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Abstract
This paper investigates the dynamics of a glucose-insulin regulatory systemmodel that
incorporates: (1) insulin-degrading enzyme in the insulin equation; and (2) discrete
time delays respectively in the insulin production term, hepatic glucose production
term, and the insulin-degrading enzyme. We provide rigorous results of our model
including the asymptotic stability of the equilibrium solution and the existence of
Hopf bifurcation. We show that analytically and numerically at a certain value the
time delays driven stability or instability occurs when the corresponding model has
an interior equilibrium. Moreover, we illustrate the oscillatory regulation and insulin
secretion via numerical simulations, which show that the model dynamics exhibit
physiological observations and more information by allowing parameters to vary. Our
results may provide useful biological insights into diabetes for the glucose-insulin
regulatory system model.

Keywords Glucose-insulin regulatory system · Insulin degradation · Time delay ·
Hopf bifurcation

Mathematics Subject Classification 37N25 · 92C60 · 34K20

1 Introduction

Diabetes mellitus is a chronic disease of the glucose-insulin regulatory system, which
is characterized by hyperglycemia resulting from none or little insulin release for type
1 diabetes mellitus (TDM1), or for type 2 diabetes mellitus (T2DM) due to primarily
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insulin resistance, a concept that the cells, e.g., muscle cells and adipose cells, are
unable to utilize insulin efficiently (Chen and Tsai 2010). Diabetes mellitus can cause
a variety of serious health complications including possible blindness, heart disease,
kidney failure, stroke, nerve damage, and lower extremity amputations. The diabetic
population in the world is rapidly rising in recent decades. International Diabetes Fed-
eration estimates that the number of subjects around the world living with diabetes
is expected to hit 700 million people in 2045 (IDF 2020). It is critical to prevent the
onset of diabetes or slow down its progression and thus the characteristic complica-
tions by efficient and effective interventions, for example, developing algorithms for
insulin administration protocols through great understanding of the homeostasis of the
glucose-insulin regulatory system.

It is well known that natural sciences and mathematical modeling have impelled
each other in their progress in the long time history, well documented usefulness of
mathematical models in physics and technologies, from the days of Glileo, Kepler,
and Newton to present, and also in biology, for example, the Hodgkin-Huxley model
of the action potentials in neurons. Particularly and naturally physiological systems
are refractory to precise quantitative description by mathematical models as numer-
ous details exit in each different level of subtle interactions (Torres and Santos 2015),
which requires model refinements with the progress of deeper understandings and new
findings in the related area. A footmark for the mathematical modeling approach in
the study of diabetic disease can be found in 1961 by Bolie (1961). Gradually and
increasingly more models are proposed to be more accurate and clinically feasible,
making them a valuable resource for clinical research and applications. One exam-
ple is the Minimal Model by Bergman et al. (1979) and many consequent works for
the intravenous glucose tolerance test (IVGTT) used to assess insulin sensitivity and
glucose effectiveness. Another example is a series of models proposed and refined or
extended by Chen and Tsai (2010), Sturis et al. (1991), Tolic et al. (2000), Engelborghs
et al. (2001), Li et al. (2006), Li and Kuang (2007) for understanding the regulating
mechanisms of the glucose-insulin system including the sustained ultradian oscilla-
tions of insulin secretion. Among which, as commented by Batzel and Kappel (2011),
the delay differential equation model refined by Li et al. (2006), Li and Kuang (2007)
is extended byWang et al. (2007), Sarika et al. (2008), Wu et al. (2011), Nguyen et al.
(2012), Wu et al. (2013), Huang et al. (2012), Song et al. (2014), Kissler et al. (2014)
to develop control algorithms for exogenous insulin injections in artificial pancreas
devices, applied by Strilka et al. (2014); Stull et al. (2016); Strilka et al. (2016) in
studies of laboratory experiments for subcutaneous injection of insulin analogues, and
also inspired theoretical analyses (Huard et al. 2015; Pei et al. 2011).

Clearly, insulin is a critical and necessary hormone for energy metabolism in
humans. The insulin-degrading enzyme (IDE), also known as insulynsin or insulin
protease, is an enzyme, probably the most critical enzyme, to degrade and inactivate
insulin action and many functions in the termination of the insulin response. Such
activity is biologically important because of the limited half-life of the crucial hor-
mone in humans (Broh-Kahn and Mirsky 1949). IDE deficiency leads to abundant
insulin in circulation and further causes β-cell degeneration (Merino et al. 2020).
Since the rate of insulin degradation at the cell level is basically determined by IDE
activity, it is necessary to understand the relationship between improvements in IDE
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activity and the occurrence and development of insulin resistance (IR). IDE is known
as an inhibitor of type 2 diabetes therapeutics (Maianti et al. 2014; Pivovarova-Ramich
et al. 2016). Some research has shown that IDE plays an important role in the degra-
dation and clearance of insulin in cells, promotes insulin receptor recycling and new
insulin secretion, and maintains a relatively stable insulin level in the body (Kuo et al.
1994; Gu et al. 2004; Tundo et al. 2017). The inhibitors of this activity may improve
the action of insulin in rabbits was discovered in Mirsky et al. (1955). IDE mice have
high insulin levels, but they show reduced glucose tolerance rather than increased,
which may result from compensatory deficiency signaling of insulin (Farris et al.
2003; Abdul-Hay et al. 2011). Insulin is a biologically essential IDE substrate; abnor-
mal insulin levels and inadequate insulin and other hormone responses that control
glucose levels are the main causes of T2DM. According to the findings by Maianti
et al. (2014), Farris et al. (2003), Malito et al. (2008), Shen et al. (2006), IDE as a
disease susceptibility gene in both AD and T2DM. In the review (González-Casimiro
et al. 2021), González-Casimiro et al. deliberated current knowledge about IDE’s func-
tion as a regulator of insulin secretion and hepatic insulin sensitivity and showed that
IDE has an additional role in regulating hepatic insulin action and sensitivity through
studying onmice with tissuse-specific genetic deletion of IDE in the liver and pancreas
β-cells. So it is worthwhile to investigate the impact of IDE in the regulation system.
We refine the model in Li et al. (2006), Li and Kuang (2007) by involving the subtle
processes regarding insulin degradation enzyme and study the inhibitory role of IDE
in the degradation of insulin and glucagon in humans with the aim to elucidate certain
intrinsic factors for IDE playing a critical role in the metabolic system.

We organize our paper as follows. In the next section, we carefully extend the two
time delays model in Li et al. (2006), Li and Kuang (2007) by incorporating IDE
according to physiology. In Sect. 3, we first show that the proposed model is well-
posed and then investigate biological dynamical behaviors. When the analytical study
is tedious and of limitation, we continue in Sect. 4 to numerically investigate themodel
behaviors within biological meaningful scopes. In Sect. 5, wewill discuss our findings.
The proofs of the main results are carried out in “Appendices”.

2 Model derivations

The two time delays model for the glucose-insulin regulatory system formulated by
Li et al. (2006) with G(t) and I (t) stand for the glucose and insulin concentration at
time t , respectively, is given as follows

⎧
⎪⎨

⎪⎩

dG(t)

dt
= Gin − f2(G(t)) − f3(G(t)) f4(I (t)) + f5(I (t − τ2)),

dI (t)

dt
= f1(G(t − τ1)) − di I (t),

(1)

where the initial conditions are given by G(t) ≡ G0 > 0 for t ∈ [−τ1, 0] and
I (t) ≡ I0 > 0 for t ∈ [−τ2, 0], τ1, τ2 > 0. The functions f1 through f5 are a set
of highly non-linear and di I is the insulin degradation with di > 0 as the constant

123



73 Page 4 of 32 F. Rao et al.

degradation rate. (The physiological meanings of each term will be explained below.)
This has been studied by its original form or extended forms widely as stated as
aforementioned in the last section.

In the case of the metabolism of hepatic IDE in mice (González-Casimiro et al.
2021), hepatic IDE overexpression will not alter insulin clearance, displaying that the
pancreas decreased insulin production and secretion as a result of increased insulin
sensitivity. This research evidences that in a preclinical mouse model of obesity and
diabetes, reinforcing hepatic IDE function in the liver can regulate insulin resistance
and glucose intolerance to some extent. Galagovsky et al. (2014) found that the highest
Drosophila IDE (DIDE) /tubulin expression occurs in the fat body. They raised that
DIDE is an insulin signaling modulator, and its loss of function promotes insulin
resistance, a symptom of T2DM. Tsuda et al. (2010) shown that the overexpression
of DIDE causes phenotypes that are presumably related to insulin deficiency. Now,
we incorporate the functionalities of IDE on regulating insulin levels in this model
and apply a function α(I ) to capture the dynamic of IDE. Since the lack of a study
on delay in activation of IDE due to insulin change, we try to take the time delay τ3
in the insulin secretion to be equal to the amount of time that elapses before insulin
secretion would respond to the changes in IDE.

