeding preference function starting from linear initial con-
ditions with parameters α = 1.1, B = 1.1, σ = 0.3, K = 0.1 and K ′ = 0.01, showing convergence to the
trivial steady-state representing the extinction of all species
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Fig. 8 Simulations with compactly supported feeding preference function starting from linear initial con-
ditions with parameters α = 0.9, B = 1.5, σ = 0.3, K = 0.4 and K ′ = 0.01, showing convergence to a
steady-state representing the cascade-effect with flat domes

Fig. 9 Simulations with Gaußian feeding preference function starting from linear initial conditions with
parameters α = 0.9, B = 1.5, σ = 0.3, K = 0.1 and K ′ = 0.01, showing convergence to the trivial
steady-state representing the extinction of all species
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Fig. 10 Simulations with Gaußian feeding preference function starting from linear initial conditions with
parameters α = 0.9, B = 2, σ = 0.2, K = 0.1 and K ′ = 0.01, showing convergence to a steady-state
representing the cascade-effect

5.2 Numerical simulations for the Gaußian feeding preference function

Although many of the analytical results for the model (6) with the Gaußian feeding
preference function (9) are not valid,with numerical simulationswe are able to indicate
some interesting behaviours.

In Fig. 9 α = 0.9, B = 1.5 and σ = 0.3, K = 0.1 and K ′ = 0.01, hence the same
parameters as for the simulation with the compactly supported feeding preference
function in Fig. 5, where chosen. Unlike Fig. 5, convergence to the trivial steady can
be observed. Although once observes that the solution first forms domes suggesting
the convergence to the non-trivial steady state with gaps in the size-spectrum, before
all mass is absorbed at 0.

Condition (26) does not seem to be sufficient for the Gaußian feeding preference
function.Convergence to a non-trivial equilibriumcanbe achieved also for theGaußian
case by choosing B large enough and the variance σ small enough, as it can be seen
in Fig. 10 with B = 2 and σ = 0.2.

Clarifying the equilibrium conditions as well as a possible regime for metastabil-
ity of the non-trivial equilibrium, suggested, e.g., by Fig. 9, for the Gaußian feeding
preference function will be subject of further investigations.

123



Structured model conserving biomass for the size-spectrum… Page 33 of 36 26

6 Conclusion and outlook

In order to investigate the time-evolution of the size-spectrumwithin an aquatic ecosys-
tem, we proposed a model governed by a non-local integral equation with binary
interaction describing predation events between two organisms in the ecosystem. Our
proposed model extends the similar one introduced in Datta et al. (2010) by a term
ensuring the conservation of biomass within the ecosystem via creation of a certain
amount of very small organisms at every predation event, which ensures re-utilisation
of all materials within the ecosystem.While the model in its full generality admits that
the size of the ‘offspring’ is drawn by a probability distribution, which depends on the
prey size while having very small mean, we restricted our further considerations to
the case where the size of the small individuals is deterministically given as a small
fraction of the prey size. Our proposed equation provides a model for the dynamics
within a closed or almost closed ecosystem, whose fragility can be seen due to the
high impact outer influence has.

Analytical investigation of this deterministic model revealed several insights of
the behaviour, confirmed and further investigated with numerical experiences. Most
results are valid for the feeding preference function with compact support (10), since
this allows us to partly localize the integral operators defining the right-hand-side of
(6). Indeed, for such a compact feeding preference s(·) we could show the existence
of an interval (1,m∗), such that for m ∈ (1,m∗) the m-th moment of the distribution
is non-increasing in time, which in a next step ensured global in time existence of
solutions in the w-weighted L1-space if α ∈ [1,m∗]. For α < 1 we provide a local-
in time existence result. Although global in time existence is limited to a parameter
regime with search-volume exponent α ∈ (1,m∗)while literature suggests an α lower
than 1 (Ware 1978), numerical simulations indicated that the choice of α, as long
as sufficiently chosen of order 1, does not have significant impact on the qualitative
behaviour of the solution (compare Figs. 5, 6).

Moreover, analytical investigations revealed the occurrence of a trivial steady state,
representing a died-out ecosystem and given by a distribution having all the mass con-
centrated atw = 0. Convergence to this steady state could be shown for the case where
the feeding preference function (10) with compact support allows predation on organ-
isms of the same size as the predating individual, which is supported by numerical tests
(see Fig. 7). Necessary conditions for existence of a non-trivial steady state represent-
ing the aforementioned cascade effect could be derived for the case of the compactly
supported feeding-preference function and convergence of the size-distribution func-
tion to such dome patterns could be observed in numerical experiments, as long as
predation on species with the same size is not allowed (see Fig. 5). Although such
cascade effects are widely observed in nature, it usually describes a temporary steady
state. In the contrary, this theoretical setup forces the size-spectrum of the ecosystem to
stay unchanged due to the lack of predation possibilities within the species, while lack
of starvation and natural death rate on the remaining individuals means abundances
stay constant rather than decrease.

Numerical tests suggest that most of the analytical results for the feeding preference
function with compact support are also valid for the Gaußian feeding preference func-
tion, although just in a restricted parameter-regime. For large enough preferred feeding
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ratio and small variance convergence to dome patterns can be observed (Fig. 10), while
convergence to the trivial steady state also occurs in theGaussian case (Fig. 9), although
for the same set of parameters we observe the cascade-effect for the compactly sup-
ported feeding-preference function. In addition to this, we investigated the possibility
of a power-law steady state and indeed found that Eq. (6) admits one of such, with
power − 3+α

2 , which fits to previous investigations (Benoît and Rochet 2004; Datta
et al. 2010, 2011; Sheldon et al. 1972). Since due to its violation of the conservation
law it is not a feasible equilibrium of ourmodel, which is coherent with the observation
that such power-laws are usually found after processing large quantity of data from
huge ecosystems.

The findings within this article naturally paved the way to perform further investi-
gations both from an analytical side as well as from an observational point of view. For
the latter, fully identifying the asymptotic behaviour for the Gaußian feeding prefer-
ence function, much used and studied in existing literature (Benoît and Rochet 2004;
Datta et al. 2010, 2011), is of high interest. Furthermore, a task of severe importance is
to perform a full characterisation of the dome-patterns emerging as a non-trivial steady
state followed by a stability analysis of the model presented here in dependence of
the model parameters. Indeed, while we were already able to answer the ecologically
relevant question of the location and size of the gaps, to characterise the shapes of
the domes in dependence of the parameters remained an open problem, while com-
paring Figs. 5 and 8 already suggested that their hight and width are depending on the
assimilation efficiency. Comparing our findings to—as well as calibrating the model
with—data could help in a next step to predict the influence outer impacts have on an
ecosystem.
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