In the second equation of model (1), Li et al. (2006) only considered the glucose
concentration G(t) as the sole stimuli ( f1(G(t − τ1))) to stimulate the production of
insulinwithout the impact by IDE,where τ1 > 0 represents the timedelay of the insulin
response to the glucose stimulation and the time needed for the newly synthesized
insulin crossing the endothelial barrier to become remote insulin. It is known that after
insulin enters the liver through the portal vein, part of it is inactivated in the liver or re-
enters the systemic circulation. Specifically, insulin enters the cell for degradation by
IDE in the cytoplasm (Fawcett andDuckworth 2009). Excessive degradation of insulin
in the cytoplasm can lead to a decrease in the amount of insulin that acts per unit of time
and weaken the effect of insulin, thereby stimulating islet cells to secrete excessive
insulin for compensation, which causes IR and hyperinsulinemia (Tandl and Kolb
1984; Abdul-Hay et al. 2011). IDE deficiency increases insulin secretion, which will
eventually have deleterious effects onβ-cell function leading to type 2 diabetes (Costes
and Butler 2014; Fernández-Díaz et al. 2019). On the other hand, IDE overexpression
improves glucose tolerance and insulin sensitivity, but, IDE overexpression in the liver
does not affect insulin clearance (Merino et al. 2020). Thework inKukday et al. (2012)
reveals that insulin is a dynamic factor impacting IDE effects. Dose-response studies
reported in Fig. 4C by Kukday et al. (2012) reveal that IDE activity including insulin
secretion over a range of human insulin (0–17.2 µM) follows a reverse Hill function
kinetics with a tiny half-saturation value at 0.92 µM through data fitting. Thus, taking
the impact of IDE on insulin secretion into account, we assume reasonably that the
factor function α(I ) satisfies the following assumptions:

(A1): α(0) > 0;
(A2): α(I )|I>0 > 0, dα(I )

dI < 0, and lim
I→+∞ α(I ) = 0,

The shapes, rather than the form, of the response functions matter (Keener and Sneyd
2009). Thus, for the sake of convenience, we choose the multiplier α(I ) := k0 I (t)

ecI−1
,

k0, c > 0, where k0 I (t − τ3) represents the delayed effect of insulin degradation
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product under the action of IDE on insulin secretion at time t , and the term 1
ecI (t−τ3)−1

represents the probability of affecting the insulin secretion with time delay τ3, which
correlates to the total amount of the biomass of insulin consumption with a constant
c > 0. In which, α(0) = k0

c , and α(I ) > 1 indicates IDE deficiency, α(I ) < 1 stands

for IDE overexpression, and α(I ) = 1 is for normal IDE level. Let Î > 0 be the
unique value such that α( Î ) = 1. The above assumption can be described as: when
the peripheral insulin is below Î , IDE is deficit; when the peripheral insulin is above
Î , IDE is overexpressed. Î monotonically decreases when c increases.

According to the above physiological findings in rodents (Mirsky et al. 1955; Farris
et al. 2003; Shen et al. 2006) and physiological observations discussed above, we
extend Model (1) as below with the aim to investigate the links of defect in IDE with
T2DM and/or AD in human. The novel model is given by

⎧
⎪⎪⎨

⎪⎪⎩

dG(t)

dt
= G0 − f2(G(t)) − f3(G(t)) f4(I (t)) + f5(I (t − τ2)),

dI (t)

dt
= f1(G(t − τ1))

k0 I (t − τ3)

ecI (t−τ3) − 1
− di I (t),

(2)

where the constant glucose infusion term G0 models the continuous intestinal glucose
absorption after a meal or oral glucose. The diagram of this glucose-insulin model is
shown in Fig. 1.

The function f1(G(t)) is bounded and sigmoidal shape with f1(0) > 0, f1(x) >

0, d f1(x)
dx > 0 for x > 0. The functions f2(G(t)) and f3(G(t)) f4(I (t)) respectively

denote the insulin-independent and insulin-dependent glucose utilization [see Li et al.
(2006) for more details], where f2(x) > 0 is in sigmoidal shape with f2(0) = 0
and d f2(x)

dx > 0 is bounded for x > 0; f3(0) = 0, d f3(x)
dx > 0 for x > 0; and

f4(0) > 0, f4(x) > 0, d f4(x)
dx > 0 are bounded above for x > 0, f4(x) is in sigmoidal

shape. Glucose production is denoted as f5(I (t)) controlled by insulin concentration
I (t). f5(x) is in inverse sigmoidal shape, f5(0) > 0, f5(x) > 0, d f5(x)

dx < 0 for

x > 0, and f5(x),
∣
∣ d f5(x)

dx

∣
∣ are bounded above for x > 0. The function f5(I (t − τ2))

represents the delayed HGP, indicating that the production is controlled by insulin
with time delay τ2 > 0.

3 Stability analysis

In this section, we will focus on the existence of positive steady state solutions and
local stability of the time-delay model (2). For simplicity, let τ3 = τ2.

Throughout this paper, we assume fi (x) (i = 1, 2, 3, 4, 5) satisfies the following
conditions:

(H1) lim
x→∞ f1(x) = M1, f1(0) := m1 > 0, d f1(x)dx is bounded by a constant M ′

1 > 0

for x > 0;
(H2) lim

x→∞ f2(x) = M2 and there exists a constant M ′
2 such that d f2(x)

dx < M ′
2 for

x > 0;
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Fig. 1 Modeling framework showing the regulatory mechanisms. The functions represent f1—effect of
glucose on insulin secretion, f2—insulin independent glucose utilization, f3 f4—insulin dependent glucose
utilization, and f5—effect of insulin on glucose production

(H3) f4(0) := m4 > 0, there exist constants M3 > 0, M4 > 0 and M ′
4 > 0 such

that 0 < f3(x) ≤ M3x, lim
x→∞ f4(x) = M4 and

d f4(x)
dx < M ′

4 for x > 0;

(H4) lim
x→∞ f5(x) = 0 and there exist constant M5, M ′

5 > 0 such that f5(x) ≤ M5

and
∣
∣ d f5(x)

dx

∣
∣ ≤ M ′

5 for x > 0.

The boundedness of the solutions for the model (2) is presented in the following
Proposition (the proof will be carried out in “Appendices”).

Proposition 3.1 For Model (2), the following hold:

(i) If lim
x→∞ f3(x) >

G0−M2+ f5(
1
c ln(k0M1+di ))
m4

, then Model (2) has a unique posi-

tive steady state (G∗, I ∗), where I ∗ = 1
c ln(k0 f1(G

∗) + di ). Furthermore, all
solutions are positive and bounded.

(ii) If lim
x→∞ f3(x) < G0−M2

m4
, then lim sup

t→∞
G(t) = ∞.

3.1 The case �1�2 = 0

Although an explicit expression cannot be obtained, Model (2) possesses a unique
steady state (G∗, I ∗), defined by the equations dG(t)

dt = dI (t)
dt = 0. In this subsection,

we analyze the local stability of Model (2) at (G∗, I ∗) in the case of τ1τ2 = 0.
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Letting Ĝ(t) = G(t) − G∗ and Î (t) = I (t) − I ∗, for simplicity we will not write
the hat (̂ ) in the rest of this paper, then Model (2) is linearized around (G∗, I ∗) as
follows:

⎧
⎪⎨

⎪⎩

dG(t)

dt
= −W1G(t) − W2 I (t) − W3 I (t − τ2),

dI (t)

dt
= W4G(t − τ1) − W5 I (t − τ2) − di I (t).

(3)

Because f1 through f4 aremonotonically increasing functions and f5 ismonotonically
decreasing, it is easy to check that all the following parameters are positive,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

W1 = d
dG f2(G∗) + d

dG f3(G∗) f4(I ∗) > 0,
W2 = f3(G∗) d

dI f4(I
∗) > 0,

W3 = − d
dI f5(I

∗) > 0,
W4 = d

dG f1(G∗) k0 I ∗
ecI∗−1

> 0,

W5 = f1(G∗)k0[(1−cI ∗)ecI∗−1]
(ecI∗−1)2

> 0.

(4)

The characteristic equation of (3) is

F(λ) = λ2 + (W1 + W5e−λτ2 + di )λ + W1di + W2W4e−λτ1

+W1W5e−λτ2 + W3W4e−λ(τ1+τ2) = 0.
(5)

For Model (2), the equilibrium point (G∗, I ∗) will be asymptotically stable if all the
roots of the characteristic equation (5) have negative real parts. In the case of a non-
delayed model, we will assume that the equilibrium point (G∗, I ∗) is asymptotically
stable and then find conditions for which (G∗, I ∗) is still asymptotically stable with
all delays.

It is clear that F(0) = W1(di + W5) + (W2 + W3)W4 > 0, then λ = 0 is not a
root of equation (5). Thus, if there is some stability switch of the trivial solution of the
linearized model (3), there must be a pair of pure conjugate imaginary roots of Eq. (5).
Equation (5) with τ1 = τ2 = 0 is equivalent to λ2 + (W1 + W5 + di )λ + W1(di +
W5) + (W2 + W3)W4 = 0, we then have

Proposition 3.2 Under the conditions W1 + W5 + di > 0 and W1(di + W5) + (W2 +
W3)W4 > 0, the steady state solution (G∗, I ∗) of Model (2) with τ1 = τ2 = 0 is
asymptotically stable.

When τ1 > 0 and τ2 = 0, Eq. (5) is equivalent to

F(λ) = λ2 + (W1 + W5 + di )λ + W1(di + W5) + (W2 + W3)W4e−λτ1 = 0. (6)

Referring to Lemma 4.1 in Li and Kuang (2007), we get 2W1(di +W5)− (W1 +W5 +
di )2 = −(W 2

1 + (W5 + di )2) < 0 and state the following results without proofs.

Proposition 3.3 For Model (2) with τ1 > 0 and τ2 = 0,
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(i) If W1(di +W5) > (W2 +W3)W4, then the positive stationary solution (G∗, I ∗)
of model (2) is always stable for τ1 > 0;

(ii) If W1(di + W5) < (W2 + W3)W4, there exists a constant τ 01 > 0 such that
(G∗, I ∗) of model (2) is stable for τ1 ∈ (0, τ 01 ) and unstable for τ1 > τ 01 . A
Hopf bifurcation occurs as τ1 passes through the critical value τ 01 .

When τ1 = 0 and τ2 > 0, Eq. (5) is equivalent to

F(λ) = λ2 + (W1 + di + W5e−λτ2)λ + W1di + W2W4

+(W1W5 + W3W4)e−λτ2 = 0.
(7)

Let
⎧
⎪⎪⎨

⎪⎪⎩

A = W1 + di > 0,
B = W5 > 0,
C = W1W5 + W3W4 > 0,
D = W1di + W2W4 > 0,

(8)

then Eq. (7) becomes

F(λ) = λ2 + Aλ + Bλe−λτ2 + D + Ce−λτ2 = 0. (9)

Applying theLemma inCooke andGrossman (1982),Wei andRuan (1999),we deduce
the following results and the proof can be found in “Appendices”.

Lemma 3.1 For Eq. (9), we have

(i) If D < C holds and τ2 = τ
n,1
2 , then Eq. (9) has a pair of purely imaginary roots

±iω+;
(ii) If (A2 − B2 − 2D)2 > 4(D + C)(D − C) > 0 > A2 − B2 − 2D holds and

τ2 = τ
n,1
2 (res. τ2 = τ

n,2
2 ), then Eq. (9) has a pair of purely imaginary roots

±iω+ (res. ±iω−);
(iii) If neither D < C nor (A2−B2−2D)2 > 4(D+C)(D−C) > 0 > A2−B2−2D

and τ2 > 0, then Eq. (9) has no purely imaginary root, where

ω2± = −(A2 − B2 − 2D) ± √
(A2 − B2 − 2D)2 − 4(D + C)(D − C)

2
,

τ
n,1
2 = 1

ω+

[

arccos

(
C(ω2+ − D) − ABω2+

C2 + B2ω2+

)

+ 2nπ

]

,

τ
n,2
2 = 1

ω−

[

arccos

(
C(ω2− − D) − ABω2−

C2 + B2ω2−

)

+ 2nπ

]

, n = 0, 1, . . .

(10)

Consider the characteristic roots of Eq. (9) as

λk,n(τ2) = αk,n(τ2) + iωk,n(τ2), k = 1, 2; n = 0, 1, . . . (11)
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where

α1,n

(
τ
n,1
2

)
= 0, ω1,n

(
τ
n,1
2

)
= ω+ (12)

and

α1,n

(
τ
n,2
2

)
= 0, ω2,n

(
τ
n,2
2

)
= ω−. (13)

It can be verified that the following lemma is true.

Lemma 3.2 Let τ n,k
2 (k = 1, 2) associated with ωk,n. For τ2 = τ

n,k
2 , the characteristic

Eq. (9) has a pair purely imaginary roots ±iωk,n, satisfying

sign

{
dRe(λ)

dτ2

∣
∣
∣
∣
τ2=τ

n,k
2

}

= sign
{
A2 − B2 − 2D + 2ω2

k,n

}
,

where τ
n,k
2 and ωk,n are defined in Eqs. (10), (12) and (13).

The proof of Lemma 3.2 is attached in “Appendices”.
Thus, applying the Lemma in Wei and Ruan (1999), we obtain the distribution of

the characteristic roots of Eq. (9).

Lemma 3.3 For Eq. (9), we have the following

(i) If D < C holds, then when τ2 ∈
[
0, τ 0,12

)
all roots of Eq. (9) have negative real

parts, and when τ2 > τ
0,1
2 Eq. (9) has at least one root with positive real part.

(ii) If (A2− B2−2D)2 > 4(D+C)(D−C) > 0 > A2− B2−2D holds, then there

are j switches from stability to instability, that is, when τ2 ∈
(
τ
n,2
2 , τ

n+1,1
2

)
(n =

−1, 0, 1, · · · , j−1), all roots ofEq. (9)havenegative real parts,where τ
−1,2
2 = 0,

and when τ2 ∈
[
τ
n,1
2 , τ

n,2
2

)
and τ2 > τ

j,1
2 (n = 0, 1, · · · , j − 1), Eq. (9) has at

least one root with positive real part.

Based on the above analysis, we thus obtain the following results on the stability
of the steady state solution (G∗, I ∗) of Model (2).

Theorem 3.1 For Model (2), the number of different imaginary roots with positive
(negative) imaginary parts of Eq. (9) can be zero, one, or two only.

(i) If D > C and A2 − B2 − 2D > 0 hold, then the stability of the steady state
solution (G∗, I ∗) does not change for all τ2 > 0.

(ii) If D < C holds, there is one imaginary root with a positive imaginary part, an
unstable steady state solution (G∗, I ∗) never becomes stable for any τ2 > 0. If
the steady state solution (G∗, I ∗) is asymptotically stable for τ2 = 0, then it is
uniformly asymptotically stable for 0 < τ2 < τ

0,1
2 , and it becomes unstable for

τ2 > τ
0,1
2 . A Hopf bifurcation occurs as τ2 passes through the critical value τ

0,1
2 ,

where τ
0,1
2 is given in (10).
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(iii) If (A2 − B2 − 2D)2 > 4(D + C)(D − C) > 0 > A2 − B2 − 2D holds, there
are two imaginary roots with positive imaginary part, iω+ and iω−, such that
ω+ > ω− > 0, then the stability of the steady state solution (G∗, I ∗) can change
a finite number of times at most as τ2 is increased, and eventually it becomes
unstable.

Remark 1 See the “Appendices” for the detailed proof of Theorem 3.1. From The-
orem 3.1, it is easy to find that Model (2) undergoes a Hopf bifurcation related not
only to the value of τ2 but also to the value of the rate of insulin release k0. We shall
demonstrate numerical investigation in Sect. 4.

3.2 The case �1�2 �= 0

In this subsection, we assume both τ1 > 0 and τ2 > 0. We first let τ1 = τ2 = τ ,
Eq. (5) equals to

λ2 + (W1 + di )λ + W1di + (W5λ + W2W4 + W1W5 + W3W4e
−λτ )e−λτ = 0, (14)

and λ = 0 is not a characteristic root of Eq. (14). Set

�(λ, τ) := λ2 + (W1 + di )λ + W1di ,
	(λ, τ ) := W5λ + W2W4 + W1W5 + W3W4e−λτ ,

(15)

we consider λ = iω is a root of the characteristic Eq. (14), where ω is assumed
to be strictly greater than 0. From (15), we denote by �R, 	R the real parts of
�, 	, and by �I , 	I the imaginary parts of �, 	, respectively. Thus, �R(iω, τ) =
W1di −ω2, �I (iω, τ) = (W1 +di )ω,	R(iω, τ) = W1W5 +W2W4 +W3W4 cosωτ ,
	I (iω, τ) = W5ω − W3W4 sinωτ . Therefore, ω satisfies the following equations,

{
	I (iω, τ) sinωτ + 	R(iω, τ) cosωτ = −�R(iω, τ),

	I (iω, τ) cosωτ − 	R(iω, τ) sinωτ = −�I (iω, τ),
(16)

which gives

sinωτ = −�R(iω, τ)	I (iω, τ) + �I (iω, τ)	R(iω, τ)

	2
R(iω, τ) + 	2

I (iω, τ)
= Im

(
�(iω, τ)

	(iω, τ)

)

,

cosωτ = −�R(iω, τ)	R(iω, τ) + �I (iω, τ)	I (iω, τ)

	2
R(iω, τ) + 	2

I (iω, τ)
= −Re

(
�(iω, τ)

	(iω, τ)

)

.

(17)

Then, we derive

F(ω, τ) = |�(iω, τ)|2 − |	(iω, τ)|2
= ω4 + (W 2

1 + d2i − W 2
5 )ω2 + 2ωW3W4W5 sinωτ + W 2

1 d
2
i − W 2

3W
2
4−(W2W4 + W1W5)

2 − 2(W2W4 + W1W5)W3W4 cosωτ,

(18)
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and ω satisfies the transcendental equation F(ω, τ) = 0 which implies

ω4 + (
W 2

1 + d2i − W 2
5

)
ω2 + W 2

1 d
2
i − W 2

3W
2
4 − (W2W4 + W1W5)

2

= 2(W2W4 + W1W5)W3W4 cosωτ − 2ωW3W4W5 sinωτ.
(19)

If ω = 0, we check that

F(0) = W 2
1 d

2
i − W 2

3W
2
4 − (W2W4 + W1W5)

2 − 2(W2W4 + W1W5)W3W4, (20)

whenW 2
1 d

2
i < W 2

3W
2
4 +(W2W4+W1W5)(W2W4+W1W5+2W3W4), thenF(0) < 0.

Also, it is easy to check that F(+∞) > 0, so we can obtain that Eq. (19) has finite
positive roots.

Let us define φ(τ) ∈ [0, 2π ] such that

sin φ(τ) = −(W1di−ω2)(W5ω−W3W4 sinωτ)+ω(W1+di )(W2W4+W1W5+W3W4 cosωτ)

(W2W4+W1W5+W3W4 cosωτ)2+(W5ω−W3W4 sinωτ)2
,

cosφ(τ) = − (W1di−ω2)(W2W4+W1W5+W3W4 cosωτ)+ω(W1+di )(W5ω−W3W4 sinωτ)

(W2W4+W1W5+W3W4 cosωτ)2+(W5ω−W3W4 sinωτ)2
,

(21)

where φ(τ) = ωτ − 2nπ, n ∈ N0. Define the maps τ n given by

τ n(τ ) := φ(τ) + 2nπ

ω
, n ∈ N0, (22)

where ω is a positive root of Eq. (19). Then, Eq. (21) jointly with (19) defines the
functions

�n(τ ) := τ − τ n(τ ), n ∈ N0, (23)

which are continuous and differentiable. From (18) we have

dF(ω, τ)

dω
= 4ω3 + 2(W 2

1 + d2i − W 2
5 )ω + 2W3W4W5 sinωτ

+2τW3W4(ωW5 cosωτ + (W2W4 + W1W5) sinωτ).
(24)

By virtue of Beretta and Kuang (2002) and Kuang (2012), we set the following results.

Theorem 3.2 Assume that ω is a positive real root of Eq. (19) and there exist some
positive constants τ ∗ such that �n(τ

∗) = 0 for some n ∈ N0. Then a pair of simple
conjugate pure imaginary roots λ±(τ ∗) = ±iω(τ ∗) of Eq. (14) exists at τ = τ ∗ which
crosses the imaginary axis from left to right if �(τ ∗) > 0 and crosses the imaginary
axis from right to left if �(τ ∗) < 0, where

�(τ ∗) = sign

{
dRe(λ)

dτ

∣
∣
∣
∣
λ=iω(τ∗)

}

= sign

{
d

dω
F(ω(τ ∗), τ ∗)

}

sign

{
d�n(τ )

dτ

∣
∣
∣
∣
τ=τ∗

}

. (25)
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In the following, we consider the case where τ1 	= τ2 (τ1 > 0, τ2 > 0). For the
characteristic equation of (3)

F(λ) = λ2 + (W1 + di )λ + W1di + (λ + W1)W5e
−λτ2 + W2W4e

−λτ1

+W3W4e
−λ(τ1+τ2) = 0, (26)

we set

f(λ) := λ2 + (W1 + di )λ + W1di ,
g(λ) := (λ + W1)W5e−λτ2 + W2W4e−λτ1 + W3W4e−λ(τ1+τ2).

(27)

Applying Rouchè’s theorem, we get the following result.

Theorem 3.3 ForModel (2), the characteristic Eq. (26)with Wi > 0(i = 1, 2, 3, 4, 5)
and assume that

(i) τ2 − τ1 ≤ 1

W1
ln

W2W4 + W3W4

ω0W5
;

(ii) W1W5 + W2W4 > W3W4,

then there exists a constant r0 > 0 such that r20 + (W1 + di )r0 + W1di <

min
{W1W5+W2W4

2 , W1W5 + W2W4 − W3W4
}
, Eq. (26) has at least one root with

negative real part for all 0 < r < r0.

Remark 2 The details about the proof of Theorem 3.3 are given in “Appendix”. In
the case when τ1τ2 > 0, it can be obtained that for any given τ1 > 0, there exists
τ2(τ1) > 0 such that a Hopf bifurcation occurs at (τ1, τ2). Mathematically, Model (2)
allows the interaction of unstable modes, but this tends to occur only with large delay
values.

When considering Eq. (26) with τ2 in its stable intervals, we take τ1 into consider-
ation as a parameter in accordance with Ruan andWei’s method (Wei and Ruan 1999;
Ruan and Wei 2003) and arrive at the following lemma regarding the sign of the real
parts of characteristic roots of (26). The proof of the lemma is shown in “Appendices”.

Lemma 3.4 Assume that all roots of Eq. (9) have negative real parts for τ2 > 0, then
there exists a τ ∗

1 (τ2) > 0 such that all roots of Eq. (26) have negative real parts if
0 < τ1 < τ ∗

1 (τ2).

From Theorem 3.1, notice that all roots of Eq. (9) have negative real parts when
0 < τ2 < τ

0,1
2 (τ 0,12 is given in Eq. (10)), then we obtain the following asymptotic

stability of the steady state (G∗, I ∗) of Model (2).

Theorem 3.4 Assume that D < C or (A2 − B2 − 2D)2 > 4(D +C)(D −C) > 0 >

A2− B2−2D holds, for any 0 < τ2 < τ
0,1
2 , there is a τ ∗

1 (τ2) > 0 such that the steady
state (G∗, I ∗) of Model (2) is locally asymptotically stable when 0 < τ2 < τ ∗

1 (τ2),

where τ
0,1
2 is taken as Eq. (10).

123



Dynamical analysis of a glucose-insulin regulatory system… Page 13 of 32 73

Table 1 Functions and parameters values used for simulation of Model (2)

Function Estimate/ Units Reference

f1 = R1 arctan
( G
C1+V1

)2 + a1 R1 = 24µU/min Estimated

C1 = 58.82mg/l

V1 = 10 l

a1 = 2.3µU/min

f2 = R2 arctan
( Gβ

C2V2
+ 1

)2 − a2 R2 = 4mg/min Estimated

β = 1.08

C2 = 300mg/l

V2 = 10 l

a2 = π mg/min

f3 = G
C3V3

C3 = 10mg/l Li and Kuang (2007)

V3 = 10 l

f4 = R4 arctan
( I+Ui
C4V4

)2 R4 = 30mg/min Estimated

Ui = 300µU

C4 = 100µU/l

V4 = 10 l

f5 = R5
(
π
2 − arctan(a5(I − C5))

)
R5 = 1mg/min Estimated

a5 = 0.4

C5 = 20mg

I DE = I
ecI−1

c = 0.06 Estimated

4 Numerical simulations

In this section, we present numerical analysis to investigate the model (2) behaviors.
The functions and parameters we use are listed in Table 1.

4.1 Effects of the two time delays �1 and �2

By opting the time delays τ1, τ2 as bifurcation parameters and fixing other parameters
as given in Table 1, we investigate the influence of τ1 and τ2 on the glucose-insulin
regulatory system and analyze the relationship between the two delays while G0 =
1.35 (mg/dl/min), di = 0.1 and the insulin degradation rate k0 = 0.1 (/min) are
fixed.

The top and bottom meshes in Fig. 2 demonstrate the amplitudes of glucose and
insulin concentrations, respectively. Figure2 shows that a complex curve divides
[0, 100] × [0, 100] in the (τ1, τ2)-plane into two regions. The steady state is stable in
one region and unstable in the other. From the figure, glucose and insulin concentra-
tions have larger amplitudes when the insulin response delay τ1 is small and the HGP
delay τ2 is big.
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Fig. 2 Amplitudes of glucose
(top) and insulin (bottom)
concentrations when τ1 and τ2
vary, where
G0 = 1.35 (mg/dl/min),
di = 0.1, k0 = 0.1 (/min) are
fixed. Rest of the parameters
values are given in Table 1

Fig. 3 Period of the glucose concentration (a) and insulin concentration (b), where G0 = 1.35, di =
0.1, k0 = 0.1 are fixed. All other parameters are given in Table 1

Glucose and insulin concentrations have amplitudes of (50, 120) and (10, 35),
respectively when τ2 ∈ (30, 100) with increasing the value of τ1.

Figure 3a, b show the period variations of glucose concentration and insulin
concentration with respect to the time delays τ1 and τ2 for G0 fixed at 1.35 and
k0 = 0.1, di = 0.1, respectively. There are sudden jumps in glucose and insulin
concentration amplitudes when τ1 > 60 and τ2 > 40 approximately. In such cases,
the periods of periodic solutions will decrease with increasing the values of τ1 and
τ2. Longer τ1 and τ2 would increase the oscillation period of the dynamic system and
result in higher glucose concentration.

We let both τ1 and τ2 vary simultaneously and investigate the codimension-two
bifurcation. Figure4 displays that a bifurcation curve in the window [0, 50]× [0, 100]
divides the (τ1, τ2)-plane into two regions, in one of the regions the equilibrium point
is stable and in the other one a limit cycle exists. Moreover, we calculate that the
Hopf bifurcation occurs at (G∗, I ∗) when τ1 = 0 for τ2 about 30 min. The oscillating
solutions are observed for τ2 values higher than the critical value.

Figure 5 exhibits the profiles obtained from the time delay model (2) with dif-
ferent parameter values. Figure5a, b show the corresponding time evolution and
phase diagram of glucose and insulin concentrations at (τ1, τ2) = (10, 60) and
(τ1, τ2) = (10, 100), respectively. For both the glucose (the blue line) and the insulin
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Fig. 4 Codimension-two bifurcation diagram, where G0 = 1.35, k0 = 0.1, di = 0.1 are fixed. Rest of the
parameters are the same as in Table 1

Fig. 5 Time series and phase diagram of glucose and insulin in Model (2). The time delays are a (τ1, τ2) =
(10, 60) and b (τ1, τ2) = (10, 100), where G0 = 1.35, k0 = 0.1, di = 0.1 are fixed. All other parameters
are given in Table 1
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Fig. 6 Time series and phase diagram of glucose and insulin in Model (2). The time delays are a (τ1, τ2) =
(20, 60) and b (τ1, τ2) = (100, 100), whereG0 = 1.35, k0 = 0.1, di = 0.1 are fixed.All other parameters
are given in Table 1

(the red line), oscillating solutions are visible with periods of approximately 162min
(see Fig. 5a). This periodic solution can be regarded as the sustained oscillation of
glucose and insulin concentrations. The steady state (G∗, I ∗) of Model (2) is unstable
in this case. We get oscillations with longer periods-about 240 min-when τ2 contin-
ues to rise above the critical value (see Fig. 5b). For instance, we can see that every
240 min, the glucose concentration drops to very low levels and the varying range of
glucose concentration is scope [58, 119]. It should be noted that as τ2 increases, the
amplitudes of the oscillations of the glucose G(t) and insulin I (t) grow.

When τ1 is destabilized and elevated, longer periods for both glucose and insulin can
be seen. Figure6a illustrates the solutions of the model (2) for the time delays τ1 = 20
and τ2 = 60 with periods of about 174min. It also depicts a phase space project of
two coexisting stable periodic solutions on (G, I ) for (τ1, τ2) = (20, 60). Chaotic
behavior is shown in Fig. 6b which could explain the observed irregular oscillations
of glucose and insulin concentrations. It confirms that the glucose level in an early
time becomes higher and the oscillations become damped when the delays τ1 and τ2
become longer. Figure6 displays that the occurrence and properties of oscillations are
dependent on the magnitude of time delays. In addition, the duration time at the first
high peak as G > 100 mg/dl in Fig. 6a is 190min. It is shorter than all two peaks
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Fig. 7 a Hopf bifurcation diagram for values of τ2, b the phase portrait of glucose and insulin level
with values of τ2, c, d the glucose and insulin level distributions for values of τ2, respectively, where
τ1 = 20, G0 = 1.35, k0 = 0.1, di = 0.1 are fixed. All other parameters are given in Table 1

in Fig. 6b which spend 318min and 672min, respectively, to return the glucose level
G = 100 mg/dl.

4.2 Effects of the time delay �1 or �2, the insulin degradation rate k0 and glucose
infusion rate G0

In order to illustrate the model dynamics and the evolution of solutions, we change
four parameters to reveal the Hopf bifurcation dynamics. The parameters that will be
chosen are the time delays (τ1 and τ2), the exogenous glucose infusion rate G0, and
the insulin degradation rate k0.

Figure 7a, b show the bifurcation diagram and phase portrait for varying τ2 ∈
[0, 100] and fixing τ1 = 20, G0 = 1.35, k0 = 0.1, di = 0.1. A critical value of
τ2 to sustain the oscillation is found to be about 45min (see Fig. 7a). For τ2 shorter
than 45min, the oscillations are damped quickly. This shows that for values of τ2
less than the critical value for which a Hopf bifurcation occurs (i.e., τ

0,1
2 , as stated

in Theorem 3.1), then (G∗, I ∗) is asymptotically stable for small values of τ1 (see
Theorem 3.4). It can be seen from Fig. 7b that our model is also capable of reproducing
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Fig. 8 a Hopf bifurcation diagram for values of τ1 and b the phase portrait of glucose and insulin level with
values of τ1, where τ2 = 50, G0 = 1.35, k0 = 0.1, di = 0.1 are fixed. All other parameters are given in
Table 1

sustainable oscillations for different values of τ2. A range of τ2 is estimated at 45−100
to sustain the oscillation of Model (2) when τ1 = 20 is fixed (see Fig. 7b). The
oscillation orbits gradually grow into large-sized with increasing the value of τ2.
Figure7c, d are respectively the phase planes of glucose and insulin concentrations
among various values of τ2 ∈ [0, 100]. The observation indicates that both glucose
and insulin fluctuations become more significant with a longer delay.

A similar procedure is applied to analyzing the time delay τ1. Figure8a, b show the
bifurcation diagram and phase portrait for τ2 = 50, G0 = 1.35, k0 = 0.1, di = 0.1
and varying τ1 ∈ [0, 100]. For τ1 out of the ranges of 0 − 40 and 50 − 100, the
oscillations of glucose and insulin are damped when τ2 = 50 is fixed (see Fig. 8b).
For τ1 greater than 40 and less than 50, the glucose-insulin system reached a steady
state quickly. For τ1 in the 0–40 and 50–100 range, glucose concentration is changing
within the optimal range.

We define the rate of insulin degradation k0 to illustrate the effect of IDE, the
degradative process may also be involved in mediating some aspects of insulin action.
Fixing τ1 = 20, τ2 = 60 and G0 = 1.35, di = 0.1, Fig. 9a shows the bifurcation
diagram for the parameter range k0 ∈ [0, 0.15]. For k0 greater than 0.09, the glucose
and insulin concentrations hardly change. The phase plane diagram for k0 at Fig. 9b
exhibits the oscillation variation behavior. An optimal range of k0 is estimated at
0.01 − 0.15 for the periodic solution of the dynamics system (see Fig. 9b). When k0
increased from 0 to 0.15, glucose and insulin concentrations change stably within
the normal ranges. The magnitude of glucose level is between 82 and 107 responds to
k0 ∈ [0, 0.15] at Fig. 9cwith τ1 = 20 and τ2 = 60. The range of insulin concentrations
is between 17.5 and 21.5 as the parameter k0 located in [0, 0.15] according to Fig. 9d.
This indicates a good degree of stability in the inter-regulation of the glucose-insulin
system.

Taking both the glucose infusion rate G0 and the insulin degradation rate k0 as
bifurcation parameters while τ1 = 25, τ2 = 50 and di = 0.1 are fixed, we identify
the stability regions in (k0,G0) ∈ [0, 0.15] × [0, 2]. Figure10 displays that a simple
curve divides the rectangular (k0,G0) ∈ [0, 0.15]×[0, 2] into two regions. The steady
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Fig. 9 a Hopf bifurcation diagram for the rate of insulin degradation values of k0, b the phase portrait of
glucose and insulin level with values of k0, c, d the glucose and insulin level distributions for values of k0,
respectively, where τ1 = 20, τ2 = 60, G0 = 1.35, di = 0.1 are fixed. All other parameters are given in
Table 1

Fig. 10 Glucose infusion rate G0 vs. insulin degradation rate k0 while τ1 = 25, τ2 = 50, di = 0.1. The
steady state of Model (2) is stable in one region and unstable in the other. All other parameters are given in
Table 1
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Fig. 11 Amplitudes of glucose (top) and insulin (bottom) concentrations when G0 and τ1 vary while a
τ2 = 40 and b τ2 = 80, where k0 = 0.1, di = 0.1

state of Model (2) is stable in one region and unstable in the other region. It is clear
that a larger insulin degradation rate k0 facilitates the oscillatory regulation.

4.3 Glucose infusion rate G0 vs. �1, and G0 vs. �2

Taking the insulin response delay τ1 and the glucose infusion rate G0 as bifurcation
parameters, we try to recognize the stability regions when (τ1,G0) ∈ [0, 100]×[0, 2].

Let k0 = 0.1, di = 0.1 be fixed and vary the value of τ2, the computation results are
shown in Fig. 11a (τ2 = 40) and Fig. 11b (τ2 = 80). The meshes are the amplitudes
of glucose (top) and insulin (bottom) concentrations for (τ1,G0) ∈ [0, 100] × [0, 2].
When τ1 = 40 (see Fig. 11a), it can be seen that two curves divide the rectangular
[0, 100] × [0, 2] in the (τ1,G0)-plane into three regions. Increasing the value of τ2,
the rectangular (τ1,G0) ∈ [0, 100] × [0, 2] is divided into two regions by one curve
(see Fig. 11b). The relationship between G0 and τ1 is nonlinear, and the sustained
oscillations of Model (2) occur in the unstable regions.

Figure 12 shows the periods of periodic solutions with different values of τ2, where
τ2 = 40 in Fig. 12a and τ2 = 80 in Fig. 12b. Figure13 shows the periods of periodic
solutions with τ1 = 20. When τ2 < 40, the steady state is stable and no sustained
oscillation will occur regardless of what value G0 assumes where τ1 = 20 is fixed.

5 Discussion

The proposed model (2) takes a key biological factor IDE into account, which depicts
the glucose-insulin regulatory slightly more comprehensive. Through the model,
we qualitatively and quantitatively investigated the interaction between glucose and
insulin under the impact of IDE. The existence of the Hopf bifurcations shows the
systematic and intrinsic sustained oscillatory behavior of the regulatory system with
various varying parameters, including the time delay τ1, τ2, the meal ingestion rate
G0, and the natural insulin degradation rate k0.
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Fig. 12 Periods of glucose (a) and insulin (b) concentrations when G0 and τ1 vary while a τ2 = 40 and b
τ2 = 80, where k0 = 0.1, di = 0.1 are fixed

Fig. 13 Periods of glucose (left) and insulin (right) concentrations when G0 and τ2 vary, where τ1 =
20, k0 = 0.1, di = 0.1 are fixed

By choosing time delays as the bifurcation parameters, the characteristic equation
of Model (2) with two delays is investigated, and some conditions for the appearance
of Hopf bifurcation that leads to the appearance of periodic solutions are obtained. We
also obtain stability results for the model with two independent delays. It is worth not-
ing that the stability of the steady state solution depends on both τ1 and τ2 (see Figs. 2,
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4). These are the time delays that reflect the naturally occurring glucose-insulin oscilla-
tions: they reflect the finite time needed for the pancreas and the liver to secrete insulin
and glucose. Glucose and insulin oscillations occur only for relatively long periods of
time delay due to the instability of the stationary solution of Model (2), we observe
a periodic behavior when a small time delay and chaotic behavior under long time
delay in the glucose-insulin regulatory system (see Figs. 5, 6). We analytically show
the existence of Hopf bifurcation when the delay parameter τ2 increases from small,
τ1 varies in certain ranges, and k0 increases from small, respectively (see Figs. 7, 8, 9,
10). The parameter G0 and the delays τ1, τ2 are analyzed for their influence on the
glucose-insulin regulatory system. The ranges of these parameters are estimated for
sustaining the oscillation of glucose and insulin, and ranges for different subjects are
discussed based on simulation results (see Figs. 11, 12, 13).

In addition, simple numerical simulations (not shown) reveal that IDE deficiency
(smaller c and larger Î ) demonstrated the potential for abundant insulin, glucose tol-
erance, and possibly insulin sensitivity, while IDE overexpression (larger value of c
and smaller Î ) could potentially cause type 2 diabetes.

Certain limitations still exist in our proposed model (2). The time scale is relatively
short to capture the slow and gradual loss of β-cell function in longitudinal dynamics
observed in Costes andButler (2014). The time delay τ3 in the IDE impactmight not be
the same as the time delay τ2 in the HGP. Also, the liver takes an important role in this
metabolic system. Both HGP and IDE conduct stochastically due to the complexity
of metabolism, particularly, when the pathological changes. We shall deploy these in
future work.
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Appendices

Proof of Proposition 3.1

Proof For the positive steady state solution of Model (2), we let

F(x) = G0 − f2(x) − f3(x) f4

(
ln(k0 f1(x) + di )

c

)

+ f5

(
ln(k0 f1(x) + di )

c

)

= 0, x ≥ 0,

(28)
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and derive

dF(x)
dx = − d f2(x)

dx − d f3(x)
dx f4

(
ln(k0 f1(x)+di )

c

)
− f3(x)

d
dx f4

(
ln(k0 f1(x)+di )

c

)

· d f1(x)dx
k0

c(k0 f1(x)+di )
+ d

dx f5
(
ln(k0 f1(x)+di )

c

)
d f1(x)
dx

k0
c(k0 f1(x)+di )

.

Observing that d fi (x)
dx > 0 (i = 1, 2, 3, 4) and d f5(x)

dx < 0, we obtain dF(x)
dx < 0.

Notice that F(0) = G0 − f2(0) − f3(0) f4
( ln(k0 f1(0)+di )

c

) + f5
( ln(k0 f1(0)+di )

c

) =
G0 + f5

( ln(k0 f1(0)+di )
c

)
> 0, and based on the conditions (H1) − (H5), then

lim
x→∞ F(x) = G0 − lim

x→∞ f2(x) − lim
x→∞ f3(x) f4

(
1

c
ln( lim

x→∞ k0 f1(x) + di )

)

+ f5

(
1

c
ln( lim

x→∞ k0 f1(x) + di )

)

= G0 − M2 − lim
x→∞ f3(x) f4

(
1

c
ln(k0M1 + di )

)

+ f5

(
1

c
ln(k0M1 + di )

)

< G0 − M2 − lim
x→∞ f3(x)m4 + f5

(
1

c
ln(k0M1 + di )

)

< 0.

Due to f1(x) strictly monotone increasing, thus the proof is complete. It can be seen
that G∗ is the root of (28) and I ∗ = 1

c ln(k0 f1(G
∗) + di ).

For the second part of (i), we observe that

(a)
∣
∣ d fi (x)

dx

∣
∣, i = 1, 2, 3, 4, 5 are bounded;

(b) fi (x), i = 2, 3, 4 and f j (xt ), j = 1, 5 are Lipschitzian and completely
continuous in x ≥ 0 and xt ∈ C([−max{τ1, τ2}, 0]), respectively;

(c) x
ecx−1 > 0, d

dx

( x
ecx−1

) = (1−cx)ecx−1
(ecx−1)2

< 0 and d2

dx2
( x
ecx−1

) = cecx (ecx (cx−2)+cx+2)
(ecx−1)3

> 0 for x > 0, lim
x→0+

x
ecx−1 = 1

c > 0, then x
ecx−1 is monotonically decreasing and

bounded for x > 0;
(d) let x

ecx−1 |x=0 = 1
c , then

x
ecx−1 and xt

ecxt −1 are respectively Lipschitzian and
continuous in x ≥ 0 and xt ∈ C([−τ2, 0]).

Therefore, referring to Theorems 2.1, 2.2, and 2.4 in Kuang (2012), the solution of
Model (2) with the given initial condition exists and is unique for all t ≥ 0. If there
exists a t0 > 0 such that G(t0) = 0 and G(t) > 0 for 0 < t < t0, then d

dt G(t0) ≤ 0.
But

d

dt
G(t0) = G0 − f2(G(t0)) − f3(G(t0)) f4(I (t0)) + f5(I (t0 − τ2))

= G0 + f5(I (t0 − τ2)) > 0,

this contradiction implies that G(t) > 0 for all t > 0. If there exists a t ′0 > 0 such that
I (t ′0) = 0 and I (t) > 0 for all 0 < t < t ′0, then I (t ′0) < 0. Notice that

d

dt
I (t ′0) = f1(G(t ′0 − τ1))

k0 I (t ′0−τ2)

ecI (t
′
0−τ2)−1

− k0 I (t ′0)

= f1(G(t ′0 − τ1))
k0 I (t ′0−τ2)

ecI (t
′
0−τ2)−1

> 0,
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this implies that I (t) > 0 for all t > 0.
Here, we prove that any given solution (G(t), I (t)) of Model (2) is bounded for

t > 0. If lim supt→∞ G(t) = ∞, there exists a sequence {tn}∞n=1 ↑ ∞ such that
lim
n→∞G(tn) = ∞ and d

dt G(tn) ≥ 0. Thus 0 < d
dt G(tn) = G0 − f2(G(tn)) −

f3(G(tn)) f4(I (tn)) + f5(I (tn − τ2)) ≤ G0 − f2(G(tn)) − f3(G(tn))m4 + M5, and
therefore

lim
n→∞

d

dt
G(tn) = G0 − lim

n→∞ f2(G(tn)) − lim
n→∞ f3(G(tn)) f4(I (tn))

+ lim
n→∞ f5(I (tn − τ2))

≤ G0 − M2 − lim
n→∞ f3(G(tn))m4 + M5 < 0.

This contradiction shows that there is a MG > 0 such that G(t) < MG for all
t > 0. For the second equation in (2), since | f1(x)| ≤ M1, for ε > 0, dI (t)

dt ≤
f1(MG +ε)

k0 I (t−τ2)

ecI (t−τ2)−1
−k0 I (t) for sufficiently large t > 0. If lim sup

t→∞
I (t) = ∞, there

exists a sequence {t ′n}∞n=1 ↑ ∞ such that lim
n→∞ I (t ′n) = ∞ and d

dt I (tn) ≥ 0. Then,

0 < d
dt I (t

′
n) ≤ f1(MG + ε)

k0 I (t ′n−τ2)

ecI (t
′
n−τ2)−1

− di I (t ′n) and

lim
n→∞

d

dt
I (t ′n) ≤ f1(MG + ε) lim

n→∞
k0 I (t ′n − τ2)

ecI (t ′n−τ2) − 1
− lim

n→∞ di I (t
′
n)

= 0 − lim
n→∞ di I (t

′
n) < 0,

this shows that there exists a MI > 0 such that I (t) < MI for all t > 0.
If (ii) is not true, assume lim supt→∞ G(t) = MG < ∞. There exists {tn}∞n=1 ↑ ∞

such that d
dt G(tn) = 0, n = 1, 2, 3, · · · , and lim

n→∞G(tn) = MG according to Lemma

3.1 (fluctuation lemma) in Li and Kuang (2007). Then d
dt G(tn) = G0 − f2(G(tn)) −

f3(G(tn)) f4(I (tn))+ f5(I (tn − τ2)) ≥ G0 − f2(G(tn))− f3(G(tn))m4. Let n → ∞,
thus 0 ≥ G0 − f2(MG) − f3(MG)m4, that is, f3(MG) ≥ G0− f2(MG )

m4
. In addition,

f3(MG) ≤ lim
x→∞ f3(x) < G0−M2

m4
≤ G0− f2(MG )

m4
. �


Proof of Lemma 3.1

Proof If λ = ±iω (ω > 0) is a pair of purely imaginary roots of Eq. (9) and ω then
satisfies the following equation

− ω2 + (A + Be−iωτ2)iω + D + Ce−iωτ2 = 0. (29)

Separating the real and imaginary parts of Eq. (29) leads to

{−ω2 + Bω sinωτ2 + C cosωτ2 + D = 0,
ω(A + B cosωτ2) = C sinωτ2,

(30)
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which implies that

sinωτ2 = ACω + Bω(ω2 − D)

C2 + B2ω2 , cosωτ2 = C(ω2 − D) − ABω2

C2 + B2ω2 , (31)

and ω = 0 is not a solution of (31) since C + D > 0. From Eq. (31), we obtain

ω4 + (A2 − B2 − 2D)ω2 + (D + C)(D − C) = 0, (32)

then

ω2 := ω2± = −(A2 − B2 − 2D) ± √
(A2 − B2 − 2D)2 − 4(D + C)(D − C)

2
.

(33)

Clearly, if D > C and A2 − B2 − 2D > 0, there are no ω such that Eq. (9) has purely
imaginary roots ±iω. If D < C , the number of pairs of purely imaginary roots of (9)
is one. If (A2 − B2 − 2D)2 > 4(D +C)(D −C) > 0 > A2 − B2 − 2D, the number
of pairs of purely imaginary roots of Eq. (9) is two.

From Eq. (30), we get the following two sets of values of τ2 for which there are
imaginary roots:

τ
n,1
2 = θ1 + 2nπ

ω+
= 1

ω+

[

arccos

(
C(ω2+ − D) − ABω2+

C2 + B2ω2+

)

+ 2nπ

]

, n = 0, 1, · · ·

(34)

where

sin θ1 = ACω+ + Bω+(ω2+ − D)

C2 + B2ω2+
, cos θ1 = C(ω2+ − D) − ABω2+

C2 + B2ω2+
, 0 ≤ θ1 ≤ 2π,

(35)

and

τ
n,2
2 = θ2 + 2nπ

ω−
= 1

ω−

[

arccos

(
C(ω2− − D) − ABω2−

C2 + B2ω2−

)

+ 2nπ

]

, n = 0, 1, · · ·

(36)

where

sin θ2 = ACω− + Bω−(ω2− − D)

C2 + B2ω2−
, cos θ2 = C(ω2− − D) − ABω2−

C2 + B2ω2−
, 0 ≤ θ2 ≤ 2π.

(37)

�
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Proof of Lemma 3.2

Proof By differentiating Eq. (9) with respect to τ2, we derive

(
2λ + A + (B − Bλτ2 − Cτ2)e

−λτ2
) dλ

dτ2
= (Bλ + C)λe−λτ2 , (38)

and

( dλ

dτ2

)−1 = (2λ + A)eλτ2 + B

(Bλ + C)λ
− τ2

λ
, (39)

where

eλτ2 = − Bλ + C

λ2 + Aλ + D
. (40)

Then,

( dλ

dτ2

)−1 = − 2λ + A

λ(λ2 + Aλ + D)
+ B

(Bλ + C)λ
− τ2

λ
, (41)

Let τ2 = τ
n,k
2 (k = 1, 2), therefore,

sign

{
dRe(λ)

dτ2

∣
∣
∣
∣
τ2=τ

n,k
2

}

= sign

{

Re

(
dλ

dτ2

)−1
} ∣

∣
∣
∣
τ2=τ

n,k
2

= sign

{

Re

(

− 2λ + A

λ(λ2 + Aλ + D)

) ∣
∣
∣
∣
τ2=τ

n,k
2

+ Re

(
B

(Bλ + C)λ

) ∣
∣
∣
∣
τ2=τ

n,k
2

}

= sign

{
A2 − 2(D − ω2

k,n)

(D − ω2
k,n)

2 + A2ω2
k,n

− B2

C2 + B2ω2
k,n

}

= sign
{
A2 − B2 − 2D + 2ω2

k,n

}
. (42)

By inserting the expression for ω2
k,n (k = 1, 2), it is seen that sign{A2 − B2 − 2D +

2ω2
k,n} > 0 for τ

n,1
2 and ω2+; and sign{A2 − B2 − 2D + 2ω2

k,n} < 0 for τ
n,2
2 and ω2−.

�


Proof of Theorem 3.1

Proof Based on the above Lemmas 3.1 and 3.2, we note that if D < C , a pair of purely
imaginary roots exists λ(τ2)|τ2=τ

n,1
2

= ±iω+ (n = 0, 1, · · · ), then the only crossing
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of the imaginary axis is from left to right as τ
n,1
2 increases, and the stability of the

steady state solution can only be lost and not regained. If A2 − B2 − 2D < 0 and
(A2−B2−2D)2 > 4(D+C)(D−C) > 0, crossing from left to right with increasing
τ
n,1
2 occurs whenever τ

n,1
2 assumes a value corresponding to ω+, and crossing from

right to left occurs for values of τ
n,2
2 corresponding to ω−.

In the case that D < C , only τ
0,1
2 need be considered, since if Model (2) is asymp-

totically stable for τ2 = 0, then it remains asymptotically stable until τ
0,1
2 , and it is

unstable thereafter. At τ2 = τ
0,1
2 , Eq. (9) has pure imaginary roots ±iω+.

In the case of (A2 − B2 − 2D)2 > 4(D + C)(D − C) > 0 > A2 − B2 − 2D,
if Model (2) is stable for τ2 = 0, then it must follow that τ

0,1
2 < τ

0,2
2 since the

multiplicity of roots with positive real parts cannot become negative. We observe that

τ
n+1,1
2 − τ

n,1
2 = 2π

ω+
<

2π

ω−
= τ

n+1,2
2 − τ

n,2
2 , (43)

with ω+ > ω− > 0. Thus, there can be only a finite number of switches between
stability and instability. Moreover, there exist values of the parameters that realize any
number of such stability switches. However, there exists a τ̂2 such that at τ2 = τ̂2 a
stability switch occurs from stable to unstable, and for τ2 > τ̂2 the solution remains
unstable. If Model (2) is unstable for τ2 = 0, then a similar argument as before can be
made. Model (2) can either be unstable for τ2 > 0 or exhibit any number of stability
switches as in the preceding case.

As τ2 is increased, the multiplicity of roots for which Re(λ) > 0 is increased by
two whenever τ2 passes through a value of τ

n,1
2 and it is decreased by two whenever

τ2 passes through a value of τ
n,2
2 .

When the steady state solution is stable for τ2 = 0, j switches from stability to
instability to stability occur when the parameters are such that

τ
0,1
2 < τ

0,2
2 < τ

1,1
2 < · · · < τ

j−1,1
2 < τ

j−1,2
2 < τ

j,1
2 < τ

j+1,1
2 < τ

j,2
2 · · · ,

or j switches from instability to stability to instability may occur when

τ
0,2
2 < τ

0,1
2 < τ

1,2
2 < · · · < τ

j−1,2
2 < τ

j−1,1
2 < τ

j,1
2 < τ

j,2
2 · · · ,

when the steady state solution is stable for τ2 = 0. The conditions on the parameters in
order that the preceding orderings be valid can be formulated directly from Eqs. (34)-
(37).

From the above analysis, we obtain the theorem results. �
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Proof of Theorem 3.3

Proof Let λ = α + iω0 (α ∈ R, ω0 = 2qπ > 0) be a root of Eq. (5), then for
g(λ) = W5e−λτ2λ + W2W4e−λτ1 + W1W5e−λτ2 + W3W4e−λ(τ1+τ2) = 0 we have

⎧
⎪⎪⎨

⎪⎪⎩

Re(g(λ)) = W5e−ατ2 (α cosω0τ2 + ω0 sinω0τ2) + W2W4e−ατ1 cosω0τ1
+W1W5e−ατ2 cosω0τ2 + W3W4e−α(τ1+τ2) cosω0(τ1 + τ2) = 0,

Im(g(λ)) = W5e−ατ2 (ω0 cosω0τ2 − α sinω0τ2) − W2W4e−ατ1 sinω0τ1
−W1W5e−ατ2 sinω0τ2 − W3W4e−α(τ1+τ2) sinω0(τ1 + τ2) = 0.

(44)

In order to simplify, let us consider qτ2 ∈ Z
+, Eq. (44) has the following form

{
Re(g(λ)) = (αW5 + W1W5)e

−ατ2 + (
W2W4e−ατ1 + W3W4e−α(τ1+τ2)

)
cosω0τ1 = 0,

Im(g(λ)) = ω0W5e
−ατ2 − (

W2W4e−ατ1 + W3W4e−α(τ1+τ2)
)
sinω0τ1 = 0,

(45)

we can obtain
⎧
⎨

⎩

tan(ω0τ1) = − ω0

α + W1
,

(
W2W4e−ατ1 + W3W4e−α(τ1+τ2)

)2 = (
ω2
0 + (α + W1)

2
)
W 2

5 e
−2ατ2 .

(46)

If there exists a constant α0 < 0 satisfies (46), then g(λ) has at least one zero λ0 =
α0 + iω0 with α0 < 0.

Let

X(α) = (
W2W4e

−ατ1 + W3W4e
−α(τ1+τ2)

)2 − (
ω2
0 + (α + W1)

2)W 2
5 e

−2ατ2 . (47)

Notice that X(0) = (W2W4 + W3W4)
2 − ω2

0W
2
5 − W 2

1W
2
5 < 0 if W2W4 + W3W4 ≤

W1W5 and lim
α→−∞ X(α) = +∞. Furthermore, taking α = −W1, then

X(−W1) = (
W2W4eW1τ1 + W3W4eW1(τ1+τ2)

)2 − ω2
0W

2
5 e

2W1τ2

>
(
W2W4eW1τ1 + W3W4eW1τ1

)2 − ω2
0W

2
5 e

2W1τ2 .
(48)

If τ2 − τ1 ≤ T0 = 1
W1

ln W2W4+W3W4
ω0W5

such that X(−W1) ≥ 0, then there is a constant
α0 ∈ (−W1, 0) satisfies X(α0) = 0. Thus, λ0 = α0 + iω0 is the zero point of g(λ).

In the following, we construct a simple loop L homotopic to a point and then show
|g(λ)| > |f(λ)| on L . We divide the simple loop L into two parts as: one is defined

by taking (−W1, 0) and
√

W 2
1 + ω2

0 as a center point and the radius, respectively; the
other is defined as λ = iω, ω ∈ [−ω0, ω0].

Let λ = x + iω with x ∈ [ − W1 −
√

W 2
1 + ω2

0, 0
]
and ω ∈ [−ω0, ω0], we set

x = bα0 (b > 0) and then deduce

|g(λ)| = |xW5e
−xτ2e−iωτ2 + iωW5e

−xτ2e−iωτ2 + W2W4e
−xτ1e−iωτ1
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+W1W5e
−xτ2e−iωτ2 + W3W4e

−x(τ1+τ2)e−iω(τ1+τ2)|
= ∣

∣xW5e
−xτ2 cosωτ2 + ωW5e

−xτ2 sinωτ2 + W2W4e
−xτ1 cosωτ1

+W1W5e
−xτ2 cosωτ2 + W3W4e

−x(τ1+τ2) cosω(τ1 + τ2)

+i
(
ωW5e

−xτ2 cosωτ2 − xW5e
−xτ2 sinωτ2 − W2W4e

−xτ1 sinωτ1

−W1W5e
−xτ2 cosωτ2 − W3W4e

−x(τ1+τ2) sinω(τ1 + τ2)
)∣
∣

> W1W5e
−bα0τ2 + W2W4e

−bα0τ1 − W3W4e
−bα0(τ1+τ2) >

W1W5 + W2W4

2
.

(49)

Let λ = iω, ω ∈ [−ω0, ω0], then
|g(λ)| = |W5e

−iωτ2 iω + W2W4e
−iωτ1 + W1W5e

−iωτ2 + W3W4e
−iω(τ1+τ2)|

≥ W1W5 + W2W4 − W3W4 := η1 > 0.

(50)

Let η = min
{
W1W5+W2W4

2 , η1

}
. Denote

L :=
{
λ = x + iω ∈ C :

(x + W1)
2 + ω2 = W 2

1 + ω2
0, x ∈ [ − W1 −

√

W 2
1 + ω2

0, 0
]
,

or λ = iω, ω ∈ [−ω0, ω0]
}
. (51)

where C is a connected region. It is known that L is a simple loop homotopic to
the original, λ0 = α0 + iω0 ∈ L and |g(λ)| > η on L . Taking r0 > 0 such that
L ⊂ � := {λ ∈ C : |λ| < r0}. Denote ∂� := {λ ∈ C : |λ| = r0}, then for all λ ∈ ∂�,
λ = r0eiφ, φ ∈ [π

2 , 3π
2 ], we obtain

|f(λ)| = |λ2 + (W1 + di )λ + W1di | ≤ r20 + (W1 + di )r0 + W1di . (52)

If r20 + (W1 + di )r0 + W1di < η, then for all λ ∈ �, λ = reiφ and r < r0, we have
|f(λ)| < r20 + (W1 + di )r0 + W1di < η for λ ∈ L . Therefore |g(λ)| > |f(λ)| on L .
By Rouchè’s theorem, g(λ) and g(λ) + f(λ) have the same number of zero in L . That
is, g(λ) + f(λ) = 0 has at least one root λ∗ ∈ L . �


Proof of Lemma 3.4

Proof Suppose that Eq. (9) has no root with nonnegative real parts for τ2 > 0, which
means the characteristic Eq. (26)with τ1 = 0 and τ2 > 0 has no rootwith a nonnegative
real part.

Using τ1 as a variable, then the left-hand side of Eq. (26) is analytic in λ and τ1,
and the sum of the multiplicities of zeros of the left-hand side of Eq. (26) in the open
right half-plane can only change if a zero appears on or crosses the imaginary axis.

Due to Eq. (26) with τ1 = 0 has no root with nonnegative real part, there is τ ∗
1 (τ2) >

0 such that all roots of Eq. (26) have negative real parts when 0 < τ1 < τ ∗
1 (τ2). �
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